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I qualitatively and quantitatively revisit the Balassa–Samuelson (BS) mechanism in the long 

run. Traditional panel regression specifications without time fixed effects are fragile, but 

adding time fixed effects yields a stable, positive BS elasticity across samples and 

frequencies—evidence that the data support BS qualitatively on average across countries. 

Quantitatively, however, a standard multi-country trade model fed only by observed sectoral 

productivity cannot match country paths and delivers too small magnitudes. These failures 

persist with costly trade, multi-country, multi-sector settings, input–output linkages, and 

time-varying trade costs. 

 

Keywords: Real Exchange Rate, Balassa-Samuelson, Trade 

JEL classification: F41, F31, F14 

 
 

The RIETI Discussion Paper Series aims at widely disseminating research results in the form of 
professional papers, with the goal of stimulating lively discussion. The views expressed in the papers 
are solely those of the author(s), and neither represent those of the organization(s) to which the author(s) 
belong(s) nor the Research Institute of Economy, Trade and Industry. 

 

 
1This study is a part of the project "Roles of International Finance in Industry Specialization and the 
Macroeconomy" undertaken at the Research Institute of Economy, Trade and Industry (RIETI). The draft of this 
paper was presented at the RIETI DP seminar for the paper. I would like to thank participants of the RIETI DP 
Seminar for their helpful comments. I thank Daron Acemoglu, Kosuke Aoki, Arnaud Costinot, Doireann Fitzgerald, 
Ippei Fujiwara, Kiminori Matsuyama, and Daniel O'Connor for their helpful comments. I also thank seminar 
participants at the Bank of Japan and UTokyo for useful comments. I thank Satoshi Ichikawa and Yoshiya Yokomoto 
for excellent research assistance.  



1 Introduction

One of the most influential ideas in international economics, formalized by Béla Bal-
assa and Paul Samuelson, is that countries experiencing faster productivity growth in
tradables relative to non-tradables should see their price levels appreciate in real terms.
Despite its intuitive appeal, the empirical record is mixed.1

This paper qualitatively and quantitatively analyzes how the Balassa–Samuelson ef-
fect explains the evolution of RERs across countries. Qualitatively, I show that the tra-
ditional specification is not robust. I show that the traditional specification requires the
number of time periods T to go to ∞, and that letting the number of countries N go to
∞ does not guarantee consistency, which panel data analyses often assume. This helps
rationalize the mixed evidence in the literature across settings, in particular across ref-
erence countries. I retain a single-reference setting and add time fixed effects that ab-
sorb period-common movements, yielding consistency under standard exogeneity and a→

NT (rather than
→

T) rate that stabilizes the estimates. I show that, on average, the Bal-
assa–Samuelson effect is qualitatively present across different countries, sample periods,
time frequencies, datasets, and labor-productivity measures.

Quantitatively, I develop a standard trade model and evaluate how much sectoral pro-
ductivity growth can explain RERs. Feeding observed productivity growth does not repli-
cate RER paths quantitatively, and it fails even qualitatively in some countries. This quan-
titative failure persists after introducing costly trade, multiple countries, input–output
linkages, and time-varying trade costs.

Empirical Analysis In the first half of the paper, I sharpen the standard test of the
Balassa–Samuelson (BS) mechanism. I first show that traditional single-reference pan-
els without time effects perform poorly, even on average. Estimates are fragile with re-
spect to the chosen numeraire: switching the reference country moves the coefficients
substantially—only a few benchmarks yield significant positive estimates, while others
are imprecise or even wrong-signed. I show econometrically that consistency of the tra-
ditional specification requires the number of periods T ↑ ∞, and that letting the number
of countries N ↑ ∞ does not guarantee consistency. In particular, without T ↑ ∞, the
estimates are not consistent.

I then retain a single reference but add time fixed effects. I show that time effects
absorb period-common movements and shift identification to within-year cross-sectional

1See Tica and Družić (2006) for reviews and Berka and Steenkamp (2018) and Berka et al. (2018) for more
recent evidence.
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differences; under standard exogeneity, the estimator is consistent and converges at the→
NT rate rather than

→
T. With time fixed effects, the BS pattern becomes visible: the

relative tradable–non-tradable productivity ratio is positively associated with real ex-
change rates, and the corresponding estimates are tighter. These findings are robust
across countries, sample periods, time frequencies, filtering choices, specifications, and
labor-productivity measures.

Quantitative Analysis In the second half of the paper, I move from reduced form to
a general equilibrium environment. I feed the same sectoral series {Ai,s,t}—and, when
relevant, bilateral iceberg costs {τi,j,s,t}—into five settings: (i) a two-country, two-sector
free-trade case to isolate the textbook BS channel, (ii) a two-country, two-sector costly-
trade case to quantify attenuation from frictions, (iii) a multi-country, two-sector costly-
trade case that allows geography and partner reallocation, (iv) a multi-country, two-sector
costly-trade case with input-output linkages, and (v) a multi-country, multi-sector costly-
trade case.2 In all experiments, I solve the static equilibrium year by year, compute sec-
toral price indices and the CPI, and compare model-implied real effective exchange rates
(REER, trade-weighted real exchange rates) to the data.

Feeding only sectoral productivity shocks—the classical BS channel—performs poorly.
Across all environments, model-implied REER movements are a fraction of those in the
data, and for several countries, even the signs are wrong. The quantitative shortfall per-
sists when moving from the simple textbook case to the full multi-country, multi-sector
setting or introducing input-output linkages.

Allowing time-varying trade costs to move along their inferred low-frequency paths
does not change the conclusion. Adding {τi,j,s,t} on top of {Ai,s,t} leaves the slope of
fitted versus actual REER close to zero in long differences, with only marginal improve-
ments in a few cases. Incorporating input–output linkages yields the same result: the BS
mechanism remains quantitatively too weak.

At the sectoral level, service-sector prices co-move with sectoral productivity in the
expected direction and align somewhat better than the aggregate CPI, but magnitudes are
still far too small. Goods-sector prices fare no better. These patterns remain unchanged
when both productivity and trade-cost shocks are combined.

I conclude with suggestive evidence that the failure comes from the inability of the
models to explain cross-country wages. I show that directly feeding wages to the model
predicts changes in REERs well.3

2See Davis and Weinstein (2001) for the exercises in the same spirit in the context of the Heckscher-
Ohlin-Vanek theory.

3Nevertheless, wages are endogenous equilibrium objects. Thus, my finding simply shows that the
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Related Literature This paper contributes to two strands of the literature. First, I con-
tribute to the empirical literature that investigates whether the Balassa–Samuelson mech-
anism—that countries with faster productivity growth in tradable industries experience
real appreciation—holds in the data. The empirical record so far is mixed across speci-
fications, time periods, and country samples.4 Some studies find a positive association
between relative productivity and real exchange rates (Officer, 1976; Hsieh, 1982; Lee and
Tang, 2007; Lothian and Taylor, 2008; Cardi and Restout, 2015; Devereux et al., 2025),
while others do not (Canzoneri et al., 1999; Berka et al., 2018; Berka and Steenkamp, 2018).
Notably, Berka et al. (2018); Berka and Steenkamp (2018) include unit labor costs as co-
variates to restore the theory-consistent sign on the relative productivity term. 5 Other
studies shift focus from aggregate real exchange rates to sectoral prices and show that rel-
ative sectoral productivity can empirically explain differences in service (or non-tradable)
prices (De Gregorio et al., 1994; Canzoneri et al., 1999; Devereux et al., 2025).6

My contribution is to show that, contrary to the existing literature, the Balassa–Samuelson
mechanism is, on average, qualitatively valid without these adjustments and robust across
specifications, time periods, countries in the sample, time frequencies, and productivity
measures. I demonstrate that previous regressions using a single reference country suf-
fer from an over-weighting of that reference country and are not consistent. As I discuss,
without time fixed effects, their econometric designs are fragile and can generate spurious
support that depends on the chosen reference country and its error structure. In a within-
Europe setting, which typically supports BS, this fragility can be masked, so evidence for
BS in panels without time fixed effects may reflect a statistical coincidence rather than
robust identification.

Second, I contribute to the quantitative literature that explores structural drivers be-
hind the time paths of real exchange rates. Most quantitative studies focus on short- or
medium-run dynamics of the RER (Berka et al., 2018; Chahrour et al., 2024; Gornemann
et al., 2025).7 A few exceptions include Irwin and Obstfeld (2024) and Devereux et al.
(2025). Irwin and Obstfeld (2024) decompose the real exchange rate into several price
components and show that the relative sectoral price is important in explaining the de-

failure comes from the model’s inability to explain wages, not from issues in the CES price aggregation
systems.

4See Froot and Rogoff (1995); Tica and Družić (2006) for reviews.
5Their main specifications control unit labor costs, which are the endogenous objects, depending on

productivity. Thus, their estimates of the coefficients on the productivity term reflect residual effects of
productivity on real exchange rates, keeping wages constant, instead of the Balassa-Samuelson effect itself.

6See Engel (1999), who shows that real exchange rates and non-tradable prices are disconnected. See
also Ito et al. (1999) and Hassan (2016), focusing on aggregate productivity, which discuss the possibility of
higher applicability to middle to high-income countries.

7See Itskhoki (2021) for more comprehensive reviews.
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preciation of South Korea.8 A closely related paper is Devereux et al. (2025), which exam-
ines the drivers behind stable real exchange rates of Eastern European countries against
the average European country between 1999 and 2020.

My quantitative part differs from Devereux et al. (2025) in three dimensions. First, I ex-
plicitly focus on long-run changes in RERs and sectoral productivity using low-frequency
(long-difference) variation, whereas they evaluate the model year by year.9 Their ap-
proach mixes trend and cyclical movements; ours is designed to speak to low-frequency
change. Second, I cover a broader set of countries; by contrast, they focus on Eastern
Europe relative to Western Europe as a bloc. While they report country-level results and
track some cases (e.g., Slovakia) reasonably well, performance is weak for many other
countries. Third, I compare multiple models, including N-country environments with IO
linkages, whereas they use a two-country tradable–non-tradable setup with cross-sector
intermediate linkages. I show that such 2 ↓ 2 environments can overstate the dispersion
of counterfactual outcomes relative to N-country versions, though both models fail to
explain the evolution of RERs at the country-level.

Roadmap. Section 2 presents the theoretical motivation, data, and empirical specifica-
tions. I first replicate traditional benchmark-based regressions and econometrically show
why results hinge on the chosen reference. I then estimate the model with time fixed ef-
fects across various settings. Section 3 develops the quantitative model. Section 4 feeds
observed productivity and trade costs into multiple environments and compares model-
implied REER to the data. Section 5 concludes.

2 Empirical Analysis

2.1 Basic Specification for Testing Balassa–Samuelson Effects

Theoretical Motivation Consider a two-country (i and j) and two-sector (s = T, NT)
setup following the classical Balassa–Samuelson framework. Each country produces a
tradable good (T) and a non-tradable good (NT) using labor as the only input. Labor is
perfectly mobile across sectors within each country, implying a single wage wi. Produc-

8Note that they do not use sectoral productivity.
9If I instead targeted changes in wages, my model can closely replicate the changes of sectoral prices

and RER (Figure 6), so my quantitative results are, in this sense, complementary to those in Devereux et al.
(2025).
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tion in sector s is characterized by productivity Ai,s, so unit cost pricing implies

Pi,s =
wi
Ai,s

. (1)

Under free trade in tradables, the law of one price holds:

Pi,T = Pj,T, (2)

which in turn implies that relative wages are pinned down by relative tradable-sector
productivity:

wi
wj

=
Ai,T
Aj,T

. (3)

Given this wage ratio, the relative price of non-tradables between countries i and j is

Pi,NT
Pj,NT

=
(wi/Ai,NT)
(wj/Aj,NT)

=
(Ai,T/Aj,T)

(Ai,NT/Aj,NT)
. (4)

The aggregate price level in each country is a Cobb–Douglas composite of tradable and
non-tradable prices:

Pi = Pαi,T
i,T Pαi,NT

i,NT , where αi,T + αi,NT = 1. (5)

The real exchange rate between countries i and j is defined as

RERi,j ↔
Pi
Pj

. (6)

Substituting the expressions above, the real exchange rate becomes

RERi,j =

(
Ai,T

Ai,NT

)αi,NT

(
Aj,T

Aj,NT

)αj,NT
. (7)

Hence, a country experiencing faster productivity growth in tradables relative to non-
tradables will experience a real appreciation. This provides the theoretical foundation for
my empirical specification testing the Balassa–Samuelson effects.
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2.2 Data Sources and Variable Construction

I construct a panel dataset that combines information on real exchange rates and sec-
toral productivity across countries. The real exchange rate (RERi,t) is obtained from the
Penn World Table (PWT 11.0) as the ratio of the consumer price index (pl c) to the nomi-
nal exchange rate (xr) relative to the United States (Feenstra et al., 2015). For sectoral pro-
ductivity, I draw on multiple harmonized production databases. For Europe, the United
States, and Japan, I use the EU KLEMS dataset (2008 and 2023 releases).10 For China, I
use the China Industrial Productivity (CIP) database from RIETI.11 For Korea, India, and
Taiwan, I use Asia KLEMS.12

Sectoral productivity in each country and year is measured as real value added di-
vided by total hours worked. I refer to this as sectoral average labor productivity (ALP).
As a robustness check, I alternatively use a composition-adjusted labor input index; the
results remain similar. I classify agriculture, mining, and manufacturing as tradable sec-
tors, while services are treated as non-tradable. For each country and year, I aggregate
real value added and labor input across tradable (or non-tradable) industries. Aggregate
sectoral productivity is then computed as total real value added divided by total labor
input within each group. Country-by-country coverage (start and end years) and data
sources are summarized in Table A1 in the Appendix.

To isolate long-run movements consistent with the Balassa–Samuelson mechanism, I
remove cyclical components from all productivity and price series using the Hodrick–
Prescott filter with a smoothing parameter of ε = 6.25, following the scaling rule of Ravn
and Uhlig (2002). Specifically, I first take logarithms, apply the filter, and then convert the
series back to levels. Using alternative filters (e.g., the Christiano–Fitzgerald band-pass
filter, Christiano and Fitzgerald (2003)) yields nearly identical results.

2.3 Traditional Empirical Design and Its Problem

I start from the standard benchmark used in the empirical Balassa–Samuelson litera-
ture: I regress the log real exchange rate relative to a fixed reference country U on the home

10EU KLEMS 2008 covers 1970–2005; EU KLEMS 2023 covers 1995–2021. I take 1970–1994 from the 2008
release and 1995–2021 from the 2023 release, and splice at 1995 by multiplicatively normalizing the 1970–
1994 series so that the 1995 level matches the 2023 release.

11CIP3 covers 1981–2010; CIP4 covers 1987–2017. I take 1981–1986 from CIP3 and 1987–2017 from CIP4,
splicing at 1987 by multiplicatively normalizing the 1981–1986 segment to match the 1987 level in CIP4.

12Asia KLEMS covers 1980–2012. The data for India do not include hours worked in any period. I instead
use value added per worker (composition-adjusted). Excluding India does not change any of the results.

7



tradable–non-tradable productivity differential, controlling for country fixed effects as,

ln RERi,t = ϱ ln
(

Ai,T,t/Ai,NT,t
AU,T,t/AU,NT,t

)

︸ ︷︷ ︸
Log Rel. ALP

+µi + εi,t, (8)

where RERi,t = Pi,t/PU,t is the bilateral real exchange rate vis-à-vis U, ϱ is the Bal-
assa–Samuelson elasticity, and µi are country fixed effects. Equation (8) is the natural
stochastic analogue of the two-country model in Section 2.1, where differences in the
tradable–non-tradable productivity ratio map into differences in price levels.

Column (1) of Table 1 estimates the model in equation (8) with the United States as
the reference over the full sample period, 1970–2021. The estimate is negative, which is
inconsistent with the Balassa-Samuelson effect. Column (2) repeats the U.S.-normalized
regression for the sample period between 2000 and 2019 (to align with the euro introduc-
tion in 1999 and to avoid the COVID period from 2020); the coefficient becomes imprecise,
with a negative point estimate. This motivates exploring alternative references—both be-
cause BS effects may be clearer when nominal exchange-rate noise is muted (as in the
euro area; Berka et al. 2018) and because dollar movements can reflect forces unrelated to
productivity (Canzoneri et al., 1999).

Columns (3) and (4) switch the reference to Germany and the United Kingdom, respec-
tively, over 2000–2019. The German benchmark yields a larger, positive coefficient with
higher precision.13 The U.K. benchmark also produces a positive and precise estimate.

To see how strongly the choice of reference matters, I repeat the regression in equa-
tion (8) separately for each potential benchmark country. This exercise makes explicit
how sensitive the estimated Balassa–Samuelson elasticity is to the numeraire adopted in
conventional specifications. Earlier studies typically fix the United States as the reference,
but there is no theoretical reason why the relationship in Section 2.1 should depend on
one country alone. By systematically varying the benchmark, I can assess whether the
lack of support in Table 1 reflects genuine model failure or benchmark-specific noise.

Figure 1 summarizes the estimated coefficients from these regressions. Each horizon-
tal line shows the coefficient on the home tradable–non-tradable productivity differential
from a separate regression using a different reference country, with 95% confidence in-
tervals clustered by country. The vertical line at zero corresponds to the null of no Bal-
assa–Samuelson effect. Countries are sorted by the magnitude of the estimates.

13This is broadly consistent with the view that productivity–RER comovement may be easier to detect
in settings closer to a common-currency environment and when sectoral wedges are accounted for (Berka
et al., 2018; Devereux et al., 2025).
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Table 1: Real Exchange Rate and Relative Productivity

(1) (2) (3) (4)
Log Rel. ALP -0.15 -0.02 0.40 0.68

(0.06) (0.22) (0.05) (0.10)
Observations 1,307 631 631 631
Num of Countries 33 33 33 33
Num of Years 52 20 20 20
Sample Years 1970-2021 2000-2019 2000-2019 2000-2019
Ref. Country U.S. U.S. Germany U.K.

Notes: This table reports panel regressions of the log bilateral real exchange rate against the log relative
labor productivity (ALP) differential with the reference country, as specified in equation (8). The dependent
variable is ln RERi,t = ln(Pi,t/PU,t), and the explanatory variable is the log difference between tradable and
non-tradable productivity in country i relative to reference country U. All regressions include country fixed
effects, and standard errors are clustered by country (shown in parentheses). Column (1) uses the United
States as the reference over 1970–2021. Column (2) repeats the U.S.-normalized regression for the sample
between 2000 and 2019. Column (3) switches the reference to Germany over 2000–2019, and column (4)
uses the United Kingdom as an alternative reference country over the same period.

The results reveal substantial heterogeneity across reference countries. Several bench-
mark cases yield positive and statistically significant coefficients consistent with the Bal-
assa–Samuelson prediction, including Italy, France, Japan, and Germany (DEU). Never-
theless, the magnitudes vary even among benchmarks with positive estimates. In con-
trast, four reference countries—Romania, Bulgaria, Luxembourg, and Malta—produce
negative and significant estimates. In addition, several benchmarks, including the United
States, yield statistically insignificant estimates.

This dispersion suggests a mechanical problem with the single-reference design rather
than a small amount of sampling noise. Because every observation is measured relative
to U, any shocks or measurement errors specific to the benchmark country are repeated
once for each partner and are never averaged out across countries. In the next subsec-
tion, I formalize this point in a simple data-generating process that mirrors the classical
Balassa–Samuelson model and show that, without time fixed effects, the effective sample
size is only T, not NT, so reference-country-specific shocks remain prominent even in
large panels.

2.4 More Robust Specification with Time Fixed Effects

The previous subsection documented that single-reference regressions such as equa-
tion (8) deliver coefficients that vary sharply with the chosen benchmark. To under-
stand the source of this instability—and how to address it—I place the traditional re-
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Figure 1: Balassa–Samuelson Elasticity by Reference Country, 2000-2019

Notes: This figure reports the estimated coefficients from panel regressions of the log bilateral real exchange
rate against the log relative labor productivity (ALP) differential with each possible reference country, based
on the specification in equation (8). The dependent variable is ln RERi,t = ln(Pi,t/PU,t), and the explana-
tory variable is the log difference between tradable and non-tradable productivity in country i relative to
reference country U. Each horizontal line represents the coefficient and its 95% confidence interval from
a separate regression using a different reference country. All regressions include country fixed effects, use
data for 2000-2019, and cluster standard errors by country. The vertical line at zero corresponds to the null
of no Balassa–Samuelson effect.

gression in a simple statistical environment that is as close as possible to the two-sector
Balassa–Samuelson model in Section 2.1.

A simple data-generating process. Let pi,t ↔ ln Pi,t denote the log CPI in country i
expressed in a common currency. A convenient data-generating process consistent with
equation (5) is

pi,t = ϱ ai,t + αi + gt + ui,t, ai,t ↔ ln
(

Ai,T,t
Ai,NT,t

)
,

where ϱ is the Balassa–Samuelson elasticity, αi captures time-invariant country compo-
nents (including expenditure shares), gt is a period effect common to all countries, and
ui,t is an idiosyncratic disturbance.

The empirical object in equation (8) is the bilateral real exchange rate against a refer-
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ence country U,

ri,t ↔ ln RERi,t = ln
(

Pi,t
PU,t

)
= pi,t ↗ pU,t, i ↘= U.

Subtracting the equation for U from that for i gives

ri,t = ϱ
(
ai,t ↗ aU,t

)
+ (αi ↗ αU) +

(
ui,t ↗ uU,t

)
,

since the common time effect gt differences out. Defining

xi,t ↔ ai,t ↗ aU,t, µi ↔ αi ↗ αU, εi,t ↔ ui,t ↗ uU,t,

the population regression becomes

ri,t = ϱxi,t + µi + εi,t,

which corresponds to equation (8). A crucial implication is that the reference-country
shock uU,t enters εi,t for every i in period t, inducing a common component in the regres-
sion error across the cross-section.

Within (single-reference) fixed-effects estimator. I next analyze the within estimator
underlying the single-reference regressions. For notational convenience, keep U in the
sample and note that rU,t = xU,t = 0 by construction. Estimating equation (8) with
country fixed effects yields the standard within regression

r̃i,t = ϱ x̃i,t + ε̃i,t,

where tildes denote deviations from country means:

x̃i,t = (ai,t ↗ āi)↗ (aU,t ↗ āU), ε̃i,t = (ui,t ↗ ūi)↗ (uU,t ↗ ūU).

The resulting slope estimator can be expressed as

ϱ̂ = ϱ +
Sxε

Sxx
, Sxε ↔ ∑

i,t
x̃i,t ε̃i,t, Sxx ↔ ∑

i,t
x̃ 2

i,t.

To make the role of the reference country explicit, Sxε and Sxx are

Sxε = ∑
i,t
(ai,t ↗ āi)(ui,t ↗ ūi)↗ ∑

i,t
(ai,t ↗ āi)(uU,t ↗ ūU)

11



↗ ∑
i,t
(aU,t ↗ āU)(ui,t ↗ ūi) + N ∑

t
(aU,t ↗ āU)(uU,t ↗ ūU),

Sxx = ∑
i,t
(ai,t ↗ āi)

2 + N ∑
t
(aU,t ↗ āU)

2 + cross terms.

The final term in each expression arises from the reference country and is multiplied by
N: adding countries adds additional copies of the same reference-country time series.

Asymptotic bias under benchmark endogeneity. If strict exogeneity holds for all countries,
including the reference,

E[ui,t | {aj,τ}j,τ] = 0 for all i, t,

then E[Sxε] = 0 and E[ϱ̂] = ϱ. If instead the reference country violates strict exogeneity
so that

E

[

∑
t
(aU,t ↗ āU)(uU,t ↗ ūU)

]
↘= 0,

the N-scaled reference term in Sxε has nonzero expectation. Because the same N scaling
appears in Sxx, plim ϱ̂ shifts to a reference-specific limit that differs from ϱ. This provides
an algebraic characterization of the dispersion across reference countries in Figure 1.

Sampling variation and effective sample size. Even under strict exogeneity for all coun-
tries, the dominant random component in Sxε is driven by the reference terms that are
common across i in each t. Each realization of (aU,t, uU,t) enters the within moments once
for every partner country, so cross-sectional aggregation does not attenuate its contribu-
tion; increasing N mainly replicates the same time-series noise. As N, T ↑ ∞,

ϱ̂ ↗ ϱ =
Op(N

→
T)

Op(NT)
+ op(1) = Op

(
1→
T

)
,

so the effective sample size is governed by T rather than NT. Put differently, without time
fixed effects the single-reference estimator remains sensitive to the particular time-series
path of the reference country even in large panels.

Rate of convergence. Under weak time-series dependence,

→
T (ϱ̂ ↗ ϱ) ≃ N (0, σ2

ref),

so the conventional single-reference estimator converges at the time-series rate
→

T rather
than the panel rate

→
NT, reflecting the cross-sectionally common reference component.

Adding time fixed effects. A simple way to eliminate the reference-common compo-
nent is to include year fixed effects while retaining the single-reference normalization. I

12



estimate the following

ln RERi,t = ϱ ln
(

Ai,T,t/Ai,NT,t
AU,T,t/AU,NT,t

)
+ µi + τt + εi,t, (9)

where the dependent variable and regressor are as in equation (8), and τt denotes a full
set of time fixed effects. In the DGP above, τt partials out any component common across
countries in a given year, including the reference-country shock that otherwise enters all
εi,t, which do not wash out even with N ↑ ∞.

Let z̈i,t denote deviations from both country and time means. The two-way fixed-
effects (double-demeaned) regression is

r̈i,t = ϱ ẍi,t + ε̈i,t.

Because double-demeaning removes period-common variation from both xi,t and εi,t, the
reference-common term no longer contributes to the estimating moment. Under the same
strict exogeneity condition as above, E[ẍi,t ε̈i,t] = 0 and hence

plim ϱ̂ = ϱ.

Moreover, the remaining sampling variation now aggregates over both dimensions. Un-
der weak dependence, →

NT (ϱ̂ ↗ ϱ) ≃ N (0, σ2
TWFE),

so the time fixed-effects specification restores the standard panel rate and removes the
implicit over-weighting of the reference country.

Note that the inclusion of time fixed effects changes the estimand in an important
way. Without time fixed effects, identification comes from the variation in bilateral real
exchange rates and productivity differences for pairs that are mechanically tied to the
chosen reference country: the regression is effectively about how productivity comoves
with the RER in country pairs that include the reference. With time fixed effects, the
benchmark-common shocks are absorbed, and the identifying variation is instead the
cross-country variation among non-reference countries—i.e., the relationship between
productivity and the RER for pairs excluding the reference country.

For example, if we use the US as the reference country, then with time fixed effects,
we are effectively focusing on variation across countries other than the US, while the US
serves only to pin down units. In this sense, the US is just a numeraire.
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Main result. Figure 2 plots the elasticity from equation (9) for each benchmark over
2000–2019. Once time effects are included, the dispersion across reference countries col-
lapses: estimated coefficients are stable in sign and magnitude and no longer hinge on
the numeraire. This is what the econometric argument above would predict. Time fixed
effects remove the benchmark-common shocks that previously dominated the single-
reference estimator and recover a robust, positive Balassa–Samuelson elasticity. For in-
stance, interpreting estimates without time fixed effects—using the US as a reference—as
evidence against the Balassa-Samuelson hypothesis would be a mistake.

Figure 2: Balassa–Samuelson Elasticity by Reference Country, 2000-2019, with time fixed
effects

Notes: Each line reports the coefficient from a separate panel regression of the log bilateral real exchange
rate relative to a given benchmark on the log tradables–nontradables productivity differential relative to
that benchmark, as in equation (9). The dependent variable is ln RERi,t ↗ ln RERU,t. The regressor is
ln(Ai,T,t/Ai,NT,t)↗ ln(AU,T,t/AU,NT,t). The sample is 2000-2019. All regressions include country fixed ef-
fects and time fixed effects. Standard errors are panel-corrected to allow correlation across countries within
a year using the Beck–Katz method with period correlation. Countries are sorted by the point estimate. The
vertical line at zero marks the null of no Balassa–Samuelson effect.

2.5 Robustness for the Main Time-FE Specification

Alternative samples. I test whether the main time-FE result depends on sample com-
position. I first extend the window to 1970–2021 to use all available observations. I then
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restrict the sample to 2000–2019 to align with the euro introduction in 1999 and to avoid
the COVID period from 2020 onward. Next, I focus on advanced economies, where mea-
surement and institutions are more comparable across countries. Finally, I impose a bal-
anced panel from 2000 to 2019 to hold composition fixed over time. Table 2 shows a stable
and positive elasticity across all four choices. Magnitudes vary modestly, but the confi-
dence intervals overlap widely, indicating that the time-FE result is not driven by sample
selection.

Table 2: Single-reference time-FE regressions: alternative samples

(1) (2) (3) (4)
Log Rel. ALP 0.10 0.35 0.31 0.35

(0.04) (0.06) (0.06) (0.06)
Observations 1,307 631 580 560
Sample Countries All All Adv Balanced
Num of Countries 33 33 29 28
Sample Years 1970-2021 2000-2019 2000-2019 2000-2019
Num of Years 52 20 20 20
Country & Year FE ↭ ↭ ↭ ↭

Notes: This table reports panel regressions based on equation (9) with country fixed effects and time
fixed effects. The dependent variable is ln RERi,t ↗ ln RERU,t and the regressor is ln(Ai,T,t/Ai,NT,t) ↗
ln(AU,T,t/AU,NT,t). Column (1) uses the full 1970–2021 sample. Column (2) restricts to 2000–2019. Col-
umn (3) restricts to advanced economies. Column (4) uses a balanced panel for 2000–2019. Standard errors
are panel-corrected to allow correlation across countries within a year using the Beck-Katz method with
period correlation.

Low-frequency variation. I examine whether the result reflects very slow-moving co-
movement. I average the trend components into non-overlapping 5-year, 10-year, and 20-
year intervals.14 I repeat each exercise on the set of countries that are observed in every
year between 2000 and 2019. Table 3 shows that the estimated elasticity remains positive
and of similar magnitude even when attention is restricted to long-horizon movements,
confirming that the finding is neither an artifact of higher-frequency noise nor a pattern
that holds only at annual frequencies.

Further robustness. In Appendix B, I report additional robustness checks. Table A2 first
separates the original Balassa–Samuelson effect—the relationship between the RER and
relative productivity in tradable versus non-tradable sectors—from the Penn effect—the
relationship between the RER and economy-wide productivity measures, such as GDP

14To avoid the COVID year 2020, I use 2019 instead.
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Table 3: Single-reference time-FE regressions: low-frequency variation

(1) (2) (3) (4) (5)
Log Rel. ALP 0.30 0.35 0.36 0.31 0.34

(0.11) (0.13) (0.18) (0.12) (0.17)
Observations 221 119 74 145 87
Num of Countries 29 29 29 29 29
Frequencies 5 Years 10 Years 20 Years 5 Years 10 Years
Sample Periods 1980-2019 1980-2019 1980-2019 2000-2019 2000-2019
Num of Years 9 5 3 5 3
Country & Year FE ↭ ↭ ↭ ↭ ↭

Notes: This table reports panel regressions based on equation (9) with country fixed effects and time fixed
effects. Variables are first HP-filtered to extract trends and then aggregated. Columns report 10-year av-
erages, 20-year averages, and long differences where indicated. Balanced-panel variants repeat the same
constructions, holding country composition fixed. The dependent variable is ln RERi,t ↗ ln RERU,t and the
regressor is ln(Ai,T,t/Ai,NT,t)↗ ln(AU,T,t/AU,NT,t). Standard errors are panel-corrected to allow correlation
across countries within a year using the Beck-Katz method with period correlation.

per worker. Second, Table A3 shows that the results are unchanged when I use an al-
ternative dataset, the GGDC 10-Sector Database. Third, Table A4 shows that the results
qualitatively hold when I use the labor index measure, which adjusts for compositional
changes in the labor force. Finally, Table A5 shows that the results do not depend on
whether I use HP-filtered data or unfiltered data.

3 Model Setup

The empirical results point to a qualitative Balassa–Samuelson (BS) relationship. To
quantify its contribution to cross-country price differences, I build a quantitative Arm-
ington trade model that features trade frictions and sectoral productivity differences.15

3.1 Countries and Sectors

Countries are indexed by i, j = 1, . . . , N. Sectors are indexed by s = 1, . . . , S. In the
quantitative exercises, I focus on S = 2, which I label G (goods) and S (services). All
prices are expressed in U.S. dollars.

15In Appendix D, I show a version with input–output linkages.
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3.2 Preferences

Households in country j have Cobb–Douglas preferences over sectoral composites,

Uj =
S

∏
s=1

(
Cj,s

αj,s

)αj,s

,
S

∑
s=1

αj,s = 1,

where Cj,s is consumption of sector s in country j, and αj,s are (possibly country-specific)
expenditure shares. Let Cj denote aggregate final demand in country j. Optimal allocation
implies

Pj,sCj,s = αj,sPjCj, Pj =
S

∏
s=1

P
αj,s
j,s .

Within each sector s, final demand is a CES composite of varieties produced in differ-
ent countries,

Cj,s =

(
N

∑
i=1

µ1/θ
i,j,s C(θ↗1)/θ

i,j,s

)θ/(θ↗1)

, θ > 1,

where θ is the elasticity of substitution and µi,j,s > 0 are taste (quality) shifters. Non-
tradables are obtained as a limiting case: for s = NT, demand is restricted to the domestic
variety by setting µi,j,NT = 1 if i = j and µi,j,NT = 0 otherwise.

The corresponding sectoral price index is

Pj,s =

(
N

∑
i=1

µi,j,sP 1↗θ
i,j,s

)1/(1↗θ)

,

where Pi,j,s is the delivered price in country j of the good produced in country i in sector
s.

The implied expenditure share of country i in country j’s spending on sector s is

πi,j,s ↔
Pi,j,sCi,j,s

∑N
ω=1 Pω,j,sCω,j,s

=
µi,j,sP 1↗θ

i,j,s

∑N
ω=1 µω,j,sP 1↗θ

ω,j,s
.

3.3 Technology and Pricing

Labor is the only factor of production. Output in country i and sector s is

Yi,s = Ai,sLi,s,
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where Ai,s is labor productivity and Li,s is labor used in that sector. The unit cost is

ci,s =
wi
Ai,s

,

where wi is the wage in country i.

3.4 Trade Costs

Iceberg trade costs τi,j,s ⇐ 1 apply to shipments from country i to country j in sector s.
Delivering one unit in j requires shipping τi,j,s units from i. The delivered price is

Pi,j,s = τi,j,sci,s =
wiτi,j,s

Ai,s
.

Frictionless trade corresponds to τi,j,s ↔ 1. Non-tradables are captured by shutting down
imports in the non-tradable sector, i.e., by setting µi,j,NT = 1 if i = j and µi,j,NT = 0
otherwise.

3.5 Labor and Income

Total labor supply in country i is Li = ∑s Li,s and is taken as exogenous. Labor is
perfectly mobile across sectors within a country, so a single wage wi clears all sectoral
labor markets in country i.

I allow for exogenous trade imbalances. Let ϱ j denote country j’s trade surplus as a
fraction of world income, scaled by

Y ↔
N

∑
ω=1

wωLω.

By construction, the surpluses sum to zero,

N

∑
ω=1

ϱω = 0,

so that world absorption equals world income. Nominal expenditure (absorption) in
country j is

PjCj = wjLj ↗ ϱ jY.

A country with ϱ j > 0 runs a surplus and spends less than its income; a country with
ϱ j < 0 runs a deficit and spends more than its income. When I normalize world income
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to one, Y = 1, this becomes
PjCj = wjLj ↗ ϱ j.

3.6 Equilibrium

An equilibrium is a set {wi, Pj,s, πi,j,s}i,j,s such that goods markets clear, expenditure
shares are consistent with CES demand, and the trade balance is consistent with the ex-
ogenous trade surpluses {ϱi}.

Let

Y ↔
N

∑
ω=1

wωLω

denote aggregate world income. Since ϱi is defined as the trade surplus of country i as a
share of Y, ϱi > 0 means that country i exports more than it absorbs, and ∑i ϱi = 0.

Goods-market clearing for exporter i requires

N

∑
j=1

S

∑
s=1

πi,j,sαj,swjLj = wiLi + ϱiY. (10)

The left-hand side is total revenue that country i earns from selling to all destinations and
sectors. The right-hand side is factor income wiLi plus the exogenous trade surplus ϱiY.
Because the surpluses sum to zero, summing (10) over i yields Y = Y.

Bilateral expenditure shares are given by CES demand and delivered prices:

πi,j,s =
µi,j,s

(wiτi,j,s
Ai,s

)1↗θ

∑N
ω=1 µω,j,s

(wωτω,j,s
Aω,s

)1↗θ
. (11)

Given {πi,j,s} from (11), solving (10) for {wi} delivers sectoral price indices {Pj,s} and,
in turn, the consumer price index,

Pj =
S

∏
s=1

P
αj,s
j,s .

The CPI-based bilateral real exchange rate between countries i and j is

RERi,j =
Pi
Pj

,

which is my target.
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4 Quantitative Importance of the Balassa–Samuelson Force

This section simulates the model in a sequence of experiments that increase in realism
and data content. I first study a traditional 2 ↓ 2 free-trade economy (goods sector as
tradables T and service sector as non-tradables NT; two countries) to isolate the Balassa–
Samuelson mechanism in its simplest form. I then introduce iceberg trade costs in the
same 2 ↓ 2 environment to quantify how costly trade attenuates the transmission from
sectoral productivity to prices and the real exchange rate. Next, I move to the N ↓ 2
model disciplined by data for a large set of countries, and—when presenting results—I
also report an N ↓ 2 specification with input–output linkages. The IO extension is used
for quantitative exercises in the main text, while its structure and solution are detailed in
Appendix D. Finally, I work with the N ↓ S (multi-country, multi-sector) model, where
I do not take a stance on the categorization of the multiple sectors into a two-sector di-
chotomy. In each case, I solve the static equilibrium year by year, recover sectoral price
indices and the CPI, and construct REERi,t.

I keep the baseline structure deliberately minimal—one factor, Cobb–Douglas across
sectors, and Armington within sectors—so that the quantitative contribution of sectoral
productivity {Ai,s,t} and iceberg costs {τi,j,s,t} to real exchange rates is transparent and
directly comparable to the reduced-form evidence. When I employ the IO extension in the
N ↓ 2 environment, I maintain the same calibration strategy; details are in Appendix D.

I calibrate the model to 2000 and conduct counterfactual simulations using exact hat
algebra, with x̂ ↔ x⇒/x. From the data in 2000, I construct share parameters {αj,s} and
{µi,j,s}. I set θ = 5. The shocks are sectoral productivity {Âi,s} and iceberg trade costs
{τ̂i,j,s}. See Appendix C for details.16

4.1 Shock Feeds

Productivity. Sectoral labor productivity {Âi,s,t} is taken from the same sources as in the
empirical section: the EU KLEMS database.17 I compute sectoral Ai,s,t as real value added
divided by labor input, aggregate industries into T (agriculture, mining, manufacturing)
and NT (services), and apply the Hodrick–Prescott filter with ε = 6.25 to the log series to

16Note that this method of hat algebra can be problematic as it requires the model to fit the data in 2000
exactly. See Antrás and Chor (2022) and Dingel and Tintelnot (2025), which clarify this overfitting issue

17To evaluate the model performance in detail, I use sectoral CPI data. The sectoral CPI data are only
available for countries in Europe, the US, and Japan, and thus, I drop other Asian countries from the main
quantitative exercises. Nevertheless, the implication for REER is the same if I include these countries.
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isolate low-frequency movements.18

When the model includes input–output linkages, I use an intermediate-adjusted produc-
tivity that accounts for the role of intermediate inputs in production. Specifically, using
cost shares from KLEMS, I back out effective productivity as

ln AIO
i,s,t = ln Gross Outputi,s,t ↗ γi,s ln Li,s,t ↗ (1 ↗ γi,s) ln Intermediatei,s,t,

where γi,s is the labor cost share. This adjustment ensures that productivity growth re-
flects efficiency gains net of changes in intermediate input prices, consistent with the IO
model’s unit-cost structure. I construct ÂIO

i,s,t as the ratio of the filtered series between t
and 2000.

Trade Costs. Bilateral iceberg trade costs {τ̂i,j,s,t} for tradables are inferred from trade
data using the OECD Inter-Country Input–Output (ICIO) database (2025 Extended Edi-
tion). The ICIO provides bilateral trade flows by sector. I classify agriculture, mining, and
manufacturing as goods sectors, and all remaining sectors as services.

In the model with input–output linkages, I separately calibrate iceberg costs for final
and intermediate goods, denoted τF

i,j,s,t and τX
i,j,s,t, respectively. Both are recovered from bi-

lateral trade flows using the standard gravity-based inversion method. In counterfactual
simulations, I allow both τ̂F

i,j,s,t and τ̂X
i,j,s,t to evolve along their estimated low-frequency

paths, so that trade frictions adjust consistently across final and intermediate markets.
Following Head and Ries (2001), I back out {τi,j,s,t} using

(τijst)
1↗θ =


XijstXjist

XiistXjjst
,

where Xijst is a gross trade flow from i to j in sector s in year t.
As with productivity, I work with the low-frequency component of ln τi,j,T,t obtained

by applying the HP filter with ε = 6.25. I then normalize the level relative to 2000 and
obtain τ̂i,j,s.

Normalization and Timing. I simulate the model year by year over 2000–2019. For
countries with missing data, I log-linearly extrapolate the series to obtain a balanced
panel. All nominal variables are expressed in U.S. dollars; the model determines wages
{wi,t} and price indices {Pi,s,t} up to a common scalar each year. I remove this indeter-

18Categorizing IT sectors into tradable sectors does not change results. Also, in Section E.3, I show the
results based on 23 sector models. The key message is the same.
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minacy by fixing world GDP to one. Country-specific expenditure weights {αi,s} are set
to average expenditure shares in the data. The trade elasticity is set to θ = 5.0, which is
standard.

4.2 Results

Figure 3 summarizes my first counterfactual. I feed only sectoral productivity shocks—
that is, I allow {Ai,s,t} to evolve as in the data, hold trade costs {τi,j,s,t} fixed at their 2000
values, and solve the model year by year. I then compare, for each country, the long dif-
ference in its real effective exchange rate (REER) between 2000 and 2019 in the data with
the corresponding long difference implied by the model. Each panel of Figure 3 reports
this comparison under a different version of the model: a 2↓ 2 free-trade case, a 2↓ 2 case
with iceberg trade costs, an N ↓ 2 costly-trade case that allows for third-country realloca-
tion, and an N ↓ 2 version that also incorporates input–output linkages.19 Points on the
45-degree line would indicate that the model with productivity shocks alone reproduces
the observed REER movement.

The scatter plots in Figure 3 show that productivity shocks alone cannot replicate ob-
served REER changes. Large appreciations and depreciations in the data translate into
much smaller movements in the model, even in the richer N ↓ 2 environments. In many
cases, the sign is already off: some countries that appreciate in the data appear as mild de-
preciations in the model, and vice versa. In other cases, the sign is correct, but the slope is
far too flat—the model’s long-run REER movement is only a fraction of what is observed.

To examine the time dimension behind these long differences, Appendix Figure A1
plots the full REER paths for six large economies—China, Germany, France, Italy, Japan,
and the United States—under the productivity-shock experiment. In each panel, I show
the HP-filtered REER from the data (normalized to one in 2000) and the model-implied
REER paths generated by feeding only {Ai,s,t}. The qualitative failure is clearest in Japan:
the data exhibit a depreciation of more than 0.7 log points between 2000 and 2019, while
the model predicts an appreciation. China moves the wrong way as well: the REER in
the data appreciates sharply, whereas the model delivers a slight depreciation. Some
countries move in the right direction qualitatively—for example, Germany’s observed
appreciation is mirrored by an appreciation in the model—but even there, the amplitude
is far too small. Overall, feeding observed sectoral productivity—the traditional Balassa–
Samuelson channel—rarely gets the sign right and is far too weak quantitatively.

19See Appendix D for model details.
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Figure 3: REER Long-Difference Fit vs. Data, 2000–2019: Productivity Shock Only

(a) 2x2 Free Trade (b) 2x2 Costly Trade

(c) Nx2 Costly Trade (d) Nx2 Costly Trade with IO

Notes: Each dot represents one country. The horizontal axis is the HP-filtered change in log REER between
2000 and 2019 in the data (BIS). The vertical axis is the corresponding change implied by the model when
only sectoral productivity {Ai,s,t} is allowed to move, while iceberg trade costs {τi,j,s,t} are fixed at 2000
levels. Panels differ by model environment. The solid line is the OLS fit; the slope (standard error) and R2

are reported in each panel. The 45-degree line indicates a perfect quantitative match.

4.3 Robustness

Adding Trade-Cost Shocks. Figure A2 repeats the long-difference exercise after adding
trade-cost shocks. Bilateral iceberg trade costs {τi,j,s,t} evolve along their estimated low-
frequency paths. I solve the model year by year, compute sectoral price indices and the
CPI, and compare each country’s change between 2000 and 2019 in the data with the
corresponding model-implied change. I report three environments: 2 ↓ 2 with costly
trade, N ↓ 2 with costly trade, and N ↓ 2 with costly trade plus input–output linkages.

Results are similar to Figure 3. Allowing time variation in {τi,j,s,t} delivers only minor
improvements, and the quantitative fit remains weak. Large appreciations and depreci-
ations in the data translate into muted changes in the model-implied series. The overall
conclusion is unchanged: adding trade-cost reductions does not account for the observed
scale of real effective exchange rate movements.
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Beyond Two-sector Models. Figure A3 repeats the same exercises in an N ↓ S setting.
Here, I use 23 sectors, including 13 goods sectors and 10 service sectors. The motiva-
tion is not only to move beyond a coarse goods–services dichotomy, but also to allow
for heterogeneity within goods and within services. This matters because countries can
differ sharply in which goods (and which services) they specialize in, and a two-sector
aggregation implicitly forces those heterogeneous composition effects to be ignored.

Results are similar to Figure 3. Even with richer sectoral detail, the model continues
to generate too little cross-country variation in RER changes relative to the data.

4.4 Productivity and Sectoral Prices

The previous subsection shows that the Balassa–Samuelson mechanism cannot repli-
cate the magnitude—and, in some cases, even the sign—of international price movements
in the aggregate CPI. Prior work reports that the Balassa–Samuelson relationship is not
evident for aggregate real exchange rates but appears qualitatively in sectoral prices, es-
pecially for services (Engel, 1999; Canzoneri et al., 1999), and in some cases for goods (Lee
and Tang, 2007). I examine whether observed sectoral productivity changes can quantita-
tively match international differences in sectoral producer price indices (PPI), in terms of
sectoral RER.20

Sectoral Price Fits Figure 4 presents the results. Panels (a) and (b) plot simulated changes
in sectoral RERs between 2000 and 2019 against their observed counterparts, where the
simulations feed sectoral productivity shocks into a 2 ↓ 2 free-trade environment. In
panel (a), service-sector RERs generally move in the direction implied by relative sec-
toral productivity and, qualitatively, fit better than the aggregate RER. Nonetheless, the
fit remains limited (R2 = 0.34), and the implied magnitudes are still too small. Panel (b)
reports results for the goods sector. By construction, free trade equalizes tradable-goods
prices across countries, so the model cannot generate the observed cross-country hetero-
geneity in changes in goods prices.

Panels (c) and (d) switch to an N ↓ 2 environment with costly trade. Service-sector
RERs continue to move in the expected direction, and the relationship is somewhat tighter,
but the predicted magnitudes remain quantitatively small. For goods, however, the model
now predicts movements in the opposite direction. This inability to match goods-sector
RER changes carries over to the aggregate RER. In this sense, moving from the textbook

20Ideally, I would like to use sectoral CPI, which can be easily aggregated to RER. However, cross-country
data for sectoral CPI are surprisingly scarce. Thus, I rely on the EU KLEMS data used for productivity to
back out sectoral PPI.
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2 ↓ 2 free-trade setup to the N ↓ 2 costly-trade framework does not improve fit in this
exercise and may even worsen it.

Figure 4: Sectoral RER: Model Fit vs. Data, Long Differences 2000–2019

(a) 2x2 Free Trade: Services (b) 2x2 Free Trade: Goods

(c) Nx2 Costly Trade: Services (d) Nx2 Costly Trade: Goods

Notes: Each dot represents one country. The horizontal axis is the observed change in the sectoral REER
between 2000 and 2019, constructed from sectoral PPIs. The vertical axis shows the corresponding model-
implied change when sectoral productivities {Ai,s,t} evolve along their estimated low-frequency paths.
Country-level sectoral PPIs are converted to effective terms using BIS double weighting, following the
multilateral index construction in Klau and Fung (2006). The solid line is the OLS fit; the slope (standard
error) and R2 are reported in each panel. A 45-degree line would indicate a perfect quantitative match.

Sectoral Productivity and Sectoral Prices Figure 5 focuses on the goods sector to high-
light the sign reversal between the data and the model. Panel (a) plots, for each coun-
try, the change in goods-sector productivity (horizontal axis) against the change in the
goods-sector RER constructed from sectoral PPIs (vertical axis) between 2000 and 2019.
The relationship is positive: the estimated slope is 0.256 (s.e. 0.094) with R2 = 0.203,
indicating that countries with faster productivity growth in the goods sector tend to ex-
perience larger increases in goods-sector relative prices. For instance, China experiences
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an increase in goods-sector productivity of 1.5 log points between 2000 and 2019 and an
increase in the goods-sector price (in RER) of 0.5 points over the same period.

Panel (b) keeps the same productivity changes on the horizontal axis but replaces
the vertical axis with the model-implied change in the goods-sector RER in the N ↓ 2
costly-trade simulation. The relationship flips sign and becomes much tighter: the slope
is ↗0.246 (s.e. 0.019) with R2 = 0.851. In the model, higher goods-sector productivity
growth is associated with larger declines in goods-sector relative prices, in contrast to the
pattern in the data. Chinese goods prices are expected to decline by about 0.5 log points,
instead of increasing by 0.5 points as observed in the data.

Figure 5: Goods Sector Productivity and RER: N ↓ 2 Costly Trade Case

(a) Data (b) Model

Notes: Each dot represents one country. The horizontal axis reports the observed change in goods-sector
productivity between 2000 and 2019. The vertical axis reports the change in the goods-sector real exchange
rate (sectoral REER) over the same period: panel (a) uses the data measure constructed from sectoral PPIs,
while panel (b) uses the model-implied counterpart from the N ↓ 2 costly-trade simulation in which sec-
toral productivities {Ai,s,t} follow their estimated low-frequency paths. Country-level sectoral PPIs are
converted to effective multilateral prices using BIS double-weighting, following Klau and Fung (2006). The
solid line is the OLS fit; the slope (standard error) and R2 are reported in each panel.

4.5 Source of Quantitative Failures: Wages

So far, the main quantitative failures show up as too little variation in model-implied
RER movements, even in the N ↓ 2 environment with time-varying iceberg trade costs, as
shown in Figures 3–A2. A natural suspect is wages. In my setup, a single wage wi,t clears
all sectoral labor markets in country i and enters every delivered price through unit costs.
Because sectoral CES price indices and the Cobb-Douglas CPI are built from unit costs,
wages are the equilibrium objects that ultimately determine relative price levels and the
RER.
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This motivates a diagnostic exercise: taking wages as given. Conceptually, the overall
failure could come from the wage block (the general-equilibrium mapping from {Ai,s,t, τi,j,s,t}
into wi,t) or from the pricing block (the CES/Armington structure translating wages into
sectoral and aggregate prices). By feeding wages directly, I bypass the first margin and
ask whether the model would match RER movements if it were handed the correct wage
path. This experiment should be interpreted with caution, because wages are endoge-
nous, and feeding them directly amounts to injecting the reduced-form effects of omitted
shocks and wedges into the model.

Figure 6 implements this idea. I replace the model-implied wage series with observed
nominal wages (in national currency) and then compute the model-implied change in
sectoral PPI-based RERs and the overall CPI-based RER using the same CES aggregators
and trade structure, with feeding sectoral productivity paths as in the data. The horizon-
tal axis reports the HP-filtered long difference in log RER in the data, and the vertical axis
reports the corresponding long difference implied by the model when wages are taken as
given.

Panels (a) and (b) report the sectoral PPI-based RERs, defined as changes in ci,s con-
verted to effective multilateral indices using BIS double-weighting. For services, the
model lines up closely with the data (slope 0.790 with s.e. 0.087, R2 = 0.738). For goods,
the relationship is still positive but weaker and more attenuated (slope 0.520 with s.e.
0.116, R2 = 0.408).

Panel (c) shows the overall CPI-based RER. The model captures part of the cross-
country variation (slope 0.220 with s.e. 0.114, R2 = 0.113), but the fit is noticeably weaker
than for sectoral RERs, and a few outliers—most visibly Romania and Slovakia—remain.

Taken together, Figure 6 suggests that explaining wages is a key missing ingredient for
a successful quantitative account of long-run sectoral RER dynamics in this framework
and that accounting for overall RER might require additional features. Understanding
why real wages diverge so much across countries—beyond measured sectoral productiv-
ity and iceberg trade costs—is therefore central, and I am actively exploring mechanisms
that can generate the missing wage movements.

4.6 Discussion: Perfect Competition and TFP Measurement.

My baseline maintains perfect competition. A natural concern is that the model’s dif-
ficulty matching long-run RER paths could instead reflect imperfect competition in prod-
uct or factor markets (markups or labor markdowns), suggesting that one might intro-
duce wedges and replace sectoral productivities with “markup-adjusted TFP.” The mea-
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Figure 6: Prices by Feeding Wages, Long Differences 2000–2019

(a) Service PPI-based RER (b) Goods PPI-based RER

(c) Overall CPI-based RER

Notes: Each dot represents one country. The horizontal axis reports the HP-filtered long difference (2000–
2019) in the log RER in the data: panels (a) and (b) use sectoral RERs constructed from sectoral PPIs and
converted to effective multilateral indices using BIS double-weighting (as in Klau and Fung (2006)); panel
(c) uses the BIS real effective exchange rate. The vertical axis reports the corresponding long difference
implied by the N ↓ 2 costly-trade model when the equilibrium wage sequence is replaced by observed
nominal wages in national currencies, holding fixed the rest of the model structure and feeding sectoral
productivity paths as in the data. The solid red line is the OLS fit; the slope (standard error) and R2 are
reported in each panel. The dashed 45-degree line indicates a perfect match.
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surement problem is that EU KLEMS/INTANProd growth accounting constructs capital
compensation using an internal rate of return that exhausts non-labor income, so revenue
shares proxy output elasticities only under perfect competition; with markups or mark-
downs, revenue-based residuals mix technology with wedges and non-CRS forces, and a
markup-consistent A is not identified from KLEMS alone (Bontadini et al., 2023).21 Recent
aggregation methods show how to incorporate market power using firm-level markups
and imputed input shares for the United States (Baqaee and Farhi, 2020), but extend-
ing this approach country-by-country would require comparable firm-level coverage and
harmonized capital-cost imputations that are not available across my panel. Therefore,
I retain perfect competition as my maintained assumption and interpret sectoral A from
KLEMS accordingly.

5 Conclusion

This paper places the Balassa–Samuelson hypothesis on an empirically cleaner foot-
ing and evaluates its quantitative relevance. In the data, adding time fixed effects yields
the expected signs and produces a stable, positive elasticity, overturning the mixed and
sample-dependent results generated by the specification commonly used in the literature.
However, when I translate these elasticities into implied country-level paths, the quanti-
tative impact is small. The shortfall is most striking for Japan: a 0.7-log depreciation in the
data between 2000 and 2019 is essentially invisible to the standard sectoral-productivity
Balassa–Samuelson effect.

A standard multi-country Armington model reinforces this message. Feeding ob-
served productivity growth does not replicate the paths of real exchange rates. Match-
ing both the level and slope of RERs likely requires additional ingredients—for example,
quality shifts within sectors (Fieler, 2011), wedges in labor markets (Devereux et al., 2025),
demand shifts (Bergstrand, 1991), factor intensity (Bhagwati, 1984), sectoral markups, de-
mographics, or more realistic terms-of-trade movements. These remain promising direc-
tions for future research.

21See Takahashi and Takayama (2025a,b) for a detailed discussion of this point.
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A Additional Data Details

A.1 Coverage of the Data

Table A1: Coverage in Empirical Analyses

Country Start year End year Data source

AUT 1970 2021 EU KLEMS
BEL 1970 2021 EU KLEMS
BGR 1995 2021 EU KLEMS
CHN 1981 2017 CIP
CYP 1995 2021 EU KLEMS
CZE 1995 2021 EU KLEMS
DEU 1970 2021 EU KLEMS
DNK 1970 2021 EU KLEMS
ESP 1970 2021 EU KLEMS
EST 1995 2021 EU KLEMS
FIN 1970 2021 EU KLEMS
FRA 1970 2021 EU KLEMS
GBR 1970 2021 EU KLEMS
GRC 1970 2021 EU KLEMS
HRV 1995 2021 EU KLEMS
HUN 1992 2021 EU KLEMS
IND 1981 2009 Asia KLEMS
IRL 1970 2021 EU KLEMS
ITA 1970 2021 EU KLEMS
JPN 1973 2021 EU KLEMS
KOR 1980 2012 Asia KLEMS
LTU 1995 2021 EU KLEMS
LUX 1970 2021 EU KLEMS
LVA 1995 2021 EU KLEMS
MLT 2000 2021 EU KLEMS
NLD 1970 2021 EU KLEMS
POL 1995 2021 EU KLEMS
PRT 1970 2021 EU KLEMS
ROU 1995 2021 EU KLEMS
SVK 1995 2021 EU KLEMS
SVN 1995 2021 EU KLEMS
SWE 1970 2021 EU KLEMS
TWN 1980 2009 Asia KLEMS
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B More Robustness for Empirics

B.1 Penn effect.

I ask whether the single-reference result is absorbed by aggregate productivity. I aug-
ment the regression with the relative GDP per worker from the Penn World Table and
re-estimate on the 2000-2019 period as well as the extended 1970–2021 window. Table A2
shows that the Balassa–Samuelson coefficient remains positive and precisely estimated
after adding the Penn effect control. The Penn coefficient weakens and can change sign
when extending the window back to 1970, whereas the BS term remains stable.

Table A2: Single-reference time-FE regressions with Penn effect control

(1) (2) (3) (4)
Log Rel. ALP 0.34 0.25 0.25

(0.06) (0.07) (0.05)
Log Rel. GDP per Workers 0.27 0.14 -0.33

(0.06) (0.06) (0.11)
Observations 689 689 689 1,307
Sample Countries All All All All
Num of Countries 33 33 33 33
Sample Years 2000-2019 2000-2019 2000-2019 1970-2021
Num of Years 22 22 22 52
Country & Year FE ↭ ↭ ↭ ↭

Notes: This table reports panel regressions based on equation (9) augmented with ln(GDPpwi,t) ↗
ln(GDPpwU,t) from the Penn World Table. All specifications include country fixed effects and time fixed
effects. Columns report estimates for 2000-2019 and for 1970–2021, as indicated in the table body. The
dependent variable is ln RERi,t ↗ ln RERU,t. The BS regressor is ln(Ai,T,t/Ai,NT,t) ↗ ln(AU,T,t/AU,NT,t).
Standard errors are panel-corrected to allow correlation across countries within a year using the Beck–Katz
method with period correlation.

B.2 Different data.

I test portability to a broader setting. I switch to the GGDC 10-Sector Database which
extends coverage to a larger set of economies and a longer period. I estimate the same
time-FE specification with and without the Penn effect control on the full 1960–2013 span
and on the post-2000 subset. Table A3 indicates that the elasticity remains positive across
both samples. The magnitude is smaller in the late period but the sign and significance
persist, showing that the time-FE design is robust to alternative sources and wider cover-
age.
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Table A3: Single-reference time-FE regressions: GGDC 10-sector data

(1) (2) (3) (4)
Log Rel. ALP 0.84 0.43 0.65 0.35

(0.07) (0.07) (0.07) (0.07)
Log Rel. GDP per Workers 1.42 -0.33

(0.13) (0.06)
Observations 2,106 546 2,106 546
Sample Countries All All All All
Num of Countries 39 39 39 39
Sample Years 1960-2013 2000-2013 1960-2013 2000-2013
Num of Years 54 14 54 14
Country & Year FE ↭ ↭ ↭ ↭

Notes: This table reports panel regressions based on equation (9) estimated on the GGDC 10-Sector
Database. All specifications include country fixed effects and time fixed effects. Columns report results for
1960–2013 and for 2000–2013, each without and with the Penn effect control as indicated in the table body.
The dependent variable is ln RERi,t ↗ ln RERU,t. The BS regressor is ln(Ai,T,t/Ai,NT,t)↗ ln(AU,T,t/AU,NT,t).
Standard errors are panel-corrected to allow correlation across countries within a year using the Beck–Katz
method with period correlation.

B.3 Labor composition adjustment.

I ask whether changing the labor input measure affects the time-FE result. I replace
hours with the KLEMS composition-adjusted labor index that tracks changes in worker
composition over time. I re-estimate the same single-reference time-FE specification on
the standard sample set so that the only change is the labor input definition. Table A4
shows that the elasticity remains positive and similar in magnitude across columns. This
indicates that the result is not driven by how labor input is measured.

B.4 No time-series filtering.

I check that the time-FE result is not an artifact of trend extraction. I re-estimate the
specification on unfiltered annual series while keeping the same country and time fixed
effects and the same samples. Table A5 shows that the coefficient remains positive and
close to the baseline magnitudes, though standard errors widen as expected when short-
run noise is present.
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Table A4: Single-reference time-FE regressions: labor composition adjusted

(1) (2) (3) (4)
Log Rel. ALP 0.78 0.74 0.70 1.06

(0.07) (0.07) (0.07) (0.06)
Observations 511 460 420 280
Sample Countries All Adv. Europe Balanced
Num of Countries 33 29 27 14
Sample Years 2000-2019 2000-2019 2000-2019 2000-2019
Num of Years 20 20 20 20
Country & Year FE ↭ ↭ ↭ ↭

Notes: This table reports panel regressions based on equation (9) where labor productivity uses the KLEMS
composition-adjusted labor index in place of hours. All specifications include country fixed effects and
time fixed effects. All columns cover 2000-2019. Column (1) covers all countries. Column (2) restricts to
advanced economies. Column (3) restricts to European countries. Column (4) covers only a balanced panel.
The dependent variable is ln RERi,t ↗ ln RERU,t. The Balassa–Samuelson regressor is ln(Ai,T,t/Ai,NT,t) ↗
ln(AU,T,t/AU,NT,t). Standard errors are panel-corrected to allow correlation across countries within a year
using the Beck–Katz method with period correlation.

Table A5: Single-reference time-FE regressions: unfiltered annual series

(1) (2) (3) (4)
Log Rel. ALP 0.08 0.27 0.26 0.26

(0.04) (0.07) (0.06) (0.06)
Observations 1,307 631 580 580
Sample Countries All All Adv Balanced
Num of Countries 33 33 29 29
Sample Years 1970-2021 2000-2019 2000-2019 2000-2019
Num of Years 52 20 20 20
Country & Year FE ↭ ↭ ↭ ↭

Notes: This table reports panel regressions based on equation (9) estimated on unfiltered annual data. All
specifications include country fixed effects and time fixed effects. Column (1) covers 1970–2021. Col-
umn (2) restricts to 2000-2019. Column (3) restricts to advanced economies. Column (4) is a balanced
panel for 2000-2019. The dependent variable is ln RERi,t ↗ ln RERU,t. The Balassa–Samuelson regressor
is ln(Ai,T,t/Ai,NT,t) ↗ ln(AU,T,t/AU,NT,t). Standard errors are panel-corrected to allow correlation across
countries within a year using the Beck–Katz method with period correlation.
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C Hat Algebra

Hats denote proportional changes relative to the baseline, e.g. x̂ = x⇒/x.
I allow shocks to productivity, trade costs, and labor supply, so the objects Âi,s, τ̂i,j,s,

and L̂i can all differ from one. Baseline world income is normalized to one,

N

∑
ω=1

wωLω = 1,

and I keep each country’s trade surplus ϱi fixed across counterfactuals, with

N

∑
ω=1

ϱω = 0,

where ϱi > 0 means that country i runs a trade surplus in the baseline.

Trade balance and labor-market clearing. With a labor-supply shock, post-shock in-
come of country i is ŵi L̂iwiLi. Exporter-side market clearing is therefore

ŵi L̂iwiLi + ϱi =
N

∑
j=1

S

∑
s=1

π̂i,j,s πi,j,s αj,s ŵj L̂jwjLj, i = 1, . . . , N. (12)

The left-hand side is factor income of i after the wage and labor shocks, plus its fixed
trade surplus. The right-hand side is the revenue it earns from all destinations and sectors,
using baseline expenditure shares and their hats. Summing (12) over i and using ∑i ϱi = 0
implies

N

∑
i=1

ŵi L̂iwiLi = 1.

Thus, post-shock world income remains normalized to one.

Unit costs.
ĉi,s =

ŵi

Âi,s
.

Delivered prices.

P̂i,j,s =
ŵi τ̂i,j,s

Âi,s
.
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Sectoral price index.

(P̂j,s)
1↗θ =

N

∑
i=1

πi,j,s (P̂i,j,s)
1↗θ.

Bilateral expenditure shares.

π̂i,j,s =

(
P̂i,j,s

P̂j,s

)1↗θ

=

(
ŵi τ̂i,j,s

Âi,s P̂j,s

)1↗θ

.

Aggregate CPI.

P̂j =
S

∏
s=1

(P̂j,s)
αj,s .
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D Model with Input-Output Linkages

This appendix extends the baseline Armington model with Cobb-Douglas aggregation
across sectors and CES aggregation within sectors to allow for intermediate-input use.
The structure, notation, and timing follow the main text.

D.1 Countries and Sectors

There are N countries indexed by i, j = 1, . . . , N and S sectors indexed by s, r =

1, . . . , S. A good produced in sector s of country i can be (i) absorbed as final demand
in any country or (ii) used as an intermediate input by any sector in any country.

D.2 Preferences

Households in country j have Cobb-Douglas preferences over sectoral CES compos-
ites,

Uj =
S

∏
s=1

(
Cj,s

αj,s

)αj,s

,
S

∑
s=1

αj,s = 1,

where Cj,s is final consumption of sector s in country j and αj,s are expenditure shares. Let
Pj,s be the final-use price index for sector s in j and let Pj be the CPI. Optimal allocation
implies

Pj,sCj,s = αj,sPjCj, Pj =
S

∏
s=1

P
αj,s
j,s .

World income is

Y ↔
N

∑
ω=1

wωLω.

Trade imbalances are exogenous. Let ϱ j denote country j’s trade surplus as a fraction of
world income, with

N

∑
j=1

ϱ j = 0.

Final absorption in j is
PjCj = wjLj ↗ ϱ jY,

so ϱ j > 0 means that country j spends less than its income.
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D.3 Technology and Costs

Production uses labor and sectoral intermediate-input composites. For country i, sec-
tor s, the unit cost is

ci,s =

υi,s wγi,s
i

S

∏
r=1

(
PX

i,r,s
)ηi,r,s(1↗γi,s)

Ai,s
,

where:

• Ai,s is productivity,

• γi,s ⇑ (0, 1] is the labor cost share,

• ηi,r,s ⇐ 0 is the cost share of input r in sector s of country i, with ∑S
r=1 ηi,r,s = 1,

• PX
i,r,s is the price index of intermediate inputs from sector r used in sector s of country

i,

• υi,s is a cost shifter that is fixed across counterfactuals.

Thus, a fraction γi,s of costs is labor and a fraction (1 ↗ γi,s) is intermediates, allocated
across input sectors according to ηi,r,s.

D.4 Trade Costs

Goods used for final demand face iceberg trade costs τF
i,j,s ⇐ 1,

PF
i,j,s = ci,sτ

F
i,j,s =

υi,s wγi,s
i ∏r(PX

i,r,s)
ηi,r,s(1↗γi,s)

Ai,s
τF

i,j,s.

Goods used for intermediate demand face (possibly different) iceberg trade costs τX
i,j,s,r ⇐ 1,

PX
i,j,s,r = ci,sτ

X
i,j,s,r.

D.5 Final and Intermediate CES Aggregators

Within each sector s, final demand in country j is a CES composite of varieties pro-
duced in different countries,

Cj,s =

(
N

∑
i=1

µ1/θ
i,j,s C(θ↗1)/θ

i,j,s

)θ/(θ↗1)

, θ > 1,
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with taste shifters µi,j,s > 0. This implies the sectoral price index

Pj,s =

(
N

∑
i=1

µi,j,s
(

PF
i,j,s

)1↗θ

)1/(1↗θ)

.

The corresponding final-expenditure share is

πF
i,j,s ↔

PF
i,j,sCi,j,s

∑N
ω=1 PF

ω,j,sCω,j,s
=

µi,j,s
(

PF
i,j,s

)1↗θ

∑N
ω=1 µω,j,s

(
PF
ω,j,s

)1↗θ
.

For intermediate use, I allow for a distinct set of taste weights µX
i,j,s,r. The intermediate-

input price index for inputs from sector s used by sector r in country j is

PX
j,s,r =

(
N

∑
i=1

µX
i,j,s,r

(
PX

i,j,s,r
)1↗θ

)1/(1↗θ)

,

and the corresponding intermediate-expenditure share is

πX
i,j,s,r =

µX
i,j,s,r

(
PX

i,j,s,r
)1↗θ

∑N
ω=1 µX

ω,j,s,r
(

PX
ω,j,s,r

)1↗θ
.

D.6 Gross Output

Let Yi,s denote gross output (revenue) of country i, sector s. Demand for Yi,s has two
components.

Final demand. Country j spends αj,s(wjLj ↗ ϱ jY) on sector s; exporter (i, s) gets the
share πF

i,j,s. Final-demand revenue of (i, s) is

N

∑
j=1

πF
i,j,s αj,s (wjLj ↗ ϱ jY).

Intermediate demand. Country j, user sector r, spends a fraction (1 ↗ γj,r) of its gross
output Yj,r on intermediates; of that, the share ηj,s,r is spent on inputs from sector s; and
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of that, exporter (i, s) receives the share πX
i,j,s,r. Intermediate-demand revenue of (i, s) is

N

∑
j=1

S

∑
r=1

πX
i,j,s,r (1 ↗ γj,r) ηj,s,r Yj,r.

Combining the two parts, gross output in country i and sector s satisfies

Yi,s =
N

∑
j=1

πF
i,j,s αj,s (wjLj ↗ ϱ jY) +

N

∑
j=1

S

∑
r=1

πX
i,j,s,r (1 ↗ γj,r) ηj,s,r Yj,r. (13)

D.7 Labor Market Clearing

Labor income in country i is the labor-cost share across its sectors,

wiLi =
S

∑
s=1

γi,sYi,s. (14)

Summing (13) over i and s, and using

N

∑
i=1

πF
i,j,s = 1,

N

∑
i=1

πX
i,j,s,r = 1,

S

∑
s=1

αj,s = 1,
S

∑
s=1

ηj,s,r = 1,
N

∑
j=1

ϱ j = 0,

I obtain

N

∑
i=1

S

∑
s=1

Yi,s =
N

∑
j=1

S

∑
s=1

αj,s(wjLj ↗ ϱ jY) +
N

∑
j=1

S

∑
r=1

(1 ↗ γj,r)Yj,r

=
N

∑
j=1

(wjLj ↗ ϱ jY) +
N

∑
j=1

S

∑
r=1

(1 ↗ γj,r)Yj,r

=
N

∑
j=1

wjLj +
N

∑
j=1

S

∑
r=1

(1 ↗ γj,r)Yj,r.

The first term is world value added; the second term is total intermediate use.

D.8 Hat Algebra with Input–Output Linkages

Hats denote proportional changes relative to the baseline, e.g. x̂ = x⇒/x. I allow
shocks to productivity, trade costs, and labor supply, so the objects Âi,s, τ̂ F

i,j,s, τ̂ X
i,j,r,s, and L̂i

can all differ from one. I keep {ϱi} fixed across counterfactuals, with ∑N
i=1 ϱi = 0, and I

keep the taste shifters and cost shifters fixed across counterfactuals.
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Throughout, s indexes the producing (and final-demand) sector. For intermediate in-
puts, r indexes the origin (input) sector and s indexes the destination (user) sector, so ηj,r,s

is the share of intermediate spending by sector s in country j allocated to inputs from
sector r.

World income and final absorption. Baseline value added in country j is wjLj. Coun-
terfactual world income is

Y⇒ ↔
N

∑
ω=1

w⇒
ωL⇒

ω =
N

∑
ω=1

ŵω L̂ω wωLω.

Final absorption (nominal final expenditure) in country j is

P⇒
j C

⇒
j = w⇒

jL
⇒
j ↗ ϱ jY⇒ = ŵj L̂j wjLj ↗ ϱ jY⇒.

Unit costs.

ĉi,s = ŵγi,s
i

S

∏
r=1

(
P̂X

i,r,s
)(1↗γi,s)ηi,r,s Â↗1

i,s .

Delivered prices.
P̂F

i,j,s = ĉi,s τ̂ F
i,j,s, P̂X

i,j,r,s = ĉi,r τ̂ X
i,j,r,s.

Intermediate-input price indices. For inputs from sector r used by sector s in country j,

(
P̂X

j,r,s
)1↗θ

=
N

∑
i=1

πX
i,j,r,s

(
ĉi,r τ̂ X

i,j,r,s
)1↗θ.

Final-use sectoral price indices.

(
P̂F

j,s
)1↗θ

=
N

∑
i=1

πF
i,j,s

(
ĉi,s τ̂ F

i,j,s
)1↗θ.

Bilateral expenditure share changes. Final shares:

π̂F
i,j,s =

(
ĉi,s τ̂ F

i,j,s

P̂F
j,s

)1↗θ

, πF⇒
i,j,s = πF

i,j,sπ̂
F
i,j,s.
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Intermediate shares:

π̂X
i,j,r,s =

(
ĉi,r τ̂ X

i,j,r,s

P̂X
j,r,s

)1↗θ

, πX⇒
i,j,r,s = πX

i,j,r,sπ̂
X
i,j,r,s.

Gross output. Let Y⇒
i,s denote counterfactual gross output (revenue) of country i, sector

s. Market clearing implies

Y⇒
i,s =

N

∑
j=1

πF⇒
i,j,s αj,s

(
ŵj L̂j wjLj ↗ ϱ jY⇒)+

N

∑
j=1

S

∑
u=1

πX⇒
i,j,s,u (1 ↗ γj,u) ηj,s,u Y⇒

j,u. (15)

Equivalently, stacking Y⇒
i,s into a vector y⇒ over all (i, s), (15) can be written as

y⇒ = f (ŵ, L̂) + T(ŵ, L̂) y⇒, y⇒ =
(

I ↗ T(ŵ, L̂)
)↗1 f (ŵ, L̂),

where f collects final-demand terms and T collects intermediate-demand coefficients.

Labor market clearing and wages. Labor market clearing implies

w⇒
i L

⇒
i =

S

∑
s=1

γi,sY⇒
i,s.

Using w⇒
i L

⇒
i = ŵi L̂i wiLi, the implied wage change is

ŵi =
∑S

s=1 γi,sY⇒
i,s

L̂i wiLi
.

Aggregate CPI.

P̂j =
S

∏
s=1

(
P̂F

j,s
)αj,s .
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E Further Quantitative Results

E.1 By Country

Figure A1 shows the results of REER by country over time.

Figure A1: REER Fits by country: Productivity Shock

(a) China (b) Germany

(c) France (d) Italy

(e) Japan (f) U.S.

Notes: This figure compares the observed and model-generated REER paths across countries.
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E.2 Adding Trade Cost Shocks

Here, I explore how trade cost shocks can help explain the RER changes.22 I calibrate

the time-varying trade costs, following Head and Ries (2001) as
(
τijst

)↗θ
=


XijstXjist
XiistXjjst

,

where τijst is the iceberg trade cost in sector s from country i to j in year t, θ is the trade
elasticity, and Xω,ω⇒,s,t is the gross trade flow of sector s from country ω to ω⇒ in year t.

Figure A2 shows the results with time-varying trade costs. None of the panels shows
the improvement in the models’ prediction of changes in RERs.

Figure A2: REER Long-Difference Fit vs. Data, 2000–2019; Adding Trade-Cost Shocks

(a) 2 ↓ 2 Costly Trade

(b) N ↓ 2 Costly Trade (c) N ↓ 2 Costly Trade with IO Linkages

Notes: Each dot represents one country. The horizontal axis shows the HP-filtered change in log real ef-
fective exchange rate (REER) between 2000 and 2019 from the BIS data. The vertical axis shows the corre-
sponding model-implied change when both bilateral iceberg trade costs {τi,j,s,t} and sectoral productivities
{Ai,s,t} evolve along their estimated low-frequency paths. Panels differ by model environment: (a) 2 ↓ 2
with costly trade, (b) N ↓ 2 with costly trade, and (c) N ↓ 2 with costly trade and input–output linkages.
A 45-degree line would indicate a perfect quantitative fit.

22Relatedly, in the short-run context, Fitzgerald (2008) shows that trade costs help explain the weak con-
nection between inflation rates and exchange rates.
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E.3 S (=23) sector models

Figure A3 shows the results under N ↓ S models. Here, I use 23 sectors, including
13 goods sectors and 10 service sectors. Panel (a) shows the results without input-output
linkages, and Panel (b) shows those with input-output linkages. Both panels show that
having more detailed sectors in the models does not improve the models’ performances
to explain REER.

Figure A3: REER Long-Difference Fit vs. Data, 2000–2019; NxS models

(a) N ↓ S Costly Trade (b) N ↓ S Costly Trade with IO Linkages

Notes: Each dot represents one country. The horizontal axis shows the HP-filtered change in log real effec-
tive exchange rate (REER) between 2000 and 2019 from the BIS data. The vertical axis shows the correspond-
ing model-implied change when sectoral productivities {Ai,s,t} evolve along their estimated low-frequency
paths. Panels differ by model environment: (a) N ↓ S with costly trade, (b) N ↓ S with costly trade and
input–output linkages. A 45-degree line would indicate a perfect quantitative fit.
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