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Abstract

This study proposes an artificial intelligence framework to detect price surges in crypto
assets by leveraging network features extracted from transaction data. Motivated by the
challenges in Anti-Money Laundering, Countering the Financing of Terrorism, and
Counter-Proliferation Financing, we focus on structural features within crypto asset
networks that may precede extreme market events. Building on theories from complex
network analysis and rate-induced tipping, we characterize early warning signals.
Granger causality is applied for feature selection, identifying network dynamics that
causally precede price movements. To quantify surge likelihood, we employ a Boltzmann
machine as a generative model to derive nonlinear indicators that are sensitive to critical
shifts in transactional topology. Furthermore, we develop a method to trace back and
identify individual nodes that contribute significantly to price surges. The findings have
practical implications for investors, risk management officers, regulatory supervision by
financial authorities, and the evaluation of systemic risk. This framework presents a
novel approach to integrating explainable Al, financial network theory, and regulatory
objectives in crypto asset markets.

Keywords: crypto asset, transaction network, anomaly detection, graph theory, topological data analysis
JEL classification: C55, D54, G14

The RIETI Discussion Paper Series aims at widely disseminating research results in the form of
professional papers, with the goal of stimulating lively discussion. The views expressed in the
papers are solely those of the author(s), and neither represent those of the organization(s) to

which the author(s) belong(s) nor the Research Institute of Economy, Trade and Industry.

Correspondence: Yuichi Ikeda, email: ikeda.yuichi.2w@kyoto-u.ac.jp

*This study is conducted as a part of the Project “Dynamics of Price in Crypto Assets and Real Economy and Their
Underlying Complex Networks" undertaken at the Research Institute of Economy, Trade and Industry (RIETI).
The draft of this paper was presented at the RIETI DP seminar for the paper. I (Y.I.) would like to thank
participants of the RIETI DP Seminar for their helpful comments.

1



I. Introduction

Crypto assets are challenging to measure in terms of theoretical value, unlike stocks, bonds,
and tokenized assets. In the case of stocks, there are calculation methods such as the dis-
count cash flow method, liquidation value, and cost/transaction comparison, which calculate
shareholder value by subtracting liabilities from corporate value. On the other hand, there
is no theoretical price for crypto assets. Due to these characteristics of crypto assets, price
fluctuations at both the peak and the trough are significantly larger than those of other
financial and non-financial assets, making it challenging to explain price fluctuations using
information other than the supply-demand balance (or expectations regarding future price
fluctuations that underlie that balance).

Given these characteristics, is it possible to predict price fluctuations by leveraging the
directly observable ledger information inherent in public distributed ledger technology, us-
ing transaction information (such as payments, sales, or exchanges with other assets, like
deposits)? In the field of market microstructure within finance theory, research has been
conducted to analyze the impact of order flows on price fluctuations and to develop trading
methods that minimize market impact. By leveraging access to all transaction information,
it may be possible to identify patterns in transactions during price surges or crashes, thereby
gaining insight into crowd psychology or early signs of market overheating or impending
crashes.

It has also been noted that crypto asset transactions are a hub for criminal activities,
including money laundering and price manipulation, which aim to generate profits through
unfair trading practices. The signs of such criminal activity have been identified, which
can manifest as sudden increases in transaction volume and sharp price fluctuations. Acts
that hinder normal trading undermine the credibility of crypto assets and could have a pro-
found impact on the overall health of the market. Internationally, the Financial Action Task
Force (FATF) published guidance in 2015 (Financial Action Task Force, 2015) and, in 2019,
expanded the scope of anti-money laundering and counter-terrorist financing (AML/CFT)
regulations to include crypto asset exchanges (Financial Action Task Force, 2019). Fur-
thermore, in recent years, crypto assets have increasingly been held by specialized financial
institutions. They are being incorporated into Exchange-Traded Funds (ETFs), thereby in-
creasing the risk that turmoil in the crypto asset market could spread to the entire existing
financial system. For this reason, the Financial Stability Board (FSB) issued recommenda-
tions on the regulation of crypto assets in July 2023, and an international monitoring system
is currently being developed (Financial Stability Board, 2023).

Regulatory authorities in various countries are also monitoring anomalous transactions
in the crypto asset trading market and requesting financial institutions and crypto asset
exchange operators to take measures. For example, in Japan, financial institutions and
crypto asset exchanges are required to conduct customer due diligence, including Know
Your Customer (KYC) checks, maintain accurate records, and report suspicious transactions
in accordance with the Act on the Prevention of Transfer of Criminal Proceeds (APTCP).
However, in recent years, crypto asset transactions have spread rapidly, and trading methods
have become increasingly diversified and automated, making it difficult to detect, identify,
and report all anomalous transactions by human means alone. Against this backdrop, the
automatic detection of criminal acts and other anomalous events in crypto asset transactions
is of great social significance. As a preliminary step, research using mathematical methods
to detect signs of sudden price surges in crypto assets, which may be closely related to
anomalous events in crypto asset transactions, is of great significance.



Based on the two research motivations described above, we have been conducting a
study to establish a mathematical foundation: graph theory, topological geometry, and high-
dimensional statistical analysis for detecting anomalous transactions that cause significant
price fluctuations in the crypto asset market. The results of this study were published last
year in a RIETI Discussion Paper (Ikeda et al., 2024a). This study aimed to represent the
changing relationships between crypto asset transactions over time as a variable network
(dynamic graph) and to verify the fundamental technology (elemental technology) for de-
tecting anomalies based on mathematical analysis of network data. Because it is difficult
to define what constitutes an anomaly, this study broadly defined “transactions that cause
significant price fluctuations” as anomalous transactions.

This study examines direct trading data for the crypto asset XRP, covering the analysis
period from 2 October 2017 to 26 September 2021. This period encompasses two notable
surges in the XRP price. This paper constructs the Step 2 anomaly detection AI described
in RIETT Discussion Paper (Ikeda et al., 2024a) and verifies its effectiveness. First, various
graph features are calculated for the weekly network during the analysis period. Among
these graph features, those whose temporal changes cause price variations are selected. Sub-
sequently, the selected features are input into an anomaly detection Al based on a Boltzmann
machine to determine the occurrence of anomalous events. The validity of the anomaly detec-
tion AI will be verified by its ability to issue accurate warnings for price surges. Furthermore,
for weeks deemed abnormal, we identify traders who contribute significantly to price fluctua-
tions based on the results of several feature calculations and determine their attributes. This
attempts to capture the characteristics of the trading network during periods of price surge.
This research adopts an approach distinct from conventional anomaly detection methods.
Traditional anomaly detection techniques focus on examining upstream and downstream
transactions centered around nodes suspected of criminal activity. In contrast, this study
first identifies the overall characteristics of transactions that trigger price changes, then em-
ploys a top-down approach to pinpoint specific nodes or criminal schemes from this broader
perspective.

The content of this paper is outlined as follows. Section II provides an overview of
AML practices. Section III explains the theory behind anomaly detection AI, while Section
IV describes the selection of features that cause price changes. Furthermore, Section V
explains the validation of the anomaly detection Al and the identification of attributes of
traders making significant contributions to price fluctuations. Finally, Section VI presents
the implications of the research, and Section VII provides a summary of the findings.

II. AML/CFT/CPF: Practice

Crypto assets (virtual assets/virtual currencies) have characteristics such as pseudo-anonymity
and rapid cross-border transactions, which can be advantageous for concealing the origins
of funds and evading traceability. This makes them potential tools for illicit activities like
money laundering, terrorist financing, and proliferation financing of weapons of mass de-
struction. Particularly in recent years, as measures in traditional financial institutions, such
as deposit-taking institutions, have strengthened, criminals are increasingly misusing crypto
assets as an alternative. For example, there are confirmed cases where crypto assets are used
to launder illicit proceeds from crimes such as drug trafficking, arms smuggling, fraud, and
tax evasion, or by terrorist organizations to raise or transfer operational funds. Furthermore,
concerns have been raised about the use of crypto assets for fund transfers related to the
proliferation of Weapons of Mass Destruction (WMD). In the realm of cybercrime, crypto



assets are also being exploited for ransomware payments, phishing scams, and investment
fraud.

Consequently, the Financial Action Task Force (FATF), an international organization,
revised Recommendation 15 in 2019, clearly stating that Virtual Asset Service Providers
(VASPs) are subject to AML/CFT regulations, which are similar to those applicable to
financial institutions. These regulations encompass Customer Due Diligence (CDD)/Know
Your Customer (KYC), transaction monitoring, Suspicious Transaction Reports (STRs),
and record-keeping requirements. In Japan, crypto asset exchange service providers are also
subject to the Act on the Prevention of Transfer of Criminal Proceeds, requiring them to
implement strict AML/CFT measures similar to those of financial institutions.

A.  Challenges of AML/CFT/CPF in Crypto Assets

AML/CFT/CPF in crypto assets faces numerous challenges due to their inherent character-
istics, presenting several limitations compared to traditional financial system AML measures.

a. Anonymity and Privacy-Enhancing Technologies While many crypto asset trans-
actions have public transaction histories, they are conducted using addresses not directly
linked to real names, making it difficult to trace the flow of funds (address anonymity).
Furthermore, services like mixing services/tumblers obscure the origin and flow of funds
by commingling multiple crypto asset transactions, hindering traceability. Additionally,
privacy-enhancing crypto assets (privacy coins) such as Monero (XMR) and Zcash (ZEC)
have features that conceal transaction senders, recipients, and amounts, making fund tracing
extremely difficult.

b. Decentralized Networks and Lack of a Single Monitoring Authority Many crypto
assets operate on decentralized networks, lacking a central managing authority. This makes
it challenging for a single institution to monitor transactions or apply regulations, unlike
traditional financial systems. Regulators face the difficulty of clearly defining who is re-
sponsible for AML/CFT/CPF oversight and enforcement. For criminals, this can become a
means to transfer illicit funds across borders and evade tracing easily. Moreover, sanctioned
countries or organizations may bypass traditional financial systems and use crypto assets
for fundraising and transactions. While transactions via crypto asset exchange businesses
can be monitored due to the presence of a central administrator, many transactions using
DEX (Decentralized Exchanges) and DeFi (Decentralized Finance) platforms lack a central
administrator or have lenient KYC obligations, facilitating anonymous transactions. DeFi
protocols have a borderless nature, being usable across different jurisdictions, which makes
it challenging to monitor and regulate transactions that span multiple legal territories.

c. Increase in P2P Transactions Crypto assets managed in non-custodial (unhosted)
wallets, where individuals hold their own private keys, can be transacted directly between
users (P2P: Peer-to-Peer) without going through a crypto asset exchange service provider.
Such P2P transactions are not under the control of exchanges, making it difficult to monitor
transactions or impose suspicious transaction reporting obligations. This allows them to
evade the regulatory net, exposing the limits of AML measures. Moreover, anyone can easily
create a non-custodial wallet and conduct transactions globally, making it difficult for legal
regulations to be applied effectively.



d. Limitations of Tracing Technology and Emergence of New Technologies Trans-
actions on DeFi platforms are executed automatically by smart contracts; however, it can
be technically challenging to analyze their complex logic and identify illicit transactions.
While blockchain analysis tools are evolving, they have limitations in countering anonymiza-
tion technologies and complex transaction schemes. Furthermore, crypto asset technology is
rapidly advancing, and new technologies can sometimes make AML measures more challeng-
ing. For instance, techniques such as chain hopping (moving crypto assets between different
blockchains) and peel chains (transferring crypto assets incrementally to new addresses via
multiple intermediate addresses) further complicate fund flows and hinder tracing efforts.

e. International Regulatory Inconsistency Due to varying regulations across countries
and regions, AML measures may lack consistency when crypto asset transactions occur across
borders. Moreover, effective AML measures require international cooperation, and significant
challenges exist in sharing information and collaborating on law enforcement. This creates
a risk for criminals to move funds by exploiting jurisdictions with lax regulations.

f. Scalability and Cost Processing a large volume of transactions: The volume of crypto
asset transactions is enormous, posing scalability and cost challenges for monitoring and
analyzing every transaction in detail. Additionally, excessive monitoring can increase the
risk of false positives, unfairly flagging legitimate transactions as suspicious, and thereby
degrading the user experience.

g. Human Factors Crypto asset technology and markets are evolving rapidly, requiring
time and specialized expertise for regulatory authorities to understand the latest develop-
ments and implement appropriate measures fully. Furthermore, crypto asset-related crimes
are often complex, requiring specialized skills and time for investigation and prosecution,
which can lead to delays in law enforcement.

B. Key AML Measures for Crypto Assets

The Financial Action Task Force (FATF) demands the development of globally binding
standards and effective action to prevent the misuse of Virtual Assets (VAs) and Virtual
Asset Service Providers (VASPs) for money laundering and terrorist financing. Crypto asset
exchange service providers and related businesses primarily implement AML by combining
the following methods.

a. Customer Due Diligence (CDD) and Know Your Customer (KYC) Crypto asset
exchange businesses are required to verify the submission of official identity documents (e.g.,
driver’s licenses, passports, My Number Cards) when customers open accounts or conduct
transactions exceeding a certain amount (CDD). For corporate customers, identifying the
beneficial owner (i.e., individuals holding a majority of voting rights) is also required. Screen-
ing is conducted to verify if customers are on anti-social forces or terrorist lists (such as UN
Security Council sanctions lists) and to identify risks associated with media information,
taking measures to prevent transactions with sanctioned individuals. After account opening,
customer attributes and transaction histories are periodically reviewed (ongoing customer
due diligence). Enhanced Due Diligence (EDD) is conducted for high-risk customers, in-
volving more detailed information gathering and transaction monitoring. This may include



collecting government-issued identification, proof of address, and, in some cases, biometric
data.

Furthermore, businesses are required to retain customer identification records and trans-
action records for a specified period, allowing for post-factum investigations and analysis.

b. Transaction Monitoring Monitoring and analyzing transactions are essential for de-
tecting money laundering and other illicit activities. Transactions that deviate from a cus-
tomer’s usual pattern (e.g., transactions from high-risk jurisdictions, frequent high-value de-
posits/withdrawals in short periods, small and frequent transactions below reporting thresh-
olds, i.e., dusting attacks, complex transfers via multiple wallets, transactions involving
addresses linked to criminal activity) are identified as anomalous transactions and automat-
ically detected by the system. Leveraging blockchain analysis tools and AI/ML (Artificial
Intelligence/Machine Learning) enables learning from past illicit cases and suspicious pat-
terns, allowing for more precise identification of transaction patterns, sizes, frequencies,
unusual transactions, transactions inconsistent with customer profiles, and information on
sources of funds or wealth.

While blockchain transaction histories are public, tracing them requires specialized knowl-
edge and tools. Professional on-chain analysis tools, such as Chainalysis and TRM Labs, are
employed to analyze connections with addresses linked to criminal organizations, dark web
activities, or sanctioned countries, thereby identifying funding pathways.

c. Suspicious Transaction Report (STR) Businesses, such as exchanges, are obligated
to promptly submit an STR to the relevant authorities (e.g., the National Police Agency
or Financial Services Agency in Japan) if they detect any anomalies through transaction
monitoring or other means and suspect money laundering or terrorist financing.

d. Compliance with the Travel Rule The Travel Rule mandates that VASPs, when con-
ducting virtual asset transfers exceeding a certain threshold (FATF recommends a threshold
equivalent to EUR/USD 1,000 for information transmission obligations), collect and share
information about the originator and beneficiary (e.g., originator’s name, account number,
address, and beneficiary’s name and account number) among VASPs. Implementing the
Travel Rule requires the adoption of technical solutions for securely exchanging originator
and beneficiary information (e.g., SYGNA BRIDGE, TRISA). However, the lack of inter-
operability between these solutions and the promotion of standardized protocols remain
challenges.

It is essential to note that the Travel Rule applies to transactions conducted via VASPs.
Therefore, applying it to direct peer-to-peer (P2P) transactions between individuals (e.g.,
transfers between non-custodial wallets), Decentralized Finance (DeFi), and cross-chain
transactions remains a significant challenge.

e. Risk-Based Approach (RBA) Instead of uniform measures, an approach is also taken
where the depth of KYC and the strictness of transaction monitoring are adjusted based
on the customer’s risk level (e.g., politically exposed persons, individuals from high-risk
countries, transaction size).

For high-risk customers or transactions, more detailed identity verification (IDV) and
stricter ongoing monitoring may be implemented. This includes collecting government-issued
IDs, proof of address, and potentially biometric data.



Furthermore, an approach called KYT (Know Your Transaction) is adopted, which as-
sesses the risk of the transaction itself, not just the parties involved, to detect illicit transac-
tions. Transaction risk scoring is used to automatically assess the risk level of each transac-
tion, with a focus on monitoring high-risk transactions and conducting detailed verification
of the source of funds and the intended purpose of the transfer.

Businesses must analyze their services, customer attributes, and transaction character-
istics to identify and assess risks associated with money laundering, terrorist financing, and
proliferation financing, and then implement appropriate measures commensurate with those
risks.

f. Establishment of internal systems VASPs are required to establish robust internal
management systems, including setting up AML/CFT departments, appointing responsible
officers, providing regular employee training, and conducting internal audits. A challenge
highlighted is the potential inadequacy of management systems when AML/CFT measures
are outsourced.

AML, CFT, and CPF are becoming increasingly important for a safer and more com-
pliant crypto asset ecosystem, as international regulatory trends and measures to prevent
fraudulent use continue to advance. However, numerous challenges remain, including the
lack of regulatory harmonization, technical challenges, and the emergence of new evasion
methods. Looking ahead, the development of regulations in major jurisdictions, the utiliza-
tion of technology, and strengthened international cooperation are expected. Continuous
collaboration among regulatory authorities, industry stakeholders, and technology providers
is essential, and the establishment of a robust AML/CFT/CPF framework is indispensable
for the sustainable growth and adoption of crypto assets.

Additionally, related information is summarized in the two appendices that follow. Ap-
pendix B explains TagPack, a data structure designed to share attribute tags for crypto
assets in an interoperable format. It is published on GitHub, enabling data sharing and
data registration. The types of crypto asset included are predominantly BTC and ETH,
though other altcoins are also present. The total number of addresses was approximately
100,000. Appendix C explains Specific Fraudulent Schemes in detail. In particular, it exam-
ined schemes such as pump-and-dump, crowd pump, and coin mixing.

ITI. Theory of Anomaly Detection AI

This section explains the theory behind the ”Step 2 Anomaly Detection Al system” as
shown in the concept depicted in Fig. 1 (Ikeda et al., 2024a). First, we shall explain the
fundamentals of the Boltzmann machine, followed by an explanation of Granger causality
for feature selection. After that, we shall provide a detailed explanation of the theory behind
Some Features.
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Figure 1. Concept of Anomaly Detection Al

A.  Anomaly Detection Al using Boltzmann Machine

From individual anomaly features evaluated from individual analyses, a Boltzmann machine
is used to synthesize a comprehensive index. We use the Restricted Boltzmann Machine
(RBM), in which there are interactions only between visible and hidden variables and no
interactions among visible variables and among hidden variables. The RBM is equivalent
to a bipartite graph, where variables and interactions are represented as nodes and links,
respectively. The Boltzmann machine is a neural network that learns parameters that repro-
duce a given binary variable. In contrast, the Ising model is a phase transition model that
computes a binary variable with given parameters. In this sense, the Boltzmann machine is
an inverse problem of the Ising model.

We define N dimensional visible variable v = (vy,vs,---,vy) € {0,1}V and M di-
mensional hidden variable b = (hy, ha, - ,ha) € {0,1}*. The energy of the system of
Hamiltonian of the RBM is written as

E(’U,h) = — Zaﬂ)i — ijhj — sziWijhj (1)
9 J % 7

where the parameters are § = (a,b, W). The joint probability of the system’s state exhibits
the Boltzmann distribution:

exp(—F(v, h))
> v,n €XP(—E(v, b))

Parameters are learned by maximizing the log-likelihood function I(6) using a stochastic
sampling method called the contrastive divergence method.

ol(0)
new __ pold
0 =07+ 6789

—0 1 3} 3(59@ P(hlv)Qw) +> > %P(v, h) (3)
v h v h

The second term of Eq. (3) is called a “positive phase” and can be estimated using the train-
ing data. The third term, called the “negative phase”, is model-dependent and intractable

P(v,h) =

(2)




except for very small RBMs. Q(v) in the positive phase is given by
1 k
Q) = e Totw ) (@

where K is the number of training data sets and v* is the vector of the training data. The
contrastive divergence procedure is a technique for approximating the negative phase by
running a Monte Carlo Markov chain until a near-equilibrium distribution is reached.

B. Granger Causality

Granger causality is a statistical method for determining whether one time series can help
predict the future of another time series. However, Granger causality does not guarantee true
causality; it asks whether knowing the past values of x5 improves the accuracy of predicting
x1. If the future values of z; cannot be explained by its past values alone, but adding the
past values of x5 improves the predictive precision, then x, is interpreted as having Granger
causality in ;. This is written mathematically as follows:

M

x1(t) = Z {a11(m)z1(t — m) + aro(m)z2(t — m)} + ui(t) (5)
m]\zl

wa(t) = Y {asi(m)ai(t — m) + aga(m)za(t — m)} + ua(t) (6)
m=1
Efuy (t)ui(s)] = E [uz(t)uz(s)] =0 (& #s) (7)

The null hypothesis Hy is aja(m) = ag1(m) for m = 1,2,..., M. If Hy is accepted, then
there is no causality between 7 and x2. If Hy is rejected and aja(m) # 0, then zo causes
the change of x1. Also, if Hy is rejected and a1 (m) # 0, then x; causes the change of 5.

C. Some Features
We obtain ten features from the various network analyses:
e [Feature 1: Graph Theory] Clustering coefficient
e [Feature 2: Graph Theory] Degree Entropy
e [Feature 3: Graph Theory] Triangular motif analysis

e [Feature 4: Graph Theory] Transaction loop analysis considering the time of edge
occurrence
Feature 5: Topology] Transaction loop component by Hodge decomposition
Feature 6: Topology] Classification by graph Laplacian eigenvalue distance
e [Feature 7: Topology] Topological data analysis
]

[
[
[

e [Feature 8: Topology] Ricci curvature based on optimal transport theory
[Feature 9: High-dimensional statistical analysis| Correlation tensor analysis
[

e [Feature 10: Time Series Analysis] Composite R-tipping Score

Among these features, we discuss the theory in detail about the following three features.



a. [Feature 6: Topology| Classification by graph Laplacian eigenvalue distance We
introduce the concept of “states” into dynamic networks and analyze the temporal evolution
of these states. For this purpose, we consider distances between different graphs and perform
clustering. Following (Masuda and Holme, 2019), we define distances between graphs and
state transitions.

There are various ways to define distances between graphs; in this study, we focus on
distances based on the graph Laplacian matrix. The graph Laplacian is defined as L = D— A,
where D is the degree matrix and A is the adjacency matrix. The Laplacian is symmetric and
positive semidefinite, which implies that all its eigenvalues are non-negative real numbers.
Since the eigenvalues can take values over a wide range, it is convenient to use a normalized
one. The symmetrically normalized Laplacian matrix is defined as

Lsym:D_%LD_%7 (8)

where any eigenvalue \ of Ly, satisfies 0 < A < 2. The multiplicity of the zero eigenvalue,
i.e., the dimension of the kernel of Lgy,, corresponds to the number of connected components
of the graph. The second-smallest eigenvalue Ao of the Laplacian, often called the spectral
gap (or algebraic connectivity in the unnormalized case), provides a quantitative indicator
of the overall connectivity of the graph. On the other hand, the maximum eigenvalue A = 2
is attained if and only if at least one of its connected components is bipartite (and contains
at least one edge). Furthermore, tree-like structures (especially star graphs or graphs with
many leaves) often contain A = 1 as an eigenvalue (Chung, 1997).

In previous work, we defined the distance between two graphs G; and G2 using their
eigenvalues as

N
d(G1,Ga) = | > (An41-i(G1) = Ant1-i(G2))?, (9)
i=1
where \;(G) represents the i-th eigenvalue of Lgyy, of G, and N is the number of nodes.

In this work, we aim to compare networks whose number of nodes also changes over
time. Therefore, it is necessary to use a distance definition independent of network size. For
this purpose, we define the eigenvalue density distribution function based on the spectrum
of the Laplacian and use it for comparison. Let p(A) d\ denote the fraction of eigenvalues
that lie between A and A 4+ d\. This is normalized as

/2 drp()) = 1. (10)
0

In practice, since the networks are finite, we divide the interval [0, 2] into 50 bins to construct
a histogram approximation. Corresponding to Eq. (9), the distance between two graphs Gy
and Go is then defined as

2
dp(Gl,Gg) = \//0 dA (p(A,Gl) — p()\,Gz))Q (11)

There are several possible ways to define such distances. For example, since p(\) is a dis-
tribution, one may also consider using the Kullback-Leibler divergence or its symmetrized
form, the Jensen—Shannon divergence.

Once the eigenvalue distribution is obtained, one can also define an entropy as

5(G) = —Zpblnpb, (12)
b
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where p, denotes the discretized probability corresponding to bin b. Although a continuous
(differential) entropy could also be defined, it can take positive or negative values depending
on the binning, which makes the discretized version more convenient for practical use.

For characteristic eigenvalues, the nodes that make significant contributions can be iden-
tified from the corresponding eigenvectors by selecting those nodes whose components have
large absolute values. This allows us to detect spectrally dominant nodes, i.e., nodes that
strongly contribute to the spectral representation of the network. Having defined distances
between graphs, one can then apply topological data analysis or clustering algorithms to
classify network states. For example, hierarchical clustering can be used to categorize the
states of the graphs.

b. [Feature 7: Topology] Topological data analysis Let V be a finite vertex set and
A CV xV a collection of directed edges between vertices, together with a weight function
w: A — [0,00). The triple G = (V, A,w) is called a weighted directed graph. Equivalently,
this structure can be represented by a weight matrix W = (w(«,y))z,yev, where we interpret
(x,y) ¢ Aif w(z,y) =0.

To extract topological features from such a directed graph, we consider the directed flag
complez associated with G. A directed k-simplex is an ordered tuple of (k + 1) distinct
vertices (vg, v1, ..., vx) such that all directed edges (v;,v;) € A for every 0 < i < j < k. The
set of all such k-simplices is denoted by K,gag, and the entire collection K& = | J, ., K,fclag
forms the directed flag complex.

A subcomplex K = (J,~o Kr C Kf2g is a subset of Kf2& that is closed under taking
subsets, ie., (vo,...,vx) € Kj implies (vo,...,0j—1,Vj+1,...,0k) € Kji_1 for every j =
0,1,...,k For a subcomplex K = {J,~, Kj of K28, we define the real vector space Cy(K)
spanned by the elements of Ky, i.e., Cx(K) = {3 ¢k, @50 : ar € R}. An element in Cy(K)
is called a k-chain. We introduce the boundary map 0 : C(K) — Ci_1(K) by

k
8k(v0, e ,’Uk) = Z(—l)j<v0, e 7’1)‘]*,17 Uj+1, ey Uk), (13)
7=0

extended linearly. For example, 02(2,1,3) = (1,3) — (2,3) + (2,1) and 01(1,3) = (3) — (1).
The 1-chain (1,3)—(2,3)4 (2, 1) represents the oriented boundary of the 2-simplex (triangle)
(2,1, 3), with the signs indicating the induced orientation on each edge from the simplex. Let
ker Oy, := {C S Ck(K) : Ope = 0} and im@kﬂ = {b S Ck(K) :dc e C}C+1(K) s.t. (‘9k+1c = b}
An element in ker Jy, (resp. im dx41) is called a k-cycle (resp. k-boundary). It can be easily
verified that J;o0+1 = 0, which implies that im 01 C ker J, i.e., a k-boundary is a k-cycle.
To capture the difference between k-cycles and k-boundaries, we define the k-th homology
group as the quotient vector space H(K) := ker 05/ im Ox+1. The dimension of this group is
called the k-th Betti number B (K) of the complex. In general, Sy(K) (resp. 51(K), f2(K))
counts the number of connected components (resp. cycles, voids), and higher-dimensional
homology groups describe analogous higher-dimensional holes.

To study how topological features appear and disappear across scales or time, we use the
theory of persistent homology. For this purpose, we consider a filtered directed flag complex,
which is a family of increasing subcomplexes.

Let K28 be the directed flag complex over G = (V, A), and suppose we have a filter
functionf : K28 — R that assigns a real number to each simplex in such a way that if
o C 7, then f(o) < f(7). Two examples of filter functions are defined in (14) in Example 1,
using the weight function w. This increasing property ensures that the collection of simplices
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with value at most t € R U {oco} forms a sublevel complex: K[t] := {0 € K38 | f(o) < t}.
These subcomplexes satisfy the inclusion K[t] C K[t'] if t < ¢/, and we identify K28 = K][oo].
Hence, the filter function induces an increasing sequence of directed simplicial complexes:

K[t1] C K[ta] C -+ C K]t,] = K™,

where t; < t9 < --- < t,, are the distinct filter values assigned to the simplices.
At each step, we can compute the homology groups Hy(K[t,]) for each dimension k.
The inclusion maps (2 : K[r] < K]s] induce linear maps (:8), : Hp(K[r]) — Hy(K]s])

for 1 < r < s < t,. The dimension of this image, 8F, := dimim((:}).) is called the
(r, s)-persistent Betti number. A persistence module Hy(K) = (Hi(K[r]), (¢2).) admits a
well-known indecomposable decomposition:

p

Hy(K™€) = OB 1(b;, d),

i=1

where each summand I(b;,d;) = (Uy, f7) is called an interval module defined by

R bl< di, 5 .
U’r:{ ’ ST < , and f2 =idg for b; <r < s < d;.

0, otherwise,

Each I(b;,d;) corresponds to a homology class that is born at ¢ = b; and persists until ¢t = d;.
These intervals {[b;,d;),i = 1,2,...,p} form a multiset known as the persistence intervals,
and often visualized as the persistence diagram or barcode.

In the following example, we provide a heuristic explanation for persistence intervals.

EXAMPLE 1: Let us consider a directed graph G = (V, A) given by:
V= {07 1,2, 3}’ A= {(07 1), (0’ 2)7 (17 2)’ (1’ 3), (2’ 1)a (27 3)v (35 1>}

Then the directed flag complex Kf2¢ includes:

o K0 =V ={(0),(1),(2),(3)},
° K?ag =A,

° Kgag ={(0,1,2),(0,2,1),(1,2,3),(2,1,3),(2,3,1)}.
We define the weight function w : A — [0,00) on the directed edges as follows.

Table 1. Weights on directed edges.

directed edge (0,1) (0,2) (1,2) (1,3) (2,1) (2,3) (3,1)

weight w 1 2 6 3 7 5 4

From the weight w, we can define weights for 2-simplices in Kg 8 in several ways. Here,
we introduce two examples of filter functions. For general o € Kgag (k> 2),

wmax(a): max w(n)7 wsum(a): Z w(n)a (14)
n€ (o) DR (o)

where Ok () is considered as a set, e.g. 92(2,1,3) = {(1,3),(2,3),(2,1)}.
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Figure 2. Weighted directed graph G = (V, 4, w).

Table 2. Weights on 2-simplices defined by wmax and wsum.

KPR T 012 [ 021 [ 123 | 213 | (231
Wmax 6 7 6 7 7
Wsum 9 10 14 15 16

As an example, we take the sum function wguy. Interpreting the weights as time, we
assume that all 0-simplices appear at time 0, each 1-simplex o appears at time w(o), and
each 2-simplex o appears sequentially at time wpax (o).

We begin by examining the Oth persistent homology. At time 0, the four vertices are
present as isolated points, so there are four connected components. At time 1, the edge (0, 1)
appears and a connected component dies (disappears). Similarly, the edges (0,2) and (1, 3)
appear at time ¢t = 2 and ¢t = 3, respectively, and hence two connected components die in
turn. After that, the remaining single component persists forever. The following persistence
intervals represent this situation:

PH, = {[0,1), [0,2), [0,3), [0,00)}.
Next, we consider the 1st persistence. It is straightforward to verify that
9((2,1,3)+(2,3,1)) = (1,3)+ (3,1) =t ¢; € im > C ker 9y,
t=15 t=16 t=3 t=4

and thus ¢; = (1,3) + (3,1) is the boundary of the 2-chain (2,1,3) + (2,3,1) as well as a
1-cycle. The 1-cycle ¢; is born at ¢ = 4 when (3, 1) appears and the 2-chain (2,1, 3)+(2,3,1)
appears at t = 16 when (2,3,1) appears, and then ¢; dies as it becomes the 2-boundary of
(2,1,3)4(2,3,1). Therefore, the persistence interval of the 1-cycle ¢; is [4,16), which means
that ¢; is born at ¢ = 4 and dies at ¢ = 16. Similarly, we see that

92((0,1,2) = (1,2,3)) = (0,1) — (0,2) + (1,3) — (2,3) =: ¢z,
02(0,1,2) = (1,2) — (0,2) + (0,1) =: ¢3,
32(0,2,1) = (2,1) — (0,1) 4+ (0,2) =: c4.
The 1-cycle ¢o is born at ¢ = 5 and dies at ¢t = 14, the 1-cycle c3 is born at ¢ = 6 and dies at

t =9, and the 1-cycle ¢4 is born at ¢ = 7 and dies at ¢ = 10. Then, the persistence intervals
in 1-dimension is given as follows:

PH, = {[4,16), [5,14), [6,9), [7,10)}.
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Finally, we consider the 2nd persistence. We observe that 92 ((0,1,2) + (0,2,1) — (1,2,3) —
(2,1, 3)) = 0 at t = 15 and persists forever since there is no 3-simplex in this flag complex
and it cannot be a 2-boundary. Then, the persistence intervals in 2-dimension is given as

follows:

In practice, the software Flagser (Tauzin, 2021a,b) can efficiently compute the persistent
homologies PH;, for directed flag complexes, with filtrations based on these two filter func-
tions Wmax and wsym implemented as standard options. O

c. [Feature 8: Topology| Ricci curvature based on optimal transport theory Based
on Optimal Transport Theory, the formulation of Ricci curvature using the Wasserstein
distance is a theory that extends the concept of curvature in geometry to discrete structures,
such as graphs and metric spaces.

Ricci Curvature and Optimal Transport In Riemannian geometry, Ricci curvature de-
scribes the rate of spread or convergence of volume along geodesics (shortest paths). If the
curvature is positive, geodesics tend to converge; if the curvature is negative, they tend to
diverge. Research by Sturm (Sturm, 2006a,b) and Lott and Villani (John Lott, 2009) ex-
plained that this geometric property can be characterized within the framework of optimal
transport theory. Optimal transport theory reveals the most economical method and its as-
sociated cost for redistributing a population of sand grains from one distribution to another.
The ease of transporting a distribution of sand grains (transport cost) corresponds to the
ease of spreading geodesics. This transport cost corresponds to the curvature of the space.

Wasserstein Distance The Wasserstein distance is defined as the optimal transport cost
for moving a distribution of sand grains. In spaces with positive curvature, distributions of
sand grains tend to cluster more readily, resulting in lower transport costs. Conversely, in
spaces with negative curvature, distributions cluster less readily, leading to higher transport
costs. Thus, the Wasserstein distance serves as a measure of proximity between distributions
that is sensitive to the geometric properties (curvature) of the space. Specifically, when the
cost increases proportionally to the distance, it is the Wasserstein-1 distance W7; when the
cost increases proportionally to the square of the distance, it is the Wasserstein-2 distance
Wo,. W1 measures distributions in terms of their mean, while Wy emphasizes the spread (dis-
persive nature) of the distributions. W can be expressed as the distance between probability
measures u and v as follows:

Wilu,) =i [ d(a. p)in(z.v) (15)

The Wasserstein-1 distance is used when extending the concept of curvature in geometry to
discrete structures such as graphs or metric spaces. Furthermore, the Wasserstein-2 distance
W3 can be expressed as the distance between probability measures p and v as follows:

Walu,v) = in / d(z,y)2dn(z,y) (16)
mell(p,v) XxX

Here, d(x,y) denotes the metric on the space X, and 7 is the joint distribution of p and v.
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Lott-Sturm—Villani Theory In Lott-Sturm-Villani theory (John Lott, 2009), the curva-
ture dimension condition CD(K, N) formulates the lower bound condition on the Ricci cur-
vature Ric > K on a Riemannian manifold M as the convexity of the entropy of a measure
on the optimal transport space. Here, K and NN are the lower bound of the Ricci curvature
and the upper bound of the dimension of M, respectively. Specifically, on the probability
measure space P2(M), Wo, it was shown that the entropy functional Ent(u) = [ plog pdM
satisfies K-convexity along Ws-geodesics. That is, the lower bound on the Ricci curvature of
the base space is equal to K, and the following three cases are possible: (1) K > 0 (positive
curvature): The entropy exhibits stronger convexity, and intermediate distributions tend to
cluster naturally. (2) K = 0 (flat): The entropy changes linearly, and the scattering of the
distribution exhibits standard behavior. (3) K < 0 (negative curvature): The convexity of
entropy weakens, and intermediate distributions tend to scatter more readily.

Ricci curvature in graphs Ollivier (Ollivier, 2009) defined the curvature for graphs and
discrete spaces using transport distances. For nodes x and y, let the local probability dis-
tributions (one-step random walk distributions) be p, and g, and measure their distance
using the Wasserstein-1 distance Wi (i, ft,). The Ricci curvature is then defined as follows:

Wl (:uma .“y)
d(z,y)

If Wy is smaller than d(x,y) (i.e., the distributions are closer), the curvature is positive:
k(z,y) > 0. If Wy is larger than d(x,y), the curvature is negative: x(x,y) < 0.

k(z,y)=1-— (17)

d. [Feature 10: Time Series Analysis] Composite R-tipping Score In complex sys-
tems such as climate, ecosystems, and economies, critical phenomena occur when a param-
eter exceeds a certain threshold. This critical point is called a “tipping point”. On the
other hand, rate-induced tipping (R-tipping) refers to the ‘speed’ of environmental or sys-
tem changes that trigger critical phenomena (Wieczorek et al., 2023; Liu et al., 2024; Panahi
et al., 2023; Huang et al., 2024). Even if the value of a parameter is below the threshold
value, if the rate of change of that parameter is too fast, the system will make a transition
to a different state from which it cannot return.

We explain the concept of R-tipping using the ordinary differential equation dp/dt =
f(p,A(t)). Here, p is the price of a crypto asset, and A(¢) is a time-dependent parameter,
e.g., characteristics of the transaction network or transaction volume. Typically, when A(t)
changes slowly, the solution p(t) also changes slowly. However, when the rate of change
of A(t) exceeds a critical threshold, p(t) cannot keep pace with the changes and suddenly
transitions to a different state. The R-tipping concept may be used as a theoretical model
for the phenomenon where transaction network features precede price changes.

To detect R-tipping in crypto asset prices, we focus on the rate of change in prices
and trading volumes over time and propose a composite R-tipping score based on four
key variables. Scores range from 0 to 4, with higher scores corresponding to greater price
anomalies.

(1) Price change: Focusing on the velocity p(t) — p(t — 1), we calculate the price change
score as the deviation from the average +No. A score of 1 is assigned when the
deviation exceeds the average +30.
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(2) Return distribution: During price surges, the asymmetry of the return distribution
increases. Calculate the skewness and kurtosis of the return rate. A skewness > 2 and
kurtosis > 3 are set to 1.

(3) Increase in variance and autocorrelation: As the system’s changes become difficult to
track, variance and autocorrelation increase. Calculate the autocorrelation function of
the return rate, an indicator of critical slowing down. If the autocorrelation function
exceeds 0.5, it is set to 1.

(4) Trading volume: A sudden increase in trading volume corresponds to a surge in interest
and is a sign of price changes. As an indicator of trading activity, we calculate the
volume spike score, which represents the deviation from the average, expressed as
+No. A value exceeding the average +30 is set to 1.

IV. Feature Selection Based on Granger Causality

Nodes that consistently appear in the weekly transaction network over a fixed period are
referred to as regular nodes. First, we describe the characteristics of regular nodes within
the XRP transaction network. As the number of these regular nodes varies weekly, we next
explain feature normalization to accurately capture the temporal change of features obtained
from weekly network analysis. Subsequently, we present the feature selection results and
provide a detailed explanation of some of the selected features.

A. Characterizing Regular Nodes

ROaR17”'7Rw

Figure 3. The schematic showing the sliding window of evaluating regular nodes. Here w is the
window size. Shift the window one step at a time, analyzing the data in fine detail whilst maintaining
near-complete overlap.

To understand the behavior of the XRP network, it is essential to distinguish between
core, consistently active participants and transient users who interact infrequently or at
irregular intervals. We address this by introducing the concept of a regular node. This
classification is designed to identify a stable cohort of users whose activity is sustained over
a significant period.

A node is defined as “regular” at a specific week ¢ if it has been active (i.e., involved in
at least one transaction) in every single week over the preceding w consecutive weeks. This
condition is evaluated dynamically using a sliding-window approach, as schematized in Fig.
3. This process requires an initial observation period. The first set of regular nodes, which
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we can denote as R,,, is identified at the conclusion of week w. This set consists of all nodes
that were continuously active throughout the entire initial window from week 1 to week w.
Following this, the observation window advances one week at a time. For instance, the set
of regular nodes for week w + 1, denoted R, 41, is determined by identifying all nodes that
remained continuously active in the updated window spanning from week 2 to week w + 1.
This method generates a time series of regular node sets (Ry, Ry+1, Ruw+2, ldots), where
each set R; represents the specific cohort of persistent users at that point in time.

The window size, w, is a critical parameter that determines the strictness of our def-
inition. A small w could misclassify short-term, high-activity users as persistent. At the
same time, a very large w might be too stringent, excluding core users who may have a
brief, natural pause in activity. Based on a preliminary analysis to ensure the stability and
robustness of our results, we selected a window size of w = 15 weeks. This sliding-window
framework is fundamental to our analysis, as it allows us to isolate a consistent group of core
network participants and track their evolving behavior over time during our 208-week study
period.

To understand the structural roles of the regular nodes, each weekly transaction graph
is decomposed into its bow-tie components: the Giant Strongly Connected Component
(GSCC), the IN-component, the OUT-component, and Tendrils (TE). The ratio of regu-
lar nodes within each of these four components is then calculated for every week. The
temporal evolution of these ratios, plotted against the price of XRP, is shown in Fig. 4.

The analysis reveals a highly skewed and stable distribution of regular nodes across the
bow-tie components. The vast majority of regular nodes are consistently located within the
GSCC, where the proportion remains high and stable, fluctuating within a narrow band
of approximately 60% to 80% throughout the 208 weeks. This indicates that the GSCC
represents the transactional core of the network, where sustained, reciprocal exchanges occur
among the most regular nodes. The stability of this high ratio suggests a persistent and
well-defined core user base. In contrast, the remaining peripheral components contain a
significantly smaller fraction of regular nodes. The IN and OUT components each contain
a proportion that typically ranges from 10% to 20%, while the Tendrils (TE) exhibit the
lowest concentration, consistently holding less than 10% of the regular node population.
This distribution strongly suggests that the IN, OUT, and TE components are primarily
populated by transient or non-regular users, serving as entry points, exit points, or isolated
chains of transactions rather than centers of continuous engagement.

A key finding of this analysis is the observed relationship between the composition of
the network’s core and external market indicators. The data reveal no apparent direct
relationship between the proportion of regular nodes in the GSCC and the market price of
XRP. Specifically, during periods of significant price increase, such as those in early 2018
and 2021, the ratio of regular nodes within the GSCC does not increase. Instead, this
ratio remains within its typical range or experiences a marginal temporary decrease. This
observation supports the conclusion that there is a decoupling between the network’s core
transactional activity and periods of high price fluctuation. The stability of the core user
base, as measured by the regular node ratio in the GSCC, appears independent mainly of
external price dynamics.

B. Normalization of Transaction Features

This analysis concerns a dynamic network composed of weekly regular nodes, where the
number of nodes N varies each week. As the feature values depend on N, normalization
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Figure 4. Temporal evolution of the ratio of regular nodes in each component of the weekly graph
bow-tie structure. Here, GSCC and TE stand for the Giant Strongly Connected Component and
Tendrils components, respectively.

using the weekly regular node count is necessary to examine the weekly variation in the
features. The entropy S, the clustering coefficient C, the network distance d, the Z score
Z;(i =3,---,16), and the largest singular value SV depend on the number of weekly regular
node N as

S « logy N, (18)
C « log;, N, (19)
log,g N
X 20
logyo(logyg N) (20)
N
Zi x — =+V/N, 21
Vo .
SV « N, (22)
Thus, we normalize these features using the number of regular nodes N(t) at t = to,t (to < t),
as follows: | N(to)
0810 0
S(t) + S(t)————-, 23
(1)« S (23)
log1y N (to)
Ct) «+ Ct)y—=———=, 24
(1) = Clo) (24)
log,y N(tg)/logig(logyo N (t

d(t) — d(t) 1 10 Jéo)/l 10(1 10 N( 0))’ (25)

0g19 N(t)/logyg(logyo N (1))

2(t) Z(t)“v(éf)), (26)
(to
N(t)

We show the temporal change of the normalized feature and its binarized features in Ap-
pendix D.

=

=

SV(t) + SV (t)

(27)
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Table 3. Selected normalized features

feature p-value of ADF test p-value of Granger-causality
priceXRP 0.01 -
Zscoreb 0.04 0.1
Zscorell 0.009 7 x107%
trace of A2 2x107° 0.1
Diml x avg 1x10°15 2x 1079
Diml y avg 9 x 1016 2 x 10716
dimension 1 1x 10713 2x 10716
lg sv 0.1 0.07
nodes ent vec 0.03 0.03
nodes reg vec 0.02 0.03
potential ratio reg vec 3x107° 0.03
loop ratio reg vec 3x107° 0.03
rts mean 1x107? 2 x 1074
DosLambda0 0.08 0.02

C. Feature Selection

We tested the null hypothesis Hy “feature does not Granger-cause priceXRP” for the normal-
ized features and the features after taking the difference. The detailed results are described
in Appendix E.

We summarize the selected normalized features that rejected the null hypothesis Hy in
Table 3 and the selected time difference features that rejected the null hypothesis Hy in
Table 4. Here, feature symbols used in Tables 3 and 4 are described in Appendix A.

All features shown in Tables 3 and 4 and the binarized composite R-tipping score are
used as input data for the Boltzmann machine of the anomaly detection Al

D. Some Features

Among the ten features estimated by various network analyses, we show the results in detail
about the following three features:

e [Feature 6: Topology] Classification by graph Laplacian eigenvalue distance
e [Feature 7: Topology] Topological data analysis

e [Feature 8: Topology| Ricci curvature based on optimal transport theory

a. [Feature 6: Topology| Classification by graph Laplacian eigenvalue distance In
this study, we extend our previous analysis of network states during the bubble period (Ikeda
et al., 2024b) to the entire sample period. Regular nodes are defined in subsection A, and
their number varies over time. Figure 5 (left) shows the time series of the number of regular
nodes together with the price. It can be observed that the number of regular nodes increases
over time.

For the 208 weeks from December 4, 2017, to September 26, 2021, we constructed weekly
networks using the aggregated data of regular nodes. For each network, we computed the
symmetrically normalized Laplacian matrix Lgym, defined the corresponding eigenvalue dis-
tribution, and calculated the graph distances based on Eq. (11). We then applied Ward’s

19



Table 4. Selected features after taking the difference

feature p-value of ADF test p-value of Granger-causality
diff priceXRP 2x10~P -
diff clustercoeff 1x107 1 5x 107°
diff Zscoreb 2 x 10716 0.009
diff Zscore9 2 x 10716 0.02
diff Zscorell 2 x 10716 5x107°
diff Zscorel2 2 x 10716 0.1
diff Zscorel4 2 x 10716 0.003
diff share of loops s3 2 x 10716 0.07
diff trace of A2 2 x 10716 0.1
diff dimension 2 2 x 10716 0.1
diff Dim1 y avg 2 x 10716 2 x 10716
diff dimension 1 2 x 10716 2 x 10716
diff nodes ent vec 2 x 10716 0.003
diff nodes reg vec 2 x 10716 0.002
diff potential ratio reg vec 2x 10716 0.02
diff loop ratio reg vec 2x 10716 0.02
diff rts mean 2x 10716 2x107*
diff curv per90c 2 x 10716 6 x 104
diff curv mean 2 x 10716 0.003
diff DosLambda0 2 x 10716 0.08
diff DosLambdal 2 x 10716 0.04
1200 Number of regular nodes 40— Sute
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Figure 5. (Left) Time series of the number of regular nodes and the XRP price. (Right) Time
series of the states and the XRP price.
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Figure 6. (Left) Time series of Entropy and the price of XRP. (Right) Time series of the spectral
gap and the XRP price. The shaded background areas correspond to three different states: State 1
(lightest), State 2 (medium), and State 3 (darkest).

method to the distance matrix to perform hierarchical clustering, from which three states
were identified, and their temporal evolution is shown in Fig. 5(Right).

Furthermore, the time series of the entropy defined in Eq. (12), and the spectral gap are
shown in the left and right panels of Fig. 6, respectively. The gray-shaded regions correspond
to the three states defined above. In addition, Fig. 7 shows the time series of the eigenvalue

0.7
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Figure 7. p(A) for three values: A = 1 (dotted line), A = 0 (dlash-dot line), and A = 2 (solid
line). The shaded background areas correspond to three different states: State 1 (lightest), State 2
(medium), and State 3 (darkest).

density at A = 0,1,2. From initial observations, no clear correlations are apparent among
price, states, entropy, spectral gap, and eigenvalue density. A more detailed quantitative
analysis of these relations is deferred to future work.

Next, we identify the spectrally dominant nodes using eigenvectors. Here, we focus on the
eigenvector associated with the spectral gap. This eigenvector, known as the Fiedler vector,
contains information that separates the entire graph into two distinct groups based on the
signs of its components. Nodes with large absolute component values can be interpreted
as playing central roles in the network. In this study, for each week, we selected the node
corresponding to the largest absolute value in the Fiedler vector. In total, 60 nodes were
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selected, among which three nodes appeared more than 20 times. Table 5 summarizes the
frequencies of states at the three nodes. From this table, it is evident that nodes A and C

Table 5. Frequencies of states observed at each spectrally dominant node.

Node ID State 1 State 2 State 3 Total

Node A 0 26 4 30
Node B 0 0 23 23
Node C 0 15 5 20

serve as central nodes in State 2, whereas node B emerges as a central node in State 3.

A similar analysis may also be applied to the eigenvectors associated with A =1 or A = 2,
etc. Clarifying whether these nodes are linked to price fluctuations or network anomalies
constitutes an important subject for future research.

b. [Feature 7: Topology] Topological data analysis This analysis focuses on crypto
asset XRP transaction data spanning 221 weeks, from October 2, 2017, to December 26, 2021.
The data consists of three columns: sender ID, recipient ID, and the amount transferred.
Among the 221 weeks, two periods — October 2, 2017, to March 4, 2018, and February 1,
2021, to August 1, 2021 — exhibited particularly sharp surges and crashes in closing prices,
representing so-called price surge periods. The purpose of the analysis is to distinguish
between the two price surge periods and to identify indicators that precede fluctuations in
closing prices. To this end, a directed weighted graph was constructed for each week, using
the sender and recipient IDs as nodes and the transferred amount as the weight of each
directed edge. For the 221 weekly directed weighted graphs, two types of adjacency matrices
are defined: the regular node adjacency matrix, which emphasizes transaction frequency by
considering only IDs active at least once per week, and the new adjacency matrix, which is
restricted to nodes whose row or column sums in the adjacency matrix are at least 107. This
captures the magnitude of transaction amounts.

The following analyses were conducted on the adjacency matrices from these two per-
spectives:

(1) Anomaly detection based on the trace of the square of the regular node adjacency
matrix.

(2) The evolution of the Betti numbers from dimension 0 to 3 of the directed weighted
graph corresponding to the new adjacency matrix.

(3) A normalized version of the one-dimensional Betti number from analysis (2), obtained
by normalizing the adjacency matrix by the number of vertices.

(4) The moving averages of the values from analysis (3) with window sizes of 3, 5, and 10.

(5) The number of plots in the persistence diagram of the directed weighted graph corre-
sponding to the new adjacency matrix.

(6) The centroid of the plots in the persistence diagram of the directed weighted graph
corresponding to the new adjacency matrix.

(7) The lifetime sum of the plots in the persistence diagram of the directed weighted graph
corresponding to the new adjacency matrix.
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These results are illustrated in Fig. D.10 for (1), Fig. D.11 for (2), Fig. D.12 for (3) and (4),
Fig. D.13 for (5), Fig. D.14 for (6) and (7), respectively.

In this study, the central object of analysis is the Betti numbers associated with the
directed graphs corresponding to each week. As already mentioned, Betti numbers are
fundamental quantities in Topological Data Analysis (TDA). Although their rigorous math-
ematical definition has been provided earlier and will not be repeated here, they can be
intuitively understood as quantifying the “holes” inherent in the data. In the present con-
text, the data are represented by directed graphs, and thus the “holes” correspond to cycle
structures within the graphs. The interpretation of such cycle structures depends on the di-
mension under consideration. In this analysis, we focus on Betti numbers from dimension 0
through 3. According to the terminology of TDA, the Betti numbers are interpreted dimen-
sion by dimension: the Oth Betti number represents the number of connected components,
the 1st Betti number corresponds to the number of independent cycles, the 2nd to the number
of independent voids, and the 3rd to the number of independent spheres. Among these, the
1st Betti number is of particular significance. The notion of “independent cycles” here refers
to cycle structures formed in the weekly directed graphs. From the perspective of financial
transactions, such circular transaction patterns are often associated with money laundering
and other illicit financial activities. Specifically, criminal organizations often convert illicitly
obtained funds into cryptocurrencies such as XRP, transfer them across multiple accounts,
and ultimately regain control of the assets. Consequently, an unusually large 1st Betti num-
ber in a given week indicates the frequent occurrence of atypical transaction patterns, which,
in the time series of graphs, manifests as an apparent anomaly.

Beyond Betti numbers, persistent homology offers a more comprehensive characteriza-
tion. It accounts not only for the number of “holes” but also for their persistence, i.e.,
the duration from birth to death. For a given directed weighted graph, one may define a
filtration based on edge weights. As this filtration evolves, persistent homology records the
creation and disappearance of holes in each dimension. These dynamics are then visualized
in the form of persistence diagrams, which serve as an essential tool in the present analysis.
The following sections describe each of the analyses in detail.

First, analysis (1) exhibits anomalies only during the price surge period 1. This suggests
that the two price surge periods have different characteristics. In bubble phase 1, a large
amount of XRP is transferred within structures that return to the original ID in three steps.

In analyses (2), (3), and (4), the key quantity is the 1st Betti number. This serves as
a leading indicator for both price surge period 1 and price surge period 2 (Figs. D.11 and
D.12). Note that the n-dimensional Betti number represents the number of n-dimensional
holes. The 1st Betti number represents the number of one-dimensional holes. This reflects
the number of transactions that form cycle structures, where XRP transfers circulate and
return to the original point.

The persistence diagrams in analyses (5), (6), and (7) are plots that represent the birth
and death times of holes in each dimension of the directed weighted graph. The number
of one-dimensional and two-dimensional plots in analysis (5) increases dramatically during
the price surge period 2. Moreover, the centroid in analysis (6) is larger during price surge
period 1, while the lifetime sum in analysis (7) is larger during price surge period 2. These
observations suggest that price surge period 1 corresponds to larger XRP transfers, while
price surge period 2 reflects larger holes, i.e., longer cycles returning XRP to the original ID.

c. [Feature 8: Topology| Ricci curvature based on optimal transport theory The
results of Ricci curvature calculations are shown in Fig. 8. Panel a depicts the cumulative
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distribution of curvature during periods of price surges, Panel b shows the complementary
cumulative distribution of curvature during periods of price surges, Panel ¢ depicts the
cumulative distribution of curvature during periods of normal prices, and Panel d shows
the complementary cumulative distribution of curvature during periods of normal prices.
Comparing Panels a and c reveals that the lower distribution extends further into regions of
smaller curvature during the normal price period. Furthermore, comparing Panels b and d
shows that the upper distribution extends further into regions of larger curvature during the
price surge period. Consequently, the distribution of Ricci curvature shifts positively overall
during the price surge period, clearly demonstrating that positive curvature serves as a good
feature of the abnormality of price surges.
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Figure 8. Ricci Curvature Distribution during Price Surge and Normal Periods: the distribution
of Ricci curvature shifts positively overall during the price surge period, clearly demonstrating that
positive curvature serves as a good feature of the abnormality of price surges.

d. [Feature 10: Time Series Analysis] Composite R-tipping Score The price (USD)
time series and the trading volume (USD) time series for XRP are shown in Fig.9. Using the
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XRP price time series and the XRP trading volume time series, we calculated the composite
R-tipping score based on the R-tipping theory.

The top panel of Fig. 10 shows the price velocity, which is the time difference of the
price time series. The second panel displays the volume change, which represents the time
difference between the volume time series, averaged using 28-day moving windows. The
third panel displays the Skewness and kurtosis of the return time series using 28-day moving
windows. The fourth panel shows the autocorrelation function with a 1-day lag of the return
time series. The bottom panel of Fig. 10 shows the time series of the R tipping score. The
R tipping score takes values between 0 and 4, with a higher value indicating larger changes
in both price and volume.
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Figure 9. Daily Time series of XRP Price and Trading Volume: It can be seen that price surges
correlate with increased trading volume, but the latter price surges are accompanied by a far greater
increase in trading volume than the earlier ones. This difference implies a qualitative difference
between the two price surge periods.
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Figure 10. R-tipping Score: The R tipping score was defined by considering comprehensively both
price change and trading volume change characteristics, shown in the bottom panel. The R-tipping
score shows sustained increases during both the initial price surge and the subsequent price surge.
However, even during periods of normal pricing, a short-term increase in the R-tipping score can be
observed.

V. Anomaly Detection

The analysis of the transaction network described above is summarized here. First, various
features were extracted by analyzing the weekly dynamic graph constructed from transaction
data recorded on the XRP blockchain. Next, the influence of these features time series on
the price time series was investigated using Granger causality tests. This test revealed that
23 features changed prior to the price time series, influencing its temporal evolution.

In this section, based on the above results, we train the model parameters of a Boltz-
mann machine using these features (converted to binary inputs) during the normal price
period. The normal price period during which the model was trained spans from the week of
September 17-23, 2018, to the week of September 7-13, 2020. While it would be preferable
for financial experts and practitioners to determine the normal period based on historical
data, this study visually identified it rather than using quantitative criteria. We then use
these parameters to calculate a comprehensive anomaly index for the entire period.
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A.  Detecting Price Surges using Anomaly Detection Al

We first conduct the learning of model parameters. The data reconstruction involves com-
puting the hidden variables (M = 8) from the input visible variables (N = 23) and then
outputting the computation of the visible variables from the computed hidden variables. The
actual calculation was done with 23 visible (input) variables and eight hidden variables. The
23 visible variables are the featured selected by the Granger-causality test, shown in Table
3 and Table 4. In the Granger causality test, we selected statistically significant individual
indicators with M = 5. However, the individual indicators used as input for the Boltzmann
machine were limited to price and individual indicators at the same time point. While im-
provements such as using historical data as input are easily achievable, this study leaves
them as future research topics. We learned the model parameters over a normal period,
from the week of September 17, 2018, to the week of September 7, 2020. Learning of model
parameters was performed using the contrastive divergence method, as outlined in Eq. (3).
The performance of the learning is evaluated using the F} score:

F, = 2TP/(2TP + FP + FN) (28)

where TP: model prediction is 1 and real data is 1, FP: model prediction is 1 and real data
is 0, TN: model prediction is 0 and real data is 0, and FN: model prediction is 0 and real
data is 1. With the definition of Precision = TP/(TP + FP) and Recall = TP/(TP + FN),
Fy signifies a harmonic mean of of Precision and Recall. The reconstructed visible variables
match the input visible variables with an Fj score of 0.833. This means that the learning
results are good.

Next, we carried out anomaly detection using parameters learned from normal period
data. In the anomaly period, the reconstructed visible variables do not match the input
visible variables, and F; becomes small. This means that the reconstruction of visible input
variables is poor during the anomaly period. The norm of the reconstructed visible variables
is shown in Fig. 11.

We note that a series of false reconstructions of the input visible variables can be re-
garded as the detection of an anomaly. Thus, we use a series of false reconstructions as
a comprehensive anomaly index. The comprehensive anomaly index is shown in Fig. 12.
Figure 12 shows that the comprehensive anomaly index indicates 1 during periods of price
surges and 0 during periods of normal prices.

However, we have also identified shortcomings in the comprehensive anomaly index. Pe-
riods when the comprehensive anomaly index is 1 are relatively broad, making it difficult
to determine precisely when the anomaly begins. Furthermore, periods where the compre-
hensive anomaly index equals 1 can be observed even during price-normal periods used for
training. As an index addressing these shortcomings, it is also possible to display the com-
prehensive anomaly index using the failure rate of reproducing the input visible variables.
Figure 13 shows the reconstruction failure rate. The reconstruction failure rate makes it
easier to identify when the anomaly began. Furthermore, while the comprehensive anomaly
index becomes 1 if even one of the 23 input visible variables fails to reproduce, the recon-
struction failure rate remains low.

This calculation confirms that the comprehensive anomaly index increased during periods
of price surges. The anomaly detection Al system enables the prediction of signs of crypto
asset price changes and the identification of transactions and traders that cause significant
price fluctuations.
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Figure 11. Norm of Reconstructed Visible Variables: The norm of the visible variables exhibits

high values during the two periods of price surges, whilst displaying low values during the intervening
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index increased during periods of price surges. The anomaly detection Al system is enabling the

Figure 12. Comprehensive Anomaly Index: This result confirms that the comprehensive anomaly
prediction of signs of crypto asset price changes.
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Figure 13. Reconstruction Failure Rate: The reconstruction failure rate makes it easier to identify
when the anomaly began. Furthermore, while the comprehensive anomaly index becomes 1 if even
one of the 23 input visible variables fails to reproduce, the reconstruction failure rate remains low.

B. Identifying Nodes Contributing to Price Surges
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Figure 14. The daily price of XRP between July 2017 and October 2021. The two highlighted
periods, corresponding to October 2017 — September 2018 and October 2020 — September 2021,
represent the phases of significant price appreciation chosen for the analysis.

a. Nodes identified by High Ricci Curvature Links The identification of important
nodes is based on the Ricci curvature of the links connecting them D.15. A higher curvature
on a link indicates a strong connection and information flow between the two nodes, making
them significant to the network’s topology. Our analysis focuses on two distinct periods of
high market volatility, as highlighted in Figure 14: the first from October 2017 to September
2018, and the second from October 2020 to September 2021. These periods were selected as
they encompass two major market uptrends characterized by significant price appreciation
and heightened network activity.

To establish a quantitative criterion for node importance, we focused on the first period of
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high volatility, specifically the week of January 1-7, 2018, which corresponds to the historical
peak price of XRP. For this peak week, the Ricci curvature was calculated for all active links
in the transaction graph in the previous section, and we isolated the top 5% of links with
the highest curvature values. A threshold was established by taking the minimum curvature
value from this top-tier cohort, which was determined to be 0.33. Using this threshold, we
identified all nodes that were part of a link with a curvature greater than or equal to 0.33
across a five-week window, the peak week, two weeks prior, and two weeks after (highlighted
in red in Fig.14). This process yielded a comprehensive list of nodes that were significant
during this critical period. Finally, a detailed attribution process was undertaken for each
node on this list.

Name Bittrex @ (A) (B) User ~aphrodite (C)

Address rKzugAERVAR2a2L aK6jGIUBhKMAVIENI) @
Address rPVMhWBSIFIiIMXYj3aAz)VKPDTENSyWdKy @ Address 1P3JGHeyWbE|7eV257BsHY66ZnXsa2DHFz @
Last x: 5C58B60CCS. 50,618,094
Last tx: ES500FC12 98,870,022 Last b F9DBASBESS. 97,037,247
Activated by: Bittrex
Activated by: PAWU1d3Ute AZpBQbIGMIGTAKIVTXVESZ Activated by ~chineseyuan
on Sep 07, 2017, 06:35:21 PMUTC
on: Dec 22, 2014, 05:58:40 PM UTC on
Initial balance: 20,68 XRP via b A9B69BALA1

X}

2> Sep 25, 2014, 09:29:30 AM UTC

Initial balance: 20 XRP via tx: 3191D23E5FA

Initial balance: 50 XRP via ix: 4D5F50C77C

User ~chineseyuan

Address 196HghtYDXVPHNaru1XbCQPCSHZWGIaENE | ®

e
°
Q
=
©
=
=
o
©
Last | 369FDDAA33... 97,087,302

Activated by:

ripplefox-hotwallet
Domain https://bittrex.com
on Feb 16, 2014, 05:07:20 AM UTC
X @8ittrexExchange
Initial balance: 100 XRP via tx: F5C3450DC1

Figure 15. Examples of node attribute data obtained from the xrpscan.com API. (A) illustrates
an exchange account (Bittrex) with its associated domain and activation details. (B) shows an
individual account activated by an exchange. (C) presents an individual account whose country
of origin is inferred from a multi-level activation chain, eventually tracing back to an activating
exchange.

The characterization of identified nodes involved a multi-stage attribution process, lever-
aging the xrpscan.com API as the primary data source. This API provides access to publicly
available information associated with XRP Ledger addresses. Upon querying the API for
each identified node, two primary attributes were programmatically extracted: (1) publicly
known name (If available) this often identifies a legal entity or a recognized service provider
and (2) operational type that distinguishes between entities such as exchanges, e.g., Bittrex,
as illustrated in Fig.15(A), and individual accounts, examples in Fig.15(B) and (C). While
our methodology relies on a ledger-specific tool, the general approach of node attribution is
applicable to other crypto assets, where more universal, open-source data standards, such
as TagPack Appendix B, can be utilized.

Following this initial data retrieval, a systematic manual verification and enrichment pro-
cedure was implemented to refine the node categorization and ascertain additional details.
For all identified exchange nodes, this procedure involved verifying their current operational
status by checking for public announcements regarding cessation of services, regulatory ac-
tions, or seizure by authorities. Furthermore, the country of legal registration for each ex-
change was meticulously determined to provide a geographical context for their operations.
For individual accounts, geographical attribution was performed by tracing the activation
chain. If an individual account was activated by an exchange (Fig.15(B)), the country of
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registration of that activating exchange was assigned to the individual account. If the direct
activator was another individual account, the process was iterated by examining the acti-
vator of the activator, continuing until an activating exchange was identified (Fig. 15(C)),
at which point the country of that exchange was assigned to the individual account. This
heuristic assumes a strong geographical link between a user and the exchange through which
they first gained access to the network. This comprehensive attribution framework allows
for a granular understanding of the identified nodes, classifying them by type, operational
status, and geographical origin, which is crucial for subsequent network analysis.

Table 6. Summary of node attributes identified by Ricci curvature

Period  Threshold Total Exchange Gambling Individual Exchanges Exchanges Account Exchanges

node site that are that were deleted that have
no longer seized by gone
in service authori- through
ties bankruptcy
1 0.3333 30 22 0 8 6 1 3 2
2/1 0.2151 368 198 14 156 31 6 17 2
2/2 0.2147 377 208 15 154 28 4 14 2

This attribution process identified 30 unique nodes that were significant during the mar-
ket peak. A classification of these nodes revealed that the majority, 22, were exchanges,
while the remaining 8 were identified as individual accounts. A comprehensive summary of
each node and its determined attributes is provided in Appendix F. Among the identified
exchanges, one node of particular interest is r9LFPRCT/jRHqeHcgiRGjGMHWEAT6nE,Fb,
publicly known as Cryptonator. This German-based exchange is notable because it was
seized by the U.S. Federal Bureau of Investigation (FBI) due to its documented involvement
in illicit transactions. This finding highlights the ability of network curvature analysis to
identify not only important nodes but also entities with significant real-world and regulatory
implications.

The same analytical process was applied to the second study period, which contained
two distinct price peaks. This led to the identification of two corresponding sets of important
nodes, labeled Period 2/1 and Period 2/2. In Period 2/1, a total of 368 unique nodes were
identified. This set comprised 198 exchanges, 156 individual accounts, and 14 gambling sites.
Notably, 6 of the identified exchanges in this period had been seized by authorities (Table 7).
In Period 2/2, 377 unique nodes were identified, consisting of 208 exchanges, 154 individual
accounts, and 15 gambling sites. In this set, 4 exchanges had been seized by authorities
(Table 8). A summary of the node attributes across all three analytical periods is presented
in Table 6.

b. Nodes identified by Large Laplacian Eigenvector Components As an alternative
to network curvature, we identify a second set of important nodes using a spectral approach
based on the eigenvectors of the normalized graph Laplacian, as detailed in Section a. Fol-
lowing a similar procedure, we selected the top-ranking members of the eigenvectors corre-
sponding to the eigenvalues A € {0, 1,2} over a five-week window for each of the three study
periods. This process yielded three distinct sets of important nodes, whose consolidated
attributes are summarized in Table 9. The first study period yielded 64 unique nodes, while
the two sub-periods of the second market cycle identified 721 and 775 nodes, respectively. A
key distinction of this method is the high proportion of individual accounts identified in all
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Table 7. Important nodes identified by Ricci curvature in Period 2/1 that were subsequently seized
by government or regulatory authorities.

node name country note
r9LFPRCT4jRHqeHcgiRGJGMHWKA76nE4Fb Cryptonator Germany Seized by FBI
r9Knt1X7s4kTtmLiCTEairzZAbmZoXnU8GQ NetEx24 Russia Seized operation. United States

Department of the Treasury’ s
Office of Foreign Assets Control
(OFAC) due to sanctioned
rNbxjMxewgMQCc4TFF2yYwBoVbCCbhZF5¢ Vebitcoin Turkey Seized operation in 2021 due to
investigation by Turkish
authoritie
r48kptkxwb5gCs2bNBPVdACI3ytWqYw7xX5Q Vebitcoin Turkey Seized operation in 2021 due to
investigation by Turkish
authoritie
rQhNdbQpKL1rgrFKCyrqS6Erdnvu7dwWgi 50x St.Vincent  Seized operation in 13/8/25
from European Union
authorities
rQf49kbLKq7sgm7fw5ULn1jeSgJvsiKYDP Felixo Turkey Seized operation in 18/07/2025
by Capital Markets Board of
Tirkiye (SPK)

Table 8. Important nodes identified by Ricci curvature identified in Period 2/2 that were subse-
quently seized by government or regulatory authorities.

node name country note
r48kptkxwb5gCs2bNBPVACI3ytWqYw7xX5Q  Vebitcoin Turkey Seized operation in 2021 due to
investigation by Turkish
authoritie
r9LFPRCT4jRHqeHcgiRGjGMHWKkKAT76nE4Fb Cryptonator Germany Seized by FBI
rNbxjMxewgMQCc4TFF2yYwBoVbCCbhZF5c Vebitcoin Turkey Seized operation in 2021 due to
investigation by Turkish
authoritie
rQf49kbLKq7sgm7fw5ULn1jeSgJvsiKYDP Felixo Turkey Seized operation in 18/07/2025

by Capital Markets Board of
Tiirkiye (SPK)

periods.

Notably, this spectral analysis also proved highly effective in identifying nodes linked to
illicit activities. As detailed in Table 10, this method identified multiple entities that were
seized by government or regulatory authorities. In the first period, the analysis pinpointed
an account connected to Cryptsy, a major exchange that collapsed in 2016 following the theft
of millions of dollars in customer assets. In the second period, the method identified several
other high-risk entities, including the Russian exchange 24Paybank and multiple individual
accounts linked to the previously seized exchange Cryptonator. The successful identification
of these illicit actors using a fundamentally different analytical technique provides strong
corroborating evidence that network structure analysis is a robust tool for detecting high-
risk entities within the crypto asset ecosystem.

VI. Implications

This study explains how advances in Al systems for anomaly detection are increasingly
enabling the prediction of signs of crypto asset price changes and the identification of trans-
actions and traders that cause significant price fluctuations. Recently, crypto assets have
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Table 9. Summary of node attributes identified by Laplacian Eigenvector

Period Total Exchange Gambling Individual Exchanges Exchanges Account Exchanges

node site that are that were deleted that gone
no longer seized by through
in service authori- bankruptcy
ties and
individual
that used
them
1 64 8 0 56 1 1 7 0
2/1 721 81 7 633 11 4 39 0
2/2 775 74 6 695 12 5 43 0

begun to be viewed as investment assets rather than mere speculative targets, evidenced
by their inclusion in ETFs and the growing adoption of dollar-pegged stablecoins. Reflect-
ing these developments, we examine the benefits that anomaly detection Al offers to both
investors and financial authorities overseeing AML/CFT/CPF. Furthermore, fraudulent ac-
tivities can trigger sharp surges or crashes in crypto asset prices, and there is concern that
such volatility could propagate throughout the entire financial system. We examine the
benefits that anomaly detection Al offers in managing systemic risk.

A. Usage of AI system for Investors

We outline the benefits that anomaly detection AI brings to investors, scenario by scenario.

a. Price Plunge (Sharp Decline) During price plunges caused by mass sell-offs, regula-
tory shocks, or hacking, short-term investors can swiftly cut losses and minimize damage by
detecting early warning signs. They may also profit through short selling using futures or
options. Long-term investors gain opportunities to purchase assets at bargain prices after a
plunge and can enhance their portfolio’s risk resilience based on such insights.

b. Price Surge (Sharp Rise) During surges driven by large-scale purchases or positive
news, short-term investors can swiftly identify upward signals, enter the market, and secure
profits by exiting shortly after the surge begins. Long-term investors can maintain holdings
based on confidence in long-term growth trends, benefiting from increasing asset value. They
can also steadily grow assets by partially exiting while retaining the remainder.

c. Price Manipulation (Pump-and-Dump, etc.) When specific groups or investors ap-
ply artificial buying or selling pressure, short-term investors can detect manipulative anoma-
lies early, enabling them to avoid being caught out or profit from counter-trend trading.
Long-term investors can identify temporary noise caused by price manipulation and con-
tinue making investment decisions based on fundamentals, thereby avoiding unnecessary
losses.

d. Trade Concentration (Whale or Exchange Dependency) When the market be-
comes heavily reliant on a small number of large investors (whales) or specific exchanges,
short-term investors can track whale fund movements and follow them to gain short-term
profits. They can also avoid significant losses by exiting just before a collapse. Long-term
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Table 10. Important nodes identified by Laplacian Eigenvector that were subsequently seized by

government or regulatory authorities.

period node type

name country

note

1 rGPJaocRqqiJqouaohTMRn8J4JCSX8Gv6s individual

2/1 and
2/2

rHiGDGvvxR6A3aC9uFwUNLGxeuThdd78wo individual

2/1 r3kSWYjViQWJIuSKq6Ej YASEqBWZw4SHmkV  individual

2/1 rfnonE8R5Fd7gugi9A7h16GUaGxloDyeqx exchange
2/1 and
2/2
2/2

rKs1E7iQxSk8wfEjXiWakZSF1HQUfewSDQ exchange

rHm8Wrp775J59203dsXsLQdzQbjZ9Hyb6h individual

2/2 rHvrKyGMCyC2eZ7zryQcnBCfPhvsmWxojj exchange

2/2 rBXukWUDMjitNmujgRHwqgPbRqBUxhssEp individual

N/A Turkey

N/A Malaysia

N/A Germany
24Paybank Russia
24Paybank Russia
N/A Germany
24Paybank Russia

N/A Germany

Individual using
Cryptsy. Account
deleted. Cryptsy was
seized in 2016 due to
user-reported issues
with withdrawing funds
from the platform. The
court later found that
Cryptsy founder Paul
Vernon had stolen
millions of dollars’
worth of customers’
digital assets before
fleeing to China.
https://cointelegraph.
com/news/additional-c
ompensation-available
-for-cryptsy-victims-c
ourt-notice-says
Individual using
MBAex. MBAex was a
Malaysia exchange.
Seized by the Chinese
2019 police due to
suspicion of a Ponzi
fodémdual using
Cryptonator. FBI
seized the exchange

Seized by District Court
of St. Petersburg
Seized by District Court
of St. Petersburg
Individual using
Cryptonator. FBI
seized the exchange

Seized by District Court
of St. Petersburg
Individual using
Cryptonator. FBI
seized the exchange

investors can understand the risks of market concentration and ensure long-term stability
by diversifying investments across multiple assets and exchanges.

e. Liquidity Dry-Up When liquidity is lost due to thin order books or market fragmen-
tation, price volatility tends to become extreme. Short-term investors can identify early signs
to avoid high slippage or close positions before trades become difficult to execute. Long-term
investors can achieve stable asset management by increasing their investment ratio in highly
liquid, significant assets or continuing to invest while assessing the overall market health.
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B. Usage of Al system for Regulatory Authorities

Once this anomaly detection Al system is implemented, it is expected to significantly stream-
line the process of automatically detecting and reporting suspicious transactions at financial
institutions and crypto asset exchanges, as well as standardize and improve the quality of
reports. This will enable regulatory authorities (such as the Financial Services Agency) to
utilize reports more effectively, thereby enhancing the reliability of crypto asset transactions
and contributing to the realization of a healthy cyber-physical economy.

Below, we outline the benefits that anomaly detection AI brings to financial authorities,
broken down by scenario. Common to each scenario is the shift from reactive to proactive
measures. By possessing the ability to predict signs and identify specific issues, financial
authorities can enjoy multifaceted benefits such as market stabilization, blocking illicit funds,
and strengthening international cooperation.

a. Market Manipulation Within the crypto asset market, specific traders may attempt
price manipulation through tactics such as large-scale buying/selling, wash trading, or pump-
and-dump schemes. This can lead to sharp price fluctuations, undermining investor confi-
dence and threatening the market’s very stability. Should regulatory authorities detect early
warning signs, they can identify the manipulating entities, issue temporary trading restric-
tions to exchanges, or issue risk warnings to investors. This safeguards market integrity and
strengthens investor protection.

b. Terrorist Financing (CFT) Terrorist organizations may utilize crypto assets, with
their anonymity and cross-border convenience, for fundraising and transferring funds. Failing
to detect these fund flows poses significant risks to international security. If early warning
signs are possible, abnormal fund movements can be detected immediately, allowing for the
blacklisting of related wallets or requests to exchanges and banks to freeze funds. Fur-
thermore, sharing this information with international financial intelligence units (such as
the FATF and Egmont Group) can significantly enhance the effectiveness of global counter-
terrorist financing efforts.

c. Sanctions Evasion (CPF) There exists a risk of “sanctions evasion”, where sanc-
tioned nations or entities utilize crypto asset to conduct trade settlements or procure funds
for weapons-related activities. This circumvents traditional dollar-based financial systems,
posing a risk of nullifying the effectiveness of sanctions. Supervisory authorities can pre-
vent sanctions violations by swiftly identifying specific wallets or transaction routes and
strengthening cross-referencing with international sanctions lists. A significant advantage
is the ability to ensure the effectiveness of international sanctions by blocking sanctioned
addresses and sharing information with allied nations.

d. Money Laundering (AML) Criminal organizations attempt to launder illegally ob-
tained proceeds by converting them into crypto assets, using mixing services and cross-chain
transactions. Consequently, laundered funds may flow into legitimate financial institutions,
potentially strengthening the criminal organization’s financial base. If signs can be antici-
pated, supervisory authorities can immediately detect abnormal transaction patterns, report
them to Financial Intelligence Units (FIUs), and swiftly freeze relevant wallets and exchange
accounts. This strengthens AML frameworks and can sever the circulation of criminal pro-
ceeds.
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e. Stablecoin Peg Collapse Stablecoins pegged to the dollar or euro may fail to maintain
their peg due to insufficient backing assets or external shocks. Such a collapse undermines the
foundation of payments and remittances, spreading loss of confidence throughout the entire
financial system. Regulators can pre-emptively identify signs of peg collapse, requiring issuers
to provide additional disclosures or issuing risk warnings to payment service providers and
investors. In certain cases, emergency trading restrictions or liquidity provision measures
can be implemented to mitigate systemic risk.

f. Sudden Volatility Caused by Whale Investors When large investors, known as
“whales”, execute substantial buy or sell orders, short-term volatility can surge sharply,
potentially leading to significant losses for smaller investors. If signs can be detected, su-
pervisory authorities can issue warnings to the market and, where necessary, implement
measures such as triggering circuit breakers. This helps prevent excessive market disruption,
enhancing investor protection and market transparency.

C. Usage of Al system for Systemic Risk Management

In recent years, crypto assets have been increasingly held by specialized financial institutions.
They are also being incorporated into ETFs, which increases the risk that turmoil in the
crypto asset market could spread to the entire existing financial system. For this reason, the
Financial Stability Board (FSB) issued recommendations on the regulation of crypto assets
in July 2023, and an international monitoring system is being developed. In the future, we
aim to explore methods for quantitatively assessing the risk spillover within the financial
system and developing strategies to mitigate its impact. Below, we outline the benefits that
anomaly detection Al brings to systemic risk management, scenario by scenario.

a. Price Crash The crypto asset market is highly speculative, with prices subject to
sharp fluctuations within short timeframes. Chain reactions of selling triggered by lever-
aged trading or algorithmic trading can lead to significant price crashes. In such instances,
the value of crypto asset-incorporated ETFs and assets used as collateral is substantially
impaired, directly propagating losses to the balance sheets of institutional investors such as
investment funds, insurance companies, and pension funds. Furthermore, this could trigger
a broader flight from risk assets, potentially hurting equity and bond markets.

b. Peg Collapse This occurs when a stablecoin, which promises to track the US dollar,
fails to maintain its peg due to issues with the quality or liquidity of its backing assets.
Should a run occur, the issuer must rapidly sell large quantities of government bonds or
commercial paper on the market to meet massive redemption demands. This would constrain
bond market liquidity, with falling prices spreading to the balance sheets of banks and
other financial institutions. Concerns would also spread to international remittances and
settlement systems, directly leading to systemic risk.

c. Excessive Increase in Market Correlation Crypto assets have been anticipated to
offer portfolio diversification benefits as a “new asset class” . However, during financial
crises, they tend to be sold off alongside equities and bonds, causing correlation to surge
sharply. This erodes diversification effects, simultaneously deteriorating the portfolios of
institutional investors. Consequently, risk-averse selling spreads, triggering a chain reaction
that accelerates overall market turmoil.
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d. Smart Contract Vulnerabilities In DeFi (decentralized finance) and financial prod-
ucts backed by crypto assets, automated execution via smart contracts is essential. However,
if the code contains bugs or security vulnerabilities, hackers could siphon off funds fraudu-
lently or cause contracts to halt or freeze. This not only results in direct losses for investors
and financial institutions but also significantly undermines trust in DeFi and crypto asset
ETFs as a whole.

e. Regulatory and Legal Framework Risk Regulatory frameworks for crypto assets
and stablecoins remain underdeveloped in many countries, posing risks of sudden regulatory
tightening or outright bans. Restrictions in major markets could trigger mass asset sales by
investors, leading to price collapses and a vanishing of liquidity. Furthermore, differing regu-
latory stringencies across nations may cause ‘regulatory arbitrage’ — capital concentrating
in less-regulated jurisdictions — undermining international financial stability.

f. Issuer Credit Risk Stablecoin issuers face potential risks from mismanagement of
backing assets or operational failure. Should they become unable to meet redemption obli-
gations, a “credit collapse” could occur, inflicting direct losses on users and associated
financial institutions. Particularly where issuers rely heavily on banks or investment funds,
such credit concerns could readily spread to the traditional financial system.

g. Settlement System Failures Payment systems utilizing stablecoins and blockchain
technology are gaining attention for international remittances. However, they carry the
risk of functional shutdown due to network delays, blockchain forks, or attacks on consensus
algorithms. Settlement system failures directly impact the liquidity of corporate and financial
institutions, with defaults on margin trading and settlements rippling through the entire
financial market.

h. Cyberattacks and Operational Risk Crypto asset exchanges and custodians, man-
aging vast assets, are prime targets for cyberattacks. Hacking resulting in the theft of
customer assets or internal fraud could disrupt the redemption of stablecoins and crypto as-
set ETFs. Consequently, associated banks and investment funds might face liquidity crises,
potentially triggering a chain reaction of credit instability.

VII. Conclusion

This study examined direct trading data for the crypto asset XRP over the period from
October 2, 2017, to September 26, 2021—a timeframe that included two notable surges in
XRP’s price. In this paper, we constructed the Step 2 Anomaly Detection Al system, as
described in the RIETT Discussion Paper (Ikeda et al., 2024a), and verified its effectiveness.
We outlined the theoretical foundation of the Step 2 Anomaly Detection Al system, as
conceptualized in Fig. 1 of (Ikeda et al., 2024a). This included an explanation of the basic
principles of the Boltzmann machine, followed by an overview of Granger causality as a
method for feature selection. We then provided a more detailed description of the specific
features used in the analysis.

To begin the empirical analysis, we constructed weekly dynamic graphs from XRP
blockchain transaction data and calculated various graph features from the weekly trans-
action network over the analysis period. Nodes that consistently appeared in the network
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during a fixed period were defined as regular nodes, and their characteristics were described
in detail. Since the number of regular nodes varied from week to week, we applied feature
normalization to accurately capture temporal changes in the graph features derived from
weekly network analysis. We then used Granger causality tests to examine the relationship
between the time series of these features and the XRP price. The results showed that 23
features tended to change before price fluctuations occurred, indicating their potential in-
fluence on price dynamics. These selected features were used as binary inputs to train the
parameters of a Boltzmann machine during periods of stable prices. The trained anomaly
detection AI then computed a comprehensive anomaly index over the entire analysis period.

Our results showed that the anomaly index increased during periods of price surges. This
demonstrated the system’s potential to detect early signs of crypto asset price changes and to
identify transactions and traders contributing to these fluctuations. For weeks identified as
anomalous, we further analyzed the traders who had a significant impact on price movements,
based on various feature calculation results, and examined their attributes. Given that
fraudulent activities can cause sharp price surges or crashes in crypto markets, there is
growing concern that such volatility could propagate through the broader financial system.
Therefore, we also considered the potential of anomaly detection Al to contribute to systemic
risk management.

This study demonstrated how advances in anomaly detection Al systems enhanced the
ability to forecast signs of crypto asset price changes and to identify the underlying trans-
actions and traders driving such movements. As crypto assets have increasingly come to be
viewed not just as speculative instruments but also as investment assets—evidenced by their
inclusion in ETFs and the growing use of dollar-pegged stablecoins, this paper examined the
benefits that anomaly detection AI can offer both to investors and to financial authorities
tasked with overseeing AML/CFT/CPF compliance. In actual cryptoasset markets, price
fluctuations occur not only due to illegal activities like fraud but also from various external
shocks. Real-time anomaly detection must therefore account for these external shocks. Sup-
pose a stochastic differential equation can represent price changes. The first term describing
this change is the AI model developed in this paper, while the second term can handle ex-
ternal shocks related to policies or regulations. The data required for the first term’s Al
model can be obtained from specific cryptoasset blockchains. Meanwhile, data on external
shocks may be obtainable from cryptoasset-related social media and economic news sources.
Developing a real-time anomaly detection Al that explicitly incorporates the effects of the
second term remains a future challenge.
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Table A.11. Description of features

feature Description
priceXRP Price in USD
entropy Degree Entropy
clustercoeff Clustering Coefficient
mean distance Mean Distance of path lengths
Zscore3 7 score of Motif 3
Z.scoreb 7 score of Motif 5
Z.scoreb 7 score of Motif 6
Zscore7 7 score of Motif 7
Zscore8 Z score of Motif 8
Zscore9 Z score of Motif 9
Zscorel( Z score of Motif 10
Zscorell 7Z score of Motif 11
Zscorel2 Z score of Motif 12
Zscorel3 7 score of Motif 13
Zscorel4 7 score of Motif 14
Zscorelb 7 score of Motif 15
Zscorel6 7Z score of Motif 16

num of loops
share of loops s3
share of loops s6

excess of the indicator

trace of A2
0th Betti number
1st Betti number

2nd Betti number

3rd betti number
normalized hl
range 3

range H

range 10
dimension 1
dimension 2
Diml x avg
Diml y avg
Dim2 x avg
Dim2 y avg
dimension 1
dimension 2
lg sv

Total number of time-sensitive transaction loops
Ratio of S3 loops among time-sensitive transaction loops
Ratio of S6 loops among time-sensitive transaction loops
Indicator of time-sensitive transaction loop excess
Trace of the square of the adjacency matrix
Number of connected components
Number of independent cycles

Number of “2D surfaces” surrounding “3D voids”
(This matches the number of enclosed voids.)

Number of “3D volumes” surrounding “4D voids”
First Betti number for the normalized adjacency matrix
Moving average of the first Betti number with window size 3
Moving average of the first Betti number with window size 5
Moving average of the first Betti number with window size 10
Number of independent cycles in the persistence diagram
Number of independent voids in the persistence diagram
x-coordinate of the cycle’s center of gravity in the persistence diagram
y-coordinate of the cycle’s center of gravity in the persistence diagram
x-coordinate of the void’s center of gravity in the persistence diagram
y-coordinate of the void’s center of gravity in the persistence diagram
Sum of the differences between birth time and death time for all cycles
Sum of the differences between birth time and death time for all voids
Largest singular value of the correlation tensor
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Table A.12. Description of features (continued)

feature

Description

nodes ent vec
potential ratio ent vec
loop ratio ent vec
potential flow ent vec
loop flow ent vec
nodes reg vec
potential ratio reg vec
loop ratio reg vec
potential flow reg vec
loop flow reg vec

Total number of nodes

Potential flow ratio for entire node network
Loop flow ratio for entire node network
Potential flow for entire node network

Loop flow for entire node network

Total number of regular nodes

Potential flow ratio for regular node network
Loop flow ratio for regular node network
Potential flow for regular node network
Loop flow for regular node network

rts mean composite R-tipping score
curv per90c 90th percentile point of Ricci curvature
curv mean Average value of Ricci curvature
DosLambda0 Density of State for A =0
DosLambdal Density of State for A =1
DosLambda2 Density of State for A = 2

Appendix B. Data Identifying Illegal Transactions: TagPack

For the identification of illicit transactions, particularly on prominent blockchains like Bitcoin
(BTC) and Ethereum (ETH), standardized public datasets serve as an invaluable resource.
One such key resource is the GraphSense TagPack: https://github.com/graphsense/gr
aphsense-tagpacks, an open-source, community-maintained collection of machine-readable
attribution tags. FEach tag links one or more blockchain addresses to a real-world actor
or activity, such as an exchange, darknet market, or sanctioned entity. This provides a
structured methodology for mapping on-chain activity to real-world events, especially those
involving illicit finance.

An analysis of the public TagPacks, summarized in Table B.13, reveals key patterns in
on-chain illicit activity. Notably, categories such as sextortion and mixing services domi-
nate in terms of raw address counts, despite originating from a relatively small number of
documented cases. This is an artifact of their operational model; sextortion campaigns tar-
get numerous victims, and mixers are designed to generate long, complex address chains,
thereby inflating their on-chain footprint compared to more concentrated events, such as
exchange hacks. Conversely, categories such as pyramid schemes or phishing are associated
with a minimal number of addresses, illustrating the long-tail distribution of diverse yet
security-critical threats.

Table B.14 confirms the focus of these attribution efforts, showing that the vast majority
of documented cases involve the Bitcoin and Ethereum networks. While our primary research
focuses on the XRP Ledger, for which TagPack coverage is less extensive, this dataset pro-
vides a valuable benchmark for understanding the landscape of illicit finance across the
broader crypto asset ecosystem.
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Table B.13. Anomalies listed in public TagPacks.

Anomaly # Case # Addresses
Gambling 12 2,659
Mixing service 7 36,763
Hack / theft 4 659
Scam 3 3,132
Sanction 3 599
Ransomware 3 14,653
Extremism 2 519
Sextortion 2 71,127
Fraud 1 6,699
Dark-web market 1 117
Pyramid scheme 1 8
Ponzi scheme 1 52
Phishing 1 6
Terrorism 1 155

Table B.14. Top 10 crypto assets involved in anomalies lised in table B.13.

Crypto asset # Case
Bitcoin (BTC) 25
Ethereum (ETH) 19
Litecoin (LTC) 5

Bitcoin Cash (BCH)
Monero (XMR)
Zcash (ZEC)
Bitcoin SV (BSV)
Bitcoin Gold (BTG)
Dash (DASH)
TRON (TRX)

o =N N W

Appendix C. Several Specific Fraudulent Schemes

A.  Pump-and-Dump scheme

A Pump-and-dump (P&D) scheme is a representative market manipulation fraud in which

perpetrators accumulate illiquid crypto assets over time and subsequently disseminate false

or exaggerated information through social networks, causing the price to surge (pump).

They then sell at inflated prices to make profits (dump). This mechanism has been observed

in stock markets since the 18th century and has recurred throughout history. Because the

crypto asset market lacks mature regulation and surveillance, it is particularly vulnerable.
A typical P&D process consists of the following steps:

1.

Accumulation phase: Buy small amounts over a long period so as not to draw
attention to the price.

Announcement phase: Promote the P&D event via SNS or Telegram, announcing
the date, time, and exchange to generate hype.

Execution phase: At the specified time, the target coin is revealed, and participants
purchase simultaneously, driving the price sharply upward.

Dump phase: The organizers sell at a high price, leaving late participants and general
investors with losses.
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Here, let us briefly review event detection and prediction methods using machine learn-
ing. Kamps and Kleinberg (2018) systematically defined P&D and extracted detectable
features. Furthermore, Nghiem et al. (2021) proposed combining market and SNS data,
applying supervised and unsupervised anomaly detection methods to detect P&D events
in real-time. Anomalies were classified into price anomalies, volume anomalies, and pump
anomalies, where both co-occurred, detected using breakout and reinforcement indicators.
Xu and Livshits (2018) proposed a random forest—based method to predict target coins
based on past P&D events, achieving some success. Hu et al. (2023) developed a neural
network—based model that incorporates time-series data, demonstrating improved predic-
tion accuracy compared to traditional methods. More recently, Bolz et al. (2024) proposed
a real-time prediction method combining market and SNS data with large language models
(LLMs). This study is novel in its integrated analysis of multidimensional data such as price
fluctuations, trading volume, and SNS posts. However, challenges remain, including the
black-box nature of the models and limits to prediction accuracy. Currently, these methods
enable preliminary screening of “suspicious coins,” but accurate prediction of specific target
coins has not yet been achieved. Moreover, the impact of false positives on markets remains
insufficiently studied. Future challenges include improving event detection and prediction
accuracy, as well as developing real-time approaches to suppress P&D schemes.

B. Crowd Pump

La Morgia et al. (2023) reports a price surge phenomenon not caused by organized fraud
but by herd psychology, where a large number of investors spontaneously buy. It is often
triggered by SNS hype or celebrity endorsements. Although not inherently fraudulent, crowd
pumps can be exploited for P&D schemes, making them somewhat of a gray area.

Unlike traditional P&D events, where prices crash after the surge, crowd pumps often
sustain relatively high levels instead of falling completely. As a result, they are challenging to
classify legally as fraud and resemble asset formation based on investor sentiment. Concrete
examples have been reported for XRP, Dogecoin, and Trump coin. In particular, Dogecoin
is a notable example where Elon Musk’s social media posts sparked a surge in speculative
fervor and sustained elevated prices.

Here, let us review a crowd pump event in XRP reported by La Morgia et al. (2023).
On December 22, 2020, XRP suffered a significant blow when the U.S. SEC filed a lawsuit
against Ripple, alleging illegal securities sales worth $1.3 billion using XRP since 2013. As a
result, XRP’ s price dropped from $0.42 to $0.18 (January 4, 2021). The delisting of XRP
from major exchanges, including Coinbase, further reduced liquidity, creating conditions
favorable for manipulation. In this vulnerable environment, a Telegram group called “Buy
& Hold XRP FEB 1st, 2021” was created, later renamed “BUY & HOLD XRP FEB Ist,
2021 @8:30AM.” Within 24 hours of its creation, the group reached Telegram’s maximum of
200,000 participants. The plan was to collectively buy XRP on February 1, 2021, at 13:30
UTC. However, many participants had already purchased XRP days earlier, causing the price
to rise before the pump began. On February 1, XRP rose by 56%, marking its most significant
daily increase since December 21, 2017. Still, because the price was already overheated, the
group’s planned collective buy had only a limited impact. La Morgia et al. (2023) analyzed
crowd pump phenomena in XRP and DOGE, noting similarities to traditional P&D schemes
but emphasizing the psychological, rather than organized, nature. Using Reddit data and
sentiment analysis, they confirmed that crowd enthusiasm fueled these pumps. They also
suggested that machine learning could enable real-time detection of such events by identifying
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unusual use of market orders. The XRP crowd pump exemplifies how collective behavior
by retail investors can significantly affect prices in poorly regulated crypto markets. Unlike
fraudulent P&Ds, prices did not fully collapse, highlighting the importance of studying these
phenomena for maintaining market integrity and informing regulatory policy.

C. Coin Mizing

Crypto assets such as Bitcoin record transaction histories on public blockchains, mak-
ing transfers traceable through advanced analysis. Coin mixing is a technique used for
anonymization and privacy protection, as well as to prevent money laundering. It works by
pooling assets from multiple users, redistributing them in a way that severs the link between
sender and receiver. Ethereum hosts numerous mixing services, notably Tornado Cash, a
smart, contract-based mixer. Although initially developed for user privacy, mixing is widely
abused for laundering illicit funds, financing terrorism, or supporting war efforts. As a result,
it is subject to international regulatory monitoring and enforcement.

Numerous Bitcoin mixing services exist on the dark web, including Blender.io, Mixero,
Yo!Mix, Coinomize, and FoxMixer. Network analysis of Bitcoin mixing transactions often
reveals cycles caused by address reuse, reflecting flaws in automation or address management.

Bitzlato, a Russia-based exchange, was found to process illicit funds, with on-chain evi-
dence such as transactions marked with “OP_RETURN 4269747a6c¢617461f” (corresponding
to Bitzlato). In January 2023, U.S. authorities arrested founder Anatoly Legkodymov, who
pleaded guilty to laundering over $700M. FinCEN labeled Bitzlato as a “primary money
laundering concern” for illicit Russian finance. This case underscores that coin mixing is
directly tied to national security.

Despite efforts by FATF and Japanese regulators, mixers persist in a “cat-and-mouse”
cycle of closure and reopening, limiting regulatory effectiveness. Future responses will re-
quire advanced anomaly detection using blockchain analytics and ML, coupled with stronger
international cooperation.

Websites such as Ripple Mixer (https://ripple-mixer.com/) and XRP Mixer (https:
//xrp-mixer.com/) claim to offer XRP mixing services. These sites direct users to unused
XRP addresses. The investigation found only a handful of deposits (approximately 1,400
XRP in total) but no withdrawals, suggesting that no actual mixing occurred. Thus, these
may be fraudulent fund-collection sites.

Tornado Cash, Ethereum’s leading mixer, uses smart contracts to automate mixing and
sever transaction links. While protecting user privacy, it has been abused for laundering
illicit funds, including assets stolen by DPRK hackers.

On August 8, 2022, OFAC designated Tornado Cash as a sanctioned “notorious virtual
currency mixer” by U.S. Department of the Treasury, Office of Foreign Assets Control
(OFACQC). Earlier, in May 2022, addresses linked to DPRK attacks were sanctioned by U.S.
Department of the Treasury, Office of Foreign Assets Control (OFAC). On March 21, 2025,
additional addresses were sanctioned by U.S. Department of the Treasury, Office of Foreign
Assets Control (OFAC).

Recent research by Endong Liu (2025) analyzed the impact of OFAC sanctions, finding
an immediate decline in Tornado Cash usage, followed by evasive adaptations and migration
to alternatives, which highlights the limits of sanction effectiveness.
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D. SNS Data Analysis during a Crowd Pump Event

P&D schemes are well-known fraudulent manipulations. Recently, phenomena without clear
organizers, driven instead by collective investor behavior, have been observed—so-called
crowd pumps (CP), notably in Dogecoin and XRP. This section briefly reports an analysis
of XRP crowd pump Telegram data published by SystemsLab-Sapienza (2025).

Analysis of message logs and invitation networks revealed bursts of posting just before
events, reflecting heightened expectations and speculative frenzy. Invitation network analysis
showed spikes in average degree, indicating surges of new participants. At least six XRP
addresses were mentioned in the chat.

A future direction is to apply ML and deep learning models from P&D research to test
the feasibility of real-time detection and prediction of crowd pump.

Appendix D. Normalized and Binarized Features

A.  [Feature 1: Graph Theory] Clustering coefficient

0.45

"\ clustercoeff

=
8
Q
S 8 k]
I =) =
1 a
=
o
0
bl
o
VOIETTNODOTNOHONULMAODQOITNOONNTITNAHD
RN R e R b AR
80%mQ%%mommmmaggmgmﬂggwommﬂmgg
P i e S b T
(] (= | 0
NoRowoxs D~ W0 OBl NNQLA~TNHRD ™
oReQ0cI3RGEINR2E oo RISNSNGER
5388853508682 55388853583868823Y9
RZRldRRA00L=52282323338204=5K2
(o]
SHCSCoEREEE823R 253 NS SSRRRENERE
NRQNQNN JNRKJARCR QVKVNRQVNNVIIQANNGY &
Te}
= -
[ s 1 N
o
8 L
— Q
: o 3
L w8
=R - o
UI o |
c —
5 L w
o | o
o

Figure D.1. Clustering coefficient

46



Graph Theory] Degree Entropy
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Graph Theory] Z-score of triangular motifs
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Figure D.7. Hodge decomposition
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Figure D.14. Topological Data Analysis: x-coordinate of the void’s center of gravity in the persis-
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Topology] Average Ricci curvature
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High-dimensional statistical analysis] Correlation tensor
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Figure D.16. Largest singular value of the correlation tensor
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[Feature 10: Time Series Analysis] Composite R-tipping Score
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Appendix E. Feature Selection using the Granger-causality

First, we tested the null hypothesis Hy “feature does not Granger-cause priceXRP” for
normalized features. The results are shown in Table E.1 and E.2. Then, we tested the
null hypothesis Hy “feature does not Granger-cause priceXRP” for features after taking the
difference. The results are shown in Table E.3 and E.4.
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Table E.1. Selection using the Granger-causality test for normalized features

feature p-value of ADF test p-value of Granger-causality
priceXRP 0.01 -
entropy 0.6 0.02
clustercoeff 0.7 6 x 1076
mean distance 0.001 0.2
Zscore3 0.2 1
Zscoreb 0.3 0.03
Zscoreb 0.04 0.1
Zscore7 0.07 0.7
Zscore8 0.4 0.1
Zscore9 0.4 0.01
Zscorel0 0.4 0.03
Zscorell 0.009 7 x107%
Zscorel2 0.02 0.3
Zscorel3 3x 1074 0.4
Zscorel4 0.3 0.01
Zscorelb 0.6 0.2
Zscorel6 0.1 0.06
num of loops 4 %107t 0.5
share of loops s3 2 x 1078 0.2
share of loops s6 2 x 1078 0.9
excess of the indicator 2 x 10719 0.3
trace of A2 2% 1079 0.1
Oth betti number 2 x 10716 0.6
1st betti number 5x 104 0.8
2nd betti number 4 x 1010 0.4
3rd betti number 2x10°8 1
normalized hl 6x 1077 0.2
range 3 2x 10~ 0.3
range 5 . 0.2
range 10 0.7 0.3
dimension 1 0.05 0.4
dimension 2 0.04 0.4
Diml x avg 1x 1071 2x 1079
Diml y avg 9 x 10716 2 x 10716
Dim2 x avg 5 x 107 0.2
Dim?2 y avg 1x10°° 0.2
dimension 1 1x10~ 1 2 x 10716
dimension 2 0.002 0.4
lg sv 0.1 0.07
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Table E.2. Selection using the Granger-causality test for normalized features (continued)

feature p-value of ADF test p-value of Granger-causality
nodes ent vec 0.03 0.03
potential ratio ent vec 3 x 10710 0.2
loop ratio ent vec 3 x 10710 0.2
potential flow ent vec 2 x 10~ 0.7
loop flow ent vec 0.009 0.9
nodes reg vec 0.02 0.03
potential ratio reg vec 3x107° 0.03
loop ratio reg vec 3x107° 0.03
potential flow reg vec 3 x10~* 0.8
loop flow reg vec 0.01 0.8
rts mean 1x107° 2 x 10~
curv per90c 0.7 1x10~4
curv mean 0.8 1x10°*
DosLambda0 0.08 0.02
DosLambdal 0.4 0.04
DosLambda2 0.07 2
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Table E.3. Selection using the Granger-causality test for features after taking the difference

feature p-value of ADF test p-value of Granger-causality
diff priceXRP 2x 10~ -
diff entropy 9x 1010 0.2
diff clustercoeff 1x 10~ 5x 1076
diff mean distance 2% 10~16 0.2
diff Zscore3 2 x 10716 0.9
diff Zscoreb 2x 1016 0.009
diff Zscore6 2 x 10716 0.3
diff Zscore7 2x 10716 0.2
diff Zscore8 2x10~16 0.5
diff Zscore9 2x 1016 0.02
diff Zscorel0 2x10°16 0.7
diff Zscorell 2 x 10716 5x 1075
diff Zscorel2 2x10~16 0.1
diff Zscorel3 2 x 10716 0.2
diff Zscorel4d 2% 10~16 0.003
diff Zscorelb 2 x 10~16 0.5
diff Zscorel6 2x 10716 0.04
diff num of loops 2 x 10716 0.6
diff share of loops s3 2x 10716 0.07
diff share of loops s6 2 x 10716 0.6
diff excess of the indicator 2 x 10716 0.5
diff trace of A2 2x 10”16 0.1
diff Oth betti number 2 x 10716 0.8
diff 1st betti number 2x10~16 0.6
diff 2nd betti number 2 x 10~16 0.4
diff 3rd betti number 2 x 10~16 0.8
diff normalized hl 2 x 10~16 0.3
diff range 3 2 x 10716 0.2
diff range 5 1x10" 1 0.2
diff range 10 4x 10~ 0.8
diff dimension 1 2 x10~16 0.2
diff dimension 2 2 x 10716 0.1
diff Dim1 x avg 2 x 10716 -
diff Dim1 y avg 2 x 10716 2 x 10716
diff Dim2 x avg 2 x 10716 0.5
diff Dim2 y avg 2x 10716 0.4
diff dimension 1 2x 10716 2 x 10716
diff dimension 2 2 x 10716 0.3
diff 1g sv 2 x 10716 0.2
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Table E.4. Selection using the Granger-causality test for features after taking the difference (con-

tinued)
feature p-value of ADF test p-value of Granger-causality
diff nodes ent vec 2x 10710 0.003
diff potential ratio ent vec 2 x 10~16 0.2
diff loop ratio ent vec 2 x 1016 0.2
diff potential flow ent vec 2 x 1016 0.7
diff loop flow ent vec 2 x 1016 0.9
diff nodes reg vec 2 x 1016 0.002
diff potential ratio reg vec 2 x 10716 0.02
diff loop ratio reg vec 2 x 10716 0.02
diff potential flow reg vec 2 x 10~1¢ 0.8
diff loop flow reg vec 2 x 10716 0.9
diff rts mean 2x10°16 2x 1071
diff curv per90c 2 x 10716 6 x 10~
diff curv mean 2 x 1016 0.003
diff DosLambda0 2 x 10716 0.08
diff DosLambdal 2 x 10716 0.04
diff DosLambda2 2 x 10716 0.8
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Appendix F. Node attribute of the first sturdy period
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Table F.5. Unique nodes of the 5 weeks of the first period of study

node type name country note
rCoinaUERUrXblaA7dJu8qRcmvPNiKS3d exchange  CoinPayments Cayman Islands None
rKzugAERVAR2a2LaK6jGfnuBhKM4V{ENiJ individual N/A USA Individual using Bittrex
rP3JGHeyWbEj7e¢V2s7BsHY66ZnXsa2DHFz individual aphrodite China Individual using ripplefox
r9gtbXLZWXmtrajdZyRDu8XhzZgqXzf8mf exchange ripplefox-gate China None
rghL9q8iPW6P4ZqG53nv3VNkVBKWWngdd exchange ripplefox-allcoin China None
rExFpwNwwrmFWbX81AqbHJYkq8W6ZoeWE6 exchange  ALFAcashier Belize None
rHZaDC6tsGN2JWGeXhjKL6664RNCqg5hud4B exchange  bitso-hot Mexico None
rp7Fq2NQVRIxQJvUZ408ZzsTSocvgYoBbs exchange BX.in.th Thailand Ceased operation in 2019
rLHzPsX60XkzU2qL12kHCH8G8cnZv1rBJh exchange  Kraken USA None
rUeFPRGNjtcbtezyQKKiDcS1eQyYLQlger exchange  therock-hot Ttaly Registered in Malta.
Bankrupted and judicial
liquidation in 2023.
rpTYQvadgz7GxmkSeqJWcWz5KGVnghpezh individual N/A UK Individual using GateHub.
Account deleted.
rUocflixKzTuEe34kmVhRvGgqNCofY1NJzV exchange EXMO Poland None
rLEsXccBGNR3UPuPu2hUXPjziKC3qKSBun exchange  therock Ttaly Registered in Malta.
Bankrupted and judicial
liquidation in 2023.
rwfGzgd4bUStS9gA5xUhCmglJ86 TMtmGMo exchange  ShapeShift Switzerland Ceased operation in 2021
and transform the
platform’s ownership and
governance through the
ShapeShift DAO
rLdinLg5CJood9wdjY9ZCdgycK8KGevkUj exchange  Koinex India Ceased operation in 2019.
Account deleted.
rhL5Va5tDbUUuo0zS9isvEuv7UkluuJaY1T exchange HitBTC Hong Kong Claimed to registered in
St. Vincent and the
Grenadines but was
de-registered by British
Virgin Islands Financial
Services Commission
9/11/2023
rB1za2ZVgDnNB7u8LbVN61k5nCByBUtXCA exchange  Eobot USA Mining platform. Ceased
operation in 2019. Some
people see it as a scam site
e.g.
https://bitcointalk.org/
index.php?topic=2379779.0
rGhssiAZkbAGyHVXEmQuJD1QWs9aDyaB6i exchange  Koinex India Ceased operation in 2019.
Account deleted.
rnMCfd99pwRE8u4LxE43Z1pDzock2kXbLQ individual N/A Luxembourg Individual using Bitstamp
rhxUDNDRtP99386uDC2Y5T89INvz7dx6Sf] individual N/A Luxembourg Individual using Bitstamp
rMro6u3Y1vLmDgtHGRw427CDfophwWjw4x individual N/A USA Individual using Kraken
rpa9GNAHVoQQq2Z533ZsD8TX4Tsu5d9f4v exchange  Evercoin USA Ceased operation in 2021
r9LFPRCT4jRHqeHcgiRGjGMHWkA76nE4Fb exchange  Cryptonator Germany Seized by FBI
rh4N4gq3B2ErWT61Dyebfidz1pYv1i84M5 individual N/A USA Individual using Kraken
rwWr7KUZ3ZFwzgaDGjKBysADByzxvohQ3C exchange Indodax Indonesia None
rPujGTiw6nKmMvAiUT6UjpFxT9IQrDn9kJP exchange  Changelly Czech Republic Claimed to registered in
various jurisdictions,
including the Seychelles,
St. Vincent & the
Grenadines, and Singapore
rLW9gnQo7BQhU6igk5keqYnH3TVrCxGRzm exchange  Bitfinex British Virgin None
Islands (BVI)
rsG1sNifXJxGS2nDQ9zHyoelS5APrtwpjV exchange  bithumb South Korea None
rHj7DFE7dWBc2wntLccTz5exJqQUEKZI9PSe individual N/A UK Individual using GateHub
rUCjhpLHCcuwL1loyQfzPVeWHsjZHaZS6t2 exchange EXMO Poland None
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