Author Name | USUKI Teppei (KPMG AZSA LLC) / KONDO Satoshi (KPMG AZSA LLC) / SHIRAKI Kengo (KPMG AZSA LLC) / MASADA Takahiro (KPMG AZSA LLC) / SUZAKI Kosuke (KPMG AZSA LLC) / MIYAKAWA Daisuke (Hitotsubashi University) |
---|---|
Creation Date/NO. | October 2021 21-J-049 |
Research Project | Study Group on Corporate Finance and Firm Dynamics |
Download / Links |
Abstract
In this paper, we implement anomaly detection on listed firms' accounting items. Using a type of sparse modeling, i.e., Graphical Lasso, we confirm that our accounting fraud detection has achieved a practically admissible level of detection capability. We also find that the method of sparse modeling contributes to detection capability.