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Abstract 
Contrary to expectations in business and policy circles, progress in the adoption of fuel cell electric vehicles 

(FCEVs) and the expansion of hydrogen charging stations (HCSs) has been slow in developed countries, raising 

concerns about the viability of hydrogen mobility. To address this challenge, this study examines the indirect 

network effects in Japan’s FCEV market. We estimate the impact of HCS deployment on FCEV adoption using 

vehicle registration data from 2013 to 2020 and a staggered difference-in-differences research design. 

Additionally, we assess the effect of FCEV stock on HCS deployment using a system generalized method of 

moments estimator in a dynamic panel model. The results indicate positive and statistically significant indirect 

network effects on both sides of the market; however, the size of the network effects remains insufficient to 

generate positive feedback loops. Weak indirect network effects are also reflected in event-study results, 

demonstrating that the effect of HCS deployment on FCEV adoption diminishes over time. Our study suggests 

that developing HCS networks at an early stage is financially unsustainable without strong demand-side growth. 

This study broadens the understanding of zero-emission vehicle markets by providing the first evidence on 

indirect network effects in the FCEV market, while highlighting key distinctions from the battery electric vehicle 

market. 
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1. Introduction 

Decarbonizing road transport through electrification has become an important strategy 

for reducing vehicular emissions (International Energy Agency, 2023). Electrified 

vehicles include battery electric vehicles (BEVs), fuel cell electric vehicles (FCEVs), 

plug-in hybrid electric vehicles (PHEVs), and hybrid electric vehicles (HEVs). Each type 

has unique advantages, complementing one another to create a robust, flexible, and 

sustainable transition away from internal combustion engine vehicles while addressing 

various transportation needs. Initially, PHEVs and HEVs served as intermediate steps 

toward full electrification. However, with advancements in infrastructure, technology, 

and renewable energy integration, BEVs and FCEVs are expected to dominate the long-

term vehicle market, offering zero-emission solutions for diverse applications 

(International Energy Agency, 2023). 

 

The zero-emission vehicle market (BEVs and FCEVs) is characterized by indirect 

network effects, where the value of vehicles depends on the availability of charging or 

refueling infrastructure and vice versa. This dynamic creates a “chicken and egg” 

problem: consumers are hesitant to buy zero-emission vehicles due to a lack of 

infrastructure, while infrastructure companies are reluctant to invest due to insufficient 

demand. Indirect network effects are particularly influential in infant markets, such as 

those for zero-emission vehicles, as they introduce the possibility of lock-in, resulting in 

the failure of new technology (Greaker and Heggedal, 2010; Meunier and Ponssard, 2020; 

Zhou and Li, 2018). Thus, a thorough understanding of indirect network effects is crucial 

for formulating effective policies for developing zero-emission vehicle markets. 

 

Extensive research has examined indirect network effects in BEV markets. Using 
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quarterly panel data covering 17 car models and 353 Metropolitan Statistical Areas in the 

United States, Li et al. (2017) identified indirect network effects on both sides of the 

market and demonstrated that subsidizing charging station deployment is more effective 

than subsidizing vehicle sales. Similarly, Springel (2021) analyzed the Norwegian BEV 

market and reached comparable conclusions. Subsequent studies have confirmed the 

effectiveness of charging station deployment in promoting BEV adoption in China 

(Kalthaus and Sun, 2021), Norway (van Dijk et al., 2022), and France (Haidar and Rojas, 

2022). By contrast, research on these effects in FCEV markets remains limited. 

 

This study addresses this gap by examining the indirect network effects in Japan’s FCEV 

passenger car market.2 Japan’s FCEV market offers a unique context as it introduced the 

world’s first FCEV, the Toyota Mirai, in 2014. The government has also set ambitious 

hydrogen mobility targets, aiming to register 800,000 FCEVs and deploy 900 hydrogen 

charging stations (HCSs) by 2030 (Ministry of Economy, Trade and Industry, 2019). 

However, adoption remains limited, with approximately 8,000 FCEVs and 160 HCSs 

deployed as of 2024, despite generous financial incentives (Next Generation Vehicle 

Promotion Center, 2025). The divergence between policy targets and realized adoption 

rates raises concerns over how much, or even whether, indirect network effects exist in 

Japan’s FCEV market and the cost-effectiveness of subsidies for FCEV adoption and HCS 

deployment. Evaluating these effects in Japan offers valuable policy insights for not only 

Japan but also European countries and the United States (especially California), which 

face similar challenges (Element Energy, 2024). 

 

 
2 Trucks, buses, and special purpose vehicles (e.g., ambulances) are excluded from this study due 
to the absence or limited number of registrations. Unless otherwise stated, FCEVs refer 
exclusively to passenger cars. 
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We estimate the effect of HCS deployment on FCEV adoption in Japan using 

administrative data on vehicle registrations from 2013 to 2020. A staggered difference-

in-differences (DD) approach exploits variations in the timing of the first HCS 

deployment across municipalities. A matching approach constructs a control group based 

on propensity scores derived from municipal characteristics before HCS deployment, and 

Callaway and Sant’Anna’s (2021) method is applied to account for heterogeneous 

treatment effects. Next, we estimate the effect of FCEV stock on HCS deployment using 

a system generalized method of moments (GMM) estimator to a dynamic panel model. 

 

Our analyses reveal several important insights. Consistent with Li et al. (2017) and 

Springel (2021), our findings confirm the existence of indirect network effects in Japan’s 

FCEV market in both directions: HCS deployment promotes FCEV adoption, and an 

increase in FCEV stock drives further HCS deployment. Specifically, our DD estimates 

suggest that HCS deployment increased the probability of FCEV adoption by 0.09 

percentage points during the post-HCS deployment period for residents inside 

municipalities with HCS compared to those without. GMM estimates suggest that an 

increase of 500 FCEV stocks in a municipality leads to the deployment of an additional 

HCS. Our results remain robust across various specifications, placebo tests, and 

estimation techniques and show no spillover effects of HCS deployment to neighboring 

non-HCS municipalities, alleviating identification concerns. 

 

Using these estimates, we examine the potential increase in FCEV adoption if the 

government achieves its target of 900 HCSs, equivalent to each treated municipality in 

our sample installing six additional HCSs. One significant finding is that the magnitude 

of indirect network effects remains too small to generate positive feedback loops between 
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FCEV adoption and HCS deployment, even under large-scale HCS deployment scenarios. 

This contrasts with BEV markets, as observed by Li et al. (2017) and Springel (2021). 

Weak indirect network effects are also reflected in event-study results, demonstrating that 

the effect of HCS deployment on FCEV adoption diminishes over time, unlike the 

increasing effects observed in BEV markets (van Dijk et al., 2022). This weak response 

among early adopters could stem from the high FCEV purchase and operating costs, low 

awareness, and insufficient incentive schemes. Our preliminary calculation suggests that 

FCEV registrations per HCS increase by only 11, implying that each additional FCEV 

adoption driven by HCS deployment costs approximately US$ 305,000. 

 

Our study addresses two strands of literature. The first pertains to the broad literature that 

empirically analyzes indirect network effects. Previous studies have examined indirect 

network effects in two-sided markets, such as CD titles and players (Gandal et al., 2000), 

PDA devices and compatible software (Nair et al., 2004), Yellow Pages directories 

(Rysman, 2004), video games (Clements and Ohashi, 2005; Corts and Lederman, 2009; 

Lee, 2013), broadcasting (Crawford and Yurukoglu, 2012), and news media (Gentzkow 

et al., 2014). More recent studies have explored indirect network effects in markets for 

low- and zero-emission vehicles, such as flex-fuel vehicles (Corts, 2010; Shriver, 2015) 

and BEVs and PHEVs (Haidar and Rojas, 2022; Kalthaus and Sun, 2021; Li et al., 2017; 

Springel, 2021; van Dijk et al., 2022). This study broadens the understanding of zero-

emission vehicle markets by providing the first empirical evidence on indirect network 

effects in the FCEV market, while highlighting key distinctions from the BEV market. 

 

Second, this study adds to the literature on the role of HCSs in determining FCEV 

adoption. By analyzing survey data from Aichi Prefecture in Japan, Khan et al. (2020, 
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2021) found that HCS availability significantly influences both potential buyers’ adoption 

decisions and early adopters’ continued usage. Similarly, Kelley et al. (2020, 2022) and 

Stotts et al. (2021) analyzed survey data from California in the United States, highlighting 

the influence of HCS locations in early adopters’ decisions. For example, most early 

adopters require at least one conveniently located HCS along frequently traveled routes. 

This study adds to the survey-based literature by providing the first empirical evidence 

on early adopters’ responses to HCS development using a quantitative approach. 

 

Large-scale HCS networks are widely regarded as vital for expanding the FCEV market 

early. Similar to Japan, California aims to deploy 1,000 HCSs by 2030 (44 as of 

November 2024) to promote hydrogen mobility (California Fuel Cell Partnership, 2018). 

Hydrogen Mobility Europe targets 1,000 public HCSs across Europe by 2025 (168 as of 

January 2024) (Element Energy, 2024). Our study suggests that developing HCS 

networks on such a large scale is expensive and financially unsustainable without strong 

demand-side growth. This underscores the need for fundamental reforms in hydrogen 

mobility strategies, with more emphasis on demand-side measures such as reducing 

upfront and operating costs of FCEV adoption, increasing public awareness, and offering 

additional incentives (e.g., free public transport, toll exemption, and free public parking). 

 

The remainder of this paper is structured as follows. Section 2 provides background 

information on FCEVs, HCSs, and Japan’s policy context. Section 3 describes the data 

and sample used in the study. In Section 4, we present the empirical approaches for 

estimating indirect network effects. Section 5 presents empirical evidence on the effects 

of HCS deployment on FCEV adoption, the effects of FCEV stock on HCS deployment, 

and a discussion on policy implications. Section 6 concludes. 



7 
 
 

2. Background 

2.1. FCEVs 

FCEVs are electric vehicles that use hydrogen as their primary fuel source (Hassan et al., 

2023; Soleimani et al., 2024). Hydrogen gas from high-pressure storage tanks is fed into 

the fuel cell stack, where it undergoes an electrochemical reaction with oxygen from the 

air. This process splits hydrogen molecules into protons and electrons at the anode. The 

protons pass through an electrolyte membrane to the cathode, whereas the electrons travel 

through an external circuit, generating an electric current that powers the vehicle’s 

onboard electric motor, which drives the wheels. At the cathode, protons, electrons, and 

oxygen combine to form water, which is released as the only emission, making FCEVs 

zero-emission vehicles. 

 

The first FCEV prototype, the Chevrolet Electrovan, was introduced by General Motors 

in 1966, inspired by the hydrogen fuel cells used in the Apollo spacecraft.3 The project 

was eventually scrapped because of several challenges, including high costs, safety 

concerns with pressurized tanks, and a lack of hydrogen infrastructure. Decades later, 

several carmakers introduced lease-only FCEVs, including the Toyota FCHV and Honda 

FCX in 2002 and the Hyundai ix35 FCEV in 2013. In 2014, Toyota launched the Mirai, 

recognized as the world’s first mass-produced FCEV, followed by the Honda Clarity in 

2016 and the Hyundai Nexo in 2018. 

 

FCEVs offer key advantages over BEVs, particularly, faster refueling times and longer 

driving ranges. For example, the Toyota Mirai takes approximately 3 min to fill its 5.6 kg 

hydrogen tank, providing an 850 km driving range (Toyota Motor Corporation, 2024), 

 
3 See Corby (2021) for more details on the history of FCEVs. 
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comparable to gasoline vehicles such as the Toyota Corolla Sport. By contrast, a 

comparable BEV, such as the Nissan Leaf (60 kWh battery), takes approximately 60 min 

to recharge 80% of its battery capacity even with a fast-charging station, offering a 500 

km driving range (Nissan Motor Corporation, 2024). 

 

However, despite these advantages, the widespread adoption of FCEVs remains limited, 

largely due to high purchase costs and infrastructure constraints. The gross price of the 

Toyota Mirai is approximately US$ 52,000, but national government incentives, such as 

subsidies and tax cuts, reduce the net purchasing price to US$ 40,000. Additional 

municipal subsidies can further lower purchasing costs, as seen in Tokyo, where the final 

price drops to US$ 32,000. Despite generous financial support, FCEVs remain 35–47% 

more expensive than other electrified vehicles; in Tokyo, the final prices for the Nissan 

Leaf (BEV) and Toyota Corolla Sport (HEV) are US$ 21,000 and US$ 17,000, 

respectively. The higher costs of FCEVs stem from expensive fuel cell components, 

hydrogen storage systems, and limited economies of scale in production. 

 

2.2. HCSs 

HCSs are categorized into three types: on-site, off-site, and portable. On-site stations 

produce hydrogen on-site using city gas or liquefied petroleum gas. Off-site stations rely 

on hydrogen delivered from external production facilities via trailers instead of on-site 

hydrogen production. Portable stations comprise large trucks carrying the necessary 

hydrogen refueling equipment (e.g., a hydrogen cylinder bundle, compressor, hydraulic 

accumulator, and dispenser) to refuel an FCEV at a predetermined location. As of 2023, 

on-site, off-site, and portable stations accounted for 17%, 58%, and 25% of Japan’s total 

HCSs, respectively. 
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Given the high costs and technical expertise required for HCS operation, these stations 

are primarily managed by oil, industrial gas, and city gas companies. Among them, the 

largest operator is the Iwatani Corporation, operating 53 HCSs across the country, 

followed by ENEOS (43) and Air Liquide Japan (17). Entering the HCS business is 

costly; constructing an off-site HCS costs approximately US$ 3.3 million—five times 

greater than that of a standard gasoline station—due to highly specialized equipment, 

including pressure accumulators, compressors, dispensers, and freezing machines, as well 

as precision engineering. Annual operating costs for an off-site HCS amount to 

US$ 220,000, also exceeding those of a gasoline station. To encourage HCS deployment, 

the national government subsidizes two-thirds of construction and operation costs, 

regardless of station size or type. 

 

In February 2018, Japan H2 Mobility (JHyM) was established by private companies, 

including HCS companies, automobile manufacturers, and financial investors, to 

facilitate the effective and strategic deployment of HCSs, particularly in four major 

metropolitan areas: Tokyo, Osaka, Nagoya, and Fukuoka. JHyM developed an optimal 

station placement map to ensure accessibility within 15 min and introduced measures to 

extend HCS operation hours. Additionally, JHyM streamlines subsidy applications and 

offers supplementary financial support, further reducing HCS construction and 

operational costs. 

 

Given that HCSs handle highly pressurized hydrogen, a flammable gas, their construction 

and operation are highly regulated. For example, the Building Standards Act bans HCS 

construction in certain residential and industrial districts, while the High Pressure Gas 

Safety Act mandates that at least one certified high-pressure gas safety supervisor be 
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present during station operation. 

 

2.3. Hydrogen and fuel cell strategy 

In December 2013, the Ministry of Economy, Trade and Industry (METI) established the 

Hydrogen and Fuel Cell Strategy Council to promote the widespread use of hydrogen 

energy and fuel cell technology in Japan. The council focuses on four key areas: (a) 

establishing a hydrogen supply chain, (b) promoting hydrogen utilization, (c) fostering 

technological development, and (d) enhancing public awareness. To ensure progress in 

these areas, the council announced the Hydrogen and Fuel Cell Strategy (HFCS) in June 

2014, setting specific targets and timelines (Ministry of Economy, Trade and Industry, 

2019). This strategy was later revised in 2016 and 2019 to reflect progress and changing 

domestic and international conditions. 

 

FCEVs form an important component of the HFCS for several reasons. First, road 

transport accounted for 16% of Japan’s total carbon dioxide emissions in 2022, with 

passenger cars contributing 52% of road transport emissions, followed by trucks at 44% 

(Ministry of Land, Infrastructure, Transport and Tourism, 2025). Adopting zero-emission 

vehicles, including FCEVs, is considered to be a promising pathway to decarbonize road 

transport. Second, the diffusion of FCEVs balances electricity demand by reducing 

reliance on BEVs and PHEVs, particularly during peak charging periods that could strain 

the power grid. Third, widespread FCEV adoption can drive investments in hydrogen 

production, infrastructure, and distribution, potentially creating new industries, 

generating job opportunities, and fostering technological innovation (Soleimani et al., 

2024).  

 

The HFCS targeted 40,000 FCEV registrations by 2020, 200,000 by 2025, and 800,000 
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by 2030, respectively (Ministry of Economy, Trade and Industry, 2019).4 However, the 

actual rollouts have fallen far below the targets. Table 1 shows that by 2024, FCEV 

registrations were limited to 7,748, approximately 32,000 below the 2020 target. 

Achieving the 2025 and 2030 targets would require an additional 192,000 and 792,000 

registrations, respectively. It is also evident that compared with other electrified vehicles, 

the diffusion process of FCEVs has been notably sluggish.  

 
Table 1 
Registrations of electrified vehicles in Japan 
  FCEVs BEVs PHEVs HEVs 

2014  38,794 30,171 3,823,057 
2015 150 52,639 44,012 4,684,755 
2016 630 62,134 57,130 5,558,725 
2017 1,807 73,378 70,323 6,544,268 
2018 2,440 91,357 103,211 7,512,846 
2019 3,009 105,919 122,008 8,453,451 
2020 3,695 117,315 136,208 9,281,380 
2021 5,170 123,706 151,241 10,014,228 
2022 6,981 138,325 174,231 10,804,981 
2023 7,310 162,387 207,578 11,655,182 
2024 7,748 191,613 252,552 12,697,203 

Notes: This table shows the registrations of fuel cell electric vehicles (FCEVs), battery electric vehicles 
(BEVs), plug-in hybrid electric vehicles (PHEVs), and hybrid electric vehicles (HEVs). The registration 
data is as of the end of March of each year and exclusively pertains to passenger vehicles. 

 

Similarly, the HFCS aimed for 160 HCSs by 2020, 320 by 2025, and 900 by 2030. Figure 

1 illustrates the trend in HCS deployments in Japan from 2014 to 2021, highlighting that 

although HCSs were constructed annually, the cumulative number of HCSs only reached 

157 nationwide by 2021. Although this figure is nearly on par with the 2020 target, the 

number of HCSs must double by 2025 and increase six-fold by 2030 to meet future goals.  

 
4 The HFCS targeted 100 registrations by 2020 and 1,200 by 2030 for fuel cell buses. Similarly, 
it aimed for 500 registrations by 2020 and 10,000 by 2030 for fuel cell forklifts (Ministry of 
Economy, Trade and Industry, 2019). 
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Fig. 1. Trends in HCS deployments in Japan 
 
Notes: The bars represent the total HCS construction in each year. The line denotes the cumulative number 
of HCSs nationwide. 
 

3. Data and sample 

3.1. Data sources 

We obtained administrative data on passenger vehicle registrations as of the end of March 

2021 from the Automobile Inspection & Registration Information Association. Under the 

Road Transport Vehicle Act, all Japanese citizens must register their motor vehicles in the 

national vehicle registration system. Our analyses focused on 35 prefectures with at least 

one HCS as of March 2021, accounting for 88% of the total passenger vehicle 

registrations in Japan.5 The dataset includes details on first registration years, carmakers, 

vehicle weight, fuel type, and owner’s residential municipality. It covers 135 carmakers, 

including both domestic and foreign manufacturers, and six fuel types: gasoline, diesel, 

hybrid (including both gasoline- and diesel-electric), electric, hydrogen, and others (e.g., 

liquefied petroleum gas). Utilizing this fuel type information, we constructed a binary 

 
5 The selected 35 prefectures include Hokkaido, Miyagi, Fukushima, Ibaraki, Tochigi, Gunma, 
Saitama, Chiba, Tokyo, Kanagawa, Yamanashi, Niigata, Toyama, Nagano, Fukui, Gifu, Shizuoka, 
Aichi, Mie, Shiga, Kyoto, Osaka, Nara, Wakayama, Hyogo, Okayama, Hiroshima, Yamaguchi, 
Tokushima, Kagawa, Fukuoka, Saga, Kumamoto, Oita, and Kagoshima.  
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outcome variable that takes a value of one if the registered vehicle is hydrogen-powered. 

 

We limited our sample to “standard” passenger vehicles first registered between 2013 and 

2020. In Japan, passenger vehicles are classified into “small” and “standard,” 6 with 

FCEVs (Toyota Mirai and Honda Clarity) falling under the standard category. We 

excluded small passenger vehicles, as well as registrations from 2021, which only cover 

three months (January–March). Pre-2013 registrations were also omitted, as no FCEVs 

existed before the introduction of the Toyota Mirai in Japan in December 2014. However, 

we retained 2013 data to ensure at least one pretreatment period for our estimation 

technique. The final dataset comprises 9,973,652 registered passenger vehicles.  

 

Data on HCSs were sourced from the Next Generation Vehicle Promotion Center and 

included details on station location, supply methods, capacities, business operators, 

operating days and hours, and opening dates. Between October 2014 and December 2020, 

136 HCSs were established across 118 municipalities:105 municipalities had one HCS, 

nine had two HCSs, three had three HCSs, and one municipality had four HCSs. 

 

We supplemented this with municipality-level data from various sources:  

• System of Social and Demographic Statistics (Ministry of Internal Affairs and 

Communications): Population density, per capita income, fiscal soundness of 

municipal governments, share of individuals aged 15–65 years, share of university 

and postgraduate degree holders, share of workers in service sectors, and share of 

designated residential areas.  

 
6 A passenger vehicle is labelled small if its body length is below 4.7 meters, its width is below 
1.7 meters, and its height is below 2.0 meters. If any of these conditions are not met, the vehicle 
is categorized as standard. 
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• Land General Information System (Ministry of Land, Infrastructure, Transport 

and Tourism [MLITT]): Residential land prices per square meter.  

• National Land Numerical Information dataset (MLITT): Total number of gasoline 

stations per municipality in 2015.  

• New Energy and Industrial Technology Development Organization (for 2014): 

Prefectural and municipal government incentives for promoting FCEV and HCS 

deployment. 

 

3.2. Sample selection 

During the sample period, 118 municipalities had at least one HCS, while 1,437 did not. 

As presented in Panel A of Table 2, municipalities with HCS exhibited higher population 

density, income, education levels, and local government support than those without HCS. 

Given these significant disparities, directly comparing municipalities with and without 

HCS could lead to biased estimates. To mitigate this issue, we employed propensity score 

matching to balance observable characteristics and isolate the effect of HCS deployment. 

 

Following Nishitateno and Burke (2024), we selected the estimation sample using the 

following steps. First, we employed a logit model to estimate the propensity score of 

being “treated” for all available municipalities based on the variables listed in Table 2 

during the pre-HCS deployment period. The years of the variables differ depending on 

data availability (see notes for Table 2).7 Second, we constructed a sample using single 

nearest-neighbor matching within a caliper width of 0.2 of the propensity score without 

replacement. 8  We imposed a common support condition to satisfy the overlap 

 
7 The years were also selected to ensure they reflect conditions before the establishment of HCS, 
maintaining the validity of the matching process. 
8 We selected a caliper width of 0.2, following Wang et al. (2013), who demonstrated that this 
value—calculated as 0.2 of the pooled standard deviation of the logit of the propensity score—
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assumption, dropping HCS municipalities with a propensity score higher than the 

maximum or lower than the minimum among non-HCS municipalities. Panel B of Table 

2 illustrates that this matching approach resulted in well-equalized means of the 

municipality variables during the pre-HCS deployment period between municipalities 

with and without an HCS. Additionally, Figure 2 confirms that the distribution of the 

propensity scores is well-balanced. We applied this matched sample (232 municipalities) 

throughout our analyses.9 This final matched sample formed the basis of our empirical 

analysis, allowing us to assess the impact of HCS deployment while minimizing selection 

bias. 

 
Table 2 
Averages across municipalities during the pre-HCS deployment period 

 A. Before matching   B. After matching 
  With 

HCSs 
Without 
HCSs Diff.   With 

HCSs 
Without 
HCSs Diff. 

Population density 50 19 31***  50 61 –11* 
Per capita income, thousand yen 3,444 2,837 606***  3,400 3,380 20 
Residential land prices per square meter, 
thousand yen 167 48 119***  157 157 0 
Share of people aged 15-65 0.65 0.60 0.05***  0.65 0.65 0 
Share of university and postgraduate 
degree holders 0.16 0.1 0.06***  0.16 0.16 0 
Share of workers in service sectors 0.68 0.61 0.07***  0.68 0.70 –0.02 
Share of designated areas for residence 0.37 0.27 0.10***  0.37 0.38 –0.01 
Number of petrol stations 33 12 21***  32 28 4 
Fiscal soundness of municipal 
government 0.88 0.57 0.31***  0.88 0.92 –0.04 
Prefectural government supports 0.76 0.64 0.12***  0.76 0.77 –0.01 
Municipal government supports 0.18 0.03 0.15***  0.17 0.18 –0.01 
Propensity score 0.28 0.06 0.22***  0.29 0.28 0.01 
Number of municipalities 118 1437     116 116   
Notes: This table reports the results of balancing tests before and after matching. ***, **, and * indicate statistical 
significance at the 1%, 5%, and 10% levels, respectively. We used 4-year averages from 2010–2013 for population 
density, per capita income, residential land prices per square meter, the share of designated areas for residence, and 
fiscal soundness of municipal governments. The share of people aged 15–65 years, university and postgraduate 
degree holders, and workers in service sectors were averaged for 2010 due to data limitations. Prefectural and 
municipal government support and the number of petrol stations were averaged for 2014 and 2015, respectively. 

 

 
optimizes the estimation of treatment effects. 
9  The only exception occurs when analyzing the potential spatial spillover effects of HCS 
deployment using a sample of non-HCS municipalities (Panel C of Table 4).  
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Fig. 2. Distribution of propensity score 
 
Notes: The histograms illustrate the distribution of propensity scores for municipalities with and without 
HCSs before and after matching. The number of municipalities with and without HCSs are 118 and 1437 
in Panel A and 116 and 116 in Panel B, respectively. 
 

4. Empirical approach 

 4.1. Effects of HCS deployment on FCEV adoption 

We employed a DD approach with multiple periods and variations in treatment timing. 

The standard approach for estimating staggered DD effects is the two-way fixed effects 

(TWFE) regression, specified as follows: 

 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖,𝑚𝑚,𝑡𝑡 = 𝛼𝛼𝑚𝑚 + 𝜔𝜔𝑡𝑡 + 𝐷𝐷𝑚𝑚,𝑡𝑡𝛽𝛽 + 𝜀𝜀𝑖𝑖,𝑚𝑚,𝑡𝑡                                             (1) 

 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖,𝑚𝑚,𝑡𝑡 = 𝛼𝛼𝑚𝑚 + 𝜔𝜔𝑡𝑡 + � 1[𝑡𝑡 − 𝐺𝐺𝑚𝑚 = 𝑟𝑟]𝛽𝛽𝑟𝑟
𝑟𝑟≠−1

+ 𝜀𝜀𝑖𝑖,𝑚𝑚,𝑡𝑡                (2) 

 

where i represents vehicle registration, m denotes the municipality, and t signifies the year. 

FCEV is a dummy variable indicating whether the fuel type for a passenger vehicle first 
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registered in municipality m during year t is hydrogen. 𝛼𝛼 and 𝜔𝜔 represent municipality- 

and year-fixed effects, respectively. 𝐷𝐷 is an indicator for whether an HCS was deployed 

in municipality m during year t. In the static TWFE specification (1), 𝛽𝛽  can be 

interpreted as the overall effect of deploying HCSs on the probability of registering 

FCEVs across municipalities and years.  

 

In the dynamic TWFE specification (2), 𝐺𝐺𝑚𝑚  is the earliest year in which an HCS is 

deployed in municipality m, and 𝑟𝑟 indicates the year relative to the initial deployment. 

For example, 𝑟𝑟 = 0 represents the first post-treatment year. The summation runs over all 

possible values of 𝑟𝑟 except 𝑟𝑟 = −1, as the first pretreatment year is set as the reference 

period. 𝛽𝛽𝑟𝑟≥0 captures the dynamic effect of HCS deployment on FCEV adoption over 

time, indicating whether the impact increases, diminishes, or remains stable during post-

treatment years.  

 

A key estimation issue is that the TWFE regression coefficients in a staggered DD setup 

may reflect both comparisons between treated and not-yet or never-treated groups and 

those between already treated groups (Callaway and Sant’Anna, 2021; de Chaisemartin 

and d’Haultfoeuille, 2020; Goodman-Bacon, 2021). The latter can lead to significant 

drawbacks, such as coefficients having incorrect signs due to negative weighting 

problems, particularly when treatment effects are heterogeneous across cohorts. In our 

setting, this is likely because HCSs are generally deployed based on expected returns, 

with additional stations being more likely in early-treated municipalities. 

 

To examine the extent to which the treated groups receive negative weights in our data, 

we conducted a diagnosis for TWFE, as proposed by Jakiela (2021). We calculated 
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𝐷𝐷�𝑚𝑚,𝑡𝑡/∑ 𝐷𝐷�𝑚𝑚,𝑡𝑡
2

𝑚𝑚,𝑡𝑡  where 𝐷𝐷�𝑚𝑚,𝑡𝑡 is the residual from a regression of the treatment indicator 

(𝐷𝐷𝑚𝑚,𝑡𝑡 ) on the municipality- and year-fixed effects (𝛼𝛼𝑚𝑚, 𝜔𝜔𝑡𝑡 ). Figure 3 illustrates the 

distribution of negative weights across the treated municipality-year observations. 

Negative weights are observed for early-treated municipalities in the later years of our 

sample, specifically for those with HCSs first deployed in 2014 or 2015, and during 2019 

and 2020. 

 
Fig. 3. Diagnosis for negative weights 
 
Notes: This figure reports the distribution of weights across treated municipality-year observations. Weights 
are calculated based on Jakiela (2021). “HCSs in 2014” refers to municipalities where an HCS was first 
deployed in 2014. 
  

To address these identification concerns, we applied Callaway and Sant’Anna’s (2021) 

approach, which accounts for treatment heterogeneity. First, we estimated the average 

treatment effects for all group-years (𝐴𝐴𝐴𝐴𝐴𝐴(𝑔𝑔, 𝑡𝑡) ) using a 2×2 DD estimation. This 

compares the expected change in FCEV adoption for the cohort treated in year 𝑔𝑔 

between years 𝑔𝑔 − 1 and 𝑡𝑡 to that for never-treated cohort in year 𝑡𝑡 

 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑔𝑔, 𝑡𝑡) = E�𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖,𝑚𝑚,𝑡𝑡 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖,𝑚𝑚,𝑔𝑔−1|𝐺𝐺𝑚𝑚 = 𝑔𝑔�

− E�𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖,𝑚𝑚,𝑡𝑡 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖,𝑚𝑚,𝑔𝑔−1|𝐺𝐺𝑚𝑚 = 𝑔𝑔′�, for any 𝑔𝑔′ > t           (3) 
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The reference period was the year before HCS deployment. For example, for the cohort 

where the first HCS was deployed in 2016, the reference period was 2015. This yielded 

two 2×2 DD estimates for pre-HCS deployment (2013–2015 and 2014–2015) and five 

for post-HCS deployment (2015–2016, 2015–2017, 2015–2018, 2015–2019, and 2015–

2020), resulting in 49 2×2 DD estimates across seven treated cohorts. 

 

Next, we aggregated these estimates using (a) a simple weighted average, (b) cohort-

specific averages, and (c) event-study estimates. We used each observation size as a 

weight, assigning greater weights to estimates with larger observation sizes. Cohort-

specific and event-study estimates help us understand how HCS deployment effects vary 

across cohorts and evolve. 

 

The use of repeated cross-sectional data raises concerns about serial correlation in model 

errors over time and spatial correlation among municipalities within the same prefecture 

due to common shocks, such as prefectural government policies (Nishitateno and Burke, 

2021). Failing to account for within-cluster correlations may lead to underestimated 

standard errors. To address this issue, we clustered the standard errors at the prefecture 

level throughout the analyses. 

 

4.2. Effect of FCEV stock on HCS deployment 

We quantified the link between FCEV stocks and HCS deployment using the following 

dynamic panel model: 

 
𝐻𝐻𝐻𝐻𝐻𝐻𝑚𝑚,𝑡𝑡 = 𝜔𝜔𝑚𝑚 + 𝜑𝜑𝑡𝑡 + 𝛽𝛽1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚,𝑡𝑡 + 𝛽𝛽2𝐻𝐻𝐻𝐻𝐻𝐻𝑚𝑚,𝑡𝑡−1 + 𝜸𝜸𝑿𝑿𝒎𝒎,𝒕𝒕 + 𝜀𝜀𝑚𝑚,𝑡𝑡               (4) 
 

where m denotes the municipality, t represents the year, HCS signifies the number of HCS 
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deployed, FCEVS is the accumulated FCEV registrations, and X is a vector of 

confounding factors, including population density, per capita income, fiscal soundness of 

municipal governments, and residential land prices. 𝜔𝜔  and 𝜑𝜑  are municipality- and 

year-fixed effects, respectively, while 𝜀𝜀  is the error term. We report standard errors 

clustered by prefecture. 

 

Estimating Eq. (4) poses several challenges, including that municipality-fixed effects (𝜔𝜔) 

does not eliminate dynamic panel bias because the lagged HCS and 𝜀𝜀 may be correlated 

(Roodman, 2009). Additionally, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 may be endogenous if local subsidy policies 

influence both FCEV adoption and HCS deployment. 

 

To address these issues, we apply the system GMM estimator to Eq. (4). The system 

GMM uses lagged differences and levels of the dependent variable as instrumental 

variables in a dual-equation system, offering superior efficiency compared to the 

difference GMM estimator (Blundell and Bond, 1998). We assume that changes in 

instruments are uncorrelated with fixed effects (Roodman, 2009). In our one-step system 

GMM estimation, the t-1 lagged HCS is considered predetermined but not strictly 

exogenous, whereas FCEVS and X are treated as endogenous. Thus, we included every 

regressor in Eq. (4) in the instrument matrix, excluding municipality- and year-fixed 

effects.10 The matrix was collapsed to limit the number of instruments, resulting in 282 

instruments. We applied the forward orthogonal deviation transform, which subtracts the 

average of all available future observations from previous observations (Arellano and 

Bover, 1995). 

 

 
10 The Hansen-J test fails to reject the null hypothesis that the instruments are uncorrelated with 
the error term, and correctly excluded from the estimated equation. 
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5. Results 

5.1. Estimated effects of HCS deployment on FCEV adoption 

Table 3 presents the estimation results for Eq. (1) using the matched sample for repeated 

cross-sectional data on vehicle registrations from 2013 to 2020 and adopting Callaway 

and Sant’Anna’s (2021) approach. Further, it reveals several important findings. First, the 

effect of HCS deployment on FCEV adoption is positive and statistically significant. The 

simple weighted average of the treatment effects for all treated municipalities is 0.0009, 

significant at the 5% level, with a 95% confidence interval ranging from 0.0002 to 0.0017 

(Panel A of Column 1). This suggests that HCS deployment increased the probability of 

FCEV adoption by 0.09 percentage points during the post-HCS deployment period inside 

municipalities with HCSs relative to those without HCSs. Given that the mean probability 

of FCEV adoption after HCS deployment in HCS municipalities was 0.15, approximately 

60% (≈(0.09/0.15)×100) of the increased FCEV adoption during the post-HCS 

deployment period can be attributed to HCS deployment. 

 

Second, the effect of HCS deployment on FCEV adoption for multi-HCS municipalities 

is approximately 30% greater than that for single-HCS municipalities (see Panel A of 

Columns 2 and 3). The treatment timing for multi-HCS municipalities was set as the first 

year of HCS deployment (2015, 2016, or 2020). These results reflect the effectiveness of 

expanding HCS networks in promoting FCEV adoption.  

 

Third, treatment effects differ across cohorts. The results suggest that HCS deployment 

increased the probability of adopting FCEVs by 0.07–0.12 percentage points in 

municipalities with HCSs first deployed in 2014 or 2015, whereas such effects were not 

observed for late-treated municipalities, except for the cohort in 2018 (Panel B of Column 
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1). This is consistent with early-treated municipalities being more likely to deploy 

additional HCSs—half (six out of 12) of the multi-HCS municipalities in our sample 

deployed their first HCSs in 2015. 

 

 

Fourth, the dynamics of FCEV adoption were approximately parallel before HCS 

deployment, with no significant evidence of pre-HCS deployment effects, increasing 

confidence that the parallel trends assumption is met (Panel C). By contrast, FCEV 

adoption rates diverged between municipalities with and without HCSs during the post-

HCS deployment period, with average treatment effects of 0.0007 for all treated 

Table 3 
Effects of HCS deployment on FCEV adoption 
  All 

(1) 
Single-HCS  

(2) 
Multi-HCS  

(3) 
A. Simple weighted average  0.00093** 0.00083* 0.00116*** 
  (0.00038) (0.00043) (0.00034) 
B. Heterogeneous effect across cohorts    
   Cohort 2014 0.00075*** 0.00075***  
 (0.00018) (0.00018)  
   Cohort 2015 0.00117*** 0.00093*** 0.00166*** 

 (0.00024) (0.00017) (0.00047) 
   Cohort 2016 0.00001 –0.00017** 0.00085** 

 (0.00009) (0.00009) (0.00038) 
   Cohort 2017 0.00033 0.00033  
 (0.00021) (0.00021)  
   Cohort 2018 0.00060** 0.00060**  
 (0.00023) (0.00023)  
   Cohort 2019 0.00090 0.00090  
 (0.00061) (0.00061)  
   Cohort 2020 0.00933 0.01020 –0.00049 

 (0.00771) (0.00807) (0.00035) 
   Average across cohorts 0.00203 0.00214 0.00082*** 
  (0.00131) (0.00144) (0.00026) 
C. Event-study estimates    
   Pre-HCS deployment average 0.00019 0.00019 0.00019 

 (0.00018) (0.00018) (0.00018) 
   Post-HCS deployment average 0.00070** 0.00058** 0.00113*** 
  (0.00027) (0.00029) (0.00033) 
Observations 4,282,178 4,033,958 3,202,000 
Notes: This table presents the estimation results for Eq. (1) using the matched sample for repeated cross-
section data on vehicle registrations from 2013 to 2020 and adopting Callaway and Sant’Anna’s (2021) 
approach. Column 1 reports the specification including all municipalities in the treatment group. 
Columns 2 and 3 restrict the treatment group to single- and multi-HCS municipalities, respectively, 
while maintaining the control group constant. Note that the treatment timing for multi-HCS 
municipalities was set as the first years of HCS deployment (either 2015, 2016, or 2020). Standard errors 
are robust to heteroscedasticity and clustered at the prefecture level. 
***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 
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municipalities, 0.0006 for single-HCS, and 0.0011 for multi-HCS municipalities. 

 

Figure 4 displays event-study estimates for Eq. (2) using the same matched sample and 

Callaway and Sant’Anna’s (2021) approach. Panel A demonstrates that the effect was 

large in the initial period of HCS deployment; however, it diminished over time. The 

estimates suggest that HCS deployment increased the probability of FCEV adoption by 

0.23 percentage points during the same year of deployment, whereas this effect was 

reduced to 0.02 percentage points after six years. A similar pattern is observed for single-

HCS municipalities (Panel B). In the case of multi-HCS municipalities, the treatment 

effects appear to be relatively persistent but eventually diminish over time (Panel C). 

 

The notable effect during the initial phase of HCS deployment may be attributed to 

prefectural or municipal governments proactively purchasing FCEVs as official vehicles 

to promote hydrogen mobility and raise public awareness. For example, municipalities 

like Tokyo-Setagaya acquired FCEVs in the same year as HCS deployment. However, 

the diminishing effects suggest that HCS deployment alone was insufficient to expand 

the early adopter base in FCEV markets. 
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Panel A. All treated municipalities 

 
Panel B. Single-HCS municipalities 
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Panel C. Multi-HCS municipalities 

 
Fig. 4. Dynamic effect of HCS deployment on FCEV adoption 
 
Notes: The figures present the event-study estimation results for Eq. (2) using the matched sample for 
repeated cross-sectional data on vehicle registrations from 2013 to 2020 and Callaway and Sant’Anna’s 
(2021) approach. Panel A includes all the municipalities in the treatment group. Panels B and C restrict the 
treatment group to single- and multi-HCS municipalities, respectively, while maintaining the control group 
constant. Standard errors are robust to heteroscedasticity and clustered at the prefecture level. The circles 
show the point estimates of the average treatment effects, and the vertical bands represent the 95% 
confidence intervals. 
 

5.2. Additional estimates 

Table 4 presents the estimation results for the simple weighted averages obtained using 

alternative approaches, outcome variables, and treatments. In Panel A, the first row 

employs the standard TWFE specification instead of Callaway and Sant’Anna’s (2021) 

approach to examine the extent to which the TWFE estimate deviates from our baseline 

estimate. We find that the TWFE estimate is approximately 40% larger than the baseline 

estimate. 

 

The second and third rows in Panel A examine the validity of the parallel trend assumption 
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in our setup. First, we incorporated covariates, including population density, per capita 

income, the fiscal soundness of the local government, and residential land prices at the 

municipality level, and implemented a doubly robust DD estimator based on inverse 

probability weighting and ordinary least squares (Callaway and Sant’Anna, 2021). 

Second, we used both never-treated and not-yet-treated municipalities as the control 

group rather than just never-treated municipalities. Including not-yet-treated 

municipalities enhanced the comparability of the control group. The results indicate that 

our baseline estimate is robust to these two procedures, boosting confidence in the parallel 

trend assumption. 

 
Table 4 
Alternative approaches and outcome variables 
  Coefficients Standard errors 
Our baseline estimate 0.00093** 0.00038 
A. Alternative approaches   
  TWFE  0.00151* 0.00080 
  With covariates 0.00066** 0.00030 
  Both never-treated and not-yet-treated municipalities 0.00090** 0.00037 
  Municipal clustering adjustment 0.00093** 0.00040 
  Panel specification  0.05282* 0.03194 
B. Placebo tests   
  Gasoline 0.00075 0.00328 
  Diesel –0.00229 0.00303 
  Hybrid 0.00069 0.00080 
  Electric 0.00004 0.00062 
C. Spatial spillover effects    
  Neighboring municipalities without HCSs 0.00001 0.00073 
Notes: This table presents the estimation results for simple weighted averages using alternative approaches, 
outcome variables, and treatments. In Panel A, “TWFE” employs the standard two-way fixed effects 
specification instead of Callaway and Sant’Anna’s (2021) approach. “With covariates” incorporates covariates 
including population density, per capita income, fiscal soundness of local government, and residential land 
prices at the municipality level and implements a doubly robust DD estimator based on inverse probability 
weighting and ordinary least squares. “Both never-treated and not-yet-treated municipalities” expands the 
control group to include both never-treated and not-yet-treated municipalities rather than only never-treated 
ones. “Municipal clustering adjustment” clusters standard errors at the municipality level instead of the 
prefecture level. “Panel specification” uses the municipality-year panel data with 1,848 observations instead of 
the repeated cross-sectional data with 4,282,178 observations. In this specification, the outcome variable is 
the % share of FCEVs in total standard passenger vehicle registrations. In Panel B, we use alternative binary 
outcome variables with different vehicle fuels rather than hydrogen. In Panel C, the estimation results for Eq. 
(5) assess potential spatial spillovers of HCS deployment using a sample of non-HCS municipalities with 
8,652,721 observations.  
***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 

 

The fourth row of Panel A displays the results with standard errors clustered at the 
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municipality rather than the prefecture level. Our concern is that model errors exhibit 

serial correlation across municipalities and that the relatively small number of clusters 

(34) in our setup could bias the standard errors. Given that our sample includes 232 

municipalities, the results confirm that clustering adjustments have little impact on the 

standard errors. 

 

The fifth row of Panel A replaces the repeated cross-sectional data (4,282,178 

observations) with municipality-year panel data (1,848 observations). In this specification, 

the outcome variable is the percentage share of FCEVs in total standard passenger vehicle 

registrations. The results indicate that HCS deployment increased the share of FCEVs by 

0.05 percentage points, suggesting that approximately 40% (≈(0.05/0.13)×100) of the 

increase in FCEV adoption during the post-HCS deployment period can be attributed to 

HCS deployment. This large effect aligns with our baseline estimates.  

 

Panel B of Table 4 reports the results from placebo tests using alternative binary outcome 

variables with vehicle fuels other than hydrogen. As expected, HCS deployment did not 

significantly affect new vehicle registrations for other fuel types, such as gasoline, diesel, 

hybrid, and electric, as these were not subject to the treatment.  

 

Panel C of Table 4 reports the potential spatial spillover effects. If HCS deployment 

increases early FCEV adoption in neighboring municipalities without HCS, our method 

may underestimate its effect. To examine this, we estimate the following specification for 

a restricted sample of vehicle registrations in non-HCS municipalities with 8,652,721 

observations:  

 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖,𝑚𝑚,𝑡𝑡 = 𝛼𝛼𝑚𝑚 + 𝜔𝜔𝑡𝑡 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚,𝑡𝑡𝛽𝛽 + 𝜀𝜀𝑖𝑖,𝑚𝑚,𝑡𝑡                                             (5) 
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where Near is a dummy variable that takes a value of one if a non-HCS municipality is 

located within 10 km of an HCS and zero otherwise.11 In cases where multiple HCSs 

were deployed at different times, we selected the first deployment. The remaining 

elements are identical to those in Eq. (1), and we adopt Callaway and Sant’Anna’s (2021) 

approach. The results show no evidence of spillover effects, reinforcing the validity of 

our baseline estimates and confirming that they are not biased due to violations of the 

stable unit treatment value assumption.  

 

5.3. Estimated effects of FCEV stock on HCS deployment 

Table 5 presents the estimation results for Eq. (4) using panel data from 232 municipalities 

for 2014–2020, totaling 1,617 observations. We excluded 2013 because of the inclusion 

of a one-year lagged dependent variable in the model. Applying the system GMM 

estimator, Column 1 reveals that the FCEV stock coefficient is 0.002, which is significant 

at the 5% level, with a 95% confidence interval ranging from 0.0001 to 0.004. This 

suggests that an increase of 500 FCEV stocks in a municipality leads to an additional 

HCS deployment in that municipality. 

 

As the outcome variable (count of HCS deployment) is count data, which consists of 

many zero values—approximately 90% of observations—Columns 2–4 of Table 5 present 

results for count models, including the Poisson, negative binomial, and zero-inflated 

negative binomial models, using the maximum likelihood estimator. The negative 

binomial model addresses overdispersion, where the conditional variance exceeds the 

mean of the count-dependent variable. The zero-inflated negative binomial framework 

 
11 According to the Ministry of Economy, Trade and Industry (2019), the acceptable travel time 
for users to reach an HCS is approximately 10 min by car, equating to approximately 7 km, 
assuming an average driving speed of 40 km per hour.  
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accounts for excess zeros in the outcome variable using log per capita income in the logit 

analysis. 12  The results suggest that for every one-unit increase in FCEV stock, the 

expected count of HCS deployment increases by 0.6% (≈(exp (0.006)−1)×100). These 

empirical findings highlight the role of indirect network effects in shaping market 

dynamics, providing a foundation for the policy consideration discussed in Section 5.4. 

 
Table 5 
Effects of FCEV stock on HCS deployment 
Dependent variable: Count of HCS deployment 

  
System 
GMM Poisson Negative 

binomial 

Zero-
inflated 
negative 
binomial 

(1) (2) (3) (4) 
FCEV stock 0.002** 0.006* 0.006* 0.006* 

 (0.001) (0.003) (0.003) (0.003) 
Ln population density –1.184* –8.311 –8.310 –8.307 

 (0.698) (6.283) (6.281) (6.281) 
Ln per capita income 1.024 11.873* 11.873* 11.872* 

 (0.900) (6.580) (6.579) (6.579) 
Fiscal soundness of municipal government –0.933* –5.111*** –5.111*** –5.108*** 

 (0.481) (1.389) (1.388) (1.388) 
Ln land prices per km2 0.069 –0.715 –0.715 –0.715 

 (0.083) (0.676) (0.676) (0.676) 
1-year lagged HCS deployment count –0.016 –1.936*** –1.936*** –1.936*** 
  (0.059) (0.626) (0.626) (0.626) 
Year-fixed effects Yes 
Municipality-fixed effects Yes 
Observations 1,617 
Notes: This table presents the estimation results for Eq. (4) using the panel data covering 232 
municipalities from 2014 to 2020. Standard errors are robust to heteroscedasticity and clustered at the 
prefecture level. Column 1 adopts the system GMM estimator. To account for the nature of count data 
for the dependent variable, Columns 2–4 estimate Poisson, negative binomial, and zero-inflated negative 
binomial models, adopting the maximum likelihood estimator.  
***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 

 

5.4. Policy implications 

As elaborated above, indirect network effects exist in Japan’s FCEV market in both 

directions: HCS deployment promotes FCEV adoption, and an increase in FCEV stock 

leads to HCS deployment. Using our estimates, we examined the extent to which FCEV 

 
12 The coefficient of the log per capita income is − 2.502 and is statistically significant at the 1% 
level, suggesting that the log odds of being an excess zero decreases by 0.025 for every additional 
increase in per capita income. In other words, municipalities with higher income levels are more 
likely to have HCS deployments. 
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adoption can increase if the government target of 900 HCSs is achieved—equivalent to 

six additional HCSs per treated municipality in our sample. To quantify this effect, we 

followed a five-step approach: 

 

First, we multiplied our panel estimate (0.05282) from Table 4 by six to measure the 

extent to which infrastructure development increases the share of FCEV in total passenger 

vehicle registrations. Next, we added the estimates from the first step to the FCEV share 

as of December 2020 for the 116 treated municipalities. Third, maintaining the vehicle 

mix constant as of December 2020, we calculated the number of additional FCEVs 

resulting from infrastructure development in each treated municipality. Fourth, if the 

estimated increase in FCEV stock exceeded 500, we computed the corresponding effect 

on HCS deployment (if not, the process stops). If the threshold was met, positive feedback 

loops arose until the FCEV increase fell below this level. Finally, we aggregated the 

individual municipality-level outcomes. 

 

The Appendix reports the results. An important finding is that the treatment effects of 

HCS deployment are too small to generate positive feedback loops. In no treated 

municipality does the increase in FCEV registrations exceed 500, preventing further HCS 

expansion. On average, six additional HCS deployments lead to only 64 more FCEV 

registrations, with total additional registrations reaching 7,455. The largest increases 

occur in Tokyo-Setagaya (231), followed by Toyota (219), Okazaki (166), Oita (150), and 

Takasaki (148). Our preliminary calculation suggests that each HCS deployment results 

in 11 additional FCEV registrations, implying that each FCEV adoption through HCS 

deployment costs US$ 305,000—30 times more than direct FCEV purchase subsidies. 

 

Several factors may explain the weak treatment effects of HCS deployment:  
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(a) High upfront costs—FCEVs are 35–47% more expensive than other electrified 

vehicles. 

(b) High operating costs—although FCEV fuel costs are lower than those of gasoline 

vehicles, they remain higher than those of BEVs and HEVs. We calculated the fuel cost 

per kilometer for each vehicle, accounting for the fuel tank capacity, fuel price, and 

driving range. The results revealed that the fuel cost per kilometer for the Toyota Mirai 

was US$ 0.05, while that for the Nissan Leaf (BEV), Toyota Corolla Sport (HEV), and 

Toyota Corolla Sport (gasoline) was US$ 0.02, US$ 0.04, and US$ 0.07, respectively. 

(c) Low public awareness—A survey conducted by the Next Generation Vehicle 

Promotion Center (2020) on the awareness of BEVs, PHEVs, and FCEVs among 413 

households without electrified vehicles in Japan found that 62% of the households were 

unfamiliar with FCEVs, compared to 36% for BEVs and 48% for PHEVs. 

(d) Insufficient incentives—Japan’s support for early FCEV adopters is limited to 

subsidies and tax cuts to reduce purchasing costs, potentially weakening the HCS 

deployment effects. Khan et al. (2020) found that in addition to subsidies, free public 

transport, toll exemption, and free public parking are important determinants in deciding 

FCEV adoption for potential buyers. 

 
6. Conclusion 

The Paris Agreement, adopted in December 2015 at the 21st session of the Conference of 

the Parties to the United Nations Framework Convention on Climate Change, commits to 

limiting global warming to well below 1.5 degrees Celsius above pre-industrial levels. 

All participating countries are required to set greenhouse gas reduction and control targets 

from 2020 onwards and implement long-term plans. Given that road transport is a key 

source of greenhouse gas emissions, decarbonizing road transport has become an 
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important policy issue across countries. The electrification of road transport through the 

diffusion of zero-emission vehicles is considered a promising pathway. 

 
A critical feature of zero-emission vehicle markets is indirect network effects, where 

vehicle adoption depends on refueling infrastructure and vice versa. This study provides 

the first empirical evidence of these effects in Japan’s FCEV market. We found positive 

and statistically significant indirect network effects on both sides of the market; however, 

these effects were too small to generate self-sustaining positive feedback loops. Our 

findings indicate that developing HCS networks at an early stage is prohibitively 

expensive and financially unsustainable, highlighting the limitations of early-stage 

hydrogen infrastructure development without strong demand-side growth. 

 

Our study informs the necessity of fundamental reforms in hydrogen mobility strategies. 

Greater emphasis should be placed on demand-side measures such as reducing upfront 

and operating costs for FCEV adoption, increasing public awareness, and offering 

additional incentives. For example, subsidies to equalize upfront and operating costs 

between FCEVs and BEVs warrant consideration. Additionally, adopting FCEVs as 

official vehicles for national, prefectural, and municipal governments could enhance 

public awareness. 

 
This study focuses exclusively on passenger cars because of data limitations. However, 

fuel cell technology is well-suited for long-haul trucking and bus operations, given its 

high energy density, rapid refueling time, and long driving range. Future research should 

explore indirect network effects in these applications to inform more effective hydrogen 

infrastructure policies. Examining FCEV markets in other countries, such as the United 

States, South Korea, and China, also represents an important direction for future studies. 
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Appendix: FCEV registrations in treated municipalities in our sample  
 

Treated municipality 

Share of FCEVs in total 
passenger vehicle registrations 

(%) 
 FCEV registrations 

  
As of 

December 
2020 

After six HCSs 
are deployed   

As of 
December 

2020 

After six 
HCSs are 
deployed 

Diff. 

1 Tokyo-Setagaya 0.07 0.39  54 285 231 
2 Toyota 0.30 0.62  207 426 219 
3 Okazaki 0.09 0.41  48 214 166 
4 Oita 0.02 0.34  9 159 150 
5 Takasaki 0.01 0.33  5 153 148 
6 Toyama 0.04 0.36  18 163 145 
7 Tokyo-Nerima 0.13 0.44  58 203 145 
8 Toyohashi 0.07 0.39  33 175 142 
9 Hachioji 0.07 0.39  33 175 142 

10 Tokyo-Ota 0.14 0.46  62 201 139 
11 Tokyo-Edogawa 0.04 0.36  17 143 126 
12 Takamatsu 0.03 0.34  11 137 126 
13 Yokkaichi 0.03 0.35  13 136 123 
14 Iwaki 0.14 0.46  56 178 122 
15 Kasugai 0.05 0.37  19 140 121 
16 Koriyama 0.04 0.36  16 131 115 
17 Fujisawa 0.04 0.35  13 125 112 
18 Nagoya-Midori 0.09 0.40  29 136 107 
19 Wakayama 0.05 0.36  15 120 105 
20 Tokyo-Suginami 0.13 0.45  44 149 105 
21 Toyonaka 0.02 0.34  7 110 103 
22 Otsu 0.02 0.34  7 109 102 
23 Matsudo 0.01 0.33  3 104 101 
24 Tsu 0.04 0.35  12 113 101 
25 Hirakata 0.02 0.34  7 102 95 
26 Tsukuba 0.03 0.34  8 102 94 
27 Tokyo-Koto 0.21 0.52  60 152 92 
28 Kurume 0.03 0.34  8 99 91 
29 Fukushima 0.02 0.34  7 97 90 
30 Fukuoka-Higashi 0 0.32  1 91 90 
31 Tokyo-Itabashi 0.10 0.41  27 115 88 
32 Yokohama-Kita 0.05 0.37  15 101 86 
33 Fukuoka-Hakata 0.10 0.42  27 112 85 
34 Koshigaya 0.02 0.33  4 88 84 
35 Yokohama-Tsuzuki 0.06 0.37  15 99 84 
36 Nagoya-Nakagawa 0.10 0.42  27 110 83 
37 Anjo 0.12 0.44  32 114 82 
38 Tokorozawa 0.05 0.36  12 91 79 
39 Tokushima 0.05 0.37  12 89 77 
40 Kariya 0.24 0.56  57 133 76 
41 Hiroshima-Asaminami 0.01 0.33  2 77 75 
42 Tokyo-Shinagawa 0.17 0.48  39 113 74 
43 Ibaraki 0.01 0.33  3 73 70 
44 Shizuoka-Suruga 0.07 0.39  15 83 68 
45 Saga 0.07 0.39  15 82 67 
46 Sagamihara-Chuo 0.07 0.39  15 81 66 
47 Kofu 0.07 0.39  15 80 65 
48 Sendai-Miyagino 0.06 0.38  12 76 64 
49 Niigata-Chuo 0.04 0.36  8 70 62 
50 Tokyo-Chuo 2.58 2.89  502 564 62 
51 Kyoto-Fushimi 0.03 0.35  6 67 61 
52 Sagamihara-Minami 0.04 0.35  7 66 59 
53 Yokohama-Asahi 0.05 0.37  10 69 59 
54 Higashihiroshima 0.02 0.34  4 62 58 
55 Okayama-Minami 0.03 0.35  6 63 57 
56 Fukuoka-Nishi 0.02 0.33  3 59 56 
57 Sapporo-Toyohira 0 0.32  0 56 56 
58 Tochigi 0 0.32  0 54 54 
59 Kitakyushu-Kokurakita 0.05 0.36  8 62 54 
60 Kasukabe 0.02 0.33  3 56 53 
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61 Kure 0.01 0.32  1 54 53 
62 Nagoya-Minato 0.19 0.50  31 84 53 
63 Hamamatsu-Higashi 0.04 0.35  6 58 52 
64 Inazawa 0.05 0.37  8 58 50 
65 Nisshin 0.12 0.44  18 65 47 
66 Nagoya-Naka 0.44 0.76  65 112 47 
67 Shunan 0.09 0.41  13 59 46 
68 Chiba-Hanamikawa 0.01 0.33  2 47 45 
69 Narita 0.06 0.37  8 53 45 
70 Yokohama-Naka 0.19 0.50  26 70 44 
71 Tokyo-Chiyoda 0.54 0.86  75 119 44 
72 Chiba-Mihama 0.13 0.45  17 58 41 
73 Kawasaki-Kawasaki 0.10 0.42  13 54 41 
74 Saitama-Minuma 0.02 0.34  3 43 40 
75 Yokohama-Izumi 0.05 0.36  6 46 40 
76 Sayama 0.08 0.39  9 46 37 
77 Nagoya-Higashi 0.20 0.51  22 58 36 
78 Osaka-Chuo 0.09 0.41  10 45 35 
79 Saitama-Midori 0.02 0.34  2 37 35 
80 Toda 0.07 0.39  8 43 35 
81 Tama 0.08 0.40  9 43 34 
82 Yokohama-Minami 0.05 0.36  5 39 34 
83 Ebina 0.10 0.42  11 45 34 
84 Ama 0.06 0.37  6 39 33 
85 Kitanagoya 0.04 0.36  4 36 32 
86 Kyoto-Minami 0.08 0.40  8 40 32 
87 Onojo 0.10 0.42  10 42 32 
88 Miyoshi 0.21 0.53  21 53 32 
89 Gotenba 0.02 0.34  2 34 32 
90 Nagakute 0.06 0.38  6 36 30 
91 Isehara 0.01 0.33  1 30 29 
92 Tokyo-Arakawa 0.28 0.59  24 52 28 
93 Osaka-Joto 0.02 0.34  2 29 27 
94 Gamagori 0.02 0.34  2 29 27 
95 Nagoya-Atsuta 0.25 0.57  21 47 26 
96 Takayama 0.02 0.34  2 28 26 
97 Saitama-Nishi 0.01 0.33  1 26 25 
98 Muroran 0.05 0.37  4 28 24 
99 Saitama-Sakura 0.13 0.44  9 32 23 

100 Osaka-Suminoe 0.06 0.37  4 26 22 
101 Tokoname 0.14 0.45  9 30 21 
102 Toki 0.05 0.36  3 24 21 
103 Kobe-Hyogo 0.05 0.37  3 22 19 
104 Kitakyushu-

Yahatahigashi 0.05 0.37  3 21 18 
105 Koga 0.05 0.37  3 20 17 
106 Ena 0.12 0.44  6 22 16 
107 Shime 0.02 0.34  1 14 13 
108 Sakai-Mihara 0.08 0.39  3 16 13 
109 Ginan 0.03 0.34  1 13 12 
110 Yoro 0.12 0.44  4 14 10 
111 Oguchi 0.19 0.50  6 16 10 
112 Miyawaka 0.09 0.40  2 9 7 
113 Kugayama 0.05 0.37  1 7 6 
114 Yaotsu 0.18 0.49  2 6 4 
115 Itano 0.18 0.50  2 5 3 
116 Tajiri 0 0.32   0 2 2 

Total - -   2,325 9,780 7,455 
Note: This table shows the potential increase in FCEV registrations if six additional HCSs are deployed in each of the 
116 treated municipalities of our sample. 
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