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1. Introduction

Artificial Intelligence (Al) use is exploding. OpenAl launched the generative Al chatbot
ChatGPT in November 2022. By October 2025 it had 800 million weekly users, up from 400
million in February 2025 (Singh, 2025). Monthly visits reached 5.8 billion and the number of
daily queries reached 2 billion.

The four leading tech firms, Amazon, Google, Meta, Microsoft, are riding the Al
juggernaut. They have weaved Al into their offerings. Amazon uses Al to enhance customer
service. Google offers the Gemini Al chatbot. Meta employs Al to enhance its social media and
messaging apps. Microsoft partners with OpenAl.

This paper investigates how these four leading firms have performed after ChatGPT
launched the Al revolution in November 2022. The results indicate that their stock market
capitalizations have increased by between 500 billion dollars more than predicted for Amazon to
trillions of dollars more for Meta.

Despite these windfalls, Big Tech companies negotiate aggressively with public utilities
to reduce their electricity expenses. This transfers their electricity costs to other customers. Saul
et al. (2025) reported that electricity bills increase more for customers closer to data centers and
fall more for customers further from them.

Data centers guzzle energy and burden the grid. Tech firms will spend almost 500 billion
dollars in 2025 constructing Al data centers (Stylianou, 2025). Saul et al. (2025) reported that
data centers consume 39% of the electricity used in Virginia, 33% of the energy used in Oregon,
18% of the energy used in lowa, and 15% of the energy used in Nevada and Utah. Data center

energy use will accelerate.



Soaring data center demand forces utilities to prop up gas-fired and other fossil fuel-
powered plants. It also causes them to maintain their oldest and dirtiest generating plants (see,
e.g., Martin and Peskoe, 2025). This increases localized pollution that is not offset by companies
purchasing carbon credits elsewhere.

Executives such as former Google CEO Eric Schmidt and former Microsoft CEO Bill
Gates argued that society should forget about climate targets and whole-heartedly embrace Al
data centers. They claimed that Al can help address climate change, so data center pollution
should be ignored (see, e.g., Hyman and Tilles, 2025, and Robinson, 2024).

This paper considers how to incentivize Big Tech to be more environmentally friendly
and how to protect other ratepayers from picking up their electricity tabs. It also considers
innovations that could reduce data center energy use.

The next section investigates the performance of the four leading tech firms after the
introduction of ChatGPT. Section 3 recounts the energy use of Al data centers. Section 4

considers innovations to increase energy efficiency at data centers. Section 5 concludes.

2. Investigating Big Tech Stock Returns
2.1 Data and Methodology

Martin and Peskoe (2025) singled out four companies leading the search for power to run
data centers. These are Amazon, Google, Meta, and Microsoft. Figures 1a through 1d show the
evolution of their stock prices before and after the release of ChatGPT on 30 November 2022.
The figures show that, since the appearance of ChatGPT launched the Al revolution, stock prices
have increased 89.1% for Amazon, 79.8% for Google, 190.5% for Meta, and 74.3% for

Microsoft.



To investigate how this performance compares to what would be expected, a five-factor
model and an autoregressive integrated moving average (ARIMA) model are used to predict
stock returns. Stock returns are estimated using these two models over the 17 years before the
appearance of ChatGPT on 30 November 2022. The resulting regression coefficients and actual
out-of-sample values of the independent variables are then used to forecast stock returns from
November 2022 to September 2025. This sheds light on how these firms have fared during the
Al revolution relative to what would be expected.

The five-factor model draws on Hamilton (2014). He reported that changes in the ten-
year constant maturity U.S. Treasury interest rate, changes in the log of the price of copper, and
changes in the log of nominal effective U.S. dollar exchange rate help explain world economic
growth. Two other factors related to world growth, the return on the world stock market and the
change in the log of the price of World Texas Intermediate (WTI) crude oil, are also included.
These five variables should help explain returns on Big Tech companies.

The estimated equations take the form:

ARi,t = Oy + ﬁlATent + ,BZACOZJpeTt + ﬁ3AWOT'ldt + ﬁ4ANEERt+ ﬁ5AWTIt ) (1)

where AR;; is the daily stock return for Big Tech sector i, ATenis the change in the ten-year
constant maturity Treasury interest rate, ACopper is the change in the log of copper futures
prices, AWorld; is the return on the world stock market, ANEER; is the change in the log of the
U.S. dollar nominal effective exchange rate, and AWTI; is the change in the log of the spot price
for WTI crude oil.

Data on stock returns and WTI crude oil prices come from the Refinitiv Datastream
database, data on copper futures from investing.com, and the other data from the Federal Reserve

Bank of St. Louis FRED database.



An ARIMA model is also used to predict stock returns. ARIMA models are useful for
forecasting. They use past autoregressive and moving average terms to forecast future values of
the independent variable.

For Amazon, Google, and Microsoft the sample period for the estimation extends from 3
January 2006 to 29 November 2022. This provides 4,409 observations. For Meta the data are
only available beginning on 18 May 2012. This provides 2,745 observations. Stock prices are
then forecasted over the 30 November 2022 to 2 September 2025 period and compared to actual

stock prices.

2.2 Results

Table 1 presents the results from estimating equation (1). In all four cases in column (2),
increases in the 10-year Treasury rate are associated with increases in stock returns. The
relationships are statistically significant in three of the four cases. The positive coefficients
reflect Hamilton’s (2014) observation that Treasury rate increases are associated with increases
in economic growth. In all four cases in column (3), increases in copper prices are associated
with decreases in stock returns. The relationships are statistically significant in three of the four
cases. Copper is a vital input to data centers, and price rises decrease their profitability. In all
four cases in column (4), increases in world stock returns are associated with increases in Big
Tech stock returns. The relationships are statistically significant at the 1% level in all four cases.
The results for world stock returns indicate that world demand is crucial for Big Tech companies.

In all four cases in column (5), U.S. dollar appreciations are associated with increases in
stock returns. Since Big Tech companies have large capital stocks in the U.S., exchange rate

appreciations can increase the value of this capital and thus increase firms’ market values. In no



cases in column (6) are increases in WTI crude oil prices associated with increases in stock
returns.

Figure 2a through 2h plot actual stock prices for the Big Tech firms and stock prices
forecasted using the five-factor and ARIMA models. In every case, actual stock prices far
exceed predicted stock prices over the sample period. For Amazon, at the end of the sample
period actual prices were 20.5% greater than forecasted by the five-factor model and 28.2%
greater than forecasted by the ARIMA model. For Google, actual prices were 34.2% greater
than forecasted by the five-factor model and 38.6% greater than forecasted by the ARIMA
model. For Meta, actual prices were 155.4% greater than forecasted by the five-factor model and
160.6% greater than forecasted by the ARIMA model. For Microsoft, actual prices were 24.2%
greater than forecasted by the five-factor model and 39.3% greater than forecasted by the
ARIMA model.

Table 2 presents data on the market capitalization of these companies and on how much
more than predicted their stock prices have risen. In every case stock prices have increased by at
least $500 billion more than forecasted. Not only, as indicated in Figure 1, have stock prices
soared since the Al revolution began, but they have increased by hundreds of billions and even
trillions of dollars more than expected.

Despite these windfalls, power-guzzling Big Tech firms act to transfer electricity costs to
other customers. They also force electric utilities to maintain their oldest and dirtiest generating
plants. The following sections consider how stakeholders can cause tech companies to bear their

own electricity costs, to save energy, and to be more environmentally-friendly.

3. Al Data Center Electricity Demand



As the Al race accelerates, Amazon, Google, Meta, Microsoft and others are splurging on
data centers. As Stylianou (2025) et al. reported, they will spend almost 500 billion dollars on
data centers in 2025. McKinsey (2025) estimated that data centers will add capacity of 124
gigawatts between 2025 and 2030 to meet Al demand.

The International Energy Agency (2025) forecasted that Al energy demand will explode.
Under its base case scenario, demand for electricity will rise from 460 terawatts in 2024 to 1,000
terawatts in 2030 to 1,300 terawatts by 2035. For the U.S., the International Energy Agency
forecasts that Al use will cause almost half of the growth in electricity demand between 2025
and 2030.

Sam Altman (2025), CEO of OpenAl, downplayed the energy requirements of Al
searches. He said that an average ChatGPT query uses 0.34 watt-hours of energy and 0.000085
gallons of water. However, he provided no details about how he calculated these numbers.

Google has documented how much energy a Gemini Apps query uses (Elsworth et. al,
2025). They examined the energy used by Al accelerators, active CPUs and DRAMs, idle
machines, and the infrastructure supporting data centers. They reduced their measures of
energy consumption by 73% to take account of carbon-free energy that Google purchased
elsewhere. They reported results only for the median Gemini query and not the mean query
because the mean would put more weight on prompts using large amounts of energy. They
investigated only energy use related to Al inference and not to training Al models. They
reported that the median query uses 0.24 watt-hours of energy, emits 0.03 grams of carbon
dioxide equivalent, and consumes 0.26 milliliters of water.

While Elsworth et. al (2025) provided more transparency than Altman (2025), there are

several concerns with their results. Society is affected by AI’s total energy use and carbon



footprint. By only reporting the median, they downplayed energy-intensive activities such as
producing videos. Delavande et al. (2025) found that producing a single short video used 90
watt-hours (Wh) while a text clarification used 0.002 Wh, text generation used 0.047 Wh, and
image generation used 2.9 Wh. The median of these four numbers is 1.47 and the mean is 23.24.
Researchers focusing on robustness typically report different measures, and information for the
mean Gemini prompt would be useful. By multiplying mean values by estimates of the total
number of prompts per month, researchers could calculate the total energy use, carbon emissions,
and water requirements per month. In addition, the energy guzzled by data centers to power Al
applications generates heat and requires huge amounts of water to cool the servers and to
generate electricity. Elsworth et. al’s calculations did not include the water needed to generate
electricity (see Calma, 2025).

Another robustness measure that Elsworth et. al (2025) failed to report is location-based
energy consumption. Stylianou et al. (2025) observed that the carbon credits that a company
purchases do not reduce their demand for energy from the local grid. Bryan et al. (2025)
reported that, since data centers need to run continuously, they cannot rely on renewables as their
primary energy source. Thus their energy needs are met by fossil fuels. Credits purchased
elsewhere do not reduce the cascading demand for fossil fuels within a region. Professor Hannah
Daly argued that carbon credits do not decarbonize local energy supply but merely serve Big
Tech.!

The Federal Reserve System (2025) noted that data centers stoke energy demand. Slav
(2025) reported that Al is an energy monster that threatens energy security and drives investment

in fossil fuel plants. The Commonwealth of Virginia (2024, page 37) found that Al will “greatly

! Quoted in Stylianou et al. (2025).



increase energy demand and will require construction of new generation and transmission
infrastructure beyond what would have otherwise been built.” They reported that these projects
threaten renewable energy goals and raise customers’ utility rates.

Figure 3 shows that, since the launch of ChatGPT in November 2022, average electricity
prices in the U.S. have risen more than 15%. Rapier (2025) observed that the number one reason
why electricity prices in the U.S. soared in 2025 is because of energy demand for Al. Saul et al.
(2025), analyzing 25,000 Locational Marginal Pricing (LMP) nodes across the U.S. grid, found
that 75% of LMPs within 50 miles of data centers experienced electricity price increases between
2020 and 2025. In contrast, they reported that nodes that experienced electricity price falls tend
to be located farther from data centers. Electricityrates.com (2025) reported that the costs of new
power infrastructure needed to supply data centers are spread across all consumers.

Costs can be transferred from tech companies to other ratepayers because of how data
center energy demand interacts with U.S. utility companies and public utility commissions
(PUCs). As Martin and Peskoe (2025) documented, Big Tech companies threaten to move
elsewhere when rates and terms for data centers are not to their liking. Regional utilities in turn
compete with each other to attract data centers. Data centers offer utilities opportunities for
profitable capital investments. Big tech firms then enter special contracts with utilities. Because
of obscurity and claims of confidentiality concerning data center power needs, PUCs accept
these contracts after cursory investigations. The special terms offered to tech companies imply
that residential ratepayers are subsidizing data centers.

Even when data centers are charged tariffs along with other customers, there is

uncertainty concerning whether they will continue using the extra capacity that is built for them



in the future. This implies that other ratepayers bear the risks of paying for these capital
investments.

The structure of utility companies and PUCs also presents an obstacle to transitioning
away from traditional energy sources. Surging demand from data centers has forced utilities to
maintain their oldest and dirtiest generating plants. For instance, Martin and Peskoe (2025)
documented how the Mississippi Power Company in 2025 propped up a coal plant that it was
going to retire to meet surging demand. Utility companies have an incentive to meet the extra
demand not by innovating but by increasing the use of gas-fired and other fossil fuel-powered
plants. As Hyman and Tilles (2025) noted, the present approach is for more electrification for Al
without decarbonization.

Hyman (2025) and Martin and Peskoe (2025) argued that, rather than investigating Big
Tech’s energy needs and deciding what the grid should do at regulatory hearings, Al companies
should be required to obtain their own power, transmission and backup. In this case PUCs would
not have to confront the lack of transparency surrounding AI’s energy use. If data centers bore
their own costs, this would protect ratepayers from subsidizing Big Tech, spare the grid from the
mushrooming data center power, and give Al companies an incentive to economize on energy
use.

Another factor that would incentivize Big Tech to limit the environmental costs of Al
would be to demand greater transparency concerning the associated energy consumption. The
leading companies have all committed to reaching net zero. Stakeholders should hold them
accountable by demanding more information about their environmental footprints. This would

activate what Bhagwati (1988, page 85) labeled the Dracula Effect: “exposing evil to sunlight

10



helps to destroy it.” Peer and community pressure could then goad tech firms to be more

ecologically responsible.

4. Innovations to Reduce Data Center Energy Demand

One area of innovation to save energy is at the individual die level.? Consider, for
example, if these are arranged as a three-dimensional integrated circuit (3D-IC). This contains
many individual CPUs and GPUs. Manufacturers determine the minimum voltage necessary to
ensure proper functioning of the die by examining the voltage at the voltage regulator. The
voltage that matters, however, is the voltage at the level of the individual transistors. If greater
visibility could be obtained at the transistor level, it could provide a better measure of the
minimum voltage actually needed. Because of lack of visibility at the transistor level, voltage
requirements are overmargined.

Mobellus is working on measuring voltage at the transistor level and dynamic voltage
changes at the nanosecond level. This would provide more accurate measures of the minimum
voltage level and guard against overprovisioning. It would also enable recalibration of the
minimum voltage needed as workloads, models, and other factors change in the rapidly evolving
Al environment. Increasing visibility at the transistor level can produce a 20% power saving.

Another area of innovation is in the size of Al models. Sperling (2025) observed that Al
data centers prioritize performance over energy savings. Varoquaux et al. (2025) explained how
state of the art practice is to use the largest Al models possible to perform inference. This
approach multiplies the environmental footprint. Varoquaux et al. reported that for many tasks

such as medical imagining and tabular learning, smaller models outperform large models. For

2 This paragraph and the next one draws on information obtained from Sperling (2025) and www.movellus.com/ .
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other tasks they found that the gains from increasing model size are limited. They argued that Al
practitioners should move away from assuming that bigger models are better and employ
smaller, more focused models when possible.

Sperling (2025) noted that using more data, as larger models do, also increases the heat
that needs to be dissipated. Using smaller models would not only reduce the power requirements
directly but also reduce the energy needed for cooling. Sperling noted that data centers pay for
power twice, first to power the servers and second to cool them. The overhead for cooling can
equal 30% to 40% of the total.

Cooling is an area requiring innovation. A large data center using the local water supply
for cooling can consume 1.8 billion gallons per years (Yaiez-Barnuevo, 2025). This is
equivalent to what a town of 50,000 people uses. A more sustainable approach involves placing
dielectric fluids close to processing elements or inside of packages (Sperling, 2025). This poses
challenges requiring further study, especially involving how to remove heat from 3D-IC cubic
structures. Other solutions including locating data centers in cooler areas, where exposure to air
can facilitate cooling, or even underwater (see Morales, 2025). More research is needed to find
environmentally friendly ways to cool data centers.

According to Joule’s law, the heat generated increases with the square of the electrical
current.® To lower current, researchers are investigating higher voltage power-distribution
systems. Traditionally, data center racks are powered by 48-volt (V) distribution systems. Di
Paolo Emilio (2025) noted that the power requirement per rack will soon increase tenfold from
100 kilowatts (kW) to 1 megawatt (MW) of power. Watt’s law implies that, while delivering 100

kW at 48 V would require 2,100 amperes (A) of current, delivering 1 MW at 48 V would require

3 This paragraph and the next one draws on Di Paolo Emilio (2025) and Boon (2025).
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21,000 A. The increase in current would exponentially increase the heat generated. It would also
require 4501bs of copper, increasing resistance and multiplying the energy losses.

To save energy, NVIDIA and Texas Instruments are collaborating on 800V power
distribution systems. They will use gallium nitride semiconductors because these have lower
conduction losses than traditional silicon devices. The challenges are daunting. The higher
voltage will require complex printed circuit boards and larger safety margins. Compact
intermediate bus converters must be developed to facilitate the voltage step downs before
reaching the processor. Progress on these issues is imperative to improve thermal efficiency.

Another strategy is to re-architect chips so they are adiabatic. This involves recycling
energy within circuits.* Vaire Computing is pursuing this. When a signal transitions to a new
voltage level, signal energy is dissipated and turns into heat. Vaire is seeking to recapture the
energy by transforming the information in reversible ways. This way the information is not lost
and does not generate heat.

Architectural changes can also be made to general purpose chips. As Moyer (2025)
discussed, Al data centers typically use general purpose chips. While these are versatile, they
also require more energy than purpose-built processors. If data centers could use processors that
are tailored to the tasks at hand, they could save energy.

Innovative Optical and Wireless Networks (IOWN) can also slash energy use. IOWN
uses optical signals instead of electrical signals. It builds on the principle that light carries data
more efficiently than electricity (Eguchi, 2025). It has the potential to dramatically reduce data

center energy use. NTT is working on making this technology operational.

* This paragraph draws on Moyer (2025).
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Delavande et al. (2025) reported that producing a single short video uses 45,000 times
more energy that performing a text clarification. They recommended ways to reduce the energy
requirements of producing videos. These include diffusion caching and low precision inference.
Caching involves storing and retrieving previously used data instead of recalculating them every
time. Low precision inference uses small bit integers (e.g., 8-bit or 4-bit). These methods could
reduce the energy required to create videos.

Al itself can be used to reduce energy costs. For data centers it can help devise ways to
reduce heat, save energy associated with voltage step downs, choose smaller inference models,
reduce energy wastage along cables in between racks and servers, and conserve water. Palladino
(2025) also noted that Al can reduce energy waste in the production of batteries, steel, glass,
hydrogen, ammonia, copper, and other goods. Al can thus promote sustainability.

There are thus promising avenues to reduce data center energy consumption. Some are
ready for use. Stakeholders must push Big Tech to adopt these innovations. Others are still being
developed. Future research is needed, including through partnerships between industry and

universities (Driscoll, 2025).

5. Conclusion

This paper reports that the stock market capitalizations of Amazon, Google, Meta,
Microsoft have increased by trillions of dollars more than expected during the Al revolution.
They have used this windfall to invest heavily in Al data centers. These centers guzzle
electricity, and other consumers pay the costs through higher electricity bills. This paper

recommends that Big Tech be required to obtain its own power, transmission and backup. This
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would protect ratepayers from subsidizing tech companies, spare the grid from the soaring power
demands of data centers, and incentivize Al companies to economize on energy use.

Mushrooming data center demand forces utilities to prop up gas-fired and other fossil
fuel-powered plants. It also causes them to maintain their oldest and dirtiest generating plants
(see, e.g., Martin and Peskoe, 2025). This increases localized pollution and damages the health of
those living nearby.

Citizens, governments, the civil society and others should demand transparency
concerning the environmental costs of the Al revolution. Big Tech companies have all
committed to reaching net zero. Stakeholders should hold them accountable by demanding more
information about their environmental footprint. Peer and community pressure could then goad
them to be more ecologically friendly.

This paper considers innovations that could be made to reduce data center energy
demand. Greater visibility at the transistor level could reduce voltage overmargining. Moving
away from assuming bigger Al models are better could reduce energy requirements. Placing
dielectric fluids close to processing elements or inside of packages could improve cooling
efficiency. Powering data racks with 800 V distribution systems rather than 48 V systems could
reduce current and the concomitant heat loss. Recycling energy within circuits by transforming
information in reversible ways could reduce heat loss. Tailoring chips to the tasks at hand could
save energy compared to using general purpose chips. Diffusion caching and low precision
inference could economize the power requirements to generate videos.

While industry, government, universities and others pursue these innovations, they
should not forget Jevon’s Paradox. William Stanley Jevons observed that, as coal use in the 19

century became cheaper and more efficient, coal consumption actually increased. Data center
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electricity demand is exploding and multiplying CO2 emissions. As data center energy efficiency

increases, society must ensure that increased Al use does not harm the environment even more.
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Table 1. The Exposure of Big Tech Firms to Macroeconomic Variables

(@) @ [ 0 “4) (6] (6)
Firm Independent Variables
10-year | Copper | World U.S. Nominal | WTI Oil
Treasury | Futures | Stock Effective Price
Rate Price Return Exchange
Rate
Amazon | 0.034*** | -0.061** | 0.706%** | 0.846*** -0.016
(0.010) |(0.030) | (0.051) [(0.170) (0.019)
Google 0.029%** | -0.045%** | 0.662*** | (.769*** -0.010
(0.005) |(0.018) |(0.028) [(0.102) (0.010)
Meta 0.015 -0.086%* | 0.761%** | 0.736%** 0.006
(0.013) |(0.039) |(0.083) [(0.235) (0.026)
Microsoft | 0.026*** | -0.015 0.647%*% | (. 754%** -0.009
(0.004) |(0.016) |(0.025) | (0.088) (0.009)

Notes: The table presents regression coefficients from a regression of daily stock returns

for the firms listed in column (1) on the change in the ten-year constant maturity U.S.

Treasury interest rate (column 2), the change in the log of copper futures prices (column 3),
the return on the world stock market (column 4), the change in the log of the U.S. dollar
nominal effective exchange rate (column 5), and the change in the log of the spot price for
WTI crude oil (column 6). The sample period extends from 3 January 2006 to 29 November
2022 except for Meta. In this case the period extends from 18 May 2012 to 29 November
2022. Heteroskedasticity- and autocorrelation-consistent standard errors are in parentheses.

*A% (**) denote significance at the 1% (5%) levels.
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Table 2. Percentage and Dollar Value of Surpluses of Actual Big Tech Stock Values Relative to
Predicted Values.

€)) 2) 3) “) &) (6)
Firm Stock Market | Percentage Surplus Percentage Dollar Value of | Dollar Value of
Capitalization | of Actual Stock Surplus Surplus of Surplus of
in Sept. 2025 | Prices in Sept. 2025 of Actual Stock Actual Actual
(billions of Relative to Predicted Prices in Sept. Stock Prices in Stock Prices in
USD) Stock Prices (Five- 2025 Sept. Sept.
Factor Model) Relative to 2025 Relative to | 2025 Relative to
Predicted Predicted Stock | Predicted Stock
Stock Prices Prices Prices
(ARIMA (Five-Factor (ARIMA Model)
Model) Model) (billions of
(billions of USD)
USD)
Amazon | 2,499 20.5% 28.2% 512 705
Google 3,039 34.2% 38.6% 1,039 1,173
Meta 1,921 155.4% 160.6% 2,985 3,085
Microsoft | 3,783 24.2% 39.3% 916 1,487

Notes: Stock prices for the firms listed in column (3) using a five-factor model and in column (4) using an
autoregressive integrated moving average (ARIMA) model. For Amazon, Google, and Microsoft, these models are
estimated over the 3 January 2006 to 29 November 2022 period. For Meta, they are estimated over the 18 May 2012
to 29 November 2022 period. For the five-factor model, stock returns for the Big Tech companies are regressed on
the change in the ten-year constant maturity U.S. Treasury interest rate, the change in the log of copper futures
prices, the return on the world stock market, the change in the log of the U.S. dollar nominal effective exchange rate,
and the change in the log of the spot price for WTI crude oil. From when Chat GPT was first introduced on 30
November 2022 until 2 September 2025, the regression coefficients from the five-factor and ARIMA models and
actual out-of-sample values of the right-hand side variables are used to forecast stock returns. Column (3) presents
the percentage surplus of actual over predicted values at the end of the forecasting period using the five-factor model
and column (4) presents the percentage surplus using the ARIMA model. Columns (5) and (6) present the
corresponding dollar values of the surpluses. Column (5) is calculated by multiplying column (2) with column (3)
and column (6) by multiplying column (2) with column (4).
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Figure 2¢c. Google’s Actual Stock Prices and Prices Forecasted Using a Five-Factor Model.
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Figure 2d. Google’s Actual Stock Prices and Prices Forecasted Using an ARIMA Model.
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Figure 2e. Meta’s Actual Stock Prices and Prices Forecasted Using a Five-Factor Model.
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Figure 2f. Meta’s Actual Stock Prices and Prices Forecasted Using an ARIMA Model.
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Figure 2g. Microsoft’s Actual Stock Prices and Prices Forecasted Using a Five-Factor Model.
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Figure 2h. Microsoft’s Actual Stock Prices and Prices Forecasted Using an ARIMA Model.
Notes to Figures 2a-2h: The figures present actual stock prices for the Big Tech firms from 30 November 2022,
when ChatGPT was first introduced, until 2 September 2025. Figures 2a, c, and g also present stock prices
forecasted from a five-factor model estimated over the 3 January 2006 to 29 November 2022 period. Figure 2e
presents stock prices forecasted from a five-factor model estimated over the 18 May 2012 to 29 November 2022
period. Actual out-of-sample values of the five factors are used to forecast returns over the 30 November 2022 to
2 September 2025 period. Figures 2b, d, and h also present stock prices forecasted from an autoregressive
integrated moving average (ARIMA) model over the 3 January 2006 to 29 November 2022 period. Figure

2f also presents stock prices forecasted from an ARIMA model over the 18 May 2012 to 29 November 2022
period. The five factors used to estimate and predict stock returns are the change in the ten-year constant
maturity U.S. Treasury interest rate, the change in the log of copper futures prices, the return on the world stock
market, the change in the log of the U.S. dollar nominal effective exchange rate, and the change in the log

of the spot price for WTTI crude oil.
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Figure 3. Average Price of Electricity per Kilowatt-Hour in U.S. Cities
Source: Federal Reserve Bank of St. Louis Fred Database.
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