事例研究(ミクロ経済政策・問題分析 Ⅲ)

- 規制産業と料金・価格制度 -

(第9回 – 手法(5) 応用データ解析/措置効果評価)

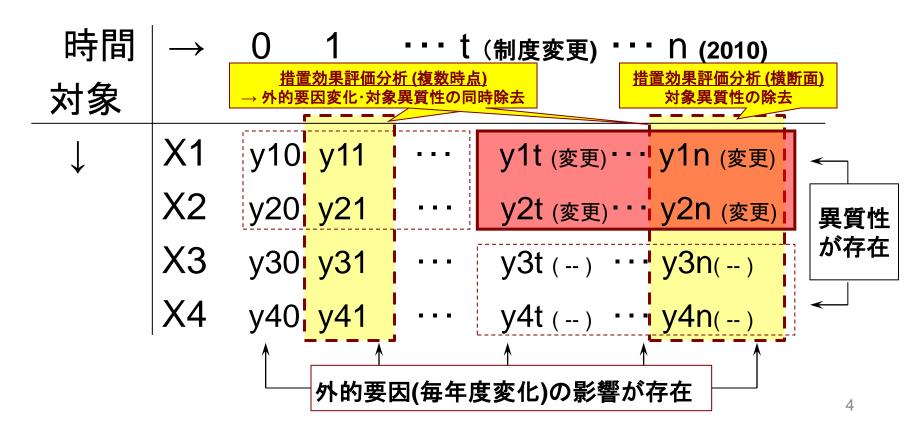
2011年 6月30日 戒能一成

0. 本講の目的

(手法面)

- 応用データ解析の手法のうち、措置効果評価 (Treatment Evaluation) の概要を理解する

(内容面)


- 計量経済学·統計学を実戦で応用する際の 留意点を理解する(3)

1-1. 措置効果評価(TE)の概念

- 措置効果評価 (Treatment Evaluation) とは、 対象の異質性を念頭に、措置(規制・補助・融資 ・教育訓練など)の新設・変更が、対象に及ぼす 効果を推計するための一群の分析手法を指す
- 経済学分野では比較的新しい('90-)分野のため、 用語・手法は様々で進歩・変化が著しい
- 措置効果評価では、通常は対象が多数ある前 提で横断面分析 又は パネルデータ分析を行う (←対象が少数の場合 時系列分析 又は パネル)。

1-2. 措置効果評価の要点

料金・価格制度の措置効果評価では、「異質性」 (複数時点の場合 +「外的要因」)の除去が必要

1-3. 措置効果評価の基本用語

Di :対象i への措置の有無(= 1 or 0)

N₁, N₀: 措置群(Di=1), 対照群(Di=0) の試料数

 $yi \equiv yi(Di) = yi(1) \text{ or } yi(0)$ (単に $y_1 \text{ or } y_0$ も多用)

vi(1):対象i が措置群となった場合の結果指標

yi(0):対象i が対照群となった(= 措置されない) 場合の結果指標

p(x):措置率 Propensity score 条件 x に該当する全試料中、措置群となる 確率 (= N₁/(N₁+N₀)|x, 但し要推計の場合有)

1-4. 措置効果評価の前提条件

- 措置効果の独立性 "Unconfoundness"
 - → 制度(変更)の影響が、措置群・対照群の 間で独立と見なせること(影響の異質な対 象だけ選分けて措置群としていないこと) ⇔(yi(1), yi(0) ⊥ Di | x) for ∀i
- 対照群の存在 "Overlap"
 - →(条件 x を満たす)試料中に、措置群・対照 群が両方とも存在すること
 - ⇔ 0 < p(x)(措置率) < 1</p>

1-5. 平均措置効果·措置群平均措置効果

- **平均措置効果 (Average Treatment Effect: ATE)** 措置群と対照群の間の平均的な指標の差 (= 他の条件を一定とした措置の効果) → E(v(1) v(0))
- **措置群平均措置効果** (ATE on treated: **ATET**) 措置群において、措置が行われた前後の平均的な指標の差 (注意: 異時点比較のみ: 措置後の措置群には y(0) が存在しない) → E(y(1) y(0) | D = 1)

1-6. 平均措置効果の推計

- (条件x を満たす) 平均措置効果 (ATE(x))の推計

ATE(x) = E(y(1) - y(0) | x)
= E(y(1) | x) - E(y(0) | x)
= E(y(1) | x, D = 1) - E(y(0) | x, D = 0)
(
$$\leftarrow$$
 : (yi(1), yi(0) \perp Di | x) for \forall i)

- . ATE*(x) = (1/N₁ *Σ _i(yi(1)) -1/N₀ *Σ _j(yj(0)) | x) (措置群の平均値)-(対照群の平均値)
 - → 本来は存在しない措置群の y(0) を、措置効果の独立性条件から対照群の y(0) で代用

1-7. 平均措置効果と結果指標

- (条件x を満たす) 結果指標 y

$$y \mid x = D * y(1) + (1 - D) * y(0) \mid x$$

= $D * (y(1) - y(0)) + y(0) \mid x$
= $D * ([ATE*(x)]+\epsilon (1)-\epsilon (0)) + y(0) \mid x$

y(1) =
$$1/N_1 * \Sigma_i(yi(1)) + \epsilon_i(1)$$

y(0) = $1/N_0 * \Sigma_i(yi(0)) + \epsilon_i(0)$

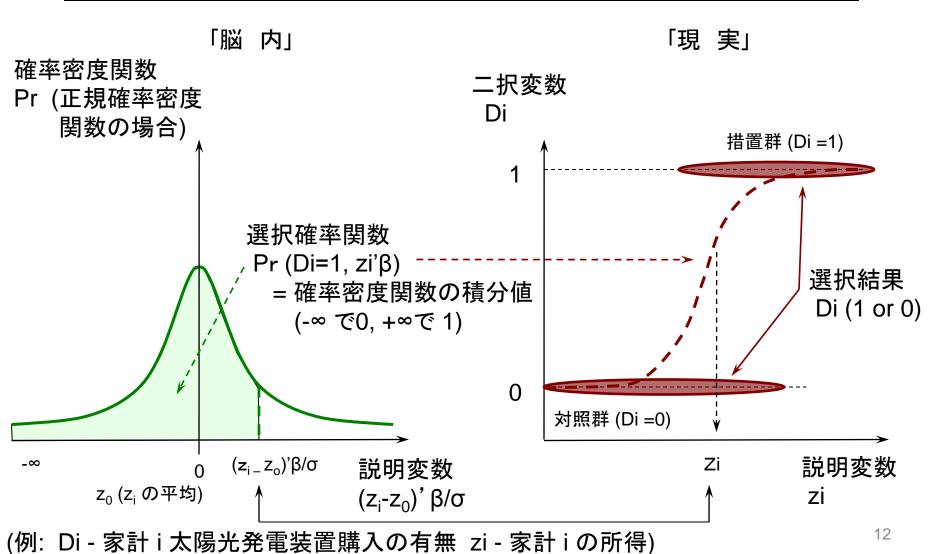
→ y は 対照群の y(0) に、措置群の平均措置効果と誤差(ε(1)-ε(0)) が Dの値(=1/0)に応じ 非線形に加算されたものと見なせる

<u>1-8. 平均措置効果と手法選択 [重要]</u>

- 措置群·対照群の選択が、観察可能な変数 zi で 決定される場合(D_i = g(zi) = 1 or 0)
 - → ダミー変数(非線形)モデルによる分析
- 措置群·対照群の選択の変数(zi)が不明の場合
 - 措置前後の異時点の横断面データ利用可能
 - → DID分析 (Difference In Difference) 他
 - → 措置ダミーを用いたパネルデータ分析
 - 措置後の横断面データのみ利用可能
 - → 横断面分析 (Cross Section-)

2-1. ダミー変数(非線形)モデル(1) 二択モデル

- 離散値 Di の選択が、ある観察可能な変数 zi で決まる確率に従う場合、当該過程は 二択モデル (Binary Outcome Model)が適用可


(離散値 Di の選択)

$$Di = \begin{cases} 1 \\ 0 \end{cases}$$

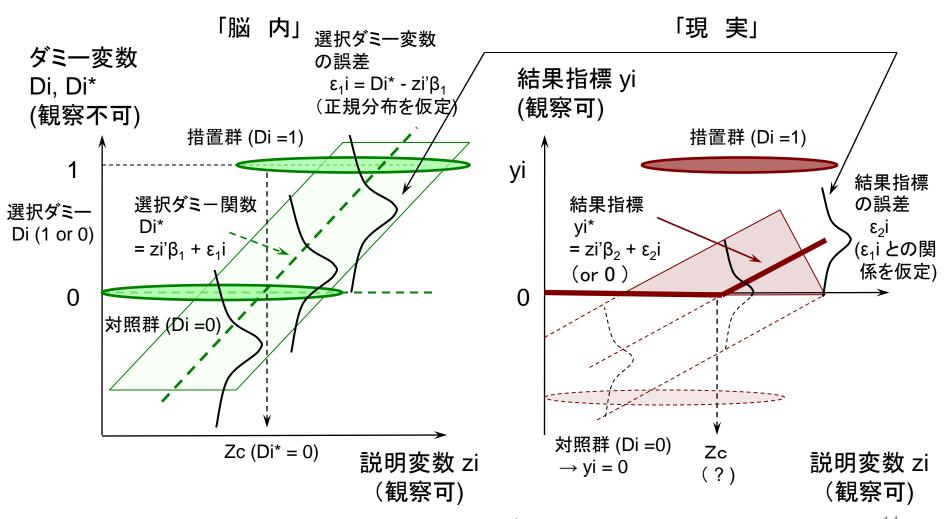
$$Di = Pr(Di=1, z_i'\beta) + \epsilon_i$$

$$Pr(Di=1,z_i'\beta) = \int_{-\infty}^{(z_i-z_0)'\beta/\sigma} (2\pi\sigma^2)^{-1/2} * exp(-1/2*s^2/\sigma^2) ds$$
 (Probit; 正規確率密度関数 φ ((z_i-z_0)'β /σ)の積分)
$$Pr(Di=1,z_i'\beta) = 1 / (1 + exp(-z_i'\beta))$$
 (Logit; 対数確率関数 Λ ($z_i'\beta$)(=「積分済」))

<u>2-2. ダミー変数(非線形)モデル(2) 二択モデル概念</u>

2-3. ダミー変数(非線形)モデル(3) ダミー変数モデル

- 離散値 Di の選択に応じ、Di = 1 の場合のみ 結果指標 yi が zi により決定される場合、ダミー 変数モデル(Dummy Dependent Model)が適用可


(第1段階:離散値 Di の選択)

$$Di = \left\{ \begin{array}{ccc} 1 & \text{if} & Di^* > 0; & Di^* = z_{i1}{}^i\beta_1 + \epsilon_{1i} \\ 0 & \text{if} & Di^* \leq 0; & (通常誤差 \epsilon_{1i} は正規分布と 仮定し Probit型で } \beta_1$$
を推定)

(第2段階: 結果指標 yi の決定)

$$yi = \begin{cases} yi^* & \text{if } Di^* > 0; \\ 0 & \text{if } Di^* \leq 0; \end{cases}$$
 $yi^* = z_{i2}'\beta_2 + \epsilon_{2i}$ $\leftarrow \text{the equation}$

2-4. ダミー変数(非線形)モデル(4) 推計の概念

(例: yi-家計 i の太陽光発電量 Di – 装置購入ダミー(観察不可) zi-家計 i の所得) ¹⁴

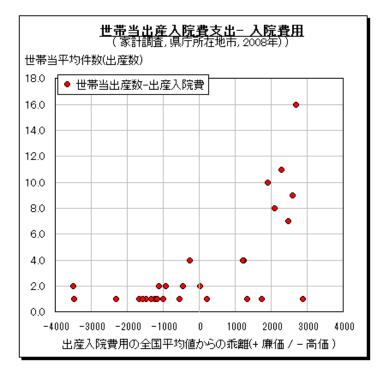
2-5. ダミー変数(非線形)モデル(5) モデルの種類

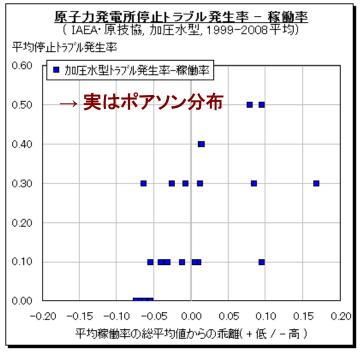
- Two Part モデル

第1段階を Probit型で推計し、第2段階で正の観察値のみ回帰推計 (= 第1段階·第2段階の確率や誤差の関係を仮定しないが、第1段階での 選択の有無(= 第2段階が不存在か "0"が存在か)を識別する必要有)

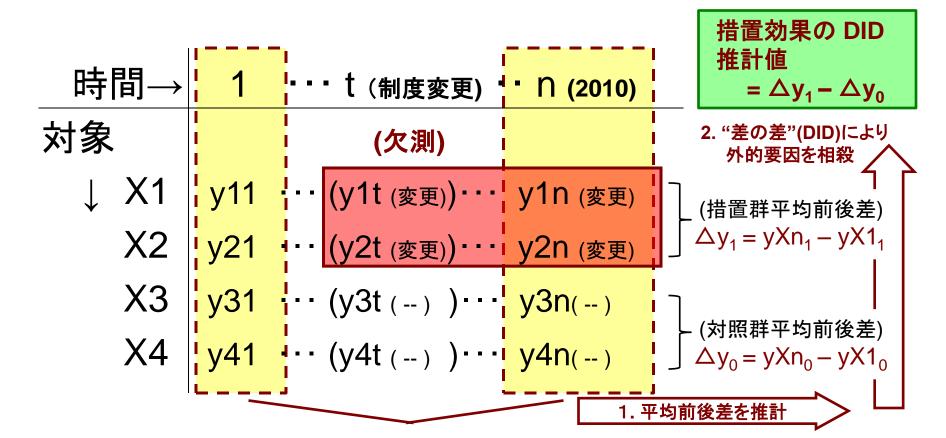
- Tobit モデル (Type 2)

第1段階·第2段階の誤差が二元正規分布に従うと仮定し、第1段階の Probit型推計の結果(回帰係数β₁)を用い、第2段階を推計


- Heckman 2段モデル


第1段階·第2段階の誤差が線形関係と仮定し、第1段階の Probit型推計の結果(回帰係数 β_1) を用い、第2段階で正の観察値のみを推計 $E(yi \mid Di > 0) = zi_2' \beta_2 + \sigma_{12}*\lambda (zi_1' \beta_1) \leftarrow 最尤値(ML)推計 \sigma_{12}$: 誤差間の線形回帰係数

λ (zi'β 1): 逆ミルズ比 正規分布確率密度関数φ と確率の比 = φ (-zi'β 1/σ)/(1-∫_{-∞}-zi'β 1/σ φ (s) ds)


2-6. ダミー変数(非線形)モデル(6) 仮定と検定

- ダミー変数モデルの多くは、少なくとも第1段階の 選択過程の誤差が正規分布に従うと仮定
 - → 誤差の正規性検定 (- linktestなど) が必須

- 3-1. DID (Difference In Difference) 分析(1)
 - 措置の前後で 1つづつ、少なくとも 2時点の横断 面データがあれば DID分析 が可能

3-2. DID (Difference In Difference) 分析(2)

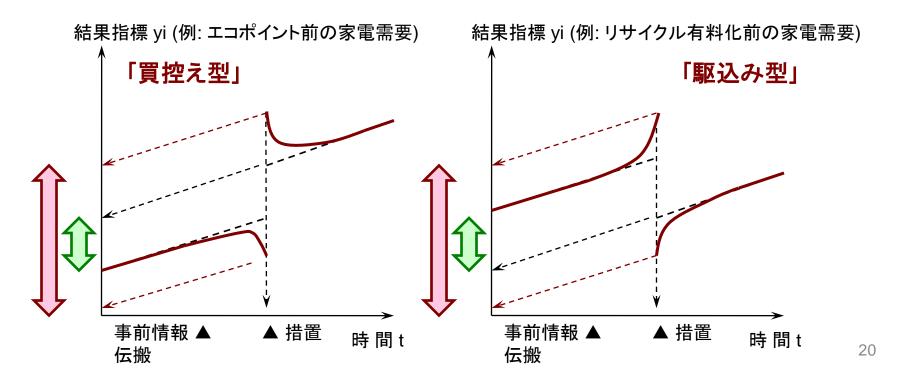
- DID推計では、時間とともに変化する 外的要因
- δ (厳密には△δ)が、措置群・対照群共通と仮定
 - → 措置群·対照群の外的要因に対する異質性 が可能な限り排除されている必要有(後述)

$$y(i,t-h)_{1} = \alpha + xi'\beta + \delta (t-h) + +\epsilon (i,t-h)$$

$$-y(i,t+h)_{1} = \alpha + xi'\beta + \delta (t+h) + TE(i,t+h) +\epsilon (i,t+h)$$

$$\Delta y(i)_{1} = \Delta \delta + TE(i,t+h) + \Delta \epsilon (i)$$

$$-\Delta y(j)_{0} = \Delta \delta + \Delta \epsilon (j)$$

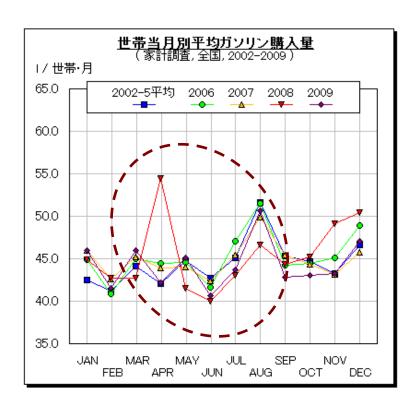

$$E(\Delta y_1 - \Delta y_0) = E(TE(t+h) + \epsilon_{DID}) = ATE$$

<u>3-3. DID分析 と パネルデータ分析</u>

- DID分析は、措置前後の 2期によるパネルデータ 分析において 1階階差をとり、措置群にダミーを 設定して分析した結果と同じである
 - → 外的要因を階差の回帰分析で除くか、引算で除くか、という違い
- DID分析の結果は「平均値の差」の検定で判定
 - → パネルデータ分析では措置群ダミー係数の有意性検定で判定
- 但し、多期のパネルデータが利用できる場合は、 パネルデータ分析の利用が望ましい
 - → 「駆込み・買控え効果」 (Ashenfelter's Dip)

3-4. DID分析 と「駆込み・買控え効果」(1)

- 観察する措置前後の 2期で**措置効果が特異な** 時間変化をしている場合に注意が必要
 - → 特に「駆込み・買控え効果」は要注意



3-5. DID分析 と「駆込み・買控え効果」(2)

- 「駆込み・買控え効果」の実例

2008年4月: ガソリン税暫定税率一時廃止

(年度末での法案審議遅延による期限切・翌月衆院再可決)

- 2008年 4月の暫定税率廃止の 結果、ガソリン価格は 1リットル 140円から約20円低下(当時)
- その結果、家計において平年月 の約20%相当の「駆込み」需要 が発生し("ガソリン満タン化") 5~8月頃迄その反動が残った と推定される
- 2008年秋からの増加は、高速 道路料金社会実験(深夜割引時 間帯拡大)の影響と推察される

4-1. マッチングによるデータ予備処理(1)

- DID分析 や パネルデータ分析 などにおいて、 措置群・対照群間での**対象の異質性を軽減**する 方法として、マッチング によるデータ予備処理が 注目されている
- マッチングとは、措置群・対照群の横断面データを幾つかの変数("条件変数")を用いて分類し、 当該分類された措置群・対照群が対応するよう ("Match", = 異質性が少ない) データを選別した 上で分析すること

4-2. マッチングの種類(1)

- 完全一致型 (Exact Matching)
 措置群が少数で、多数の対照群がある場合、
 措置群と条件変数が完全に一致する対象だけ
 を対照群として抽出し試料化 (逆も可、事例少)
 (例: 中小企業の場合: 業種・売上・従業員数等を条件変数に設定)
- 最近接距離型 (Nearest Neighbor Matching)
 措置群・対照群のデータから、条件変数の「距離」(例:=((Z_{a1} Z_{a0})² + (Z_{b1} Z_{b0})²)^{0.5} が最小となる対を作り試料化 (例: a = 売上高, b = 従業員数)

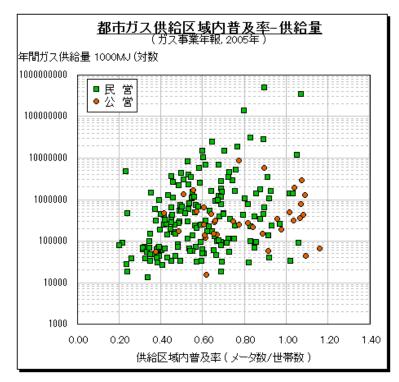
4-3. マッチングの種類(2)

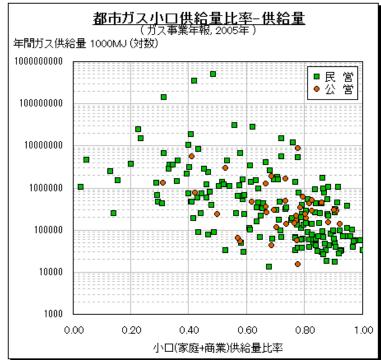
- 措置率型 (Propensity Score Matching: PSM) 措置群・対照群のデータのうち、措置率の刻みや範囲が一定となるように条件変数を区切って 措置群・対照群を抽出して試料化 (事例多数)

例1: 層別・区間式措置率型マッチング Stratified/Interval type PSM 措置率 p が 0~ 100% の間で10%刻みとなるような条件変数の区間(例: 売上高1千万, 5千万, 2億・・・) を設定し、各区間内の措置群・対照群を試料化(但し措置率 0~10, 90~100%は廃棄)

例2: 半径式措置率型マッチング Radius type PSM 措置群内の試料別に、その試料から措置率 p が一定範囲内 (例.±5%)となる条件変数の企業を当該試料の対照群に設定

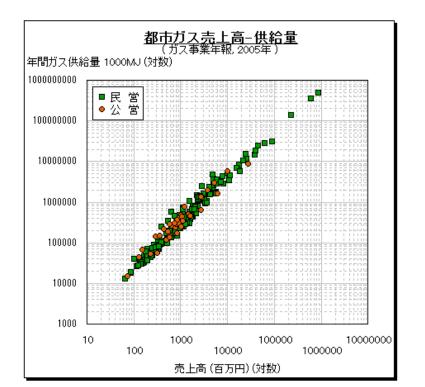
4-4. 措置率型(PSM) と 平均措置効果(ATE)


- 措置率型(PSM)において**平均措置効果**(ATE) は 措置率 p(x) を用いて下記のように表現される


従って、試料数 N の場合の平均措置効果の推計値(ATE*)は、 $p^*(x_i)$ (← Logitモデルなどにより x_i から推計), y_i , D_i から下記のとおり推計できる

ATE*(x) = N⁻¹*
$$\sum_{i}$$
 ((D_i-p*(x_i))*y_i/(p*(x_i)*(1-p*(x_i)))

5-1. 横断面分析とマッチング(1)


- 都市ガス事業は 2005年時点で民営178社·公営 36社が存在するが、生産性を民間·公営間で比 較する場合、事業の「異質性」に注意が必要

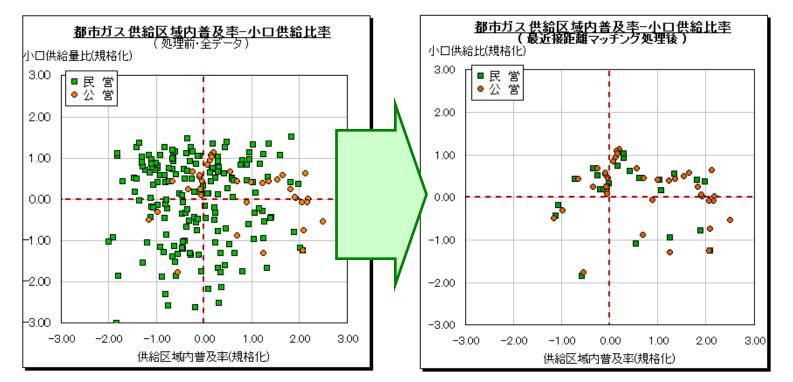
5-2. 横断面分析とマッチング(2)

- マッチングの条件変数の設定に際し、分析する内容と過度に相関が高い変数を設定すると「異質性」の除去が分析指標に影響を与えてしまう

5-3. 横断面分析とマッチング(3)

- 最近接距離マッチングの手順
 - 1) 条件変数 z を選択

例: z₁ = 「供給区域普及率」 z₂ = 「小口供給量比率」


2) 各条件変数を規格化(平均 0,標準偏差 1)

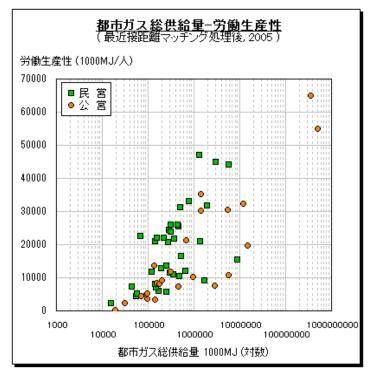
$$z_{i1,2}^{2} = (z_{i1,2} - \mu_{z1,2}) / \sigma_{z1,2}$$

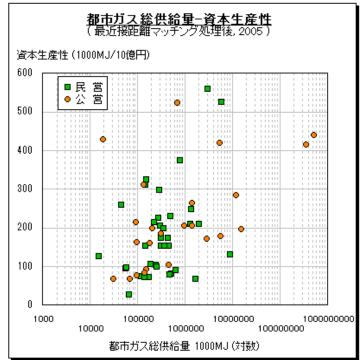
($\mu_{z1,2} = z_{1,2}$ 各平均值 $\sigma_{z1,2} = z_{1,2}$ 各標準偏差)

3) 措置群 i の z[^]_{i1,2} に対し最小の「距離」となる z[^]_{j1,2} を持つ j を対照群から抽出し試料化 | z[^]_{ij} | = min ((z[^]_{i1} - z[^]_{j1})² + (z[^]_{i2} - z[^]_{j2})²)^{0.5} 注) 複数年の場合、複数年の加重平均「距離」が最小の j を選択

5-4. 横断面分析とマッチング(4)

- 最近接距離マッチングによる処理 措置群と対応する対象だけを対照群から抽出、 「異質性」を軽減した試料を作成


5-5. 横断面分析とマッチング(5)


- 最近接距離マッチングによる効果

(2005年)	公営都市ガス事業			民営都市	ガス事業	公営 - 民営	
	95%信頼上下限		未処理	処理済	未処理	処理済	
供給区域普及率	0.782	1.123	0.441	-0.161	0.748	0.943	0.034
同標準偏差	1.044			0.914	1.008 <i>(p値)</i>	0.000	0.445
小口供給量比率	0.155	0.379	-0.069	-0.032	0.197	0.187	-0.042
同標準偏差	0.686			1.052	0.678 <i>(p値)</i>	0.092	0.396
							, ,
平均資本生産性	186.70	226.11	147.29	251.81	232.16	-65.11	-45.46
同標準偏差	120.65			234.72	117.36 <i>(p値)</i>	0.008	0.500
平均労働生産性	19076	22878	15273	14492	18907	4584	168
同標準偏差	11640			15936	15546 <i>(p值)</i>	0.024	0.479
				30			

5-6. 横断面分析とマッチング(6)

- マッチングにより予備処理した試料を、さらに別の説明変数で回帰分析に掛けて分析すること多し(混合推計; Mixed Estimation)

5-7. 横断面分析とマッチング(7) - 混合推計 -

- マッチング処理した試料を再度回帰分析

. reg lprpr lsplypr, robust

Linear regression

Number of obs = 36 F(1, 34) = 11.47 Prob > F = 0.0018

R-squared = 0.3745 Root MSE = 9340.3

民営都市ガス事業_

労働生産性を 総供給量(対数) -で回帰

lprpr	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	. Interval]
lsplypr _cons	5335.243 -48931.97	1575.496 19227.97		0.002 0.016	2133.451 -88007.9	8537.035 -9856.042
		-			•	

. reg lprgo lsplygo, robust

Linear regression

Number of obs = 36 F(1, 34) = 128.84 Prob > F = 0.0000

R-squared = 0.7767 Root MSE = 7453.6

公営都市ガス事業

労働生産性を 総供給量(対数) で回帰

lsplygo _cons	5502.705 -56678.69	484.7788 6034.581	11.35 -9.39	0.000 0.000	4517.516 -68942.43	6487.894 -44414.94
lprgo	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
•						

- 5. 措置効果評価 実戦編 -
 - 5-8. 横断面分析とマッチング(8) 結果の解釈 -
 - 都市ガス事業の生産性を民間・公営間で比較する場合、供給区域内普及率・小口供給量比率など事業の「異質性」を管理せずに比較すると有意な差異が観察される
 - 一方、これらの「異質性」を管理して比較すると、 労働生産性・資本生産性ともに生産性に有意な **差異があるとは言えない**結果となる
 - (→生産性の差異は、民間·公営間での供給区 域内普及率の差に起因する可能性大)