
DP
RIETI Discussion Paper Series 25-E-055

Quantifying Congestion Externalities in Road Networks: A 
structural estimation approach using stochastic evolutionary 

model

FUJISHIMA, Shota
Hitotsubashi University

SAKAI, Takara
Institute of Science Tokyo

TAKAYAMA, Yuki
Institute of Science Tokyo

The Research Institute of Economy, Trade and Industry
https://www.rieti.go.jp/en/



RIETI Discussion Paper Series 25-E-055 

June 2025 

 

Quantifying Congestion Externalities in Road Networks: A structural estimation approach using stochastic 
evolutionary model* 

 

Shota Fujishima 

Graduate School of Economics, Hitotsubashi University 

 

Takara Sakai 

School of Environment and Society, Institute of Science Tokyo 

 

Yuki Takayama 

Department of Civil and Environmental Engineering, Institute of Science Tokyo 

 

Abstract 

This study estimates the structural parameters of a travel time function, which relates traffic volume to travel time, 

within the context of a traffic assignment model in which travelers strategically select routes to minimize their 

travel costs, influenced by congestion. The proposed model is formulated as a potential game, enabling the 

estimation of parameters using the maximum likelihood method based on a stochastic evolutionary process. The 

impact of congestion pricing on welfare is evaluated using the estimated parameters. Preliminary analysis using 

the Sioux Falls network shows that congestion pricing enhances overall welfare, even when accounting for 

estimation errors. 

 

Keywords: road network, congestion, potential game, evolutionary game theory 

JEL classification: R41, R48 

 

The RIETI Discussion Paper Series aims at widely disseminating research results in the form of professional 

papers, with the goal of stimulating lively discussion. The views expressed in the papers are solely those of 

the author(s), and neither represent those of the organization(s) to which the author(s) belong(s) nor the 

Research Institute of Economy, Trade and Industry. 

 
∗This study was conducted as a part of the project “Evidence-Based Policy Making for Regional Revitalization” 
undertaken at the Research Institute of Economy, Trade and Industry (RIETI). We would like to thank participants of the RIETI 
DP Seminar for their helpful comments. This work was supported by Fusion Oriented Research for Disruptive Science and 
Technology (Grant No. JPMJFR215M), the Council for Science, Technology and Innovation (Grant No. JPJ012187), and JSPS 
KAKENHI (Grant Nos. 22K18525, 23K22880, 24K22973, and 25K01339). We also wish to thank Yusuke Hara, Daisuke Oyama, 
and Yuki Oyama, as well as the participants of the 2024 Applied Regional Science Conference and the 2025 Spring Meeting of the 
Japanese Economic Association, for their helpful comments and valuable feedback. 



1 Introduction

Numerous urban areas encounter significant traffic congestion issues, which typically result
in frustrating delays for commuters and increased pollution levels that adversely affect the
overall quality of life for residents and the efficiency of local economies. To solve the pervasive
and complex problem of road traffic congestion, it is essential to measure the external costs
associated with congestion and require road users to fairly bear the corresponding expenses that
arise from their travel behaviors and choices. To achieve this important goal, the travel cost
functions that connect traffic volume to the associated travel expenses incurred by individuals
as they navigate through the increasingly crowded roadways of cities should be evaluated.

In this study, we estimate the structural parameters of a travel time function that connects
traffic volume to travel time given the equilibrium state of the model describing the traffic
assignment over a road network. In this model, there exist a specific number of travelers for
each origin and destination (OD) pair. Typically, multiple routes link an origin to a destination,
and travelers select a route aimed at minimizing their travel expenses. Their travel expenses
are influenced by congestion: the cost of travel increases with the number of travelers using
the same road. Our approach is structured as a population game, in which the payoff relies
solely on the distribution of the population over the available strategies (or routes chosen)
rather than on the strategies of individual players. Consequently, our focus is on the Nash
equilibrium.

Our game exclusively produces negative externalities; thus, the Nash equilibrium outcome
is unique as long as the players are homogeneous. Furthermore, our traffic assignment problem
falls into the category of potential games (Rosenthal, 1973; Monderer and Shapley, 1996), where
determining the Nash equilibrium is simplified into determining the maximizer of a function
referred to as the potential function.

In addition, we use the potential function to estimate the structural parameters. To derive
the likelihood function, we consider a stochastic evolutionary process in which players gradually
modify their strategies. More specifically, during each time period, one traveler receives an
opportunity for revision. The traveler selects an opponent at random who has the same OD
pair as he does and follows that opponent’s route based on the imitative exponential protocol
(Sandholm, 2010), where the likelihood of switching increases with the opponent’s payoff. This
procedure is structured as a Markov chain; thus, its stationary distribution, which is considered
as the likelihood function, relies solely on states via the potential function.

The potential function method is extensively recognized in the field of structural estima-
tion for network games (e.g., Nakajima, 2007; Mele, 2017; Hsieh et al., 2022). As noted by
Mele (2017), calculating the normalizing constant of the stationary distribution, which ensures
that the distribution totals 1, is challenging because it requires summing the values across all
possible states. Mele (2017) used a Bayesian strategy that uses an advanced version of the
Metropolis-Hasting algorithm to circumvent the direct calculation of the normalizing constant.
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In contrast, we note that the log-likelihood function converges regarding the number of
players, and in the context of our road traffic assignment issue, this figure can be regarded
as substantial. In the limit function, the task of calculating the normalizing constant is sub-
stituted with the maximization of the potential function. Although maximizing a function
can also be generally challenging, our limit function is strictly concave because our game in-
cludes only negative externalities. Therefore, we substitute the likelihood function with its
limit counterpart as an approximation and estimate the parameters using the maximum likeli-
hood method. The standard errors of the maximum likelihood estimates are derived using the
bootstrap technique.

We use the Bureau of Public Roads (BPR) function, which is commonly used in trans-
portation modeling and practical evaluations of transportation (e.g., Sheffi, 1985; Small et al.,
2024) for the travel time function, and estimate its parameters using the maximum likelihood
approach, where the likelihood function is approximated under the assumption that the num-
ber of travelers is sufficiently large. For preliminary analysis, we use artificial observation data
from a test network referred to as the Sioux Falls network, which comprises 24 nodes and 76
links. The results indicate that the parameters are estimated efficiently, with their standard
errors derived using the bootstrap technique. Furthermore, we assess the congestion externali-
ties based on the estimated parameters and evaluate the welfare gains resulting from link-based
congestion pricing, which theoretically attains the optimal allocation. We find that the vari-
ability of welfare improvements from the link-based congestion pricing is relatively minimal,
indicating that the adoption of such pricing strategies results in predictable enhancements in
overall network efficiency, thereby improving the economic welfare of users while successfully
addressing congestion.

Addressing traffic congestion is a critical policy challenge; thus, it has received significant
attention in the fields of transportation and urban studies. Viauroux (2011) explored a model in
which travelers determine both the number of trips they take and their mode of transportation.
All travelers have the same origin and destination. He used data from a household survey
conducted in Montpellier, France. He discovered notable enhancements in overall welfare when
marginal cost pricing was applied. Durrmeyer and Martinez (2022) examined a model in which
travelers select their departure times and modes of transportation, with predefined routes.
Using commuting data from Paris, the authors investigated the effects of different road pricing
and transit frequency adjustment scenarios on different income groups. Almagro et al. (2024)
analyzed a model in which travelers select their mode of transportation. The authors posited
that routes are predetermined, because travelers follow the directions provided by Google
Maps. Using traffic data from community areas in Chicago, they found that road pricing can
significantly reduce externalities while improving the quality of public transit service. The
authors also examined the distributional effects of different road pricing and transit frequency
adjustment scenarios on different income groups. All aforementioned studies used the discrete
choice method to estimate the structural parameters.
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Although these studies consider elements that are not addressed in the present study,
such as various transportation modes and the diversity among travelers, they do not consider
the route choices made by road users.1 This neglect may result in issues because travelers
may re-evaluate their route choices due to anticipated traffic disruptions, such as scheduled
construction. Disregarding route selection can result in imprecise forecasts of traffic patterns
and congestion levels, because travelers may opt for different routes to circumvent delays.
In addition, the adjustments travelers make in response to transportation policies, such as
congestion pricing, can significantly affect overall traffic flow and congestion levels, which are
essential for formulating effective transportation policies.

This paper is organized as follows. Section 2 presents the model and introduces the potential
game approach. Section 3 presents an estimation method that uses the potential function and
reports the preliminary results from a toy dataset. Section 4 discusses congestion pricing for
optimal traffic assignment and evaluates the variability in the welfare gains resulting from
congestion pricing. Section 5 concludes the study. The details of the dataset and numerical
algorithm, along with the omitted proofs, are provided in the appendix.

2 Model

2.1 Basic assumptions

We consider a model in which agents select their routes in a transportation network. The
network is represented as a directed graph consisting of a set of nodes N and a set of links L.
Let R ⊆ N denote the set of origin nodes from which agents depart, and let S ⊆ N denote the
set of destination nodes at which agents arrive. Each OD pair (r, s) ∈ Ω ≡ R×S is connected
by a set of paths (routes) Krs through the network. A path k ∈ Krs for an OD pair (r, s) is a
sequence of links connecting origin r ∈ R to destination s ∈ S.

A link from node i ∈ N to node j ∈ N is denoted as link (i, j). The travel cost for traversing
link (i, j) depends solely on the traffic flow rate yij on the link. We assume that the travel cost
function tij(yij) for link (i, j) is nonnegative, continuously differentiable, strictly increasing,
and convex, as commonly assumed in the literature (e.g., Sheffi, 1985; Fajgelbaum and Schaal,
2020; Allen and Arkolakis, 2022). This implies that high traffic flow causes increased delays
on the link due to congestion.

All agents are homogeneous and select a path to minimize their travel costs from an origin
to a destination. The total number of agents in the network is fixed and denoted by Q; we

1In the quantitative spatial economics (QSE) literature, there are some papers that address both conges-
tion and route choice. Fajgelbaum and Schaal (2020) consider the route choice problem in the transportation
sector, which is faced with congestion during the shipping of goods. Their focus is on the optimal allocation.
Allen and Arkolakis (2022) examine a routing framework within an urban model where individuals travel from
their residences to their workplaces. By utilizing a dataset of the Seattle road network, they assess the welfare
elasticity resulting from enhancements to the road network and the associated return on investment. In contrast
to the QSE literature, our ultimate goal is statistical inference of structural parameters.
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assume it is large but finite: Q ∈ N. Let qrsQ ∈
1
QZ+ be the proportion of agents with OD

pair (r, s), which are referred to as agents (r, s). Then, the total number of agents (r, s) is
Qqrs, and

∑
(r,s)∈Ω q

rs = 1. In addition, let f rsQk ∈
1
QZ+ denote the proportion of agents (r, s)

selecting path k ∈ Krs, satisfying
∑

k∈Krs f rsQk = qrsQ . Then, the traffic flow rate yij ∈ R+ on
link (i, j) is expressed as follows:

yij(fQ) =
∑

(r,s)∈Ω

∑
k∈Krs

f rsQkδ
rs
ij,k, (1a)

δrsij,k =

 1 if link (i, j) is part of path k ∈ Krs,

0 otherwise,
(1b)

where fQ = (f rsQk)k∈Krs,(r,s)∈Ω. Using matrix notation, (1) can be rewritten as follows:

y(fQ) = ∆fQ, (2)

where y(fQ) = (yij(fQ))(i,j)∈L and ∆ denotes the path-link incidence matrix with elements
δrsij,k.

The travel cost Crs
k for a path k ∈ Krs is the sum of the costs of the links that form path

k. Therefore, Crs
k can be expressed as a function of fQ as follows:

Crs
k (fQ) =

∑
(i,j)∈L

tij(yij(fQ))δ
rs
ij,k. (3)

2.2 Equilibrium and potential game

Our model can be considered a finite-population congestion game (Rosenthal, 1973), where
the set of populations is denoted by Ω, the action set is Krs, and the population state is an
element of FQ ≡

∏
(r,s)∈ΩFrs

Q , with

Frs
Q =

{
f rs
Q ∈ R|Krs|

+ ∩ 1

Q
Z|Krs|
+

∣∣∣∣∣ ∑
k∈Krs

f rsQk = qrsQ

}
, (4)

where f rs
Q = (f rsQk)k∈Krs . The payoff function is π(fQ) = (πrsk (fQ))k∈Krs,(r,s)∈Ω, where

πrsk (fQ) = −Crs
k (fQ). Following Sandholm (2010, 2015), we identify a game by its payoff

function π; thus, we denote our game by π.
The Nash equilibrium2 of game π is the state in which no agent can gain by changing their

path, meaning that they have no incentive to switch to another path. Formally, f∗
Q ∈ FQ is

2In the field of transportation, the Nash equilibrium of congestion games is commonly referred to as the
user equilibrium.
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an equilibrium if, for all (r, s) ∈ Ω, the following condition holds

f rs∗Qk > 0 =⇒ πrsk (f∗
Q) ≥ πrsℓ

(
f∗
Q +

1

Q
(ersℓ − ersk )

)
∀k, ℓ ∈ Krs, (5)

where ersk denotes the unit vector with a value of one in the position corresponding to k ∈ Krs.
We use the properties of a potential game to characterize the equilibrium and estimate the

parameters of our model. A game is called a potential game if there exists a potential function
pQ that satisfies

pQ(fQ)− pQ
(
fQ −

1

Q
ersk

)
= πrsk (fQ) ∀fQ ∈ FQ, ∀k ∈ Krs, ∀(r, s) ∈ Ω. (6)

As reported in Rosenthal (1973) and Monderer and Shapley (1996), every congestion game is
a potential game with the following potential function

pQ(fQ) = −
∑

(i,j)∈L

Qyij(fQ)∑
z=1

tij

(
z

Q

)
. (7)

The potential function (7) satisfies (6) in our model. Thus, our game π is a finite-population
potential game.

To estimate the parameters of our model, we consider a game in which the total number
of agents approaches infinity (i.e., Q→∞), which we call a continuum-population game. The
population state of our continuum-population game is an element of F ≡

∏
(r,s)∈ΩFrs, with

Frs =

{
f rs ∈ R|Krs|

+

∣∣∣∣∣ ∑
k∈Krs

f rsk = qrs

}
, (8)

where qrs ∈ R+ denotes the proportion of agents (r, s). As demonstrated in Sandholm
(2001), continuum-population potential games are the limits of convergent sequences of finite-
population potential games. This implies that our continuum-population game admits a po-
tential function p(·), as shown in the following lemma:

Lemma 1 For all ϵ > 0, there exists Q such that∣∣∣∣ 1QpQ(fQ)− p(fQ)
∣∣∣∣ ≤ ϵ ∀fQ ∈ FQ, (9)

where the potential function p(fQ) is given by

p(fQ) = −
∑

(i,j)∈L

∫ yij(fQ)

0
tij (z) dz. (10)

Proof See Appendix C.1.
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The equilibrium of a continuum-population potential game is characterized by its potential
function. Specifically, the state f∗ ∈ F is an equilibrium of our game π if and only if it is a
Karush–Kuhn–Tucker (KKT) point for the maximization problem of the potential function.

max
f∈F

p(f). (11)

Therefore, we investigate the uniqueness of the equilibrium by checking the shape of the po-
tential function. The following proposition establishes uniqueness for the link flow rate but
not for the population state.

Proposition 1 In the continuum-population game π, the equilibrium link flow rate y(f∗) =

(yij(f
∗))(i,j)∈L is uniquely determined, whereas the equilibrium population state f∗ is generally

non-unique.

Proof See Appendix C.2.

Each agent’s path choice, represented by f , determines the traffic flow rate on each link
yij(f). Although the potential function p(f) initially appears to depend on individual path
choices, it is governed by the aggregate link flow rates y(f). Therefore, p(f) can be redefined as
g(y(f)), where aggregate link flow rates (rather than individual paths) influence the potential:

g(y) = −
∑

(i,j)∈L

∫ yij

0
tij (z) dz. (12)

Proposition 1 is obtained because the Hessian matrix ∇2g(y) is negative definite (i.e., g(y) is
strictly concave), whereas ∇2f(f) is not.

Numerical analysis and parameter estimation for our model require defining the population
state f , which necessitates enumerating all paths available within the network. However,
enumerating all possible paths in large networks is infeasible because of the extensive number
of potential routes. To address this issue, we reformulate the maximization problem in (11)
to eliminate the need for explicit path enumeration. Specifically, we decompose (11) into a
problem that consists only of link flow rates by each origin, denoted by x = (xrij)(i,j)∈L,r∈R ∈
R|L×R|
+ , where xrij denotes the flow rate on link (i, j) for agents with origin r.

max
x∈R|L×R|

+

g(ŷ(x)) = −
∑

(i,j)∈L

∫ ŷij(x)

0
tij(w)dw (13a)

s.t.
∑

j∈N IN(i)

xrji −
∑

j∈NOUT(i)

xrij =


−
∑

s∈S q
rs if i = r

qri if (r, i) ∈ Ω

0 otherwise

∀i ∈ N , ∀r ∈ R,

(13b)
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where N IN(i) and NOUT(i) denote the sets of nodes connected to and from node i by a link,
respectively. The link flow rate ŷ(x) = (ŷij(x))(i,j)∈L is given by

ŷij(x) =
∑
r∈R

xrij . (14)

The constraint (13b) enforces flow conservation at each node i ∈ N , specifically for flow
rates originating from r ∈ R. This means that flow rates with origin r entering and exiting
each node i are independently balanced. At the origin node r (i.e., i = r), the constraint
permits a net outflow equal to the total demand originating from r. At destination nodes (i.e.,
(r, i) ∈ Ω), the constraint allows a net inflow matching the demand arriving from origin r.
For intermediate nodes that are neither origin r nor destinations, the inflow and outflow with
origin r must match. This formulation accurately captures the distribution of flow across links
for each OD pair.

Note that the two problems (11) and (13) provide the same link flow rates as proven in the
following lemma:

Lemma 2 The solution x∗ of (13) provides the unique link flow rate ŷ(x∗) = (ŷij(x
∗))(i,j)∈L,

which is equivalent to the equilibrium link flow rate y(f∗) obtained from (11).

Proof See Akamatsu (1997).

This reformulation allows us to efficiently obtain the unique equilibrium link flow rate y by
solving (13), thereby facilitating analysis and estimation even for complex, large networks.
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3 Estimation

In this section, we estimate the link cost function tij(·). This function is critical for determining
the travel costs associated with each link in the network, allowing us to analyze the effects of
changes in traffic patterns and demand on overall route efficiency. We adopt the following
parametric representation, known as the BPR function (U.S. Bureau of Public Roads, 1964):

tij(yij) = tij

(
1 + α

(
yij
µij

)β
)

∀(i, j) ∈ L, (15)

where t̄ij denotes the free-flow travel time on link (i, j), µij denotes the link capacity, and α

and β are parameters.
The BPR function, with commonly applied values of α = 0.15 and β = 4.0, is extensively

used in transportation modeling and practical transportation evaluations (e.g., Sheffi, 1985;
Small et al., 2024), even though equilibrium link flows under this specification may not always
align with observed data. Given data of {yij , µij , t̄ij}(i,j)∈L and {Qrs}(r,s)∈Ω, where Qrs denotes
the total travel demand for the OD pair (r, s) ∈ Ω, we estimate the parameter θ ≡ (α, β) that
is assumed to be common to all links.

3.1 Data

As a preliminary analysis, we conduct a numerical test on the proposed method below in which
the true value of θ is known and set to θ = (0.15, 4.0) using the Sioux Falls network dataset pro-
vided by Transportation Networks for Research Core Team (Accessed: September 22, 2024).
The Sioux Falls network consists of 24 nodes and 76 links (Figure 1). This dataset includes
the capacity pattern µ ≡ {µij}(i,j)∈L, the free flow travel time pattern t ≡ {tij}(i,j)∈L, and the
OD demand pattern Q ≡ {Qrs}(r,s)∈Ω.3 The dataset also includes the Nash equilibrium link
flow υ ≡ {υij}(i,j)∈L when θ = (0.15, 4.0).4 Figure 2 shows the Nash equilibrium link flow υ.
The details of the Sioux Falls network dataset are shown in Appendix B.

3.2 Method

3.2.1 Likelihood function

To establish the likelihood function, we consider a stochastic evolutionary process in which
players gradually adjust their strategies. This approach is organized as a Markov chain, where
its stationary distribution serves as the likelihood function. Formally, let {F t

Q}t≥0 be a Markov
chain over FQ. Each player receives a revision opportunity based on an independent Poisson
process with a rate of 1. Collectively, revision opportunities for players follow a Poisson process

3The OD demand Qrs is related to qrs by Qrs = Qqrs where Q =
∑

(r,s)∈Ω Qrs.
4The link flow υij is related to the link flow rate yij by υij = Qyij .
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with rate Q, meaning that the expected duration for which the economy remains in a given
state is 1/Q.

When an agent receives a revision opportunity, the agent updates its path according to the
imitative logit protocol with noise level η > 0 (Sandholm, 2010, Section 11.5.2).5 The protocol
operates as follows: Suppose an agent (r, s) currently following path k ∈ Krs receives a revision
opportunity. Then, the agent switches to path ℓ ∈ Krs with the following probability:

ρrskℓ(fQ) exp[η
−1πrsℓ (fQ + 1

Q(ersℓ − ersk ))]∑
m∈Krs ρrskm(fQ) exp[η−1πrsm (fQ + 1

Q(ersm − ersk ))]
, (16)

where

ρrskℓ(fQ) =


Qfrs

Qℓ+1

Qqrs+|Krs|−1 if ℓ ̸= k,
Qfrs

Qℓ

Qqrs+|Krs|−1 if ℓ = k.
(17)

ρrskℓ(fQ) denotes the probability that an agent (r, s) taking path ℓ ∈ Krs is selected as an
opponent of the revising player. In addition to the Q agents, one committed agent is assumed
to exist for each path. This explains the addition of 1 to Qf rsQℓ in the numerator and of |Krs|,
the total number of committed agents in the population (r, s), to Qqrs in the denominator.
This is a technical assumption to ensure that a revising agent can switch to paths not selected
by any standard agents, thereby guaranteeing that the Markov chain has a unique stationary
distribution. Payoffs are evaluated based on the population states of standard agents.

Let τn denote the random time at which the n-th revision opportunity occurs. The proba-
bility that an agent (r, s) taking path k ∈ Krs receives a revision opportunity is f rsQk; thus, the
transition probability of {F τn

Q }n∈N is given by

Pr

[
F τn+1
Q = fQ +

1

Q
(ersℓ − ersk )

∣∣∣F τn
Q = fQ

]
= f rsQk

ρrskℓ(fQ) exp[η
−1πrsℓ (fQ + 1

Q(ersℓ − ersk ))]∑
m∈Krs ρrskm(fQ) exp[η−1πrsm (fQ + 1

Q(ersm − ersk ))]
. (18)

According to Theorem 11.5.13 of Sandholm (2010), the stationary distribution of {F τn
Q } is

uniquely given by

µQ(fQ) =
1

κQ
exp[η−1pQ(fQ)], (19)

for all fQ ∈ FQ, where κQ is determined so that
∑

fQ∈FQ
µQ(fQ) = 1, and µQ denotes the

probability distribution over states; thus it can be used as a likelihood function.
However, a computational difficulty arises due to the normalizing constant κQ, because

5The stationary distribution of the Markov chain given by (19) remains unchanged across the entire class of
imitative exponential protocols, including the imitative logit protocol.

10



the probabilities over all possible states should be computed. This is well recognized in the
literature on the structural estimation of network games. Among others, Mele (2017) adopted
the Bayesian approach, where an advanced version of the Metropolis-Hasting algorithm was
used to bypass the computation of κQ.

In our context of road traffic assignment, the total number of agents can be considered
large. We then consider the fact that 1

Q lnµQ is uniformly convergent in Q, and the limit
function does not include the normalizing constant. Specifically, according to Theorem 12.2.7
of Sandholm (2010),

lim
Q→∞

max
fQ∈FQ

∣∣∣∣ 1Q lnµQ(fQ)−
1

η

{
p(fQ)−max

f ′∈F
p(f ′)

}∣∣∣∣ = 0. (20)

Therefore, under the supposition that Q is sufficiently large, the log likelihood lnµQ(fQ) is
proportional to η−1

{
p(fQ)−maxf ′∈F p(f

′)
}
, which replaces the task of computing the nor-

malizing constant with the task of maximizing the potential function. In general, maximizing
a function is not an easy task. However, as observed in Section 2, p(f) depends on f only
through link flow rates y: p(f) = g(y(f)), where g(y) is defined by (12), and g is strictly
concave. In addition, by Lemma 2, the maximizer of g is the unique link flow induced by the
Nash equilibrium of π. Regarding the noise level η > 0, we normalize it to 1. Therefore, our
log-likelihood function is given by

ℓ(θ|y) = g(y)−max
y′∈Y

g(y′), (21)

where Y = {y ∈ R|L| : ∃f ∈ F ,y = ∆f}. Then we search for the maximum likelihood
estimator θ̂ ∈ argmaxθ ℓ(θ|y). Given the strict concavity of g, this is practically feasible.

3.2.2 Bootstrap method

To compute the standard errors for the estimator θ̂, we use a parametric bootstrap method.
Specifically, for each b = 0, 1, 2, . . . , B, we generate a bootstrap dataset f b

Q ∼ µ̂Q, which follows
the distribution in (19), with the potential function evaluated at θ̂. Next, We compute the
estimate θb using the maximum likelihood method described in the previous subsection.

Sampling from µ̂Q presents computational challenges due to the normalizing constant, as
previously noted. To address this issue, we use the Markov chain defined in (18), which is
evaluated at θ̂. This Markov chain is constructed to have µ̂Q as its stationary distribution;
thus, we generate population states according to (18), starting from an initial state f

(0)
Q . As

discussed in Sandholm (2010), the imitative logit protocol can be interpreted as a process of
repeated sampling in which a revising agent randomly selects an opponent until deciding to
adopt one of their paths. Therefore, the following steps are performed for t = 0, 1, 2, . . . given
f
(t)
Q :

11



1. Draw a path according to the distribution f
(t)
Q .

2. Suppose the selected path denoted by k belongs to the action set of the population (r, s).
Repeat the following steps until a new path is selected (cf. Izquierdo et al., 2019, Section
2.3):

(a) Randomly set an aspiration level γ ∈ [0, γmax], where γmax =

maxm∈Krs exp[πrsm (f
(t)
Q )].

(b) Draw a candidate path ℓ ∈ Krs according to the distribution {ρrskm(f
(t)
Q )}m∈Krs .

(c) Switch to path ℓ if exp
[
πrsℓ

(
f
(t)
Q + 1

Q(ersℓ − ersk )
)]
≥ γ.

3. Let ℓ ∈ Krs be the path determined in the above step. Update the state as f
(t+1)
Q =

f
(t)
Q + 1

Q(ersℓ − ersk ).

In general, a burn-in period is used to allow the Markov chain to approach its station-
ary distribution. To skip the burn-in period, we initialize the process by the equilibrium
path flow rate fQ. However, as discussed in Section 2, the equilibrium path flow rate fQ

is not generally unique. Rather than relying on the potential game approach, we use iTA-
PAS (Xie and Xie, 2016), a path-based algorithm for solving the user equilibrium (UE) as-
signment or the Nash equilibrium of the game π. Among the potential multiple equilibria,
the path flows obtained via iTAPAS are consistent with those that maximize the entropy
−
∑

(r,s)∈Ω
∑

k∈Krs f rsk ln[f rsk ], which is commonly referred to as the "most likely path flows"
(e.g., Bar-Gera, 2010; Xie and Xie, 2016).

To ensure sufficient switches, we treat the trajectories of the Markov chain as bootstrap
samples every 500 periods.6 Specifically, we set f b

Q = f
(500b)
Q for b = 0, 1, 2, . . . , B, and use

B = 300, which requires simulating the Markov chain for 500× 300 (= 150, 000) periods.

3.3 Results

To solve the parameter estimation problem, we develop a hierarchical optimization algorithm
that combines the conjugate direction Frank–Wolfe method (Mitradjieva and Lindberg, 2013)
and Barzilai–Borwein method (Barzilai and Borwein, 1988). The developed algorithm allows
us to rapidly and stably estimate the parameters. The details of the algorithm are presented
in Appendix A. Using the developed algorithm, we perform the non-parametric bootstrap
method. In other words, we solve the parameter estimation problems for 300 samples and
obtain 300 parameters (α(1), β(1)), . . . , (α(300), β(300)).

Figures 3 and 4 show the estimated values of α and β for each sample. Table 1 summarizes
the estimation results. The table shows the mean, standard deviation, maximum, and minimum
values of the estimated parameters. The table also shows the quartiles and 0.25% and 97.5%

6Because the network in our data has 528 ODs, this approximately means that, on average, there is one
switch in each population.
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Figure 1: Sioux Falls network
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Figure 2: UE flow pattern

Table 1: Summary of the estimation results

mean std min 2.5% 25.0% 50.0% 75.0% 97.5% max

α 0.151 0.003 0.142 0.150 0.150 0.151 0.151 0.158 0.182
β 3.987 0.027 3.721 3.925 3.988 3.991 3.994 4.001 4.056

tile values. For all samples, the estimated parameters α and β are close to 0.15 and 4.0,
respectively. In addition, the minimum and maximum values of the estimated results are
not extreme outliers. Figures 5 and 6 illustrate the changes in the variance of the estimated
parameters as the number of samples increases. For both α and β, the variance is nearly stable
at 300 samples, even though there are slight variations up to 300 samples. These results imply
that the non-parametric bootstrap method enables stable parameter estimation with almost
300 samples.

Figure 7 shows the joint distribution of the estimated values of α and β. The main area
of the figure shows scatter plots of the estimated values for 300 samples, and the outside of
the main area shows the surrounding distribution (histogram). The 95% confidence interval
between the 0.25% and 97.5% tiles is indicated in gray, and the area where the α and β 95%
confidence intervals overlap is expanded. The distributions of both the estimated values of α
and β are unimodal.
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Figure 3: Estimated values of α for each sam-
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Figure 4: Estimated values of β for each sam-
ple
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Figure 5: Variance of estimated value of α
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Figure 7: Joint distribution of the estimated values of α and β

4 Congestion pricing

The equilibrium of our model is generally inefficient due to negative externalities caused by
congestion. To address this inefficiency, the planner aims to internalize these externalities by
introducing congestion tolls, thereby reducing the social costs associated with traffic congestion.
However, if the planner inaccurately estimates the external costs of congestion, congestion
pricing may be unable to achieve an efficient allocation of agents.

This section evaluates the effectiveness of congestion tolls based on the estimated param-
eters discussed in Section 3, demonstrating the accuracy and practical applicability of our
method. To this end, we first investigate the properties of the optimal congestion tolls in
Section 4.1 and then analyze the effect of setting congestion tolls using estimated parameters,
which may include errors, in Section 4.2. As discussed in the previous section, we assume that
Q is sufficiently large; thus, our model can be considered a continuum-population game in this
section.
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4.1 Optimal congestion tolls

We define efficiency in terms of an aggregate payoff function P (f), which can be defined as
follows:

P (f) =
∑

(r,s)∈Ω

∑
k∈Krs

πrsk (f) · f rsk

= −
∑

(i,j)∈L

tij(yij(f)) · yij(f). (22)

This expression shows that the total travel cost
∑

(i,j)∈L tij(yij(f)) · yij(f) is minimized at the
social optimum. Because the total travel cost is directly affected by the link flow rates y(f)

rather than the population state f , the aggregate payoff function can be equivalently redefined
as G(y(f)), which is similar to the potential function.

G(y) = −
∑

(i,j)∈L

tij(yij) · yij(f). (23)

tij(yij) is a strictly increasing and convex function; thus, the Hessian matrix∇2G(y) is negative
definite, while ∇2P (f) is not. Thus, we obtain the following proposition.

Proposition 2 The link flow rate y(fo) = (yij(f
o))(i,j)∈L is uniquely determined at the social

optimum, while the population state fo is generally non-unique.

The optimal congestion toll crsk for agent (r, s) ∈ Ω using path k ∈ Krs is given by

crsk = πrsk (fo)− ∂G(y(fo))

∂f rsk

=
∑

(i,j)∈L

t′ij(yij(f
o)) · yij(fo) · δrsij,k, (24)

where t′ij(yij) =
dtij(yij)

dyij
. The above equation, along with Proposition 2, implies that the opti-

mal toll levels depend only on the optimal link flow rates y(fo) and are uniquely determined. In
addition, (24) reveals that crsk is separable with respect to each link (i, j). Therefore, the planner
can internalize the congestion externalities by introducing the following tolls τ o = (τ oij)(i,j)∈L

for the use of each link (i, j):

τ oij = t′ij(yij(f
o)) · yij(fo). (25)

The optimal congestion toll τ o is effective for achieving the social optimum. To demonstrate
this, we consider a situation in which the cost for traversing the link (i, j) is given by tij(yij)+
τij , implying that the payoff π̂rsk (f | τ o) for agent (r, s) selecting path k ∈ Krs is expressed as
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follows:

π̂rsk (f | τ o) = −
∑

(i,j)∈L

{
tij(yij(f)) + τ oij

}
δrsij,k. (26)

Because τ o is independent of the population state f , game π̂(τ o) is a potential game with the
following potential function ĝ(y(f) | τ o):

ĝ(y(f) | τ o) = g(y(f)) +
∑

(i,j)∈L

τ oijyij(f). (27)

Because τ o is given by (25), the optimal population state fo satisfies the KKT conditions for
the maximization problem maxf∈F ĝ(y(f) | τ o), implying that fo is an equilibrium of game
π̂. ∇2ĝ(y | τ o) = ∇2g(y) is negative definite, whereas ∇2ĝ(y(f) | τ o) is not. Therefore, we
obtain the following proposition.

Proposition 3 In the continuum-population game π̂(τ o), the equilibrium population state f̂∗

is generally non-unique. However, the equilibrium link flow rates y(f̂∗) are uniquely determined
and are equivalent to y(fo).

This result indicates that the planner can achieve optimal allocation by introducing the optimal
congestion tolls τ o.

Directly computing the optimal link flow rate y(fo) or y(f̂∗) is infeasible, because defining
f requires enumerating all possible paths in the network. In Section 2, we addressed this
challenge in the potential maximization problem by reformulating it in terms of link flow
rates by each origin rather than individual paths. Similarly, we reformulate the problem of
maximizing G(y(f)) or ĝ(y(f) | τ o) to avoid explicit path enumeration. The reformulation
results in the following link-based optimization problems:

max
x∈R|L×R|

+

G(ŷ(x)) s.t. (13b), (28a)

max
x∈R|L×R|

+

ĝ(ŷ(x) | τ o) s.t. (13b). (28b)

This approach enables efficient computation of the optimal link flow rate ŷ(xo), which is
equivalent to y(fo) and y(f̂∗), thereby facilitating the analysis and application of congestion
tolls in large networks.

4.2 Effects of congestion tolls based on estimated parameters

When setting optimal congestion tolls, the planner needs precise values of the link cost func-
tion parameters, because these values determine the external costs of congestion. However,
evaluating the accuracy of the estimates of these parameters can be challenging, even if the
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precise values are known. Even a small estimation error may yield congestion tolls that fail to
improve the total travel cost. Because of this sensitivity, improvements in the total travel costs
due to congestion tolls are a practical measure of the accuracy of the parameter estimates: if
the estimated values are sufficiently precise, we expect substantial improvements, indicating
that the congestion tolls are near-optimal.

In this analysis, we use 300 bootstrap samples of the estimated parameters obtained in
Section 3 to calculate the distribution of the total travel cost improvements. This distribution
reflects the robustness of the parameter estimates and provides insights into the practicability
of congestion tolls set using these values.

We assume that for each bootstrap sample, the planner sets the congestion toll τ (θ(n))
using the estimated parameters θ(n) = (α(n), β(n)), whereas the true parameter values are
θ∗ = (0.15, 4.0). Specifically, the planner solves the problem (28) using the parameters θ(n) to
obtain the optimal link flow rate ŷ(xo(θ(n))) and then sets

τij(θ
(n)) = t̄ijα

(n)β(n)

(
ŷij(x

o(θ(n)))

µij

)β(n)

. (29)

Because agents select their paths to minimize travel costs under the parameters θ∗, the actual
optimal congestion toll is τ o = τ (θ∗) but not τ (θ(n)), implying that the planner cannot achieve
the social optimum.

With this setup, we evaluate changes in the total travel cost resulting from introducing the
non-optimal congestion toll τ (θ(n)). Let ŷ(x∗(τ (θ(n)))) denote the equilibrium link flow rate
of game π̂(τ (θ(n))) under the true parameters θ∗. This link flow rate is calculated by solving
the maximization problem (28b) and replacing the potential function with ĝ(x | τ (θ(n))). The
total travel cost T (τ (θ(n))) at the equilibrium of game π̂(τ (θ(n))) is given by

T (τ (θ(n))) =
∑

(i,j)∈L

tij(ŷij(x
∗(θ(n)))) · ŷij(x∗(θ(n))) (30)

The equilibrium link flow rate without congestion tolls corresponds to ŷ(x∗(0)); thus, the
improvement in the total travel cost resulting from introducing the congestion toll τ (θ(n)) for
the (n)-th bootstrap sample is given by

R(n) =
T (τ (θ(n)))− T (0)

T (0)
× 100, (31)

where R(n) denotes the rate of change in the total travel cost caused by introducing the
congestion toll τ (θ(n)). We also define the rate of change in the total travel cost when the
congestion toll τ (θ∗), based on the exact parameter, is implemented as follows:

R∗ =
T (τ (θ∗))− T (0)

T (0)
× 100. (32)
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Figure 8: Efficiency of congestion tolls based on estimated parameters

Figure 8 shows a scatter plot illustrating the distribution of improvements in the total travel
cost (R(n) values) across all bootstrap samples and R∗, with 0.25% and 97.5% tiles indicated
by dashed lines. The result shows that across all samples, the tolls based on the estimated
parameters reduce the total travel cost by approximately 3.8%. This result indicates that
congestion tolls based on estimated parameters improve efficiency nearly as much as those
based on the exact parameters.
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5 Conclusion

This paper presented a structural estimation approach for evaluating congestion externalities in
transportation networks by modeling travelers’ route choices as a stochastic evolutionary game.
We demonstrated the effectiveness of the proposed estimation method by accurately identifying
the parameters of the BPR function from the simulated traffic data. Using bootstrap sampling,
we confirmed the robustness and consistency of the estimated values across various samples.
The proposed approach accounts for the complexities of route choices and congestion impacts
on travel costs, providing a robust method for estimating the parameters of the link cost
function.

In addition, this paper evaluated the impact of setting congestion tolls based on these esti-
mated parameters, including the sensitivity of the total travel cost improvements to estimation
accuracy. Our results reveal that even with estimation errors, congestion tolling based on the
proposed approach significantly reduces the total travel cost across all bootstrap samples. This
result highlights the resilience of the proposed method to estimation deviations, demonstrating
its practical viability for improving network efficiency even with imperfect parameter precision.

These results contribute to an accurate and practical estimation method that can improve
the efficiency of congestion pricing strategies. Demonstrated in a simulated environment, the
proposed approach represents a first step toward future studies using real-world traffic data,
such as data from fixed traffic detectors and probe vehicles. As a next step, applying the
proposed model to actual road networks will enable its validation under varied, real-world
conditions and provide insights into optimizing congestion tolls on a larger scale.
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A Algorithm

A.1 Hierarchical algorithm

This section presents a hierarchical algorithm for solving the parameter estimation problem
that maximizes log-likelihood function (21). The algorithm integrates the conjugate direc-
tion Frank–Wolfe method (Mitradjieva and Lindberg, 2013) and Barzilai–Borwein method
(Barzilai and Borwein, 1988). By combining these two methods hierarchically, the algorithm
achieves both efficiency and accuracy.

The estimation problem is written as follows:

max
θ∈R2

+

. ℓ(θ | y) = g(y | θ)−max
y′∈Y

g(y′ | θ). (33)

We decompose the problem into the master and sub-problems as follows:

[Master] max
θ∈R2

+

. ℓ(θ | y) = g(y | θ)− g∗(θ) (34)

[Sub] g∗(θ) ≡ max
y′∈Y

. g(y′ | θ) (35)

where g∗(θ) denotes the optimal value function of the sub-problem. The sub-problem [Sub]
is a standard UE assignment and is a convex optimization problem. In contrast, the master
problem [Master] is a non-negative constrained optimization problem. We apply the conjugate
direction Frank–Wolfe method for the sub-problem [Sub] and the Barzilai–Borwein method for
the master problem [Master].7

The conjugate direction Frank–Wolfe method for the UE problem is proposed
by Mitradjieva and Lindberg (2013). This algorithm uses the classical Frank–Wolfe and con-
jugate directions to update the variables. By combining the two directions, the algorithm can
avoid a part of the zigzag phenomenon around the final solution.

The Barzilai–Borwein method is designed for unconstrained optimization. This method is
an iterative gradient descent method that uses the step sizes derived from the linear trend of
the most recent two iterates. The algorithm is shown in Algorithm 1. At step 2 in Algorithm 1,
the gradient ∇ℓ(θ | y) can be calculated in the following processes. Based on the envelope
theorem, we obtain the gradient of the optimal value function of the sub-problem as follows:

∂g∗(θ)

∂α
= −

∑
(i,j)∈L

tij
1

β + 1
y∗ij

(
y∗ij
µ̃ij

)β

, (36)

7Both methods were originally designed for minimization problems. We adapt these methods to our maxi-
mization problem by reversing the sign of the objective function and converting the maximization problem into
a minimization problem.
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Algorithm 1 Barzilai–Borwein method

Input: θ(0) ∈ R2
+

1: for k = 1, 2, ... do
2: Compute ∇ℓ(θ(k) | y) by solving the sub-problem
3: Compute a(k) by Eq.(41)
4: θ(k+1) ← max

{
0, θ(k) + a(k)∇ℓ(θ(k) | y)

}
5: Check the stop criterion
6: end for

Output: θ(k)

∂g∗(θ)

∂β
= −

∑
(i,j)∈L

tijαy
∗
ij

[
1

β + 1

(
y∗ij
µ̃ij

)β

ln

(
y∗ij
µ̃ij

)
− 1

(β + 1)2

(
y∗ij
µ̃ij

)β
]

(37)

= −
∑

(i,j)∈L

tijαy
∗
ij

1

β + 1

(
y∗ij
µ̃ij

)β [
ln

(
y∗ij
µ̃ij

)
− 1

β + 1

]
, (38)

where µ̃ij denotes the relative capacity, i.e., µ̃ij ≡ µij/Q. Using ∇p∗(θ), we obtain

∂ℓ(θ | y)
∂α

= −
∑

(i,j)∈L

tij
1

β + 1
yij

(
yij
µ̃ij

)β

+
∑

(i,j)∈L

tij
1

β + 1
y∗ij

(
y∗ij
µ̃ij

)β

(39)

∂ℓ(θ | y)
∂β

= −
∑

(i,j)∈L

tijαyij
1

β + 1

(
yij
µ̃ij

)β [
ln

(
yij
µ̃ij

)
− 1

β + 1

]

+
∑

(i,j)∈L

tijαy
∗
ij

1

β + 1

(
y∗ij
µ̃ij

)β [
ln

(
y∗ij
µ̃ij

)
− 1

β + 1

]
.

(40)

The step size a(k), at step 3 in Algorithm 1, is determined as follows:

a(k) =

[
θ(k) − θ(k−1)

]T [∇ℓ(θ(k))−∇ℓ(θ(k−1))
][

∇ℓ(θ(k))−∇ℓ(θ(k−1))
]T [∇ℓ(θ(k))−∇ℓ(θ(k−1))

] ∀k = 2, 3, . . . (41)

At step 4 in Algorithm 1, the variables are updated using the step size. In this step, the
projection onto the nonnegative area is performed simultaneously.

A.2 Numerical example

This section presents a numerical example to demonstrate the efficiency and accuracy of the
algorithm. Specifically, we demonstrate the parameter estimation results when the observation
flow pattern is the UE flow pattern, as calculated using iTAPAS in Section 3.2. Because the
observation flow is the UE flow, the actual parameter values (i.e., α∗ = 0.15 and β∗ = 4.0) are
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Figure 9: ℓ(θ(k) | y) during iteration
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expected to be estimated.
We solve the parameter estimation problem based on the above settings using the hierar-

chical algorithm. Consequently, we obtain the estimated values α̂ = 0.1498 and β̂ = 4.0010.
The number of iterations of the Barzilai–Borwein method for the master problem is 54, and
the calculation wall time is 11.3 [s]. Figure 9 illustrates the value of ℓ(θ(k) | y) during the
iteration of the Barzilai–Borwein method for the master problem. The value of ℓ(θ(k) | y)
increases with some oscillation. Figure 10 shows the solution trajectory during the algorithm
iteration. In the figure, the contour lines of ℓ(θ | y) are colored. The blue and red stars
represent the initial solution (i.e., α(0) = 0.45, β(0) = 2.5) and the true value of the parameter
(i.e., α∗ = 0.15, β∗ = 4.0), respectively. These results demonstrate that the proposed method
is fast and accurate in parameter estimation.
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B Data details

Tables 2, 3, and 4 show detailed information about the Sioux Falls network data provided by
Transportation Networks for Research Core Team.

C Proofs

C.1 Proof of Lemma 1

Because
∫ yij(fQ)
0 tij(z)dz =

∑Qyij(fQ)
υ=1

∫ υ
υ−1 tij(

z
Q)dz and 1

Q tij(
υ
Q) =

∫ υ
Q
υ−1
Q

tij(
υ
Q)dz,

Qyij(fQ)∑
υ=1

tij

(
υ

Q

)
1

Q
−
∫ yij(fQ)

0
tij(z)dz =

Qyij(fQ)∑
υ=1

∫ υ
Q

υ−1
Q

[
tij

(
υ

Q

)
− tij(z)

]
dz (42)

By the mean value theorem, there exists cυ ∈ [z, υ
Q ] such that tij( υQ)− tij(z) = ( υ

Q − z)t
′
ij(cυ).

Therefore,∣∣∣∣∣∣
Qyij(fQ)∑

υ=1

tij

(
υ

Q

)
1

Q
−
∫ yij(fQ)

0
tij(z)dz

∣∣∣∣∣∣ ≤
Qyij(ϕ)∑
υ=1

∣∣∣∣∣t′ij(cυ)
∫ υ

Q

υ−1
Q

(
υ

Q
− z
)
dz

∣∣∣∣∣
=

Qyij(fQ)∑
υ=1

|t′ij(cυ)|
1

2Q2

≤
yij(fQ)

2Q
max

x∈[0,yij(fQ)]
|t′ij(x)| → 0 as Q→∞.

(43)

□

C.2 Proof of Proposition 1

Let p̂(y) be a function of y corresponding to the potential function (9):

p̂(y) = −
∑

(i,j)∈L

∫ yij

0
tij(z)dz. (44)

p̂ is strictly concave because the Hessian matrix of p̂ is negative definite.

∂2p̂(y)

∂yij∂yîĵ
=


−dtij(yij)

dyij
< 0 if (i, j) = (̂i, ĵ),

0 otherwise.
(45)

This implies that the link flow rate y∗ that maximizes the potential function (9) is uniquely de-
termined. The uniqueness of the link flow rate y∗ implies that all link costs t = (tij(yij)(i,j)∈L)
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and the travel costs C are also uniquely determined at the equilibrium.
However, the equilibrium state f∗ is generally non-unique, as demonstrated in Sheffi (1985).

This non-uniqueness occurs because multiple path flow rates can produce the same link flow
rate y. This is illustrated using a simple network with Ω = {(1, 6), (2, 6)} in Figure 11. If the
link flow pattern is given by

y12 = q16, y13 = q26, y34 = y46 = Y1 < q16 + q26, y35 = y56 = q16 + q26 − Y1, (46)

this link flow pattern can be achieved by any path flow pattern f that satisfies

f16k =

ψ for the path 1→ 3→ 4→ 6,

q16 − ψ for the path 1→ 3→ 5→ 6,
(47a)

f26k =

 Y1 − ψ for the path 2→ 3→ 4→ 6,

q26 − Y1 + ψ for the path 2→ 3→ 5→ 6,
(47b)

with ψ ∈ [max{0, Y1 − q26},min{Y1, q16}]. □
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Table 2: Link information
link id start end capacity µij fft tij link id start end capacity µij fft tij

0 1 2 25900.200 6 38 13 24 5091.256 4
1 1 3 23403.470 4 39 14 11 4876.508 4
2 2 1 25900.200 6 40 14 15 5127.526 5
3 2 6 4958.181 5 41 14 23 4924.791 4
4 3 1 23403.470 4 42 15 10 13512.000 6
5 3 4 17110.520 4 43 15 14 5127.526 5
6 3 12 23403.470 4 44 15 19 14564.75 3
7 4 3 17110.520 4 45 15 22 9599.181 3
8 4 5 17782.790 2 46 16 8 5045.823 5
9 4 11 4908.827 6 47 16 10 4854.918 4
10 5 4 17782.790 2 48 16 17 5229.910 2
11 5 6 4947.995 4 49 16 18 19679.900 3
12 5 9 10000.000 5 50 17 10 4993.511 8
13 6 2 4958.181 5 51 17 16 5229.910 2
14 6 5 4947.995 4 52 17 19 4823.951 2
15 6 8 4898.588 2 53 18 7 23403.470 2
16 7 8 7841.811 3 54 18 16 19679.900 3
17 7 18 23403.470 2 55 18 20 23403.470 4
18 8 6 4898.588 2 56 19 15 14564.750 3
19 8 7 7841.811 3 57 19 17 4823.951 2
20 8 9 5050.193 10 58 19 20 5002.608 4
21 8 16 5045.823 5 59 20 18 23403.470 4
22 9 5 10000.000 5 60 20 19 5002.608 4
23 9 8 5050.193 10 61 20 21 5059.912 6
24 9 10 13915.790 3 62 20 22 5075.697 5
25 10 9 13915.790 3 63 21 20 5059.912 6
26 10 11 10000.000 5 64 21 22 5229.910 2
27 10 15 13512.000 6 65 21 24 4885.358 3
28 10 16 4854.918 4 66 22 15 9599.181 3
29 10 17 4993.511 8 67 22 20 5075.697 5
30 11 4 4908.827 6 68 22 21 5229.910 2
31 11 10 10000.000 5 69 22 23 5000.000 4
32 11 12 4908.827 6 70 23 14 4924.791 4
33 11 14 4876.508 4 71 23 22 5000.000 4
34 12 3 23403.470 4 72 23 24 5078.508 2
35 12 11 4908.827 6 73 24 13 5091.256 4
36 12 13 25900.200 3 74 24 21 4885.358 3
37 13 12 25900.200 3 75 24 23 5078.508 2
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Table 3: OD demand {Qrs} in SiouxFalls network (1-12)
O / D 1 2 3 4 5 6 7 8 9 10 11 12

1 0 100 100 500 200 300 500 800 500 1300 500 200
2 100 0 100 200 100 400 200 400 200 600 200 100
3 100 100 0 200 100 300 100 200 100 300 300 200
4 500 200 200 0 500 400 400 700 700 1200 1400 600
5 200 100 100 500 0 200 200 500 800 1000 500 200
6 300 400 300 400 200 0 400 800 400 800 400 200
7 500 200 100 400 200 400 0 1000 600 1900 500 700
8 800 400 200 700 500 800 1000 0 800 1600 800 600
9 500 200 100 700 800 400 600 800 0 2800 1400 600
10 1300 600 300 1200 1000 800 1900 1600 2800 0 4000 2000
11 500 200 300 1500 500 400 500 800 1400 3900 0 1400
12 200 100 200 600 200 200 700 600 600 2000 1400 0
13 500 300 100 600 200 200 400 600 600 1900 1000 1300
14 300 100 100 500 100 100 200 400 600 2100 1600 700
15 500 100 100 500 200 200 500 600 1000 4000 1400 700
16 500 400 200 800 500 900 1400 2200 1400 4400 1400 700
17 400 200 100 500 200 500 1000 1400 900 3900 1000 600
18 100 0 0 100 0 100 200 300 200 700 200 200
19 300 100 0 200 100 200 400 700 400 1800 400 300
20 300 100 0 300 100 300 500 900 600 2500 600 500
21 100 0 0 200 100 100 200 400 300 1200 400 300
22 400 100 100 400 200 200 500 500 700 2600 1100 700
23 300 0 100 500 100 100 200 300 500 1800 1300 700
24 100 0 0 200 0 100 100 200 200 800 600 500

Table 4: OD demand {Qrs} in SiouxFalls network (13-24)
O / D 13 14 15 16 17 18 19 20 21 22 23 24

1 500 300 500 500 400 100 300 300 100 400 300 100
2 300 100 100 400 200 0 100 100 0 100 0 0
3 100 100 100 200 100 0 0 0 0 100 100 0
4 600 500 500 800 500 100 200 300 200 400 500 200
5 200 100 200 500 200 0 100 100 100 200 100 0
6 200 100 200 900 500 100 200 300 100 200 100 100
7 400 200 500 1400 1000 200 400 500 200 500 200 100
8 600 400 600 2200 1400 300 700 900 400 500 300 200
9 600 600 900 1400 900 200 400 600 300 700 500 200
10 1900 2100 4000 4400 3900 700 1800 2500 1200 2600 1800 800
11 1000 1600 1400 1400 1000 100 400 600 400 1100 1300 600
12 1300 700 700 700 600 200 300 400 300 700 700 500
13 0 600 700 600 500 100 300 600 600 1300 800 800
14 600 0 1300 700 700 100 300 500 400 1200 1100 400
15 700 1300 0 1200 1500 200 800 1100 800 2600 1000 400
16 600 700 1200 0 2800 500 1300 1600 600 1200 500 300
17 500 700 1500 2800 0 600 1700 1700 600 1700 600 300
18 100 100 200 500 600 0 300 400 100 300 100 0
19 300 300 800 1300 1700 300 0 1200 400 1200 300 100
20 600 500 1100 1600 1700 400 1200 0 1200 2400 700 400
21 600 400 800 600 600 100 400 1200 0 1800 700 500
22 1300 1200 2600 1200 1700 300 1200 2400 1800 0 2100 1100
23 800 1100 1000 500 600 100 300 700 700 2100 0 700
24 700 400 400 300 300 0 100 400 500 1100 700 0
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