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1. Introduction 

Artificial Intelligence (AI) use is exploding.  OpenAI launched the generative AI chatbot 

ChatGPT in November 2022.  By October 2025 it had 800 million weekly users, up from 400 

million in February 2025 (Singh, 2025). Monthly visits reached 5.8 billion and the number of 

daily queries reached 2 billion.  

The four leading tech firms, Amazon, Google, Meta, Microsoft, are riding the AI 

juggernaut.  They have weaved AI into their offerings.  Amazon uses AI to enhance customer 

service. Google offers the Gemini AI chatbot. Meta employs AI to enhance its social media and 

messaging apps. Microsoft partners with OpenAI.  

This paper investigates how these four leading firms have performed after ChatGPT 

launched the AI revolution in November 2022.  The results indicate that their stock market 

capitalizations have increased by between 500 billion dollars more than predicted for Amazon to 

trillions of dollars more for Meta. 

Despite these windfalls, Big Tech companies negotiate aggressively with public utilities 

to reduce their electricity expenses.  This transfers their electricity costs to other customers. Saul 

et al. (2025) reported that electricity bills increase more for customers closer to data centers and 

fall more for customers further from them.  

Data centers guzzle energy and burden the grid.  Tech firms will spend almost 500 billion 

dollars in 2025 constructing AI data centers (Stylianou, 2025).  Saul et al. (2025) reported that 

data centers consume 39% of the electricity used in Virginia, 33% of the energy used in Oregon, 

18% of the energy used in Iowa, and 15% of the energy used in Nevada and Utah.   Data center 

energy use will accelerate. 
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Soaring data center demand forces utilities to prop up gas-fired and other fossil fuel-

powered plants.  It also causes them to maintain their oldest and dirtiest generating plants (see, 

e.g., Martin and Peskoe, 2025). This increases localized pollution that is not offset by companies 

purchasing carbon credits elsewhere. 

Executives such as former Google CEO Eric Schmidt and former Microsoft CEO Bill 

Gates argued that society should forget about climate targets and whole-heartedly embrace AI 

data centers.  They claimed that AI can help address climate change, so data center pollution 

should be ignored (see, e.g., Hyman and Tilles, 2025, and Robinson, 2024).   

This paper considers how to incentivize Big Tech to be more environmentally friendly 

and how to protect other ratepayers from picking up their electricity tabs. It also considers 

innovations that could reduce data center energy use. 

The next section investigates the performance of the four leading tech firms after the 

introduction of ChatGPT.  Section 3 recounts the energy use of AI data centers.  Section 4 

considers innovations to increase energy efficiency at data centers.  Section 5 concludes. 

 

2. Investigating Big Tech Stock Returns 

2.1 Data and Methodology 

 Martin and Peskoe (2025) singled out four companies leading the search for power to run 

data centers.  These are Amazon, Google, Meta, and Microsoft.  Figures 1a through 1d show the 

evolution of their stock prices before and after the release of ChatGPT on 30 November 2022. 

The figures show that, since the appearance of ChatGPT launched the AI revolution, stock prices 

have increased 89.1% for Amazon, 79.8% for Google, 190.5% for Meta, and 74.3% for 

Microsoft. 
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 To investigate how this performance compares to what would be expected, a five-factor 

model and an autoregressive integrated moving average (ARIMA) model are used to predict 

stock returns.  Stock returns are estimated using these two models over the 17 years before the 

appearance of ChatGPT on 30 November 2022.  The resulting regression coefficients and actual 

out-of-sample values of the independent variables are then used to forecast stock returns from 

November 2022 to September 2025. This sheds light on how these firms have fared during the 

AI revolution relative to what would be expected. 

 The five-factor model draws on Hamilton (2014).  He reported that changes in the ten-

year constant maturity U.S. Treasury interest rate, changes in the log of the price of copper, and 

changes in the log of nominal effective U.S. dollar exchange rate help explain world economic 

growth. Two other factors related to world growth, the return on the world stock market and the 

change in the log of the price of World Texas Intermediate (WTI) crude oil, are also included.  

These five variables should help explain returns on Big Tech companies. 

 The estimated equations take the form: 

∆𝑅𝑅𝑖𝑖,𝑡𝑡 =  𝛼𝛼0 +  𝛽𝛽1∆𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 + 𝛽𝛽2∆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 +  𝛽𝛽3∆𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑡𝑡 + 𝛽𝛽4∆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡+ 𝛽𝛽5∆𝑊𝑊𝑊𝑊𝑊𝑊𝑡𝑡 ,                (1)                                                                                                                                    

  

where ∆Ri,t is the daily stock return for Big Tech sector i, ∆Tent is the change in the ten-year 

constant maturity Treasury interest rate, ∆Coppert is the change in the log of copper futures 

prices, ∆Worldt is the return on the world stock market, ∆NEERt is the change in the log of the 

U.S. dollar nominal effective exchange rate, and ∆WTIt is the change in the log of the spot price 

for WTI crude oil. 

 Data on stock returns and WTI crude oil prices come from the Refinitiv Datastream 

database, data on copper futures from investing.com, and the other data from the Federal Reserve 

Bank of St. Louis FRED database. 
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 An ARIMA model is also used to predict stock returns.  ARIMA models are useful for 

forecasting.  They use past autoregressive and moving average terms to forecast future values of 

the independent variable. 

 For Amazon, Google, and Microsoft the sample period for the estimation extends from 3 

January 2006 to 29 November 2022. This provides 4,409 observations.  For Meta the data are 

only available beginning on 18 May 2012.  This provides 2,745 observations. Stock prices are 

then forecasted over the 30 November 2022 to 2 September 2025 period and compared to actual 

stock prices.   

 

2.2 Results 

 Table 1 presents the results from estimating equation (1).  In all four cases in column (2), 

increases in the 10-year Treasury rate are associated with increases in stock returns.  The 

relationships are statistically significant in three of the four cases.  The positive coefficients 

reflect Hamilton’s (2014) observation that Treasury rate increases are associated with increases 

in economic growth.  In all four cases in column (3), increases in copper prices are associated 

with decreases in stock returns.  The relationships are statistically significant in three of the four 

cases. Copper is a vital input to data centers, and price rises decrease their profitability. In all 

four cases in column (4), increases in world stock returns are associated with increases in Big 

Tech stock returns.  The relationships are statistically significant at the 1% level in all four cases. 

The results for world stock returns indicate that world demand is crucial for Big Tech companies.   

 In all four cases in column (5), U.S. dollar appreciations are associated with increases in 

stock returns.  Since Big Tech companies have large capital stocks in the U.S., exchange rate 

appreciations can increase the value of this capital and thus increase firms’ market values.  In no 
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cases in column (6) are increases in WTI crude oil prices associated with increases in stock 

returns. 

  Figure 2a through 2h plot actual stock prices for the Big Tech firms and stock prices 

forecasted using the five-factor and ARIMA models.  In every case, actual stock prices far 

exceed predicted stock prices over the sample period.  For Amazon, at the end of the sample 

period actual prices were 20.5% greater than forecasted by the five-factor model and 28.2% 

greater than forecasted by the ARIMA model.  For Google, actual prices were 34.2% greater 

than forecasted by the five-factor model and 38.6% greater than forecasted by the ARIMA 

model. For Meta, actual prices were 155.4% greater than forecasted by the five-factor model and 

160.6% greater than forecasted by the ARIMA model. For Microsoft, actual prices were 24.2% 

greater than forecasted by the five-factor model and 39.3% greater than forecasted by the 

ARIMA model. 

 Table 2 presents data on the market capitalization of these companies and on how much 

more than predicted their stock prices have risen.  In every case stock prices have increased by at 

least $500 billion more than forecasted. Not only, as indicated in Figure 1, have stock prices 

soared since the AI revolution began, but they have increased by hundreds of billions and even 

trillions of dollars more than expected.   

Despite these windfalls, power-guzzling Big Tech firms act to transfer electricity costs to 

other customers.  They also force electric utilities to maintain their oldest and dirtiest generating 

plants.  The following sections consider how stakeholders can cause tech companies to bear their 

own electricity costs, to save energy, and to be more environmentally-friendly. 

 

3. AI Data Center Electricity Demand 
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 As the AI race accelerates, Amazon, Google, Meta, Microsoft and others are splurging on 

data centers.  As Stylianou (2025) et al. reported, they will spend almost 500 billion dollars on 

data centers in 2025. McKinsey (2025) estimated that data centers will add capacity of 124 

gigawatts between 2025 and 2030 to meet AI demand.   

 The International Energy Agency (2025) forecasted that AI energy demand will explode.  

Under its base case scenario, demand for electricity will rise from 460 terawatts in 2024 to 1,000 

terawatts in 2030 to 1,300 terawatts by 2035.  For the U.S., the International Energy Agency 

forecasts that AI use will cause almost half of the growth in electricity demand between 2025 

and 2030. 

 Sam Altman (2025), CEO of OpenAI, downplayed the energy requirements of AI 

searches. He said that an average ChatGPT query uses 0.34 watt-hours of energy and 0.000085 

gallons of water.  However, he provided no details about how he calculated these numbers. 

 Google has documented how much energy a Gemini Apps query uses (Elsworth et. al, 

2025).  They examined the energy used by AI accelerators, active CPUs and DRAMs, idle 

machines, and the infrastructure supporting data centers.    They reduced their measures of 

energy consumption by 73% to take account of carbon-free energy that Google purchased 

elsewhere.  They reported results only for the median Gemini query and not the mean query 

because the mean would put more weight on prompts using large amounts of energy.  They 

investigated only energy use related to AI inference and not to training AI models.  They 

reported that the median query uses 0.24 watt-hours of energy, emits 0.03 grams of carbon 

dioxide equivalent, and consumes 0.26 milliliters of water. 

 While Elsworth et. al (2025) provided more transparency than Altman (2025), there are 

several concerns with their results.  Society is affected by AI’s total energy use and carbon 
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footprint.  By only reporting the median, they downplayed energy-intensive activities such as 

producing videos. Delavande et al. (2025) found that producing a single short video used 90 

watt-hours (Wh) while a text clarification used 0.002 Wh, text generation used 0.047 Wh, and 

image generation used 2.9 Wh.  The median of these four numbers is 1.47 and the mean is 23.24. 

Researchers focusing on robustness typically report different measures, and information for the 

mean Gemini prompt would be useful.  By multiplying mean values by estimates of the total 

number of prompts per month, researchers could calculate the total energy use, carbon emissions, 

and water requirements per month.  In addition, the energy guzzled by data centers to power AI 

applications generates heat and requires huge amounts of water to cool the servers and to 

generate electricity.  Elsworth et. al’s calculations did not include the water needed to generate 

electricity (see Calma, 2025). 

 Another robustness measure that Elsworth et. al (2025) failed to report is location-based 

energy consumption.  Stylianou et al. (2025) observed that the carbon credits that a company 

purchases do not reduce their demand for energy from the local grid.  Bryan et al. (2025) 

reported that, since data centers need to run continuously, they cannot rely on renewables as their 

primary energy source. Thus their energy needs are met by fossil fuels. Credits purchased 

elsewhere do not reduce the cascading demand for fossil fuels within a region.  Professor Hannah 

Daly argued that carbon credits do not decarbonize local energy supply but merely serve Big 

Tech.1  

The Federal Reserve System (2025) noted that data centers stoke energy demand.  Slav 

(2025) reported that AI is an energy monster that threatens energy security and drives investment 

in fossil fuel plants. The Commonwealth of Virginia (2024, page 37) found that AI will “greatly 

 
1 Quoted in Stylianou et al. (2025). 
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increase energy demand and will require construction of new generation and transmission 

infrastructure beyond what would have otherwise been built.” They reported that these projects 

threaten renewable energy goals and raise customers’ utility rates.  

Figure 3 shows that, since the launch of ChatGPT in November 2022, average electricity 

prices in the U.S. have risen more than 15%.  Rapier (2025) observed that the number one reason 

why electricity prices in the U.S. soared in 2025 is because of energy demand for AI. Saul et al. 

(2025), analyzing 25,000 Locational Marginal Pricing (LMP) nodes across the U.S. grid, found 

that 75% of LMPs within 50 miles of data centers experienced electricity price increases between 

2020 and 2025. In contrast, they reported that nodes that experienced electricity price falls tend 

to be located farther from data centers. Electricityrates.com (2025) reported that the costs of new 

power infrastructure needed to supply data centers are spread across all consumers. 

 Costs can be transferred from tech companies to other ratepayers because of how data 

center energy demand interacts with U.S. utility companies and public utility commissions 

(PUCs). As Martin and Peskoe (2025) documented, Big Tech companies threaten to move 

elsewhere when rates and terms for data centers are not to their liking. Regional utilities in turn 

compete with each other to attract data centers.  Data centers offer utilities opportunities for 

profitable capital investments.  Big tech firms then enter special contracts with utilities.  Because 

of obscurity and claims of confidentiality concerning data center power needs, PUCs accept 

these contracts after cursory investigations.  The special terms offered to tech companies imply 

that residential ratepayers are subsidizing data centers.   

Even when data centers are charged tariffs along with other customers, there is 

uncertainty concerning whether they will continue using the extra capacity that is built for them 
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in the future.  This implies that other ratepayers bear the risks of paying for these capital 

investments.  

The structure of utility companies and PUCs also presents an obstacle to transitioning 

away from traditional energy sources.  Surging demand from data centers has forced utilities to 

maintain their oldest and dirtiest generating plants.  For instance, Martin and Peskoe (2025) 

documented how the Mississippi Power Company in 2025 propped up a coal plant that it was 

going to retire to meet surging demand. Utility companies have an incentive to meet the extra 

demand not by innovating but by increasing the use of gas-fired and other fossil fuel-powered 

plants.  As Hyman and Tilles (2025) noted, the present approach is for more electrification for AI 

without decarbonization. 

Hyman (2025) and Martin and Peskoe (2025) argued that, rather than investigating Big 

Tech’s energy needs and deciding what the grid should do at regulatory hearings, AI companies 

should be required to obtain their own power, transmission and backup.  In this case PUCs would 

not have to confront the lack of transparency surrounding AI’s energy use. If data centers bore 

their own costs, this would protect ratepayers from subsidizing Big Tech, spare the grid from the 

mushrooming data center power, and give AI companies an incentive to economize on energy 

use. 

Another factor that would incentivize Big Tech to limit the environmental costs of AI 

would be to demand greater transparency concerning the associated energy consumption.  The 

leading companies have all committed to reaching net zero.  Stakeholders should hold them 

accountable by demanding more information about their environmental footprints. This would 

activate what Bhagwati (1988, page 85) labeled the Dracula Effect: “exposing evil to sunlight 
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helps to destroy it.”  Peer and community pressure could then goad tech firms to be more 

ecologically responsible.   

 

4. Innovations to Reduce Data Center Energy Demand 

 One area of innovation to save energy is at the individual die level.2  Consider, for 

example, if these are arranged as a three-dimensional integrated circuit (3D-IC).  This contains 

many individual CPUs and GPUs.  Manufacturers determine the minimum voltage necessary to 

ensure proper functioning of the die by examining the voltage at the voltage regulator.  The 

voltage that matters, however, is the voltage at the level of the individual transistors.  If greater 

visibility could be obtained at the transistor level, it could provide a better measure of the 

minimum voltage actually needed.  Because of lack of visibility at the transistor level, voltage 

requirements are overmargined.  

 Mobellus is working on measuring voltage at the transistor level and dynamic voltage 

changes at the nanosecond level.  This would provide more accurate measures of the minimum 

voltage level and guard against overprovisioning.  It would also enable recalibration of the 

minimum voltage needed as workloads, models, and other factors change in the rapidly evolving 

AI environment. Increasing visibility at the transistor level can produce a 20% power saving. 

 Another area of innovation is in the size of AI models.  Sperling (2025) observed that AI 

data centers prioritize performance over energy savings.  Varoquaux et al. (2025) explained how 

state of the art practice is to use the largest AI models possible to perform inference.  This 

approach multiplies the environmental footprint.  Varoquaux et al. reported that for many tasks 

such as medical imagining and tabular learning, smaller models outperform large models.  For 

 
2 This paragraph and the next one draws on information obtained from Sperling (2025) and www.movellus.com/ . 

http://www.movellus.com/
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other tasks they found that the gains from increasing model size are limited.  They argued that AI 

practitioners should move away from assuming that bigger models are better and employ 

smaller, more focused models when possible. 

 Sperling (2025) noted that using more data, as larger models do, also increases the heat 

that needs to be dissipated.  Using smaller models would not only reduce the power requirements 

directly but also reduce the energy needed for cooling.  Sperling noted that data centers pay for 

power twice, first to power the servers and second to cool them. The overhead for cooling can 

equal 30% to 40% of the total. 

 Cooling is an area requiring innovation.  A large data center using the local water supply 

for cooling can consume 1.8 billion gallons per years (Yañez-Barnuevo, 2025). This is 

equivalent to what a town of 50,000 people uses.  A more sustainable approach involves placing 

dielectric fluids close to processing elements or inside of packages (Sperling, 2025).  This poses 

challenges requiring further study, especially involving how to remove heat from 3D-IC cubic 

structures. Other solutions including locating data centers in cooler areas, where exposure to air 

can facilitate cooling, or even underwater (see Morales, 2025). More research is needed to find 

environmentally friendly ways to cool data centers. 

 According to Joule’s law, the heat generated increases with the square of the electrical 

current.3  To lower current, researchers are investigating higher voltage power-distribution 

systems.  Traditionally, data center racks are powered by 48-volt (V) distribution systems.  Di 

Paolo Emilio (2025) noted that the power requirement per rack will soon increase tenfold from 

100 kilowatts (kW) to 1 megawatt (MW) of power. Watt’s law implies that, while delivering 100 

kW at 48 V would require 2,100 amperes (A) of current, delivering 1 MW at 48 V would require 

 
3 This paragraph and the next one draws on Di Paolo Emilio (2025) and Boon (2025). 
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21,000 A.  The increase in current would exponentially increase the heat generated. It would also 

require 450lbs of copper, increasing resistance and multiplying the energy losses. 

 To save energy, NVIDIA and Texas Instruments are collaborating on 800V power 

distribution systems. They will use gallium nitride semiconductors because these have lower 

conduction losses than traditional silicon devices. The challenges are daunting.  The higher 

voltage will require complex printed circuit boards and larger safety margins. Compact 

intermediate bus converters must be developed to facilitate the voltage step downs before 

reaching the processor.  Progress on these issues is imperative to improve thermal efficiency. 

Another strategy is to re-architect chips so they are adiabatic. This involves recycling 

energy within circuits.4 Vaire Computing is pursuing this.  When a signal transitions to a new 

voltage level, signal energy is dissipated and turns into heat.  Vaire is seeking to recapture the 

energy by transforming the information in reversible ways.  This way the information is not lost 

and does not generate heat. 

 Architectural changes can also be made to general purpose chips.  As Moyer (2025) 

discussed, AI data centers typically use general purpose chips.  While these are versatile, they 

also require more energy than purpose-built processors. If data centers could use processors that 

are tailored to the tasks at hand, they could save energy. 

 Innovative Optical and Wireless Networks (IOWN) can also slash energy use.  IOWN 

uses optical signals instead of electrical signals.  It builds on the principle that light carries data 

more efficiently than electricity (Eguchi, 2025).  It has the potential to dramatically reduce data 

center energy use.  NTT is working on making this technology operational. 

 
4 This paragraph draws on Moyer (2025). 
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Delavande et al. (2025) reported that producing a single short video uses 45,000 times 

more energy that performing a text clarification.  They recommended ways to reduce the energy 

requirements of producing videos.   These include diffusion caching and low precision inference.  

Caching involves storing and retrieving previously used data instead of recalculating them every 

time.  Low precision inference uses small bit integers (e.g., 8-bit or 4-bit). These methods could 

reduce the energy required to create videos. 

AI itself can be used to reduce energy costs.  For data centers it can help devise ways to 

reduce heat, save energy associated with voltage step downs, choose smaller inference models, 

reduce energy wastage along cables in between racks and servers, and conserve water. Palladino 

(2025) also noted that AI can reduce energy waste in the production of batteries, steel, glass, 

hydrogen, ammonia, copper, and other goods. AI can thus promote sustainability. 

There are thus promising avenues to reduce data center energy consumption.  Some are 

ready for use. Stakeholders must push Big Tech to adopt these innovations. Others are still being 

developed. Future research is needed, including through partnerships between industry and 

universities (Driscoll, 2025).  

    

5. Conclusion 

This paper reports that the stock market capitalizations of Amazon, Google, Meta, 

Microsoft have increased by trillions of dollars more than expected during the AI revolution.  

They have used this windfall to invest heavily in AI data centers.  These centers guzzle 

electricity, and other consumers pay the costs through higher electricity bills.  This paper 

recommends that Big Tech be required to obtain its own power, transmission and backup.  This 
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would protect ratepayers from subsidizing tech companies, spare the grid from the soaring power 

demands of data centers, and incentivize AI companies to economize on energy use.  

Mushrooming data center demand forces utilities to prop up gas-fired and other fossil 

fuel-powered plants.  It also causes them to maintain their oldest and dirtiest generating plants 

(see, e.g., Martin and Peskoe, 2025). This increases localized pollution and damages the health of 

those living nearby. 

Citizens, governments, the civil society and others should demand transparency 

concerning the environmental costs of the AI revolution.  Big Tech companies have all 

committed to reaching net zero.  Stakeholders should hold them accountable by demanding more 

information about their environmental footprint.  Peer and community pressure could then goad 

them to be more ecologically friendly. 

This paper considers innovations that could be made to reduce data center energy 

demand. Greater visibility at the transistor level could reduce voltage overmargining.  Moving 

away from assuming bigger AI models are better could reduce energy requirements.  Placing 

dielectric fluids close to processing elements or inside of packages could improve cooling 

efficiency. Powering data racks with 800 V distribution systems rather than 48 V systems could 

reduce current and the concomitant heat loss. Recycling energy within circuits by transforming 

information in reversible ways could reduce heat loss. Tailoring chips to the tasks at hand could 

save energy compared to using general purpose chips.  Diffusion caching and low precision 

inference could economize the power requirements to generate videos.  

While industry, government, universities and others pursue these innovations, they 

should not forget Jevon’s Paradox. William Stanley Jevons observed that, as coal use in the 19th 

century became cheaper and more efficient, coal consumption actually increased.  Data center 
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electricity demand is exploding and multiplying CO2 emissions. As data center energy efficiency 

increases, society must ensure that increased AI use does not harm the environment even more. 
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Table 1. The Exposure of Big Tech Firms to Macroeconomic Variables 
(1) (2) (3) (4) (5) (6) 

Firm Independent Variables 
 10-year 

Treasury 
Rate 

Copper 
Futures 
Price 

World 
Stock 
Return 

U.S. Nominal 
Effective  
Exchange 
Rate 

WTI Oil 
Price 

Amazon 0.034*** 
(0.010) 

-0.061** 
(0.030) 

0.706*** 
(0.051) 

0.846*** 
(0.170) 

-0.016 
(0.019) 

Google 0.029*** 
(0.005) 

-0.045** 
(0.018) 

0.662*** 
(0.028) 

0.769*** 
(0.102) 

-0.010 
(0.010) 

Meta 0.015 
(0.013) 

-0.086** 
(0.039) 

0.761*** 
(0.083) 

0.736*** 
(0.235) 

0.006 
(0.026) 

Microsoft 0.026*** 
(0.004) 

-0.015 
(0.016) 

0.647*** 
(0.025) 

0.754*** 
(0.088) 

-0.009 
(0.009) 

Notes: The table presents regression coefficients from a regression of daily stock returns 
for the firms listed in column (1) on the change in the ten-year constant maturity U.S.  
Treasury interest rate (column 2), the change in the log of copper futures prices (column 3),  
the return on the world stock market (column 4), the change in the log of the U.S. dollar  
nominal effective exchange rate (column 5), and the change in the log of the spot price for  
WTI crude oil (column 6). The sample period extends from 3 January 2006 to 29 November  
2022 except for Meta.  In this case the period extends from 18 May 2012 to 29 November  
2022. Heteroskedasticity- and autocorrelation-consistent standard errors are in parentheses. 
*** (**) denote significance at the 1% (5%) levels. 
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Table 2. Percentage and Dollar Value of Surpluses of Actual Big Tech Stock Values Relative to 
Predicted Values. 

(1) (2) (3) (4) (5) (6) 
Firm Stock Market 

Capitalization 
in Sept. 2025 
(billions of 
USD) 

Percentage Surplus 
of Actual Stock 
Prices in Sept. 2025 
Relative to Predicted 
Stock Prices (Five-
Factor Model) 

Percentage 
Surplus 
of Actual Stock 
Prices in Sept. 
2025 
Relative to 
Predicted 
Stock Prices 
(ARIMA 
Model) 

Dollar Value of 
Surplus of 
Actual 
Stock Prices in 
Sept. 
2025 Relative to 
Predicted Stock 
Prices 
(Five-Factor 
Model) 
(billions of 
USD) 

Dollar Value of 
Surplus of 
Actual 
Stock Prices in 
Sept. 
2025 Relative to 
Predicted Stock 
Prices 
(ARIMA Model) 
(billions of 
USD) 

Amazon 2,499 20.5% 28.2% 512 705 
Google 3,039 34.2% 38.6% 1,039 1,173 
Meta 1,921 155.4% 160.6% 2,985 3,085 
Microsoft 3,783 24.2% 39.3% 916 1,487 

Notes: Stock prices for the firms listed in column (3) using a five-factor model and in column (4) using an 
autoregressive integrated moving average (ARIMA) model.  For Amazon, Google, and Microsoft, these models are 
estimated over the 3 January 2006 to 29 November 2022 period.  For Meta, they are estimated over the 18 May 2012 
to 29 November 2022 period. For the five-factor model, stock returns for the Big Tech companies are regressed on 
the change in the ten-year constant maturity U.S. Treasury interest rate, the change in the log of copper futures 
prices, the return on the world stock market, the change in the log of the U.S. dollar nominal effective exchange rate, 
and the change in the log of the spot price for WTI crude oil. From when Chat GPT was first introduced on 30 
November 2022 until 2 September 2025, the regression coefficients from the five-factor and ARIMA models and 
actual out-of-sample values of the right-hand side variables are used to forecast stock returns.  Column (3) presents 
the percentage surplus of actual over predicted values at the end of the forecasting period using the five-factor model 
and column (4) presents the percentage surplus using the ARIMA model. Columns (5) and (6) present the 
corresponding dollar values of the surpluses.  Column (5) is calculated by multiplying column (2) with column (3) 
and column (6) by multiplying column (2) with column (4).   
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Figure 1a. Amazon’s Stock Price 
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Figure 1b. Google’s Stock Price 
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Figure 1c. Meta’s Stock Price 
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Figure 1d. Microsoft’s Stock Price 
Source for Figures 1a-1d: Refinitiv Datastream database. 
  



21 
 

 

 

 

Figure 2a. Amazon’s Actual Stock Prices and Prices Forecasted Using a Five-Factor Model. 

 

 

Figure 2b. Amazon’s Actual Stock Prices and Prices Forecasted Using an ARIMA Model. 
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Figure 2c.  Google’s Actual Stock Prices and Prices Forecasted Using a Five-Factor Model. 

 

 

Figure 2d. Google’s Actual Stock Prices and Prices Forecasted Using an ARIMA Model. 
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Figure 2e.  Meta’s Actual Stock Prices and Prices Forecasted Using a Five-Factor Model. 

 

 

Figure 2f. Meta’s Actual Stock Prices and Prices Forecasted Using an ARIMA Model. 
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Figure 2g.  Microsoft’s Actual Stock Prices and Prices Forecasted Using a Five-Factor Model. 
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Figure 2h. Microsoft’s Actual Stock Prices and Prices Forecasted Using an ARIMA Model. 
Notes to Figures 2a-2h: The figures present actual stock prices for the Big Tech firms from 30 November 2022, 
when ChatGPT was first introduced, until 2 September 2025. Figures 2a, c, and g also present stock prices 
forecasted from a five-factor model estimated over the 3 January 2006 to 29 November 2022 period. Figure 2e 
presents stock prices forecasted from a five-factor model estimated over the 18 May 2012 to 29 November 2022 
period. Actual out-of-sample values of the five factors are used to forecast returns over the 30 November 2022 to 
2 September 2025 period.  Figures 2b, d, and h also present stock prices forecasted from an autoregressive 
integrated moving average (ARIMA) model over the 3 January 2006 to 29 November 2022 period. Figure 
2f also presents stock prices forecasted from an ARIMA model over the 18 May 2012 to 29 November 2022  
period. The five factors used to estimate and predict stock returns are the change in the ten-year constant  
maturity U.S. Treasury interest rate, the change in the log of copper futures prices, the return on the world stock  
market, the change in the log of the U.S. dollar nominal effective exchange rate, and the change in the log  
of the spot price for WTI crude oil.  
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Figure 3. Average Price of Electricity per Kilowatt-Hour in U.S. Cities 
Source: Federal Reserve Bank of St. Louis Fred Database.   
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