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1 Introduction

It is well known that firms and workers are, on average, more productive in larger cities, and

many economists have attempted to explain this stylized fact. One main strand in the literature of

urban economics emphasizes the role of agglomeration economies. As observed by Marshall (1890),

workers and firms enjoy the benefits from agglomeration economies through stronger input-output

linkages, better matching between workers and firms in labor markets, and more active knowledge

spillovers (e.g., Rosenthal and Strange, 2004). However, recent studies in this literature have shed

new light on another hypothesis of selection (e.g., Melitz, 2003; Melitz and Ottaviano, 2008). In

this framework, selection refers to how less-productive firms are forced to exit the market as a

result of tougher competition. Extending the firm selection model with the endogenous markup of

Melitz and Ottaviano (2008), Combes et al. (2012a) show that the higher concentration of economic

activities in larger cities forces tougher competition across firms, after which less-productive firms

cannot survive there. Consequently, more-productive firms operate in larger cities, creating the

impression that agglomeration economies, on average, make productivity higher. As such, there is

an increasing need to develop a new empirical methodology in order to distinguish agglomeration

from firm selection.

Combes et al. (2012a) developed a quantile approach to compare the productivity distributions

between larger and smaller cities. Consistent with the multi-city setting and simultaneously incorpo-

rating agglomeration externalities, and extending the firm selection model of Melitz and Ottaviano

(2008), they showed that the productivity distributions between larger and smaller cities are com-

parable via shift, dilation, and truncation components. In their model, agglomeration benefits are

expressed by shifting productivity distribution of larger cities rightward and by making it dilated.

Meanwhile, stronger selection leads to the left-truncation of the productivity distribution. In other

words, the right-shift of distribution indicates that all firms in larger cities enjoy the same benefits

from agglomeration, while the dilation effect indicates that more-productive firms in larger cities

enjoy greater benefits from agglomeration. Moreover, the left-truncation of distribution indicates

that less-productive firms are forced to exit the market due to tougher competition.

In this study, we introduce a new Stata command estquant, which implements the quantile

approach suggested by Combes et al. (2012a). Although Combes et al. (2012a) concluded that firm

selection does not play a crucial role in determining spatial productivity differences in the French

manufacturing sector, this literature requires more empirical studies worldwide, since there may be

counterexamples in other countries. Considering why differences arise across countries will deepen

our understanding of agglomeration economies and firm selection. Thus, the estquant command is

expected to expand this literature by providing significant evidence.

In order to promote intuitive interpretations of this quantile approach, this study presents useful

numerical examples. In particular, our Monte Carlo experiments offer a good insight into how model

misspecification leads to biases for estimates of shift, dilation, and truncation parameters. It has

been shown that, if the selection is omitted when it matters in the true model, then agglomeration

economies are estimated with an upward bias for the shift parameter and a downward bias for the
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dilation parameter.

In the existing literature, after applying the quantile approach to the Japanese manufacturing

sector between 1986 and 2013, Kondo (2016) could hardly find evidence that stronger selection

effects in larger cities, which is consistent with the findings of Combes et al. (2012a). Agglomer-

ation economies better explain spatial productivity distributions, especially via the right-shift of

productivity distribution for larger cities in the Japanese manufacturing sector in recent decades.

Conversely, Arimoto et al. (2014) concluded that higher productivity in the prewar Japanese silk-

reeling industrial clusters could be explained by firm selection. Using the Italian firm-level dataset,

Accetturo et al. (2013) found that agglomeration economies play a key role in explaining spatial

productivity differences. However, they emphasized that selection is also an important factor to

explain such differences in some industries, especially when different spatial scales are considered

(e.g., comparison between cities with larger and smaller market potentials).

Interestingly, one can use this quantile approach when comparing any two distributions in wide-

ranging studies of economics. In fact, Combes et al. (2012b) applied a quantile approach to workers’

skills measured from wages using the French workers’ panel dataset. They found that, similar to

firm productivity, workers’ skills are, on average, higher in larger cities. The study of de la Roca and

Puga (2017) also applied a quantile approach to compare distributions of workers’ skills between

larger and smaller cities. Although they obtained similar results to Combes et al. (2012b) in their

static framework using the Spanish workers’ panel dataset, their findings showed that workers’

skills do not differ considerably between larger and smaller cities, after controlling for the dynamic

learning effects of working in larger cities.1 Thus, this quantile approach offers greater possibilities

in applied economics, and the estquant command will help future studies easily utilize this new

quantile approach.

The reminder of this paper is organized as follows. Section 2 reviews the quantile approach

suggested by Combes et al. (2012a). Section 3 describes the estquant command. Section 4 conducts

the Monte Carlo experiments to determine how model misspecification affects parameter estimation.

Section 5 replicates the estimation results of Combes et al. (2012a). Finally, Section 6 presents the

conclusions.

2 Quantile approach

As stated earlier, Combes et al. (2012a) proposed a new quantile approach to distinguish agglomera-

tion effects from firm selection. Although the overall theory relates to the differences in distributions

between larger and smaller cities, their quantile approach can be applied to a more general case of

any two distributions. This section presents a brief review of their quantile approach.

1Combes et al. (2012b) did not strictly distinguish whether workers are ex ante or ex post skilled in their wage
distribution analysis. Conversely, after focusing on the dynamic benefits from agglomeration economies, de la Roca
and Puga (2017) found that, even if workers are ex ante identical, workers in larger cities acquire skills faster than
those in smaller cities. In other words, workers in larger cities become ex post more-skilled via valuable experiences
there, which can be considered as the dynamic benefits from agglomeration economies, rather than the spatial sorting
of skills.
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2.1 Theoretical implications

Combes et al. (2012a) extended the firm selection model of Melitz and Ottaviano (2008) by in-

troducing agglomeration economies as technological externalities proportional to the size of cities,

including neighboring cities. Their model nests selection and agglomeration economies, both of

which affect aggregate productivity through different channels. Their key theoretical predictions

can be summarized by comparing the entire productivity distributions between larger and smaller

cities, based on three key parameters (i.e., shift, dilation, and truncation). Agglomeration economies

are captured by the right-shift of productivity distributions between smaller and larger cities (i.e.,

the right-shift captures the difference in average productivities between smaller and larger cities).

Furthermore, Combes et al. (2012a) considered the dilation effect of agglomeration economies, which

indicates that more-productive firms enjoy greater benefits from agglomeration (i.e., the dilation pa-

rameter indicates whether productivity distributions in larger cities are more dispersed than those

in smaller cities). The estimation issue related to these two effects is that, when stronger truncation

exists in the productivity distribution in larger cities, right-shift and dilation effects of agglomera-

tion economies are overestimated and underestimated respectively, due to the omitted truncation

parameter.2

Figure 1 presents four selective cases regarding agglomeration and selection. Panel (a) illustrates

the case of the agglomeration economies through the right-shift of productivity distribution for

larger cities, but the strength of selection is the same between the cities. In addition to Panel (a),

Panel (b) includes the dilation effect of agglomeration economies, which means that the productivity

distribution of larger cities is more dispersed than that of smaller cities. Panel (c) exhibits stronger

selection in larger cities, but there are no agglomeration economies, while Panel (d) is the case

in which larger cities show the right-shift and dilation effects of agglomeration economies as well

as stronger selection. As mentioned earlier, omitting the stronger left-truncation of distribution

for larger cities leads to an upward bias for the shift parameter (through a higher average) and

a downward bias for the dilation parameter (through a smaller variance). One advantage of the

quantile approach suggested by Combes et al. (2012a) is that it simultaneously estimates not only

the relative strength of selection between larger and smaller cities but also the relative degrees of

shift and dilation effects arising from agglomeration economies.

2A seminal paper on selection in productivity distribution is Syverson (2004), who showed that the strength of
selection increases (which indirectly implies that the dispersion of productivity distribution decreases due to the
selection) as the local market size increases. His indirect identification approach to selection using the inter-quantile
range of distribution crucially depends on the assumption that the left-truncation of distribution leads to smaller
variance. However, the smaller variance of distribution in larger cities is not necessarily driven by selection. This
occurs when agglomeration economies benefit relatively less-productive firms greater than relatively more-productive
firms. For example, relatively less-productive firms enjoy greater benefits through transactions with more-productive
firms in locally segmented markets. Furthermore, Arimoto et al. (2014) also pointed out the possibility of faster
technological catch-up through imitation.
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(a) (b)

(c) (d)

Figure 1: Comparing distributions between large and small cities

Note: Created by author. The solid and dashed lines denote productivity distributions for larger and smaller
cities, respectively. Panel (a) shows agglomeration economies (right-shift only) and the same selection. Panel
(b) shows agglomeration economies (right-shift and dilation) and the same selection. Panel (c) shows the
same level of agglomeration economies and stronger selection in larger cities. Panel (d) shows agglomeration
economies (right-shift and dilation) and stronger selection in larger cities.

2.2 Basic assumption

At this point, we begin the discussion with Lemma 1 in Combes et al. (2012a).3 Consider that there

are two cumulative distribution functions of Fi and Fj for category i and category j, respectively

(e.g., larger cities belong to category i and smaller cities belong to category j) and both Fi and Fj

have some common underlying distribution F̃ . Then, Fi can be obtained by shifting F̃ rightward

by Ai, dilating F̃ by Di, and left-truncating a share Si ∈ [0, 1) of F̃ . In the same manner, Fj can

be obtained by shifting F̃ rightward by Aj , dilating F̃ by Dj , and left-truncating a share Sj ∈ [0, 1)

of F̃ . Furthermore, under the condition that Fi and Fj have some common underlying distribution

3For simplicity of explanation, we skip details of their theoretical model with firm selection and the agglomeration
economies developed by Combes et al. (2012a).
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F̃ , we have the following relationship between Fi and Fj :

Fi(φ) = max

(
0,

Fj

(
φ−A

D

)
− S

1− S

)
, if Si > Sj , (1)

Fj(φ) = max

⎛⎜⎝0,
Fi (Dφ+A)− −S

1− S

1− −S

1− S

⎞⎟⎠ , if Si < Sj, (2)

where D ≡ Di/Dj , A ≡ Ai −DAj, S ≡ (Si − Sj)/(1− Sj). The first equation shows that Fi can be

obtained by dilating Fj by D, shifting Fj by A, and left-truncating a share S of Fj . In addition, the

second equation shows that Fj can be obtained by dilating Fi by 1/D, shifting Fi by −A/D, and

left-truncating a share −S/(1− S) of Fi.

This relationship helps us compare the two cumulative distribution functions without directly

specifying an ad hoc underlying distribution F̃ .4 In addition to shift A and dilation D, we can

examine the relative strength of truncation S of category i, compared to category j. Furthermore,

parameter A measures how much stronger the right shift in category i is relative to category j, while

parameter D measures the ratio of dilation in category i relative to category j. Finally, parameter

S measures how much stronger the left truncation in category i is relative to category j.

2.3 Quantile transformation

To estimate Equations (1) and (2), we transform them into quantile functions. Suppose that the

cumulative distribution function (CDF) is invertible. Let λi(u) = F−1
i (u) and λj(u) = F−1

j (u)

denote the quantile functions of categories i and j, respectively, and u is the uth quantile. The

quantile function is defined for all u ∈ [0, 1].

If S > 0, then the quantile function can be obtained from Equation (1) as follows:

λi(u) = Dλj

(
S + (1− S)u

)
+A, for u ∈ [0, 1]. (3)

If S < 0, then the quantile function can be obtained from Equation (2) as follows:

λj(v) =
1

D
λi

(
v − S

1− S

)
− A

D
, for v ∈ [0, 1].

Then, we use the transformation of the variable by u = (v − S)/(1 − S) and thus, the quantile

function can be rewritten as follows:

λj

(
S + (1− S)u

)
=

1

D
λi(u)− A

D
for u ∈

[ −S

1− S
, 1

]
(4)

4A quantile approach does not need to specify an ad hoc underlying distribution beforehand, but the assumption
that two distributions need to have some common underlying distribution might be strong in empirical analyses.
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Combining Equations (3) and (4) for all S yields

λi(u) = Dλj

(
S + (1− S)u

)
+A for u ∈

[
max

(
0,

−S

1− S

)
, 1

]
.

This equation cannot be directly estimated since the set of ranks u includes the unknown true

parameter S. Thus, additional variable transformation provides the following equation:

λi

(
rS(u)

)
= Dλj

(
S + (1− S)rS(u)

)
+A for u ∈ [0, 1] , (5)

where rS(u) = max
(
0,−S/(1 − S)

)
+
(
1−max

(
0,−S/(1 − S)

))
u.

An intuitive understanding of Equation (5) is as follows. Consider the case in which S = 0, and

then Equation (5) becomes

λi

(
u
)
= Dλj

(
u
)
+A, for u ∈ [0, 1] .

This equation expresses how well the relationship between the quantile functions λi(u) and λj(u) is

explained by the relative parameters of dilation D and shift A. Figure 2(a) presents this case, in

which a common underlying distribution is standard normal distribution and the true parameters

are set as A1 = 0.2, A2 = 0, D1 = D2 = 1, and S1 = S2 = 0.005. Thus, the relative shift parameter

is A = 0.2, the relative dilation parameter is D = 1, and the relative truncation parameter is S = 1.

In Figure 2(a), the upper shift of quantile function for Category 2 is expressed by the positive value

of parameter A, but the steepness is the same between the two quantile functions between Categories

1 and 2. When A = 0, D = 1, and S = 0, both distributions are identical. Hence, parameters A

and D capture the differences between two distributions.

An empirical issue raised by Combes et al. (2012a) is that firm selection, if it exists, generates

biases in parameters A and D. Particularly, firm selection offers a misleading interpretation that

agglomeration economies, on average, increase productivity. Figure 2(b) presents the case of S =

0.1, in which a common underlying distribution is the standard normal distribution and the true

parameters are set as A1 = 0.2, A2 = 0, D1 = D2 = 1, S1 = 0.005, and S2 = 0.1045. Thus, the

relative shift parameter is A = 0.2, and the relative dilation parameter is D = 1. The quantile

approach endogenously matches the quantile ranges between the two distributions in accordance

with relative selection S, while simultaneously examining the relative shift parameter A and the

relative dilation parameter D. For example, in Figure 2(b), the quantile approach compares the

logarithm of total factor productivity (TFP) at the 0th quantile of distribution for smaller cities

with the logarithm of TFP at the 0.1th quantile for larger cities, since S = 0.1. The quantile

approach conducts such adjustment at each quantile while estimating S.
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(a) (b)

Figure 2: Comparing empirical quantile functions between two categories

Note: Created by author. The solid and dashed lines denote productivity distributions for larger and smaller
cities, respectively. Panel (a) shows agglomeration economies (right-shift only) and the same selection. Panel
(b) shows the same level of agglomeration economies and stronger selection in larger cities. Panel (a) and
Panel (b) here correspond to Panel (a) and (c) in Figure 1, respectively.

2.4 Estimating quantile functions

Let θ = (A,D, S)′ denote the parameter vector. In order to estimate θ, we define the infinite set of

equalities:5

mθ(u) = λi

(
rS(u)

)−Dλj

(
S + (1− S)rS(u)

) −A, for u ∈ [0, 1]. (6)

To consider the asymmetric relationship between the two distributions arising from the opposite

transformation, we also define the following infinite set of equalities:

m̃θ(u) = λj

(
r̃S(u)

)− 1

D
λi

(
r̃S(u)− S

1− S

)
+

A

D
, for u ∈ [0, 1], (7)

where r̃S(u) = max
(
0, S

)
+
(
1−max(0, S)

)
u.

The estimator of θ can be obtained by minimizing the criteria function M(θ), which is defined

as the sum of the squared values of m̂θ(u) and ˆ̃mθ(u), as follows:

θ̂ = argmin
θ

M(θ),

M(θ) =

∫ 1

0

[
m̂θ(u)

]2
du+

∫ 1

0

[
ˆ̃mθ(u)

]2
du,

(8)

where m̂θ(u) and ˆ̃mθ(u) are obtained from the empirical quantile functions λ̂i and λ̂j by data.

5One difficulty is that we have an infinite set of equalities due to the continuous quantile u. Thus, we need to
approximate them by finite set of equalities for estimation. See Combes et al. (2012a) for the details of the estimation
methodology.
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Finally, to measure the fitness of the model, we define the pseudo R2 as follows:

R2 = 1− M(Â, D̂, Ŝ)

M(0, 1, 0)
.

Note that this pseudo R2 can take a small value even if the model specification better fits the data.

For example, R2 becomes 0 in the case where Â = 0, D̂ = 1, and Ŝ = 0 are obtained (i.e., the two

distributions are identical).

2.5 Bootstrap standard errors

In order to estimate the standard errors of the estimated parameters θ̂, we use the bootstrap method.

We draw the observations of the same sample size as data with replacement and then estimate θ

for each bootstrap replication. In other words, when we have B bootstrap replications, there are B

estimates for θ. Hence, the bootstrap standard errors ŜEB(θ̂k) are calculated as follows:

ŜEB(θ̂k) =

√√√√ 1

B − 1

B∑
b=1

(θ̂
(b)
k − θ̄k)2, k ∈ (A,D, S),

where θ̄k is the mean of θ̂
(b)
k obtained from each bootstrap sample (θ̄k = B−1

∑B
b=1 θ̂

(b)
k ). Note that

θ̄k is not equal to the θ̂k observed in the sample.

The confidence interval can also be constructed by the bootstrap method. One method is to use

the normal-based confidence interval. Using the bootstrap standard errors, the confidence interval at

the 1−α level is calculated as (θ̂k+ŜEB(θ̂k)zα/2, θ̂k− ŜEB(θ̂k)zα/2), where zα/2 is the α/2 quantile of

the standard normal distribution. Note that zα/2 takes the negative value and that zα/2 is equivalent

to the negative of z1−(α/2), due to the symmetric distribution. Another method is to construct the

bootstrap-based confidence interval. When we have sufficiently large B values of θ̂k from bootstrap

samples, we can construct a 1−α level confidence interval using the α/2 quantile and the 1− (α/2)

quantile of distribution for θ̂
(b)
k .

3 Implementation in Stata

3.1 Syntax

estquant varname
[
if
] [

in
]
, category(varname)

[
shift dilation truncation qrange(#)

bvariable(on|off) breplication(#) bsampling(#) strata maxiteration(#) eps1(#)

eps2(#) ci(normal|bootstrap) level(#)
]

3.2 Options

category(varname) specifies the variable classifying the sample into two categories. This category

variable must be binary, but it can take any values (e.g., 0 and 1 or 1 and 2).
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shift estimates the relative shift parameter A. When this option is not specified, the relative shift

parameter is constrained as A = 0.

dilation estimates the relative dilation parameter D. When this option is not specified, the relative

dilation parameter is constrained as D = 1.

truncation estimates the relative truncation parameter S. When this option is not specified, the

relative truncation parameter is constrained as S = 0.

qrange(#) specifies the range of quantile function. The quantile range [0, 1] is divided into #

ranges. The default value is 1,000.

bvariable(on|off) specifies whether the bootstrap uses variables prepared beforehand in the

dataset. If this option is on, then the bootstrap replications are conducted using the varname

named in a sequential order at each iteration. If this option is off, then the bootstrap replications

are conducted by resampling varname at each iteration. The default setting is off.

breplication(#) specifies the number of the bootstrap replications. If this option takes the

value of 0, bootstrap replication is skipped and bootstrap standard errors are not calculated.

If bvariable(on) is specified, then the breplication(#) must be the last number of varname

named in sequential order. The default value is 50.

bsampling(#) specifies the percentage of the sample size for bootstrap sampling. The default value

is 100 (%), meaning that observations of the same sample size are drawn for bootstrap sampling.

This option is ignored when bvariable(on) is specified.

strata fixes the number of observations in each category in each bootstrap replication. The strata

option is not used in the default setting.

maxiteration(#) specifies the maximum number of iterations in numerical optimization. The

default value is 1e+3.

eps1(#) specifies the convergence tolerance in numerical optimization. The stopping rule of

eps1(#) is defined as the relative difference in parameter θk at g iteration and at g − 1 it-

eration, (θ
(g)
k − θ

(g−1)
k )/(θ

(g−1)

k + 1). The default value is 1e-6.

eps2(#) specifies the convergence tolerance in numerical optimization. The stopping rule of

eps2(#) is defined as g′H−1g, where g is the gradient vector of M(θ) and H is the Hessian

matrix of M(θ). The default value is 1e-6.

ci(normal|bootstrap) specifies types of confidence interval. The ci() option allows one to use

the normal- and bootstrap-based confidence intervals. If bootstrap-based confidence inter-

val is constructed, then a large number of bootstrap replications should be specified in the

breplication(#) option. The default setting constructs the normal-based confidence interval.

level(#) specifies the level of the confidence interval. The default level is 95.0 (%).

Technical note

The numerical optimization is conducted by a two-step iteration. The vector θ is divided into

two blocks: θ = (θ1, θ2)
′, where θ1 = (A,D)′ and θ2 = S. The first step in minimizing M(θ) is to

concentrate it with respect to parameter θ1 with the remaining parameter θ2 (some initial value is

used). The second step is to minimize M(θ) with respect to θ2 given the parameter θ1 obtained in
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the first step. The two-step iteration continues until the two stopping rules described for eps1(#)

and eps2(#) are satisfied.

The numerical optimization may fail during the bootstrap replications. Especially, the numerical

optimization of S may be unstable. There are some practical solutions. First, it is advisable to

change the seed of random number generator. For example, the set seed command changes the

seed on Stata. Second, it is possible to change the convergence tolerance by the eps1() and eps2()

options. However, the weak convergence tolerance is not recommended.

3.3 Stored results

The estquant command stores the following results in eclass.

Scalars

e(N) number of observations e(N1) # of observations (category 1)

e(N2) # of observations (category 2) e(brep) # of bootstrap replications

e(bsample) bootstrap sample size (%) e(r2) pseudo R-squared

e(cri) convergence criteria (total) e(cr1) convergence criteria 1

e(cr2) convergence criteria 2 e(mean y) mean of variable

e(mean y1) mean of variable (category 1) e(mean y2) mean of variable (category 2)

e(sd y) s.d. of variable e(sd y1) s.d. of variable (category 1)

e(sd y2) s.d. of variable (category 2)

Matrices

e(b) estimates of parameters e(V) variance matrix

e(B) estimates from bootstrapping

Macros

e(cmd) estquant e(varname) name of variable

Function

e(sample)

3.4 Basic manipulation

The estquant command requires two variables for estimation. The main variable is specified as a

variable of distribution, while the other variable is a category variable, which divides the sample

into two categories. Users need to add shift, dilation, and truncation options depending on

the models. The estquant command only displays the criteria if not any of shift, dilation, or

truncation options are specified.

Here, we offer an example using basic commands. Consider a sample with two variables: lntfp

(logarithm of TFP) and cat (binary category, 0 and 1). The estquant command estimates the

relative shift, dilation, and truncation parameters by the following command:6

(Continued on next page)

6This result is obtained from one sample simulated with parameter setting (A = 0.1, D=1.2, S=0) in Figure 2.
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. estquant lntfp, cat(cat) sh di tr

Bootstrap replications (50)

Completed: 10%

Completed: 20%

Completed: 30%

Completed: 40%

Completed: 50%

Completed: 60%

Completed: 70%

Completed: 80%

Completed: 90%

Completed: 100%

cat Obs. Mean S.D. Number of obs = 10000

Replications = 50

0 5000 1.01 .9879 BS Sample (%) = 100

1 5000 1.294 1.203 Pseudo R2 = 0.9966

Total 10000 1.152 1.11

Observed Bootstrap Normal-based

lntfp Coef. Std. Err. z P>|z| [95.0% Conf. Interval]

Shift A .06683554 .037371 1.79 0.074 -.00641097 .140082

Dilation D 1.216367 .017782 12.17 0.000 1.18152 1.25122

Truncation S -.00035072 .0021036 -0.17 0.868 -.00447374 .0037723

Constrained parameters: nothing

In the default setting, the estimation process includes 50 bootstrap replications. The upper

portion of the table presents the summary statistics for the two categories (i.e., mean and standard

deviation), while the lower portion presents the estimation results of the quantile functions. If either

shift, dilation, or truncation is omitted, then the “Constrained parameters” section in the table

presents these conditions. In the above example, there are no restrictions on the parameters. Note

that hypothesis testing for parameters A and S is based on the null hypothesis A = 0 and S = 0,

while parameter D is based on the null hypothesis D = 1.7

Technical note

In this example, the bootstrap replications are conducted by resampling lntfp in each bootstrap

replication. However, Combes et al. (2012a) re-estimate TFP from the bootstrapped firms’ sample in

each iteration. Similarly, de la Roca and Puga (2017) re-estimate workers’ fixed-effects of wages from

the bootstrapped workers’ sample in each iteration. The estquant command can estimate boot-

strap standard errors using variables previously prepared in the dataset. The bvariable(on|off)

option includes variables bootstrapped in the dataset. Note that the variables named in sequential

7The quantile approach includes numerical optimization, which takes time when bootstrap replications are con-
ducted. In the above example, it takes approximately six minutes for 50 bootstrap replications (OS: Windows 10 64
bit, CPU: Intel Core i5-6500, Memory: 16GB, Stata: Version 14.2 2-Core).



Quantile approach for distinguishing agglomeration from firm selection in Stata 13

order, such as lntfp1, lntfp2, ..., lntfp#, are required until the number of bootstrap replications

specified by the breplication(#) option. Suppose that the dataset includes the variable lntfp,

bootstrapped variables lntfp1–lntfp50, category variable cat (binary category, 0 and 1), and cat-

egory variables corresponding to bootstrapped variables cat1–cat50. Then, the following command

estimates the bootstrap standard errors using variables bootstrapped beforehand:

. estquant lntfp, cat(cat) sh di tr bvar(on) brep(50)

See the sample program available online for the details.

4 Monte Carlo experiments

In this section, we perform the Monte Carlo experiments to determine how this new quantile ap-

proach captures the truncation in distribution, after which we discuss the possible biases in param-

eters A and D when constraining the truncation parameter as S = 0.

We assume that a common underlying distribution of the logarithm of TFP is standard normal

distribution N(0, 1). Suppose that Categories 1 and 2 correspond to smaller and larger cities, re-

spectively. We assume that the productivity distribution for category 1 follows a truncated normal

distribution with parameters A1 = 1, D1 = 2, and S1 = 0.001. Specifying the distribution of Cat-

egory 1 and the true values of parameters A, D, and S automatically determines the distribution

of Category 2, based on the definitions of relative parameters. In the Monte Carlo experiments, we

consider the data generating process (DGP) of Category 2 with the following three cases of true

parameter settings:

1. DGP1: shift + dilation (A = 0.1, D = 1, S = 0)

2. DGP2: truncation (A = 0, D = 1, S = 0.1)

3. DGP3: shift + dilation + truncation (A = 0.1, D = 1.2, S = 0.1)

Table 1 summarizes the parameter settings for the Monte Carlo experiments. The process was

replicated 1,000 times with a sample size of 10,000. In addition, each category includes 5,000

observations and the quantile range is set to 1,000.

4.1 Generating samples

Based on the distribution assumptions, we draw the values from the corresponding distributions.

As for Category 1, the logarithm of TFP (φt1) is drawn from the normal distribution with mean

μ1 ≡ A1 and variance σ2
1 ≡ D2

1 , which is truncated at σ1Φ
−1(S1) + μ1:

φt1 ∼ TN(μ1, σ
2
1) for φ1 ∈ [σ1Φ

−1(S1) + μ1,∞),

where t is index of observations, μ1 and σ2
1 are the mean and variance of a normal distribution, and

Φ(·) is the cumulative distribution function of the standard normal distribution. The distribution is



Quantile approach for distinguishing agglomeration from firm selection in Stata 14

Table 1: Parameter setting for the Monte Carlo experiments

Relative Parameters Parameters for Category 2

A D S A2 D2 S2

Data Generating Process (1) (2) (3) (4) (5) (6)

Shift + Dilation 0.1 1.2 0 1.3 2.4 0.001
Truncation 0 1 0.1 1 2 0.1009
Shift + Dilation + Truncation 0.1 1.2 0.1 1.3 2.4 0.1009

Note: The common underlying distribution is standard normal distribution N(0, 1). For the three cases, it is
assumed that the distribution for Category 1 follows truncated normal distribution with parameters A1 = 1,
D1 = 2, and S1 = 0.001. From the definition of relative shift, dilation, and truncation parameters, and the
true values of these parameters, we obtain the parameters for Category 2 as A2 = DA1 +A, D2 = DD1, and
S2 = S1 + (1 − S1)S.

left-truncated by the share of S1 from the standard normal distribution with mean μ1 and variance

σ2
1 . The distribution for Category 1 is common for all three cases of DGPs.

Next, we draw the logarithm of TFP for Category 2 from the three different distributions. In the

first case, the distribution of Category 2 is right-shifted and dilated compared to Category 1, and

the selection level is the same between the two categories. Then, the logarithm of TFP for Category

2 is drawn from the normal distribution with mean μ2 ≡ μ1 + A and variance σ2
2 ≡ (Dσ1)

2, which

is truncated by the share of S1 as follows:

φSD
t2 ∼ TN(μ2, σ

2
2), for φSD

2 ∈ [σ2Φ
−1(S1) + μ2,∞),

where the superscript SD indicates shift and dilation.

The second case considers the distribution for Category 2, which only includes the truncation

compared to the distribution of Category 1. The logarithm of TFP for Category 2 is drawn from

the normal distribution with mean μ2 ≡ μ1 and variance σ2
2 ≡ σ2

1 , which is truncated by the share

of S2 as follows

φT
t2 ∼ TN(μ2, σ

2
2) for φT

2 ∈ [σ2Φ
−1(S2) + μ2,∞),

where the superscript T indicates truncation

The third case considers the distribution for Category 2, which includes the right-shift, dilation,

and truncation compared to the distribution of Category 1. The logarithm of TFP for Category 2

is drawn from the normal distribution with mean μ2 ≡ Dμ1 + A and variance σ2
2 ≡ (Dσ1)

2, which

is truncated by the share of S2 as follows

φSDT
t2 ∼ TN(μ2, σ

2
2) for φSDT

2 ∈ [σ2Φ
−1(S2) + μ2,∞),

where the superscript SDT indicates shift, dilation, and truncation.

Sampling the logarithm of TFP from truncated normal distributions is implemented by the

probability inverse transformation method. Thus, the logarithm of TFP for the three DGPs are



Quantile approach for distinguishing agglomeration from firm selection in Stata 15

drawn using random number ut from the uniform distribution as follows:

φSD
t2 = (μ1 +A) +Dσ1 Φ

−1
(
S1 + (1− S1)ut

)
,

φT
t2 = μ1 + σ1 Φ

−1
(
S2 + (1− S2)ut

)
,

φSDT
t2 = (Dμ1 +A) +Dσ1Φ

−1
(
S2 + (1− S2)ut

)
,

where the same random number ut is used across the three DGPs.

4.2 Results and bias from model misspecification

Using the simulated samples, we examine how model misspecification affects the estimation of pa-

rameters A, D, and S. To numerically evaluate it, we compute the bias of each parameter as the

difference between the mean of the estimates obtained from G samples, E(θ̂
(g)
k ), and true value of

each parameter, θ0k:

Bias(θ̂k) = E(θ̂
(g)
k )− θ0k, k ∈ (A,D, S),

where (g) indicates gth iteration of G samples.

Table 2 presents results of the Monte Carlo experiments.8 For each DGP, we consider two

specifications of the model: (1) shift + dilation and (2) shift + dilation + truncation.

In the case of DGP1, we can see that both model specifications correctly estimate parameters A

and D. Even if relative truncation parameter S is additionally estimated, it is estimated around 0.

Therefore, the overspecification of the model does not generate bias for parameters.

In the case of DGP2, the first model underspecifies the DGP by missing truncation. Parameter

estimates Â and D̂ are biased upward and downward, respectively. However, when the model is

correctly specified including truncation, parameters are correctly estimated. The results of DGP2

are qualitatively the same as those of DGP3. However, if the dilation exists in distribution of

category 2, the both biases in A and D are amplified.

Figure 3 illustrates the numerical results of the Monte Carlo experiments for shift parameter A.

The case of DGP1 is shown in Figure 3(a) and Figure 3(b). When the model is correctly specified,

estimates Â are distributed around the true value of shift parameter A (A = 0.1). Even if researchers

additionally consider truncation S, the shift parameter A is correctly estimated, suggesting that

overspecification of the model does not generate bias for parameters.

The case of the DGP2 is shown in Figure 3(c) and Figure 3(d). When the model is misspecified,

Â has an upward bias that is estimated far from the true value of the relative shift parameter A.

When the model is correctly specified, the relative shift parameter A is correctly estimated around

the true value. The case of the DGP3 is shown in Figure 3(d) and Figure 3(d). Here, the results are

qualitatively the same as those in DGP2. As discussed earlier, the dilation amplifies the biases for

both parameters A and D.

The important conclusion from the Monte Carlo experiments is that, when researchers omit the

8We also performed Monte Carlo experiments by changing the number of observations and quantile ranges. In this
study, we offer the case of 10,000 observations and quantile ranges partitioned into 1,000.



Quantile approach for distinguishing agglomeration from firm selection in Stata 16

Table 2: Results of the Monte Carlo experiments

Mean Bias

Â D̂ Ŝ Â D̂ Ŝ

Model Specification (1) (2) (3) (4) (5) (6)

DGP1: Shift + Dilation
(True Parameters: A = 0.1, D = 1.2, S = 0)

Shift + Dilation 0.0993 1.1987 −0.0007 −0.0013
Shift + Dilation + Truncation 0.0990 1.1988 0.0000 −0.0010 −0.0012 0.0000

DGP2: Truncation
(True Parameters: A = 0, D = 1, S = 0.1)

Shift + Dilation 0.5382 0.8476 0.5382 −0.1524
Shift + Dilation + Truncation −0.0088 1.0010 0.1015 −0.0088 0.0010 0.0015

DGP3: Shift + Dilation + Truncation
(True Parameters: A = 0.1, D = 1.2, S = 0.1)

Shift + Dilation 0.7477 1.0154 0.6477 −0.1846
Shift + Dilation + Truncation 0.0905 1.2009 0.1013 −0.0095 0.0009 0.0013

Note: A total of 1,000 replications were conducted in the Monte Carlo experiments. Here, bias is defined
as the difference between the mean of the estimated parameters and the true value for the corresponding
parameters. The sample size is 10,000, and each category includes 5,000 observations. The quantile range is
1,000.

relative truncation parameter S in distributions (i.e., implicitly imposing the restriction S = 0),

the relative shift parameter A is estimated with an upward bias and the relative dilation param-

eter D is estimated with a downward bias. This type of estimation is commonly conducted when

researchers simply compare the average productivity between larger and smaller cities through a

standard statistical method, after which subsequent studies might draw the misleading conclusion

that agglomeration economies lead to higher firm productivity. One advantage of the quantile ap-

proach is that it simultaneously estimates the relative truncation, shift, and dilation parameters

between the two distributions, which allow us to distinguish agglomeration from firm selection.

5 Applied example

In this section, we replicate the estimation results of Combes et al. (2012a) for all of the sectors

using the estquant command.9 Combes et al. (2012a) examined agglomeration and firm selection

using the French establishment-level data. Their findings showed that higher productivity in larger

cities could not be explained by firm selection. In other words, firms in larger cities benefit from

agglomeration economies, and as a result, there is a positive relationship between productivity and

city size.

Before starting the replication, we show two productivity distributions between cities above and

9The replication dataset of Combes et al. (2012a) is available from the following website:
(URL: http://www.econometricsociety.org/).
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(b) Model: shift + dilation + truncation
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(d) Model: shift + dilation + truncation
(DGP2: Truncation)
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(e) Model: shift + dilation
(DGP3: shift + dilation + truncation)
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(f) Model: shift + dilation + truncation
(DGP3: shift + dilation + truncation)

Figure 3: Distributions of estimated parameter Â and model misspecification

Note: The vertical line indicates the true value of shift parameter (A = 0.1 or A = 0). A total of 1,000
replications were conducted in the Monte Carlo experiments. Details of the parameter setting and the DGPs
are explained in Table 1.
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Figure 4: Distributions of TFP between cities with below- and above-median employment densities

Note: Created by the author using the dataset of Combes et al. (2012a). The solid and dashed lines correspond
to the cities with above- and below-median employment densities, respectively.

below median employment densities in Figure 4. Figure 4(a) indicates that the productivity distribu-

tion for larger cities is more right-shifted and flatter, relative to that of smaller cities. Equivalently,

this relationship corresponds to the upper shifting quantile distribution with a steeper slope in Figure

4(b).10

Table 3 presents the estimation results replicated by the estquant command. Although the

difference of convergence tolerance generates slight differences in point estimates between Combes

et al. (2012a) and the present study, both estimation results are practically similar.11 As discussed

earlier, dropping the truncation from the model specification generates an upward bias in shift

parameter A and a downward bias in dilation parameter D. However, the firm selection in lager

cities is too weak to explain the higher productivity in such locations. In fact, the positive estimate

Â shows that agglomeration economies, on average, increase firm productivity.

In sum, the estquant command helps researches apply a new quantile approach suggested by

Combes et al. (2012a). It is important to distinguish agglomeration from firm selection in em-

pirical studies. When stronger selection exists in larger cities, it is possible to draw a misleading

conclusion that agglomeration economies, on average, increase firm productivity. A new quantile

approach enables researchers to simultaneously examine the effects of agglomeration economies and

10The uppermost and lowermost 0.5 percentile of productivity distributions by category are dropped from the
estimation. The truncation of distributions may be detected due to arbitrary data processing or original data structure.
In empirical analyses, researchers often conduct data cleaning beforehand, but careless data cleaning (e.g., dropping
outliers using arbitrary thresholds) may lead to the truncation of distributions. When researchers use the value added
to estimate firm productivities, firms with negative value added are dropped by taking its logarithm, which may also
lead to the truncation of distributions (i.e., less-productive firms also exist!). Note that the selection parameter is
quite sensitive to such data processing.

11One important difference is that Combes et al. (2012a) re-estimated TFP for each bootstrap sample, whereas
the present study does not due to data restriction. Unlike the default setting of bootstrap sampling, the bootstrap
sampling from the entire sample is conducted in this case.
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Table 3: Estimation results replicated by the estquant command

Â D̂ Ŝ R2 Obs.

Model Specification (1) (2) (3) (4) (5)

Shift 0.0925∗ 0.5963 13,4275
(0.0025)

Shift + Dilation 0.0925∗ 1.2195∗ 0.9963 13,4275
(0.0025) (0.0077)

Shift + Truncation 0.1146∗ −0.0195∗ 0.7214 13,4275
(0.0026) (0.0021)

Truncation −0.0013+ 0.0025 13,4275
(0.0006)

Shift + Dilation + Truncation 0.0906∗ 1.2285∗ 0.0013 0.9974 13,4275
(0.0023) (0.0086) (0.0008)

Note: Replication of Combes et al. (2012a) for all of the sectors. The bootstrap standard errors are in
parentheses, and bootstrap sampling with replacement was conducted 100 times. The same sample size is
used for each bootstrap sampling. The parameters not shown in the model specifications are constrained as
A = 0, D = 1, and S = 0. * (+) denotes that Â and Ŝ are significantly different from 0 at the 5% (10%)
level, and D̂ is significantly different from 1 at the 5% (10%) level.

firm selection.

6 Concluding remarks

To answer the question of why productivity is, on average, higher in larger cities, a deeper under-

standing of the background mechanism is required. One key channel is that agglomeration economies,

on average, increase local productivity. Another is that a higher concentration of economic activities

in larger cities promotes tougher competition, which forces less-productive firms to exit the market

in such locations. If we omit selection in larger cities, it is possible to overestimate the agglomeration

effects on productivity and draw misleading policy implications. Thus, the new quantile approach

suggested by Combes et al. (2012a) resolves this empirical issue by simultaneously estimating the

effects of agglomeration and firm selection. In addition, the newly developed command estquant

enables researchers to easily implement their quantile approach in Stata.

Furthermore, this quantile approach offers greater possibilities in applied economics exhibiting a

selection mechanism. For example, Combes et al. (2012b) applied the quantile approach to evaluate

wage and skill distributions in terms of several characteristics of workers (e.g., stayers and migrants).

The estquant command can be used to examine selection in the wide-ranging field of economics.
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