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Introduction.

Inaba (2007a) apply the parameterized expectations algorithm (PEA hereafter)
to business cycle accounting (BCA hereafter).

The idea of BCA developed by Chari, Kehoe and McGrattan (2002, 2004,
2007) is to assess which wedge is important for the fluctuation of an econ-
omy which is assumed to be described as a prototype model with time-varying
wedges. These wedges resemble productivity, labor and investment taxes, and
government consumption. Since these wedges are measured using the produc-
tion function and first order conditions to fit the actual macroeconomic data,
this method can be interpreted as a generalization of growth accounting.

The PEA introduced by Marcet (1988) is one of the methods to solve the
non-linear dynamic stochastic general equilibrium model. Marcet and Lorenzoni
(1998) provide applications of PEA to some economic models. The basic idea
of the PEA is to approximate the expectation function by a smooth function, in
general a polynomial function. The PEA has an advantage1 that it is simpler
and easier to understand and implement than the other non-linear solution
methods.2

The prototype model

This section describes the prototype model with time-varying wedges: the ef-
ficiency wedge At, the labor wedge 1 − τl,t, the investment wedge 1/(1 + τx,t),

∗Research Institute of Economy, Trade, and Industry. Email: inaba-masaru@rieti.go.jp
1There is also a disadvantage that the PEA need a long simulation in order to obtain

the fitted coefficients of the approximating function. Therefore the algorithm can be quite
computationally demanding.

2Chari et al. (2004, 2007) implement BCA using the finite element method for the non-
linear solution described by McGrattan(1996).
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and the government wedge gt.
The household maximizes:

max
ct,kt+1,lt

E0

[ ∞∑
t=0

βtU(ct, lt)Nt

]

subject to

ct + (1 + τx,t)
{

Nt+1

Nt
kt+1 − kt

}
= (1 − τl,t)wtlt + rtkt + Tt, 0 < β < 1,

where ct denotes consumption, lt employment, Nt population, kt capital stock,
wt the wage rate, rt the rental rate on capital, Tt the lump-sum taxes per capita.
All quantities written in lower case letters denote per-capita quantities except
for Tt.

The firm maximizes

max
kt,lt

AtF (kt, γ
tlt) − {rt + (1 + τx,t)δ}kt − wtlt,

where δ denotes the depreciation of capital stock and γ the balanced growth
rate of technical progress. The resource constraint is

ct + xt + gt = yt, (1)

where xt is investment, gt the government consumption and yt the per-capita
output. The law of motion for capital stock is

Nt+1

Nt
kt+1 = (1 − δ)kt + xt. (2)

The equilibrium is summarized by the resource constraint (1), the law of
motion for capital (2), the production function,

yt = AtF (kt, γ
tlt), (3)

and the first-order condtions,

−Ul,t

Uc,t
= (1 − τl,t)Atγ

tFl,t, (4)

Uc,t(1 + τx,t) = βEtUc,t+1 [At+1Fk,t+1 + (1 − δ)(1 + τx,t+1)] , (5)

where Uct, Ult, Flt and Fkt denote the derivatives of the utility function and
the production function with respect to their arguments. The functional form
of the utility function is given by U(c, l) = ln c + ϕ ln(1 − l), where ϕ > 0 is
a parameter. Also the functional form of the production function is given by
F (k, l) = kαl1−α.
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A Accounting procedure

This section provide the accounting procedure to measure actual wedges using
PEA.

A.1 Measuring the wedges

We take the government wedge g directly from the data. To obtain the values
of the other wedges, we use the data for yt, lt, xt, gt and Nt, together with
a series on kt constructed from xt by (2). The efficiency wedge and the labor
wedge are directly calculated from (3) and (4). In this paper, to find the actual
investment wedge τx,t, we implement the following algorithm 3.

Algorithm for measuring the wedges

• Initialization: Apply the deterministic method4 of business cycle ac-
counting as described in Kobayashi and Inaba (2006), and regard the de-
rived investment wedge as the initial value of τ

(0)
x,t , and set a stopping

parameters ϵ > 0

• Step 1: Specify a vector AR1 process for the four wedges st = (log(At), τl,t, τ
(j)
x,t , log(gt))

of the form
st+1 = P0 + Pst + ηt+1, (6)

where ηt ∼ i.i.d. N(0, Ω).

• Step 2: Apply the parameterized expectation algorithm to get the non-
linear solution of the model. Then we get an approximation function Φ(·)
for the expectation function:

EtUc,t+1

{
At+1Fk,t+1 + (1 − δ)(1 + τ

(j)
x,t+1)

}
.

Φ(·) is a polynomial function of kt, At, τl,t, τ
(j)
x,t and gt.

• Step 3: To find the value of τ̂x,t in order to realize the actual data, ct

and lt, solve the following equation for τ̂x,t,

Uc,t(1 + τ̂x,t) = Φ(kt, At, τl,t, τ̂x,t, gt) (7)

• Step 4: τ
(j+1)
x,t = ντ̂x,t + (1 − ν)τ (j)

x,t , 0 < ν < 1.

• Step 5: if ∥ τ
(j+1)
x,t − τ

(j)
x,t ∥< ϵ, STOP; else go to step 1.

We will explain Step 1 and Step 2 in detail.

3The main difference from the accounting procedure of Chari, Kehoe and McGrattan (2007)
is the method to solve the non-linear dynamic stochastic general equilibrium model. While
we use the PEA, they use the finite element method described by McGrattan (1996) to solve
the model.

4For details, see technical appendices Inaba (2007b)
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A.2 Estimation for the stochastic process of wedges

In Step 1 above, the OLS estimation of this stochastic process can be non-
stationary. We then use the maximum likelihood procedure with a penalty
function described in McGrattan (1994) to estimate the parameters P0, P of
the vector AR1 process for the wedges. To ensure stationarity, we add to the
likelihood function a penalty term proportional to {max (| λmax | −0.99, 0)}2,
where λmax is the maximal eigenvalue of P . If λmax < 0.99, we use the OLS
estimation. The detail of this algorithm is following.

Algorithm for Maximum Likelihood with a penalty function.

• Initialization: Specify a vector AR1 process for the four wedges of the
form

st+1 = P0 + Pst + ηt+1, (8)

where st = (log(At), τl,t, τx,t, log(gt)) and ηt ∼ i.i.d.N(0, Ω). The log like-
lihood function with a penalty function:

L (P0, P, Ω) = − Tn

2
log(2π) +

T

2
log

∣∣Ω−1
∣∣

− 1
2

T∑
t=1

[
(st+1 − P0 − Pst)

′ Ω−1 (st+1 − P0 − Pst)
]

− γ ∗ {max [|λmax − 0.99| , 0]}2
.

where γ > 0 is a parameter. If λmax < 0.99, the log-likelihood function
is maximized, when P is a OLS estimator P̂ and Ω is Ω̂ = 1

T

∑T
1 (st+1 −

P̂0 − P̂ st)(st+1 − P̂0 − P̂ st)′, then STOP; else set the initial value of Ω is
Ω(0) = Ω̂ go to next step.

• Step 2: Given Ω(j), set

P
(j)
0 = arg max

P0
L

(
P0, P, Ω(j)

)
P (j) = arg max

P
L

(
P0, P, Ω(j)

)
.

• Step 3: Given P
(j)
0 and P (j), set

Ω(j+1) =arg max
Ω

L
(
P

(j)
0 , P (j), Ω

)
=

1
T

T∑
1

(st+1 − P
(j)
0 − P (j)st)(st+1 − P

(j)
0 − P (j)st)′

• Step 3: if ∥Ω(j+1) −Ω(j+1)∥ < ϵ, where ϵ > 0 is a parameter, STOP; else
go to step 2.
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A.3 The parameterized expectations algorithm with the
moving bound

We use the PEA in step 2 for measuring the wedges. But it is well known that
the main drawback of the PEA is that it is not a contraction mapping technique
and does not guarantee a solution will be find. Therefore, we modified the PEA
following Maliar and Maliar (2003). They discuss a moving bounds method of
imposing stability on the PEA to avoid the explosive case due to poor initial
parameter values and achieve the enhancement of the convergence property of
the PEA. We show the PEA algorithm with the moving bounds following Marcet
and Lorenzoni (1998) and Maliar and Maliar (2003).

Consider an economy, which is described by a vector of n variables, zt, and a
vector of w exogenously given shocks, ut. It is assumed that the process {zt, ut}
is represented by a system

g (Et [ϕ(zt+1, zt)] , zt, zt−1, ut) , for all t, (9)

where g : Rm ×Rn ×Rn ×Rw → Rq and ϕ : R2n → Rm; the vector ut includes
all endogenous variables that are inside the expectation, and st follows a first-
order Markov process. It is assumed that ut is uniquely determined by (9) if
the rest of the arguments is given.

We consider only a recursive solution such that the conditional expectation
can be represented by a time-invariant function Φ(xt) = Et [ϕ(zt+1, zt)], where
xt is a finite-dimensional subset of (zt−1, ut). If the function Φ(·) cannot derived
analytically, we approximate Φ(·) by a parametric function ψ(β, x), β ∈ Rν . The
objective will be to find β∗ such that ϕ(β∗,x) is the best apprication to Φ(x)
given the functional form ψ(·),

β∗ = arg min
β∈Rν

∥ψ(β, x) − Φ(x)∥.

The iterative procedure is as follows.

The parameterized expectation algorithm with the moving bound

• Initialization: Set zt = (ct, lt, kt+1, st), ut = st and xt = (kt, st). The
function g is given by the resouce constraint (1) and the first-order condi-
tions (4), (5). The function ϕ(zt+1, zt) ≡ Uc,t+1 {At+1Fk,t+1 + (1 − δ)(1 + τx,t+1)}.
We set the approximation function of Φ(·) as

ψ(β,x) = exp(β0 + β1 ln kt + β2 lnAt + β3 ln τl,t + β4 ln τx,t + β5 ln gt

+ β6(ln kt)2 + β7(lnAt)2 + β8(ln τl,t)2 + β9(ln τx,t)2 + β10(ln gt)2

+ β11 ln kt ln At + β12 ln kt ln τl,t + β13 ln kt ln τx,t + β14 ln kt ln gt

+ β15 lnAt ln τl,t + β16 lnAt ln τx,t + β17 lnAt ln gt + β18 ln τl,t ln τx,t

+ β19 ln τl,t ln gt + β20 ln τx,t ln gt).

For an initial iteration i = 0, fix initial value β(0) ∈ Rν . Fix the upper
and lower bounds, k(i) and k̄(i), for the process {kt(β)}. Fix initial condi-
tions k0; draw and fix a random series {st}T

t=1 from a given distribution,
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where T is a sufficiently long period so that the series show their stochastic
property.

• Step 1: Replace the conditional expectation in (9) with a function ϕ(β(i),x)
and compute the inverse of (9) with respect to the second argument to ob-
tain

kt+1 = h
(
ϕ(β(i),xt(β(i))), kt, st

)
. (10)

• Step 2: For a given β(i) ∈ Rν and given bounds k and k̄, recursively
calculate

{
kt(β(i)), st

}T

t=1
according to

kt+1(β(i)) = k(i) if kt(β(i)) ≥ k(i),

kt+1(β(i)) = k̄(i) if kt(β(i)) ≤ k̄(i),

kt+1(β(i)) = h
(
ϕ(β(i), xt(β(i))), kt, st

)
if k(i) < kt+1(β(i)) < k̄(i).

• Step 3: Find a G(β) that satisfies

G(β(i)) = arg max
ξ∈Rν

∥ϕ
(
kt+1(β(i))

)
− ψ

(
ξ,xt(β(i))

)
∥.5

• Step 4: Compute the vector β(i + 1) for the next iteration,

β(i+1) = (1 − µ)β(i) + µG(β(i)), µ ∈ (0, 1).

• Step 5: compute k(i+1) and k̄(i+1) for the next iteration,

k(i+1) = k(i) − ∆(i),

k̄(i+1) = k̄(i) + ∆̄(i),

where ∆(i) and ∆̄(i) are the corresponding steps.

• Step 6: If ∥β∗−G(β∗)∥ < ϵ, where ϵ > 0 is a parameter, and k < kt(β) <
k̄ for all t, STOP; else go to Step 2.

B Decomposition

In an early version staff paper of Chari, Kehoe and McGrattan (2004), their
decomposition method is different from published paper version.6 Chari, Ke-
hoe and McGrattan (2007b) explain the difference between the CKM (2004)
decomposition and CKM (2007) decomposition. 7

5To perform this, one can run a nonlinear least squares regression with the sample
˘

kt(β(i)), st
¯T

t=1
, taking ϕ(kt+1(β(i))) as a dependent variable, ϕ(·) as an explanatory func-

tion, and ξ as a parameter vector to be estimated.
6Now the staff paper is revised in 2006 and the decomposition method is the same as the

published paper.
7Our explanation is somewhat different from Chari, Kehoe and McGrattan (2007a). While

they assume that the economy experiences one of finitely many events st at each period t in
the prototype model, we assume that st is subject to a VAR(1) process.
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B.1 CKM (2004) decomposition

This is the early version of decomposition.
Specify a vector AR1 process for the four wedges of the form

st+1 = P0 + Pst + ηt+1, (11)

where st = (log(At), τl,t, τx,t, log(gt)) and ηt ∼ i.i.d.N(0, Ω).

B.1.1 The efficiency wedge components in CKM (2004)

Suppose that y(st, kt), c(st, kt), l(st, kt), and x(st, kt) denote the decision rules
under (11). Define the efficiency component of the wedges by letting s1t =
(log At, τ̄l, τ̄x, log ḡ) be the vector of wedges in which, in period t, the efficiency
wedge takes on it period t value while the other wedges take on constant values.
We set the constant values to be the average values form 1984 to 1989, while
CKM (2004) set the values to be the initial values of each wedges. Then, starting
from kd

0 , we then use sd
t , the decision rules, and the capital accumulation law to

compute the realized sequence of output, consumption, labor, and investment,
y1t = y(s1t, kt), c1t = c(s1t, kt), l1t = l(s1t, kt), and x1t = x(s1t, kt) which
we call the efficiency wedge components of output, consumption, labor, and
investment.

B.1.2 The labor wedge components in CKM (2004)

Use the same decision rules, y(st, kt), c(st, kt), l(st, kt), and x(st, kt). Define
the labor component of the wedges by letting s2t = (log Ā, τlt, τ̄x, log ḡ) be the
vector of wedges in which, in period t, the labor wedge takes on it period t
value while the other wedges take on constant values. Then, starting from
kd
0 , we then use sd

t , the decision rules, and the capital accumulation law to
compute the realized sequence of output, consumption, labor, and investment,
y2t = y(s2t, kt), c2t = c(s2t, kt), l2t = l(s2t, kt), and x2t = x(s2t, kt) which we
call the labor wedge components of output, consumption, labor, and investment.

B.1.3 The investment wedge components in CKM (2004)

Use the same decision rules, y(st, kt), c(st, kt), l(st, kt), and x(st, kt). Define
the investment component of the wedges by letting s3t = (log Ā, τ̄l, τxt, log ḡ)
be the vector of wedges in which, in period t, the investment wedge takes on it
period t value while the other wedges take on constant values. Then, starting
from kd

0 , we then use sd
t , the decision rules, and the capital accumulation law to

compute the realized sequence of output, consumption, labor, and investment,
y3t = y(s3t, kt), c3t = c(s3t, kt), l3t = l(s3t, kt), and x3t = x(s3t, kt) which
we call the investment wedge components of output, consumption, labor, and
investment.
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B.1.4 The government wedge components in CKM (2004)

Use the same decision rules, y(st, kt), c(st, kt), l(st, kt), and x(st, kt). Define
the government component of the wedges by letting s4t = (log Ā, τ̄l, τ̄x, log gt)
be the vector of wedges in which, in period t, the government wedge takes on it
period t value while the other wedges take on constant values. Then, starting
from kd

0 , we then use sd
t , the decision rules, and the capital accumulation law to

compute the realized sequence of output, consumption, labor, and investment,
y4t = y(s4t, kt), c4t = c(s4t, kt), l4t = l(s4t, kt), and x4t = x(s4t, kt) which
we call the government wedge components of output, consumption, labor, and
investment.

B.2 CKM (2007a) decomposition

This is the published version of CKM decomposition which is called this de-
composition a theoretically consistent decomposition in CKM (2007b). This
decomposition can seem to be theoretically consistent to a deterministic BCA
decomposition in Kobayashi and Inaba (2006).

Specify a vector AR(1) process for the four wedges of the form;

st+1 = P0 + Pst + ηt+1, (12)

where st = (log At, τlt, τxt, log gt) and ηt ∼ i.i.d.N(0, Ω).

B.2.1 The efficiency wedge components in CKM (2007a)

Assume one to one mapping function;

log Ae(st) = log At, τ e
l (st) = τ̄l, τe

x(st) = τx, and log ge(st) = log ḡ. (13)

To evaluate the effects of the efficiency wedge, we compute the decision rules for
the efficiency wedge alone economy, denoted ye(st, kt), ce(st, kt), le(st, kt), and
xe(st, kt) under an exogenous stochastic process which is a combination with
(11) and (13). Starting from kd

0 , we then use sd
t , the decision rules, and the

capital accumulation law to compute the realized sequence of output, consump-
tion, labor, and investment, ye

t , ce
t , let , and xe

t which we call the efficiency wedge
components of output, consumption, labor, and investment.

B.2.2 The labor wedge components in CKM (2007a)

Assume one to one mapping function;

log Al(st) = log Ā, τ l
l (st) = τlt, τ l

x(st) = τ̄x, and log gl(st) = log ḡ. (14)

To evaluate the effects of the labor wedge, we compute the decision rules for
the efficiency wedge alone economy, denoted yl(st, kt), cl(st, kt), ll(st, kt), and
xl(st, kt) under an exogenous stochastic process which is a combination with (11)
and (14). Starting from kd

0 , we then use sd
t , the decision rules, and the capital
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accumulation law to compute the realized sequence of output, consumption,
labor, and investment, yl

t, cl
t, llt, and xl

t which we call the labor wedge components
of output, consumption, labor, and investment.

B.2.3 The investment wedge components in CKM (2007a)

Assume one to one mapping function;

log Ax(st) = log Ā, τx
l (st) = τ̄l, τx

x (st) = τxt, and log gx(st) = log ḡ. (15)

To evaluate the effects of the investment wedge, we compute the decision rules
for the efficiency wedge alone economy, denoted yx(st, kt), cx(st, kt), lx(st, kt),
and xx(st, kt) under an exogenous stochastic process which is a combination
with (11) and (15). Starting from kd

0 , we then use sd
t , the decision rules, and the

capital accumulation law to compute the realized sequence of output, consump-
tion, labor, and investment, yx

t , cx
t , lxt , and xx

t which we call the investment
wedge components of output, consumption, labor, and investment.

B.2.4 The government wedge components in CKM (2007a)

Assume one to one mapping function;

log Ag(st) = log Ā, τg
l (st) = τ̄l, τg

x (st) = τ̄x, and log gg(st) = log gt. (16)

To evaluate the effects of the government wedge, we compute the decision rules
for the efficiency wedge alone economy, denoted yg(st, kt), cg(st, kt), lg(st, kt),
and xg(st, kt) under an exogenous stochastic process which is a combination
with (11) and (16). Starting from kd

0 , we then use sd
t , the decision rules, and the

capital accumulation law to compute the realized sequence of output, consump-
tion, labor, and investment, yg

t , cg
t , lgt , and xg

t which we call the government
wedge components of output, consumption, labor, and investment.

B.3 Comparing decompositions

CKM (2004) decomposition shows the people’s decision for the realized values
of random variables, sit at t for i = 1, · · · , 4, where people expect that the
exogenous random shocks are subject to (11). CKM (2007b) show that when
P is not diagonal, the expected value of target wedge in CKM (2004) does not
coincide with the expected value of the wedge in the original stochastic process.
Therefore, CKM (2004) decomposition include different forecast effect of the
target wedge.

However, CKM (2007b) show that for the most of the experiments the two
methodologies yield similar answers in practice. We implement both decom-
positions. Figure 1 is CKM (2004) decomposition result and Figure 2 is CKM
(2007b). We confirm that both results are qualitatively similar.
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Figure 1: CKM (2004) decomposition of output with just one wedge
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Figure 2: CKM (2007) decomposition of output with just one wedge
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