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Abstract 
The establishment and expansion of science parks have been pivotal to Taiwan's economic development. This 

study integrates administrative, financial, and patent data to evaluate the causal impact of Taiwan’s three major 

science parks—Hsinchu, Central, and Southern—on tenant firms across three types of additionality: input, 

behavioral, and output. Specifically, it investigates whether relocating to science parks significantly enhances 

R&D investment, PhD employment, total factor productivity, and patent quality. To address challenges like 

staggered firm entry and selection bias, the study employs augmented inverse probability weighting combined 

with a difference-in-differences model for panel data with staggered treatments, ensuring robust causal inference. 

The findings reveal significantly positive effects across all three types of additionality, extending beyond the 

Hsinchu Science-based Industrial Park. By integrating multiple value-adding channels and expanding the analysis 

to all three major science parks, this research provides a comprehensive evaluation and extends the scope of 

previous studies. Additionally, it highlights heterogeneity in effects by firm size and industry, underscoring the 

need for tailored policies to maximize the benefits of science parks. 
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1. Introduction 

Taiwan has experienced remarkable improvements in living standards since the 1980s. According to 

the World Economic Outlook (WEO), Taiwan's real GDP per capita surpassed $10,000 international 

dollars in 1984, a key milestone marking its escape from the middle-income trap. Over the following 

four decades, Taiwan maintained robust growth, with real GDP per capita exceeding $50,000 

international dollars by 2019. From 1980 to 2020, Taiwan's real GDP per capita grew at an average 

annual rate of 4.6%, significantly outpacing Japan and the UK, both of which achieved around 1% 

annual growth during the same period (International Monetary Fund, 2024). By 2009 and 2012, 

Taiwan had overtaken Japan and the UK, respectively, in terms of living standards. Taiwan also 

demonstrated economic resilience during the COVID-19 pandemic, maintaining positive GDP growth 

driven by global demand for semiconductors amid disrupted supply chains. 

 

Since the 1970s, Taiwan has strategically transitioned from an economy based on light industry to one 

driven by high technology, with the establishment of science parks playing a pivotal role in this 

transformation. The success of the Hsinchu Science-based Industrial Park (HSIP), established in 1980, 

exemplifies this shift. A key milestone was the founding of Taiwan Semiconductor Manufacturing 

Company (TSMC) in 1987 as a spinoff from the Industrial Technology Research Institute (ITRI), a 

national research institute established in 1973 and located within what would later become HSIP. 

TSMC’s rise as a global semiconductor leader underscores the success of Taiwan’s science park model. 

Today, HSIP is recognized as a global hub for semiconductor innovation, attracting major firms and 

generating significant agglomeration effects. 

 

Internationally, science parks have been studied for their contributions to university-industry 

collaboration, R&D productivity, firm growth, and regional development. These studies align with the 

frameworks of innovation economics, emphasizing policy interventions that address both demand- 

and supply-side challenges to foster innovation. Early research relied on qualitative methods and 

matched-pair analyses, often without controlling for selection bias or unobserved heterogeneity. Over 

time, the field has advanced, with contemporary studies employing panel data and sophisticated 

econometric techniques to identify genuine causal effects. 

 

In Taiwan, research has predominantly focused on HSIP due to its prominence and longer history 

compared to the Southern Taiwan Science Park (STSP) and the Central Taiwan Science Park (CTSP), 

which were established in the 1990s and 2000s, respectively. These eras marked Taiwan's transition 

from economic catch-up to global leadership in key high-tech industries. Given the critical role of 

science parks in Taiwan’s economic trajectory, there is a growing need for rigorous causal analyses of 

all three major parks. Such analyses, grounded in robust theoretical frameworks and utilizing advanced 

panel data methods, can provide deeper insights into the contributions of science parks to innovation 

and economic growth. 
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This study aims to conduct causal inference to assess the true contributions of science parks to tenant 

firms in terms of input, behavioral, and output additionality. By integrating administrative, financial, 

and patent databases, this research evaluates whether tenant firms significantly increase their R&D 

investment, enhance university linkages, and improve productivity and patent quality after relocating 

to science parks. 

 

The remainder of this paper is organized as follows: Section 2 outlines the theoretical framework for 

assessing the value-added contributions of science parks and derives hypotheses based on it. Section 

3 reviews existing empirical research on science parks. Section 4 provides an overview of the historical 

background, selection criteria, and technological characteristics of Taiwan’s science parks. Section 5 

introduces the data and variables used in econometric analysis and explains the econometric model 

applied for causal inference. Section 6 presents the estimation results. Section 7 discusses the research 

and policy implications of these findings, and Section 8 concludes by addressing limitations and 

suggesting directions for future research. 

 

2. Theoretical framework for science parks 

The International Association of Science Parks and Areas of Innovation (IASP) defines a science park 

as "an organisation managed by specialised professionals, whose main aim is to increase the wealth of 

its community by promoting the culture of innovation and the competitiveness of its associated 

businesses and knowledge-based institutions" (IASP, n.d.).1 According to the IASP Global Survey, 

72 percent of science parks that join IASP are located on land owned by governments or universities, 

while 14 percent are on land owned by private companies (International Association of Science Parks 

and Areas of Innovation [IASP], n.d.). This shows that in many countries science parks are established 

as a part of public policy for innovation and entrepreneurship. 

 

From the perspective of the economics of innovation, science parks serve as a policy tool aimed at 

addressing market and innovation system failures, particularly those challenges most commonly faced 

by startups. First, startups often lack complementary assets, making it difficult for them to capture the 

full returns on their innovations. This, in turn, discourages investment in R&D. To mitigate this 

underinvestment, science parks offer demand-side support for innovation, including measures like 

R&D subsidies and tax credits, to stimulate greater R&D activity. 

 

Second, startups with limited social capital often struggle to access external knowledge sources, 

particularly those requiring substantial cognitive bridging, such as universities. Science parks provide 

a locational advantage by fostering face-to-face interactions with university researchers. These 

 
1 There is no uniform consensus on the definition of science parks. Institutions such as the American 

Association of University Research Parks (AURP), the United Kingdom Science Park Association 

(UKSPA), and the United Nations Educational, Scientific, and Cultural Organization (UNESCO) 

provide varying definitions. However, they generally agree that science parks are intended to foster 

high-tech agglomeration, innovation, and entrepreneurship, leveraging academic research. 
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interactions enable startups to collaborate with academic scientists through various channels. This 

supply-side support plays a crucial role in addressing innovation system failures. 

 

Finally, by fulfilling these functions, science parks enhance the R&D productivity of their tenant firms, 

driving innovation and fostering growth. As a result, science parks deliver value-added benefits by 

improving innovative inputs, strengthening university-industry collaborations, and increasing 

innovative outputs. Figure 1 illustrates the theoretical implications of the roles science parks play 

within regional innovation systems. 

 

Figure 1 Theoretical framework 

 

This framework closely aligns with the concept of additionality in policy impact analysis. Input 

additionality examines whether public R&D support programs genuinely increase recipients' R&D 

expenditures or merely substitute for private R&D investments. Output additionality evaluates the 

extent to which these programs lead to measurable improvements in R&D outputs, such as patents, 

that can be directly attributed to the support received. Recognizing the need to capture broader 

qualitative impacts, the concept of behavioral additionality was introduced. This dimension accounts 

for changes in recipients’ R&D strategies, the acquisition of new skills or technological competencies, 

enhanced collaboration with firms, universities, or public research institutions, and an increased 

willingness to undertake uncertain or long-term R&D projects (Falk, 2004; OECD, 2006; Gök & Edler, 

2012; Kubera, 2021). 

 

Empirical studies by Clarysse et al. (2009), Okamuro and Nishimura (2015), and Dai et al. (2020) have 

emphasized how public R&D support influences firm behavior, enhances organizational learning, and 

fosters collaboration and trust. These findings underscore the multifaceted impacts of R&D policies, 

extending beyond direct financial outcomes to encompass critical behavioral and strategic 

transformations. 

 

In the context of science parks, behavioral additionality is reflected in tenant firms' evolving R&D 

strategies, the cultivation of high-skilled human capital, and the formation of direct linkages with 

universities and public research institutes. Tenant firms often prioritize hiring PhD-level talent to 

enhance their absorptive capacity for advanced knowledge and to strengthen connections with 

academic institutions. These behavioral shifts highlight the pivotal role of science parks in fostering 

transformative changes beyond financial or output-based metrics. 

 

Building on these insights, this study defines behavioral additionality in science parks as tenant firms’ 

increased emphasis on science-based R&D. This involves hiring scientifically qualified R&D 

personnel and engaging in research activities that advance cutting-edge technologies and foster deeper 

academic collaborations, driven by the support of science parks. 
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Within this framework, the study proposes the following hypotheses to evaluate the value-added 

contributions of science parks to tenant firms across input, behavioral, and output additionality: 

 

Hypothesis 1: Relocating to science parks increases the R&D expenditure of tenant firms. 

Hypothesis 2: Relocating to science parks increases the number of PhD holders in tenant firms. 

Hypothesis 3: Relocating to science parks improves the productivity of tenant firms. 

Hypothesis 4: Relocating to science parks enhances the patent quality of tenant firms. 

 

3. Literature review 

Table 1 summarizes findings from empirical studies on science parks. These studies often rely on 

performance indicators such as university linkages, innovation outcomes, and growth metrics. Few 

studies have specifically examined input additionality, such as the ATT on R&D expenditure. Monck 

et al. (1988), although not employing causal inference, surveyed R&D intensity among on-park and 

off-park firms in the UK, finding that on-park firms had a higher ratio of qualified scientists and 

engineers (QSE) to total employment. In Italy, subsequent studies by Liberati et al. (2016) and 

Lamperti et al. (2017) reported positive effects of science parks on the ratio of intangible assets to sales 

and on overall R&D expenditure, respectively. 

 

Table 1 Literature review 

 

Early research on the role of science parks in fostering university-industry collaborations2 often relied 

on case studies or matched-pair analyses, which had limited generalizability and did not control for 

selection bias arising from unmatched factors. For instance, studies conducted in the UK (Monck et 

al., 1988; Massey et al., 1992; Quintas et al., 1992) and in Belgium and the Netherlands (Van 

Dierdonck et al., 1991) found no significant effects on university-industry knowledge interactions. 

When such interactions occurred, they were typically limited to informal contacts and shared facilities. 

These findings were attributed to the invalidity of the linear model of innovation in the context of 

science parks. This model assumes that simply co-locating tenant firms and academic research 

institutions automatically facilitates unidirectional knowledge flows, resulting in high-tech innovations. 

Alternatively, the lack of observed university-industry collaborations may be due to the immaturity of 

support programs in these regions or the limitations of the empirical methods used in these studies. 

 

Subsequent research conducted in broader regions, utilizing panel data on firms both inside and outside 

science parks, has provided better control over unobserved heterogeneity and selection bias. Studies 

 
2 Some studies have examined how science parks facilitate inter-firm relationships through trade, 

research, and resource sharing. Phillimore (1999), criticizing the focus of existing studies on formal 

research links, explored this phenomenon in Australia, while Koçak and Can (2014) analyzed the 

determinants of such relationships in Turkey. 
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in Israel (Felsenstein, 1994), the UK (Westhead & Storey, 1994, 1995), Italy (Colombo & Delmastro, 

2002), Sweden (Löfsten & Lindelöf, 2002; Lindelöf & Löfsten, 2004), Japan (Fukugawa, 2006, 2015), 

Spain (Vázquez-Urriago et al., 2016), and China (Gao et al., 2024) consistently confirm positive or 

complementary effects on university linkages. These impacts are demonstrated through collaborative 

research, consulting, co-authorship, and joint patent applications. This evidence highlights the role of 

science parks as intermediaries that facilitate knowledge interactions between academic research 

institutes and tenant firms. 

 

Early studies on science parks based on cross-sectional data, such as those in the UK (Westhead & 

Storey, 1994; Westhead, 1997), Italy (Colombo & Delmastro, 2002), and Sweden (Lindelöf & Löfsten 

2004), found no significant impact on innovation outcomes measured by new products, services and 

patents. However, subsequent research, including some studies using panel data, has confirmed 

positive impacts on innovation. Evidence comes from studies conducted in Israel (Felsenstein, 1994), 

the US (Link & Scott, 2003), the UK (Siegel et al., 2003; Helmers, 2019), Finland (Squicciarini, 2008, 

2009), Spain (Díez-Vial & Fernández-Olmos, 2015; Albahari et al., 2017, 2018; Antón-Tejón et al., 

2024), Italy (Lamperti et al., 2017; Corrocher et al., 2019), China (Xiong & Li, 2022; Wei et al., 2023), 

and Belgium, Denmark, and Spain (Lecluyse et al., 2023). Additionally, recent European studies 

suggest that science parks enhance not only the volume but also the quality of patents (Helmers, 2019, 

UK; Antón-Tejón et al., 2024, Spain). 

 

The evidence on the effects of science parks on the growth of tenant firms remains mixed. Most studies 

have evaluated firm growth using employment or sales data. Several studies conducted in the UK 

(Monck et al., 1988), Sweden (Ferguson and Olofsson, 2004; Löfsten and Lindelöf, 2002), Italy 

(Lamperti et al., 2017), the US (Gwebu et al., 2019), and Portugal (Martins et al., 2023a; 2023b) found 

no significant impact of science parks on firm growth. In contrast, other studies, including early 

research, have identified a positive effect of science parks on firm growth. These findings were 

observed in studies conducted in the UK (Westhead and Storey, 1994), Italy (Colombo and Delmastro, 

2002; Liberati et al., 2016), China (Wright et al., 2008), and Spain (Díez-Vial and Fernández-Olmos, 

2017). 

 

Empirical studies on science parks have evolved from cross-sectional analyses to panel data 

approaches and, more recently, to causal inference methods such as the generalized method of 

moments and difference-in-differences models combined with propensity score matching (e.g., 

Martins et al., 2023a, 2023b in Portugal; Xiong & Li, 2022; Gao et al., 2024 in China). These 

advancements emphasize the importance of addressing selection bias and unobserved heterogeneity 

to enhance the reliability of findings. Building on this foundation, this study adopts a difference-in-

differences model designed for staggered treatment timings in panel data, incorporating the inverse 

probability of entering science parks to adjust covariates. 
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While firm-level analysis can highlight value-adding impacts through specific performance indicators, 

it often falls short of capturing the broader success of science parks. To achieve a comprehensive 

assessment, some studies have used science park-level data to account for a wider range of 

contributions. They examined agglomeration externalities that contribute to productivity growth 

(Ratinho & Henriques, 2010), the social value generated by science parks (Blázquez et al., 2023), and 

the overall effects on innovation and entrepreneurship (Ferrara et al., 2016) across various European 

countries, including Denmark, Italy, Portugal, Spain, Sweden, and the UK. 

 

In addition, efforts, particularly in Asia, have focused on quantitatively assessing the technical 

efficiency of science parks and the allocation of innovation resources. Notable studies in this area 

include Chen et al. (2006) and Sun (2011) in Taiwan, as well as Hu (2007), Hu et al. (2010), and Yang 

et al. (2021) in China.3 These studies provide essential insights into the overall efficiency of science 

parks and highlight challenges in optimizing innovation resources across different tasks. 

 

Building on this strand of research, some studies have utilized community- or county-level data to 

explore the agglomeration facilitation effect of science parks as key actors in regional innovation 

systems. For instance, Appold (2004) found that science parks in the United States do not exhibit 

significant agglomeration effects. In contrast, Cheng et al. (2013) demonstrated that such effects are 

evident in China’s Shenzhen High-tech Industrial Park (SHIP). Similarly, Xiong and Li (2022) 

identified positive agglomeration effects in China. 

 

Another trend observed in the literature is a shift in research focus from whether science parks are 

effective to when they are most effective. Recent studies, grounded in contingency theory, have 

explored the conditions under which science parks deliver the most significant benefits. A key 

mediating factor identified is absorptive capacity: spillovers contribute to innovation only when 

recipients possess the capability to evaluate, assimilate, and exploit external knowledge. For instance, 

Díez-Vial and Fernandez-Olmos (2015) found that tenant firms with high absorptive capacity and 

strong university-industry collaborations experienced greater innovation benefits. Similarly, Hasan et 

al. (2018) observed that total factor productivity improvements depended on the technological 

intensity of tenant firms’ production processes. Corrocher et al. (2019) further highlighted the 

combined roles of absorptive capacity and social capital in driving innovation outcomes. 

 

The role of science parks as intermediaries has also been emphasized, particularly through incubators. 

Koçak and Can (2014) demonstrated the positive network effects arising from science parks' 

intermediation roles. Fukugawa (2015) examined how the human capital of incubators contributed to 

 
3 In China, the R&D efficiency of science parks has declined since 2011, following the science park boom 

driven by national policy (Yang and Lee, 2021). Larger, older science parks with a higher proportion of highly 

educated workers and strong university-industry collaborations are more efficient compared to younger 

science parks established during or after the boom. Their counterfactual analysis shows that R&D 

efficiency would have been significantly higher if the boom had not occurred. 
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fostering university-industry linkages. Helmers (2019) showed that improvements in patent quality 

were most pronounced when tenant firms and universities were within walking distance. Additionally, 

Gao et al. (2024) highlighted complementary effects between public subsidies, park location, and 

university-industry joint patent applications. Finally, Gwebu et al. (2019) demonstrated that sales 

growth benefits were closely tied to the strategic alignment between tenant firms' business focus and 

the park’s objectives. 

 

Lastly, despite being officially defined as seedbeds for entrepreneurial firms, science parks have 

surprisingly received little research attention regarding their impact on entrepreneurship. One notable 

exception is Yang et al. (2009), who examined the effect of spin-offs created by ITRI researchers or 

Silicon Valley returnee engineers on R&D productivity. They found a positive effect for spin-offs in 

general but failed to observe the same for those spawned within HSIP.4 Studies by Chan and Lau 

(2005) in Hong Kong, Salvador and Rolfo (2011) in Italy, and Fukugawa (2015) in Japan have 

explored the role of incubators associated with science parks. However, these studies do not directly 

assess how science parks accelerate entrepreneurship or the performance of high-tech spin-offs. The 

extent to which science parks foster science-based entrepreneurship remains an underexplored area in 

the field. 

 

A detailed review of the literature on science parks in Taiwan will be provided in the next section. 

 

4. Science parks in Taiwan 

4-1. History of Taiwan's science parks 

HSIP was established in 1980 with the dual goals of promoting high-tech industries and fostering 

technological innovation. It has successfully attracted major players, including TSMC, solidifying 

Taiwan's position as a global leader in the semiconductor industry. Over the decades, HSIP has 

transformed into one of the world’s leading semiconductor hubs. According to the Industry and 

Service Census 2021, 27.4% of the 804 semiconductor firms in Taiwan are based in science parks 

(Statistical Bureau, n.d.). Of these, 83.6% are located in HSIP (National Science and Technology 

Council, 2024), suggesting the significant agglomeration externalities generated by the park. As 

discussed later, research has consistently identified the semiconductor industry as the most technically 

efficient sector in HSIP, further emphasizing the park's critical role in driving semiconductor 

innovation. Moreover, HSIP demonstrates a high level of technological specialization in related 

industries such as telecommunications and computers, as summarized in Table 2.5 

 

 
4  The authors interpret the absence of a productivity effect among spin-offs as evidence of 

international inter-firm spillovers in the semiconductor sector. This suggests that semiconductor firms 

surrounding spin-offs benefit from the new knowledge and networks that spin-offs bring to HSIP. 

5 Table 2 shows that technological specialization decreases over time, which may impact MAR 

(Marshall–Arrow–Romer) agglomeration externalities within the same industry. 
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Table 2 The number of companies in science parks and location quotients based on the distribution of 

these firms as of December 2014 (upper section) and November 2024 (lower section) 

 

The concentration of innovative and entrepreneurial activities within the semiconductor industry is 

evident in national statistics. According to the Indicators of Science and Technology 2023, the 

semiconductor sector contributed an average of 76.5% to R&D expenditures and 67.6% to sales 

between 2013 and 2022 (National Science and Technology Council 2023). These figures strongly 

corroborate the dominance of the semiconductor industry in driving Taiwan’s innovation and 

economic growth. 

 

As previously discussed, one of the key value-added contributions of science parks is their ability to 

facilitate knowledge spillovers from universities and public research institutes located within the parks. 

HSIP is closely connected with National Tsing Hua University (NTHU) and National Yang Ming 

Chiao Tung University (NYCU). NTHU, a premier research university in Taiwan, is renowned for its 

groundbreaking research in semiconductor technology, often collaborating with industry leaders such 

as TSMC. Similarly, the Chiao Tung campus of NYCU, which resulted from the recent merger of 

National Yang Ming University and National Chiao Tung University, has a strong focus on advanced 

engineering education and research across various fields. The robust scientific research and 

engineering programs at these universities have enabled them to produce skilled R&D personnel who 

meet the demands of ITRI and high-tech companies operating within HSIP. 

 

STSP, established in 1996, was designed to foster high-tech development in southern Taiwan and 

balance the economic landscape between the island’s northern and southern regions. Since its 

inception, STSP has evolved into a prominent hub for biotechnology, achieving the highest relative 

specialization index among Taiwan’s three science parks, as indicated in Table 2. This strategic focus 

on biotechnology aligns with the Biotechnology Industry Promotion Program established in 1995, 

which includes initiatives such as the establishment of the Biomedical Research Center by ITRI and 

the National Science and Technology Program for Biotechnology and Pharmaceuticals led by the 

National Science Council (Dodgson et al., 2008; Kuo, 2005).6 In addition to biotechnology, precision 

machinery is another major focus of STSP, with a location quotient of 1.45 in 2014 and 1.41 in 2024, 

as highlighted in Table 2. 

 

 
6 Taiwan’s commitment to developing its biotechnology and pharmaceutical industries was sparked by the 

success of pioneering U.S. firms like Genentech, whose commercial breakthroughs in recombinant DNA 

technology in the 1970s demonstrated the vast economic potential of the biotechnology sector. This success 

motivated Taiwan to identify biotechnology as one of its eight key areas for technology development in the 

1980s. Recognizing the strategic importance of biotechnology, the government began laying the groundwork 

for long-term development through the establishment of institutions like the Development Center for 

Biotechnology in 1984. 
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CTSP, established in 2003, was designed to decentralize Taiwan's high-tech industries from the 

northern regions. Strategically situated in Taichung, the geographic center of Taiwan, CTSP places a 

strong emphasis on precision machinery. As shown in Table 2, its location quotient was 2.15 in 2014 

and 2.04 in 2024, with the higher value in 2014 closely linked to the establishment of the Taichung 

City Precision Machinery Innovation Technology Park in 2013. 

 

The government of Taiwan has disclosed findings from a benefit-cost analysis of individual science 

parks. According to Lee and Lu (2022), the self-liquidating ratio (SLR)—calculated as the present 

value of revenues divided by the present value of costs—for each science park is as follows: HSIP 

(97.2%–122.8%), CTSP (94.8%), and STSP (35.8%–67.0%). STSP faces challenges in recovering its 

costs through operational revenues, potentially requiring additional financial support to maintain 

sustainability. This highlights the need for a detailed analysis of individual science parks, partially 

addressed by the comparison of HSIP and non-HSIP tenant firms, with the results presented in the 

next section. 

 

In 2003, HSIP accounted for 20.93 percent of private R&D spending in Taiwan, a significant increase 

from 4.79 percent in 1990 (Yang et al., 2009). Recent data indicate that Taiwan’s three major science 

parks collectively accounted for 27.1 percent of private R&D spending in 2013 and 40.7 percent in 

2022 (National Science and Technology Council, 2023). Additionally, these three science parks 

generated 18.7 percent of Taiwan’s GDP in 2022, up from 14.3 percent in 2013. Table 3 presents these 

data. While international comparisons of science parks' contributions to national statistics can be 

challenging, these figures appear to be among the highest for industrialized nations. 

 

Table 3 The presence of three major science parks in Taiwan 

 

Yang et al. (2009) demonstrated that the average R&D intensity of firms located in HSIP from 1990 

to 2003 was five times greater than that of all manufacturing firms in Taiwan. While the R&D intensity 

of on-park firms continued to grow from 2013 to 2022, the R&D intensity of all manufacturing firms 

in Taiwan increased at a faster rate during the same period. This resulted in a lower ratio between the 

two compared to the 1990–2003 period, as shown in Table 3. Additionally, the total number of patents 

granted in Taiwan decreased between 2013 and 2022. This trend was also observed in patents granted 

to on-park firms, though the rate of decline was slower for these firms. Consequently, the ratio reflected 

in the last column of Table 3 shows a slight increase. 

 

To further promote technological innovation and attract a diverse range of industries, the Act for the 

Establishment and Administration of Science Parks was amended in 2018, introducing flexible 

policies aimed at boosting R&D activities, supporting talent development, and optimizing land use 

(Ministry of Justice, 2018). Among other changes, the 2018 amendments significantly impacted firms’ 

incentives for R&D. Before 2018, companies were required to invest twice the national average R&D 
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intensity of the manufacturing sector, calculated over "the last three consecutive years." After 2018, 

this threshold was raised, requiring firms to invest more than three times the national average R&D 

intensity of the manufacturing sector, now calculated over "the first three years" of operation. This 

adjustment substantially raised the initial R&D investment benchmark, encouraging companies to 

prioritize R&D from the outset of their operations. This policy change applies to firms that entered 

science parks after September 2022. Conducting a rigorous analysis of its impact requires longitudinal 

data over a longer time span than what is available in this study. 

 

4-2. Previous studies on Taiwan's science parks 

Previous studies on Taiwan's science parks began with qualitative assessments, focusing mainly on 

the tenants of HSIP. A case study on HSIP highlights its unique role in fostering regional innovation 

systems, a role not initially planned (Lin, 1997). Lin attributes this to the market-driven R&D activities 

within HSIP, especially in the semiconductor industry. Hu et al. (2005), based on interviews with 268 

technology professionals, support Lin’s findings, indicating that HSIP's regional innovation systems 

fostered MAR (Marshall–Arrow–Romer) agglomeration externalities within the same industry 

through labor, intermediate goods, and capital markets. Hu's (2011) patent analysis by sector further 

supports this view. Additionally, Lai and Shyu (2005) compared 162 tenants from Zhangjiang High-

Tech Park (ZHTP) with 101 HSIP tenants, finding that HSIP held an overall advantage. In a 

comparison of HSIP and STSP, Hu (2008) identified a positive network effect, which was more 

pronounced in HSIP. 

 

Chen et al. (2006) and Sun (2011) both analyze the efficiency of six high-tech industries in HSIP, 

using Data Envelopment Analysis (DEA) and the Malmquist Productivity Index to evaluate 

performance across two periods: 1991–1999 and 2000–2006, respectively. Both studies consistently 

identify the semiconductor industry as the most efficient, attributed to strong R&D investments and 

advanced infrastructure. Chen et al. (2006) highlight that precision machinery and telecommunications 

could benefit from enhanced infrastructure and workforce development, while Sun (2011) points to 

optoelectronics and biotechnology as lagging in efficiency, recommending resource reallocation to 

support balanced growth. 

 

The shared use of DEA and the Malmquist index across consecutive periods reinforces the findings, 

revealing disparities in sectoral efficiency that persist over time. Combined, these studies suggest that 

HSIP can enhance its competitiveness by maintaining R&D incentives for high-performing sectors 

like semiconductors and tailoring support for lower-performing industries. By addressing specific 

infrastructure and workforce needs in these sectors, Taiwan’s science parks could foster a balanced, 

sustainable growth environment across its high-tech industries, aligning with both studies’ insights on 

industry-specific policy measures. 
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One of the earliest econometric evaluations of Taiwan's science parks was conducted by Yang et al. 

(2009), using data from the Taiwan Economic Journal (TEJ). Their findings indicated a positive effect 

of the HSIP on R&D productivity. Hasan et al. (2018) analyzed panel data from Emerging Markets 

Information Services (EMIS) for 2009–2011 and found that Taiwan's science parks positively 

impacted total factor productivity (TFP), measured using the Levinsohn and Petrin method (2003). 

This effect was influenced by the technological intensity of the production process. They found that 

urban areas hosting science parks demonstrated the highest TFP in science and technical services, 

including biotechnology. In contrast, computer and electronics firms in large cities, such as Taipei, 

exhibited the highest TFP. 

 

In a subsequent study using EMIS data from 2010 to 2012, Hasan et al. (2020) compared science parks 

in South Korea and Taiwan, uncovering a significant finding: in Taiwan, urban areas housing science 

parks showed the highest TFP, as measured by the Olley and Pakes method (Olley and Pakes, 1996), 

especially among small firms. The authors interpreted this as evidence of a selective process, where 

high-productivity small firms are attracted to science parks, while low-productivity small firms are 

pressured to exit due to competitive selection forces, indicating a one-sided sorting process as opposed 

to the case where both types of firms are attracted to science parks. 

 

5. Method 

5-1. Data 

This study integrates data from TEJ, Orbis, and the Taiwan Science Park Bureau. TEJ provides 

consolidated data on all listed companies in Taiwan, encompassing 1,909 firms as of 2024, with the 

analysis covering the period from 2002 to 2023. Orbis Intellectual Property (Orbis IP) complements 

TEJ by offering detailed patent information for both listed and unlisted firms. Additionally, data from 

the Taiwan Science Park Bureau includes records of the years when current tenants moved into their 

respective science parks. 

 

Seventy-seven percent of the sample consists of tenant firms where the parent companies are located 

in a science park. For firms with multiple establishments or subsidiaries, the designated science park 

corresponds to the location of the parent company. If the parent company is not located in a science 

park, but a subsidiary is—for instance, in CTSP—and another establishment is in STSP, the 

subsidiary’s science park (CTSP) is designated. Lastly, if neither the parent company nor its 

subsidiaries are located in a science park but an establishment is, the science park where the 

establishment first moved in is designated. 

 

This approach introduces potential biases in estimating science park spillovers due to the use of 

consolidated data, which aggregates financial outcomes from organizations in diverse locations. 

Specifically, the localized effects of science park activities may be diluted or obscured, as the 

consolidated data does not distinguish between the performance of parent companies, subsidiaries, or 
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establishments located outside the park. The inability to capture establishment-level data limits the 

study’s ability to identify true spillover effects. 

 

Ideally, a more refined approach would involve the development of a tenant firm dummy variable to 

represent companies without multiple establishments or subsidiaries—typically startups that may 

experience the most direct impact from science park spillovers. However, since TEJ provides only 

consolidated data for all listed companies in Taiwan, such a treatment dummy could not be 

incorporated in this study. Future research should prioritize the use of data from non-listed companies 

to better capture startups and their unique characteristics, thereby improving the accuracy of spillover 

estimation. 

 

As of 2024, there are 995 firms operating within science parks, according to the Science Park Bureaus. 

Figure 2 illustrates the distribution of entry years for these firms, highlighting a growing trend in 

relocations, with notable peaks in 1997, 2003, and 2022. The peaks in 1997 and 2003 appear to be 

linked to the establishment of new science parks. 

 

Figure 2 Distribution of years of entry 

 

This study utilizes four performance indicators as dependent variables: R&D expenditure to capture 

input additionality; number of PhD holders (sourced from TEJ) to measure behavioral additionality; 

and TFP, calculated via the Olley and Pakes method,7 alongside total IP quality (sourced from Orbis 

IP) to assess output additionality. Recruiting PhD holders and encouraging employees to pursue PhDs 

help firms build connections with universities and public research institutes, enhancing the firm’s 

reputation within the scientific community. This, in turn, increases the likelihood of collaborations 

with highly productive scientists. Total IP quality is a composite indicator, encompassing 27 factors8 

and rated on a scale from 1 to 100, where 1 represents low quality and 100 denotes superior quality. 

This measure is used by recent studies that assess patent quality (Fukugawa, 2023; European 

Commission, 2024). This study controls for value-added for the model where the dependent variable 

is R&D expenditure, labor for the model where the dependent variable is PhD holders, and R&D 

expenditure for the models where the dependent variable represents TFP and patent quality. 

 

 
7 The Olley-Pakes (1996) method addresses simultaneity and selection biases in production function 

estimation by employing investment as a proxy for unobservable productivity shocks and accounting for firm 

exit. 

8 Examples of these factors include family size, examiner citations, forward citations by foreign applicants, 

claim width and coverage, detectability of infringement, and oppositions. For more details, see Fukugawa 

(2023). These components have been utilized individually in prior research, such as patent litigation (Nakanishi 

& Yamada, 2007), patent scope or diversity (Chen & Chang, 2010), and patent family size (Fischer & 

Leidinger, 2014). Additionally, other studies have developed composite indicators integrating aspects like 

forward citations, backward citations, patent family size, and claims to offer a more comprehensive measure 

of patent quality and its impact on firm value (Lanjouw & Schankerman, 2004). 
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The matching of the TEJ and Orbis databases was carried out using the unique identification number 

assigned to all firms in Taiwan. However, the number of observations for the patent quality variable 

decreases due to unmatched records between the two databases. This mismatch underscores the 

absence of corresponding data in one or both databases for certain firms. 

 

Descriptive statistics for the variables are provided in Table 5. 

 

Table 5 Descriptive statistics 

 

5-2. Model 

The decision to locate in a science park is a choice variable for both science parks and potential tenants. 

Additionally, firms relocate to science parks at different times, which implies staggered treatment 

timings in a difference-in-differences (DID) model using panel data. This study employs the 

augmented inverse probability weighting (AIPW) approach to address selection bias, adjusting the 

entire sample by applying the inverse provability weights. In the first stage of the AIPW method, 

weights are generated for control units based on the inverse of the propensity score, e, which is defined 

as ei = P(D𝑖=1 | X𝑖), where D is a binary variable indicating whether firm 𝑖 is located in a science park, 

and 𝑋 represents covariates that determine science park location. Following Yang et al. (2009), this 

study incorporates R&D expenditure, labor, regional dummies, and industry dummies as factors 

influencing whether firms are located in science parks. The inverse provability weights, w, are defined 

as follows. For treated units (D=1): w1=1/e. For control units (D=0): w0=1/(1-e). Treated units with 

low propensity scores and untreated units with high propensity scores are assigned higher weights, 

ensuring greater comparability in terms of covariate distribution. 

 

The second stage incorporates staggered treatment timings within the DID framework using Stata's 

xthdidregress command with the AIPW option. The parsimonious form of the two-way fixed-effects 

(TWFE) model for the outcome Y of a group g in a period t is: Yg,t=αg+βfeDg,t+γt+ϵg,t, where α denotes 

group fixed effects, βfe is the group-specific treatment effects, γ denotes time fixed effects, and ϵ is the 

error term. When treatment effects are homogeneous across groups and time, βfe is interpreted as the 

average treatment effect on the treated (ATT). However, under heterogeneous treatment effects,9 

TWFE-DID estimators may be biased due to contaminated comparisons. This occurs when early-

treated units serve as controls for later-treated units, potentially leading to estimates with the opposite 

sign of the true ATT (Gardner, 2021; Baker et al., 2022). 

 

Recent studies have introduced models for panel data with staggered treatments to address this bias 

(Borusyak et al. 2021; Callaway and Sant’Anna 2021; de Chaisemartin and D’Haultfoeuille 2020; Sun 

 
9  This occurs when treatment effects are correlated with treatment timing. Fukugawa (2024) 

examined a scenario where later program participants experienced smaller treatment effects and 

identified underlying sources of this correlation. 
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and Abraham 2021). Analyzing the same dataset with six alternative estimation methods, de 

Chaisemartin and D’Haultfoeuille (2022) found that these models produce consistent results. The 

xthdidregress command implements Callaway and Sant’Anna’s (2021) model to estimate the true 

ATT, using never-treated units as the control group.10 This approach ensures unbiased and reliable 

ATT estimates, even with staggered treatments. The AIPW estimator is considered doubly robust, as 

it produces consistent estimates if either the treatment assignment model or the outcome regression 

model is correctly specified. 

 

Goodman-Bacon's (2021) decomposition theorem explains that βfe is a weighted average of all 

possible two-by-two DID estimators, with some comparisons potentially assigned negative weights. 

11 The results of the decomposition will be discussed in the next section. 

 

Following Hasan et al. (2018), who presented heterogeneous treatment effects of Taiwan's science 

parks across different technologies, this study estimates the aforementioned models for subsamples 

consisting of semiconductor (M2324 in the Taiwan Stock Exchange classification system) and 

biotechnology (M1722) firms. Furthermore, in line with Hasan et al. (2020), who found heterogeneous 

treatment effects of Taiwan's science parks based on firm size, this study also estimates the models for 

subsamples of firms with fewer than 200 employees. 

 

6. Results 

6-1. Findings from AIPW models 

The Goodman-Bacon decomposition results indicate that 90% of the weight in the treatment effect 

estimate comes from comparisons between never-treated groups and timing groups, which are 

typically reliable as never-treated groups provide a proper control. Comparisons between timing 

groups (2.3% weight) raise concerns about contaminated comparisons, as early-treated groups may 

already reflect treatment effects while late-treated groups might be influenced by anticipation effects, 

violating the parallel trends assumption. However, as shown later, treatment timing is not correlated 

with treatment effects, reducing the risk of bias from these comparisons. Comparisons involving 

always-treated groups (7.7% weight) are excluded in the Callaway and Sant’Anna (2021) model, as 

discussed in the preceding section. 

 

Table 5 presents the estimation results for the entire sample, demonstrating significantly positive ATTs 

for R&D expenditure, the employment of PhD holders, productivity, and patent quality. For instance, 

relocating to science parks is associated with a 1.215% increase in TFP. By pooling information across 

time, the aggregated ATT accounts for variability in individual time periods, yielding a consistent and 

 
10 Accordingly, firms that were always treated—those that entered the science parks before 2002—are 

excluded from the econometric analysis. This exclusion affects approximately 20% of science park tenants. 

11 They include pairs between early-treated and never-treated groups, late-treated and never-treated groups, 

early-treated and late-treated groups (before the late-treated group receives treatment), and late-treated and 

early-treated groups (after the early-treated group receives treatment). 
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reliable estimate of the treatment effect. These findings highlight the cumulative effect of the treatment 

over the analyzed period. 

 

Table 5 Estimation results of the entire sample 

 

A cohort-level analysis shows no correlation between treatment timings and the ATTs, suggesting the 

robustness of the aggregate measure. Figure 3 depicts the ATTs on R&D expenditure across different 

time points for the entire sample. This visualization reinforces the stability and reliability of the 

estimated effects. 

 

Figure 3 The ATTs on R&D expenditure across different time points. The estimation results of the 

entire sample. 

 

Additionally, this study estimates the same model for non-HSIP tenant firms,12 with the results 

presented in Table 6. Tenant firms in CTSP and STSP experienced a significant increase in R&D 

investment, PhD holder employment, and improvements in TFP. Relocating to CTSP or STSP is 

associated with a 1.39% increase in TFP, a result slightly higher than that observed for the entire 

sample. However, no significant effect was observed on patent quality, suggesting that improvements 

in patent quality are primarily driven by HSIP tenant firms. 

 

Table 6 Estimation results of the non-HSIP sample 

 

These results support all proposed hypotheses. Subsequent subsample analyses further confirm the 

robustness of these findings. More specifically, they validate the hypotheses on input additionality and 

output additionality. Overall, the results provide compelling evidence of the value-added contributions 

of Taiwan's science parks. This study extends the findings and insights of previous research, such as 

Yang et al. (2009), which focused on the impact of HSIP on R&D productivity, to encompass three 

major science parks and three dimensions of additionality. 

 

Table 7 presents the estimation results for the semiconductor industry. The ATTs are significantly 

positive for R&D expenditure and TFP, aligning with the findings of Chen et al. (2006) and Sun (2011), 

which identified the semiconductor industry as the most technically efficient sector. However, the 

ATT for PhD holders was not statistically significant. Moreover, the magnitude of the ATTs is smaller 

than those observed in the full sample. This may be attributed to the reduced number of observations 

or the industrial characteristics, which may necessitate a larger dataset for more robust results. 

 

Table 7 Estimation results of semiconductor firms 

 
12 Due to limitations in sample size, park-specific estimations were not feasible, leaving this as a promising 

avenue for future research. 
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Although the model for total IP quality did not yield a significant ATT, the results indicate that the 

technical quality variable—an alternative indicator of patent quality used for robustness checks—

improved by ten points following firms' relocation to science parks. As total IP quality encompasses 

broader dimensions, such as market attractiveness, these findings suggest that the value-added 

contributions of science parks are more pronounced in the technological aspects of patents. This 

underscores the nuanced impact of science parks on various dimensions of innovation and 

performance within the semiconductor industry. 

 

Table 8 presents the estimation results for the biotechnology industry, highlighting that the number of 

cohorts analyzed was limited due to the small sample size of biotechnology firms. Most models 

include only two distinct cohorts—firms entering science parks at two specific time points—compared 

to never-treated units.13 While this reduction in cohorts does not necessarily undermine robustness, it 

introduces sensitivity to cohort-specific characteristics, potentially limiting the generalizability of the 

results. These limitations will be explored in detail in the next section. 

 

Table 8 Estimation results of biotechnology firms 

 

With this caution in mind, the results indicate significantly positive ATTs for R&D expenditure, PhD 

holders, and productivity, underscoring the strong impact of science parks on these outcomes. The 

findings for PhD holders emphasize the science-based nature of innovation in the biotechnology sector, 

consistent with the observations of Hasan et al. (2018). This sectoral characteristic makes PhD holders 

particularly important as human capital, acting not only as a skilled workforce but also as entrepreneurs 

and as a bridge between research institutes, venture capitalists, and the biotechnology industry (Hsu et 

al., 2005). 

 

Although the model for total IP quality did not yield a significant ATT, technical quality increased by 

three points following firms’ relocation to science parks. Cohort-level analysis shows that firms 

entering science parks in 2011 recorded an ATT of 2.405, while the 2022 cohort achieved a higher 

ATT of 6.266. However, the 2011 cohort accounts for approximately 86.67% of the total observations, 

which shifts the overall ATT closer to the 2011 cohort’s estimate. 

 

Table 9 presents the estimation results for firms with fewer than 200 employees. While the model for 

patent quality did not converge, the ATTs for R&D expenditure and TFP are significantly positive. 

Relocating to science parks is associated with a 5.435% increase in TFP. These findings are consistent 

 
13 An extreme case is observed for PhD holders, where 19 biotechnology firms that entered science parks in 

2011 are compared to never-treated units. Plotting the ATT for this cohort reveals significantly positive effects 

in 2013, from 2015 to 2017, and in 2020. 
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with Hasan et al. (2020), who highlighted the positive effects of science parks on TFP, particularly for 

smaller firms. 

 

Table 9 Estimation results of firms with fewer than 200 employees 

 

The larger magnitude of ATTs for small firms underscores the pivotal role of science parks in fostering 

growth and innovation in these enterprises. However, the ATT for PhD holders is statistically 

insignificant, suggesting that science parks do not have a substantial impact on this variable for small 

firms. This outcome may be partially explained by the reduced sample size for PhD-related data, a 

limitation discussed in the conclusion section. 

 

6-2. Robustness checks 

To address concerns about potential biases introduced by using consolidated financial data, a 

robustness check was conducted by restricting the analysis to a subsample where 77% of the firms 

were tenant firms whose parent companies were located in a science park, but their establishments and 

subsidiaries were not. This approach mitigates the risk of dilution or misattribution of science park 

spillovers that might arise due to the inclusion of subsidiaries and establishments located in diverse 

regions. The regression results from this restricted subsample were consistent with those obtained from 

the full sample, suggesting that the findings are not solely driven by the aggregation of data across 

different organizational units but reflect genuine spillover effects associated with science park 

locations. 

 

The first stage of the AIPW process is critical because it determines the weights. Even though AIPW 

can correct for some deficiencies in the first-stage model via the outcome model, poorly estimated 

propensity scores can lead to inefficiency or instability. This study tests the robustness for the first 

stage by overlap diagnostics, weight stability, and covariate balance. First, a very small proportion of 

the sample (47 out of 14,086) falls outside the common support. This suggests that common support 

is largely acceptable, with the overlap region covering most treated and untreated units. Second, the 

mean weight is 0.993, which is ideal as it indicates the weights are appropriately scaled to reflect the 

marginal probabilities of treatment and control. The median is 0.923, indicating that half of the 

observations have weights below this value. The majority of weights are reasonable, as seen in the 

percentiles (e.g., 90% of weights are below 1.2). Lastly, covariate balance between treatment and 

control groups was evaluated using the Standardized Mean Difference (SMD). As shown in Table 10, 

all variables achieved SMDs below the 10% threshold, indicating an acceptable balance. This confirms 

that confounding variables were effectively controlled, enhancing confidence that observed 

differences in outcomes can be attributed to the treatment effect rather than pre-existing baseline 

differences. 

 

Table 10 Covariate balance 
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A key assumption in causal inference, especially with the DID method within the AIPW model, is that 

in the absence of treatment, the treated and control groups would have exhibited parallel trends in the 

outcome variable. Figure 4 integrates 14 graphs depicting dynamic trends from the estimation results. 

As shown in the dynamic graphs, no systematic trends appeared before treatment, which supports the 

model's validity. This implies that observed differences in post-treatment outcomes are attributable to 

the treatment itself rather than to any pre-existing differences in the trajectories of the treated and 

control groups. 

 

Figure 4 Combined dynamic graphs of the ATTs 

 

In addition, using alternative indicators for productivity and patent quality provides an additional 

robustness check, ensuring that the results are not overly reliant on a single measure of success. The 

results of these checks are presented in Tables 5 to 9. Alternative models incorporating labor 

productivity and technical quality14 (sourced from Orbis IP) yielded consistent findings,15 further 

strengthening the robustness of the analysis. Notably, technical quality showed a significantly positive 

ATT for semiconductor and biotechnology firms, indicating that science parks have enhanced the 

technological aspects of high-tech tenants’ patents. However, for small firms, the ATT for labor 

productivity was not statistically significant, suggesting that capital deepening is more critical than 

innovation for improving labor productivity in these firms. 

 

7. Discussion 

This study’s theoretical framework highlights how science parks address systemic and market failures 

through demand-side measures (e.g., R&D subsidies) and supply-side interventions (e.g., university 

collaborations). The findings confirm this, showing that Taiwan’s science parks enhance tenants’ 

R&D investment, attract high-quality talent, and boost productivity. While earlier research primarily 

focused on HSIP and its productivity gains and network effects, this study expands the analysis to 

CTSP and STSP, demonstrating positive impacts across three types of additionality. 

 

HSIP has long been recognized for its advantages in fostering connections with NTHU and the Chiao 

Tung campus of NYCU. The findings further suggest that tenant firms in CTSP and STSP also 

enhance their human capital with scientific expertise, albeit with characteristics distinct from those of 

HSIP. This development may stem from opportunities to establish university linkages, which requires 

further park-level analysis using direct measurements to better understand university-industry 

collaboration dynamics. 

 
14 Technical quality represents the degree of innovation that can be derived from a company’s IP, which 

includes the width and coverage of independent claims, detectability of infringement, difficulty in inventing 

around, and forward citations by foreign assignees. 

15 The result for technical quality in the entire sample is positive, with a statistical significance of 11 percent, 

closely aligning with the findings for total IP quality. 
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The varying ATTs across subsamples reveal that the impacts of science parks differ by industry and 

firm size, emphasizing the importance of tailored strategies to meet specific industry needs and foster 

sustained innovation and economic growth. Previous studies have identified the semiconductor 

industry as the most technically efficient sector within Taiwan's science parks. Consistent with this, 

the present study shows that semiconductor firms significantly benefit from the parks' R&D and 

productivity-enhancing features. These features should be leveraged to strengthen their competitive 

edge, drive technological innovation, and develop strong proprietary technologies. These contributions 

not only boost firm-level competitiveness but also reinforce Taiwan’s global leadership in 

semiconductors, with potential spillover benefits to other industries. 

 

The biotechnology sector also benefits significantly from the collaborative environment fostered 

within science parks. By fostering close collaborations with universities, the parks bridge cognitive 

and social distances between firms and researchers, spurring innovation. A positive ATT on PhD-level 

talent underscores the parks' role in cultivating a highly skilled workforce critical for the biotechnology 

industry. Moreover, such a high-quality talent pool is particularly important in the biotechnology sector, 

where PhD-level professionals can serve as entrepreneurs and intermediaries between the realms of 

science and technology and the financial domain, such as venture capitalists. A positive ATT on the 

technical quality of patents further illustrates the parks’ contribution to helping tenants develop strong 

proprietary technologies. These findings align with the Biotechnology Industry Promotion Program, 

which focuses on talent cultivation, patent enhancement, and technology transfer in knowledge-

intensive industries. However, these results must be interpreted cautiously due to the limited number 

of cohorts analyzed within the biotechnology subsample. Expanding longitudinal data in future studies 

will address this limitation and provide deeper insights into the long-term impacts of science parks on 

the biotechnology sector. 

 

Smaller firms showed stronger gains in R&D and TFP but did not exhibit comparable increases in 

high-skill employment. This pattern, consistent with prior research, suggests that science parks create 

competitive environments that selectively benefit high-productivity small firms. However, these firms 

often lack the social capital necessary for effective collaboration with academic institutions. 

Challenges such as insufficient mentorship, training, and networking opportunities may limit their 

ability to fully utilize science park resources. Strengthening public policies to address these gaps can 

enhance university collaborations and support small firms' growth, further solidifying the role of 

science parks in advancing Taiwan's high-tech startup sector. 

 

Prior studies have noted that science parks increase the volume of patents, but patent quality tends to 

be highly uneven. While most patents are of lower quality, basic patents exhibit higher value. This 

study advances the literature by focusing on high-value innovations and considering factors such as 

forward non-self citations, family size, litigation, and scope. The results highlight a positive impact of 



 21 / 45 

 

science parks on fostering university linkages, enabling tenants to produce high-quality, basic patents. 

These collaborations between tenants and universities or public research institutes drive competitive 

technological advancements in Taiwan’s knowledge-intensive industries. 

 

This research contributes to the global discussion on measuring the impact of science parks by 

highlighting the limitations of traditional metrics, such as sales or employment growth, which often 

produce mixed results. Instead, TFP emerges as a more reliable measure of science parks' success. The 

findings demonstrate that science parks significantly enhance TFP, particularly for small firms. Future 

evaluations should prioritize TFP metrics to better assess the role of science parks in regional 

innovation systems. 

 

8. Conclusion 

This study underscores the pivotal role of Taiwan’s science parks (HSIP, CTSP, and STSP) in 

fostering innovation through input, behavioral, and output additionality. Firms relocating to these parks 

exhibited increased R&D expenditure, higher employment of PhD holders, improved productivity, 

and enhanced patent quality. By leveraging the AIPW model with robust checks, including covariate 

balance, pre-treatment trend tests, and alternative indicators, the study ensures credible and reliable 

causal inferences. These findings align with global trends, demonstrating the effectiveness of science 

parks in driving university-industry collaboration and innovation, while highlighting their unique 

contributions in the Taiwan-specific context. 

 

The study faced several data limitations that constrained its analysis. Voluntary responses to the TEJ 

questionnaire limited the accuracy of variables such as PhD holder employment, while the absence of 

direct measures of university linkages, such as joint research project data, hindered the assessment of 

tenant-university collaborations. The limited sample size also precluded park-specific analyses, and 

the lack of longitudinal data restricted insights into long-term impacts, particularly in sectors like 

biotechnology. Future research should address these gaps by incorporating non-listed companies, 

expanding longitudinal datasets, and employing direct measures of university linkages to enhance the 

understanding of science parks’ role in innovation. 

 

Moreover, as illustrated in the case of China (Yang and Lee, 2021), while Taiwan’s science parks have 

made overall positive contributions to university spillovers and innovation, this does not necessarily 

imply that creating more science parks will always yield better outcomes. Future research should focus 

on identifying the optimal size and number of science parks that operate most efficiently under specific 

economic conditions. The findings from such studies could provide more targeted and meaningful 

insights for policymakers, not only in Taiwan but also globally. 

 

Finally, as noted in the literature review, little research has focused on how science parks accelerate 

entrepreneurship or influence the performance of high-tech spin-offs. Future studies should establish 



 22 / 45 

 

panel data on entrepreneurial firms to explore the role of science parks in fostering entrepreneurship 

and supporting spin-off success. 
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Table 1 Literature review 

 

Author(s) Data Method Period Region N Results 

Monck et al. 1988 Firm Matched-pair 1986 UK 183 and 101 Ge, Gs, Q(+), U 

Van Dierdonck et al. 1991 Science park Descriptive 1988 Belgium, 

Netherlands 

68(B) and 71(N) U 

Felsenstein 1994 Firm Log-linear Unknown Israel 73 and 89 I(+), U(+) 

Westhead and Storey 1994 Firm Matched-pair 1986, 1992 UK 75 and 62 G(+), I, S, U(+) 

Westhead and Storey 1995 Firm Matched-pair 1986, 1992 UK 75 and 62 S(+), U(+) 

NISTEP 1996 Science park Descriptive 1994 Japan 111 U 

Vedovello 1997 Science park Case study 1993 UK 1(SRP) U(+) 

Westhead 1997 Firm Matched-pair 1986, 1992 UK 75 and 62 I, S 

Phillimore 1999 Science park Case study 1998 Australia 1(WATP) N(+) 

Colombo and Delmastro 2002 Firm Matched-pair, 

Tobit 

2000 Italy 45 and 45 Ge(+), I, F(+), U(+) 

Lofsten and Lindelof 2002 Firm Matched-pair, 

OLS 

1999 Sweden 134 and 139 Ge, Gs, U(+) 

Link and Scott 2003 University Ordered probit 2001 US 28 I(+), R(-) 

Siegel et al. 2003 Firm SFE 1992 UK 89 and 88 I(+) 

Appold 2004 County ESR 1960–1985 US 3024 A 

Ferguson and Olofsson 2004 Firm Matched-pair 1995, 2002 Sweden 30 and 36 Ge, Gs, S(+) 

Lindelof and Lofsten 2004 Firm Matched-pair 1999 Sweden 134 and 139 I, U(+) 

Durao et al. 2005 Science park Case study Unknown Portugal 1(Taguspark) Complementarity of cyber and real 

parks 

Hu et al. 2005 Individual Case study 2001 Taiwan 268(HSIP) A(+) 

Lai and Shyu 2005 Individual ANOVA 2003 China, Taiwan 162(ZJHP) and 

101(HSIP) 

Overall advantage of HSIP 

Chen et al. 2006 Industry DEA 1991–1999 Taiwan 54 TE(Computer and semiconductor 

industries remain the benchmarks.) 

Fukugawa 2006 Firm Bivariate probit 2001–2003 Japan 74 and 74 U(+) 

Hu 2007 Science park OLS 1992–2000 China 52 and 52 LPG(converging) 

Hu 2008 Individual OLS 2001–2005 Taiwan HSIP(243) and 

TSIP (172) 

N(+, greater in HSIP) 

Squicciarini 2008 Firm Duration model 1970–2002 Finland 48 and 72 I(+) 

Wright et al. 2008 Firm OLS 2005 China 53(USP) and 

296(non-USP) 

Ge(+, non-USP) 
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Author(s) Data Method Period Region N Results 

Squicciarini 2009 Firm Duration model 1970–2002 Finland 252 I(+) 

Yang et al. 2009 Firm Heckit, FE 1998–2003 Taiwan 57 and 190 RDP(+) 

Hu et al. 2010 Science park DEA 2004–2006 China 53 TE(Beijing, Shanghai, and Hangzhou 

remain the benchmarks.) 

Ratinho and Henriques 2010 Science park Case study 2006 Portugal 15(including 

incubators) 

A 

Salvador 2011 Firm Case study, OLS 2007 Italy 30(case), 20 and 

91(OLS) 

R, V(-) 

Salvador and Rolfo 2011 Firm OLS 2007 Italy 65 and 90 E(+) 

Sun 2011 Industry DEA 2000–2006 Taiwan 42 TE(Computer and semiconductor 

industries remain the benchmarks.) 

Cheng et al. 2013 Community ZIP 2007 China 601 A(+, only SHIP) 

Koçak and Can 2014 Firm Negative binomial 2008 Turkey 136 N(+, contingent on intermediary) 

Díez-Vial and Fernandez-Olmos 2015 Firm RE Tobit 2007–2011 Spain 11201 I(+, contingent on absorptive capacity 

and UI collaboration) 

Fukugawa 2015 Firm Heckit 2000–2002 Japan 7330 U(+, contingent on intermediary) 

Ferrara et al. 2016 Science park MAVT 2012 Italy 56 I, E 

Liberati et al. 2016 Firm DID 2009–2011 Italy 65 and 63 Gs(+, old, public, and non-specialized  

SP, small and old firms), I, RD(+) 

Vasques-Uriaggo et al. 2016 Firm Heckit 2007 Spain 39722 U(+) 

Albahari et al. 2017 Firm OLS 2009 Spain 849 I(+) 

Díez-Vial and Fernandez-Olmos 2017 Firm RE Tobit 2007–2012 Spain 11594 Ge(+), Gs(+), I(+) 

Lamperti et al. 2017 Firm CEM 2004–2012 Italy 147 and 146 Gs, I(+), RD(+) 

Albahari et al. 2018 Firm Tobit, OLS 2009 Spain 849 I(+) 

Hasan et al. 2018 Firm 2SLS with IV 2009–2011 Taiwan 4655 TFP(+, contingent on technological 

intensity of production process) 

Corrocher et al. 2019 Firm CEM, Heckit 2006–2013 Italy 470 and 511 I(+, absorptive capacity, social capital) 

Gwebu et al. 2019 Firm OLS 2008–2010 US 205 Gs(+, contingent on business focus 

shared with the park) 

Helmers 2019 Firm FE 2000–2014 UK 241 PQ(+, walking time distance) 

Hasan et al. 2020 Firm 2SLS with IV 2010–2012 South Korea, Taiwan 5066(SK) and 

4646(TW) 

TFP(+, for both countries) 

Yang and Lee 2021 Science park 

(NHIZ) 

KPF 2007–2014 China 145 RDP dropped since 2011 

Xiong and Li 2022 City PSM-DID 1999–2017 China 293 A(+), I(+, big cities) 
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Author(s) Data Method Period Region N Results 

Blazquez et al. 2023 Science park Descriptive 2021 Denmark, Italy, 

Portugal, Spain, 

Sweden, UK 

14 SV(+) 

Lecluyse et al. 2023 Firm SEM 2018 Belgium, Denmark, 

Spain 

201 I(+), N(+) 

Martins et al. 2023a Firm PSM, GMM 2006–2014 Portugal 553 and 553 Ge 

Martins et al. 2023b Firm PSM, GMM 2002–2014 Portugal 553 and 553 Gs 

Wei et al. 2023 Firm CEM, ZINB, 

Heckit 

2016–2020 China 911 and 861 I(+) 

Anton‑Tejon et al. 2024 Patent OLS, Poisson 2004–2012 Spain 1102 and 5783 PQ(+) 

Gao et al. 2024 Firm PSM, RE Tobit, 

GMM with IV 

2010–2014 China 1271 U(+, complementary effect of subsidy 

and park location on science linkage 

and university-industry joint patent 

applications) 

Note 

The number of observations (N) represents the count of on-park firms and off-park firms, respectively. 

 

Method 

ANOVA: Analysis of variance 

CEM: Coarsened exact matching 

DEA: Data envelopment analysis 

DID: Difference-in-differences 

ESR: Endogenous switching regression 

FE: Fixed-effects model 

GMM: Generalized method of moments 

Heckit: Heckman selection model 

IV2SLS: Instrumental variable two-stage least squares 

KPF: Knowledge production function, used to evaluate innovation resource misallocation 

MAVT: Multi-attribute value theory 

OLS: Ordinary least squares 

PSM: Propensity score matching 

RE: Random-effects model 

SEM: Structural equation model 

SFE: Stochastic frontier estimation 

ZINB: Zero-inflated negative binomial model 
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ZIP: Zero-inflated Poisson model 

 

Results 

A: High-tech agglomeration 

E: Entrepreneurship, such as spinoffs 

F: Funding 

Ge: Employment growth 

Gs: Sales growth 

I: Innovation output, such as new products and patents 

LPG: Labor productivity growth 

N: Networking 

PQ: Patent quality, represented by forward citations and renewals 

Q: qualified scientists and engineers 

R: Reputation 

RD: R&D or intangible assets 

RDP: R&D productivity 

S: Survival 

SV: Social value 

TE: Technical efficiency 

TFP: Total factor productivity 

U: University linkage 

V: Value added 

 

Signs in parentheses indicate the positive or negative effects of science parks, with the items following each sign specifying the conditions under which these effects are observed. 

 

Others 

CTSP: Central Taiwan Science Park 

HKSP: Hong Kong Science Park 

HSIP: Hsinchu Science-based Industrial Park 

NHIZ: National High-tech Industrial Zones 

SHIP: Shenzhen High-tech Industrial Park 

SRP: Surrey Research Park 

TSIP: Tainan Science-based Industrial Park 

WATP: Western Australian Technology Park 

ZJHP: Zhangjiang High-Tech Park 
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Table 2 The number of companies in science parks and location quotients based on the distribution of these 

firms as of December 2014 (upper section) and November 2024 (lower section) 

 

 
Integrate

d circuits 

Optoelect

ronics 

Computers and 

peripherals 

Telecomm

unications 

Precision 

machinery 

Biotech

nology 

Other

s 
Total 

The number of companies in science parks in 2014 

HSIP 202 101 55 45 39 73 9 524 

CTSP 8 43 15 1 62 32 13 174 

STSP 16 56 2 11 47 59 5 196 

Total 226 200 72 57 148 164 27 894 

LQ 

HSIP 1.52 0.86 1.30 1.35 0.45 0.76 0.57  

CTSP 0.18 1.10 1.07 0.09 2.15 1.00 2.47  

STSP 0.32 1.28 0.13 0.88 1.45 1.64 0.84  

The number of companies in science parks in 2024 

HSIP 184 94 60 45 53 133 8 577 

CTSP 9 29 14 2 56 33 21 164 

STSP 27 44 6 10 51 68 10 216 

Total 220 167 80 57 160 234 39 957 

LQ 

HSIP 1.39 0.93 1.24 1.31 0.55 0.94 0.34  

CTSP 0.24 1.01 1.02 0.20 2.04 0.82 3.14  

STSP 0.54 1.17 0.33 0.78 1.41 1.29 1.14  

 

Source: National Science and Technology Council 2024 

 

Note 

The Location Quotient (LQ) is defined as LQ = (Xir/Xr) / (Xi/X) where Xir represents the economic activity in 

industry i within region r, Xr is the total economic activity in region r, Xi is the economic activity in industry i 

at the national level, and X is the total economic activity at the national level. 
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Table 3 The presence of three major science parks in Taiwan 

 

 On-park firms’ revenue / 

Taiwan’s GDP (%) 

On-park firms’ R&D / 

Taiwan’s R&D (%) 

On-park firms’ R&D intensity / 

Taiwan’s R&D intensity 

On-park firms’ patents granted / 

Taiwan’s patents granted (%) 

2013 14.3 27.1 1.9 6.3 

2014 14.2 27.9 1.9 4.8 

2015 13.5 28.6 2.1 6.3 

2016 13.5 28.7 2.1 6.8 

2017 13.6 30.8 2.3 5.8 

2018 14.1 31.4 2.2 5.0 

2019 13.9 32.2 2.3 5.6 

2020 15.1 35.0 2.3 6.4 

2021 17.1 38.3 2.2 7.3 

2022 18.7 40.7 2.2 7.5 

 

Note 

Patents include invention, utility model, and design. 

 

Source: Indicators of Science and Technology 2023 
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Table 4 Descriptive statistics 

 

Variable N Mean Standard deviation Min Max 

R&D expenditure 24,419 3.413 2.264 0 12.113 

Labor 24,529 6.433 1.600 0.693 13.775 

PhD holders 16,168 0.797 1.007 0 6.775 

Capital 24,529 6.624 1.957 0 14.935 

Value-added 23,724 6.326 1.633 -2.385 14.114 

Total IP quality 15,355 50.454 15.691 13 92 

Technical quality 15,355 74.752 15.088 36 100 

TFP 22,651 1.57e-10 1.078 -7.829 5.128 

Labor productivity 23,724 -0.129 1.224 -7.550 5.469 

 

Note 

All variables, except total IP quality and technical quality, are log-transformed. 
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Table 5 Estimation results of the entire sample 

 

Additionality Dependent variable N ATT Significance 

Input ln(R&D) 21,850 3.339 *** 

Behavioral ln(PhD holders) 14,680 4.871 * 

Output TFP 20,771 1.215 ** 

Output Labor productivity 21,850 1.136 * 

Output Total IP quality 12,677 42.397 * 

Output Technical quality 12,677 47.354  

 

Note 

Levels of statistical significance: *** 1%, ** 5%, * 10%. 
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Table 6 Estimation results of the non-HSIP sample 

 

Additionality Dependent variable N ATT Significance 

Input ln(R&D) 21,600 3.622 *** 

Behavioral ln(PhD holders) 14,499 5.239 * 

Output TFP 20,481 1.390 * 

Output Labor productivity 21,600 0.795  

Output Total IP quality 12,596 77.808  

Output Technical quality 12,596 0.435  

 

Note 

Levels of statistical significance: *** 1%, ** 5%, * 10%. 
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Table 7 Estimation results of semiconductor firms 

 

Additionality Dependent variable N ATT Significance 

Input ln(R&D) 1,337 0.364 * 

Behavioral ln(PhD holders) 925 0.342  

Output TFP 1,259 0.296 *** 

Output Labor productivity 1,386 0.419 *** 

Output Total IP quality 893 5.254  

Output Technical quality 893 10.365 * 

 

Note 

Levels of statistical significance: *** 1%, ** 5%, * 10%. 
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Table 8 Estimation results of biotechnology firms 

 

Additionality Dependent variable N ATT Significance 

Input ln(R&D) 961 0.075 *** 

Behavioral ln(PhD holders) 722 0.117 *** 

Output TFP 917 0.278 *** 

Output Labor productivity 968 0.491 *** 

Output Total IP quality 641 0.502  

Output Technical quality 641 2.919 *** 

 

Note 

Levels of statistical significance: *** 1%, ** 5%, * 10%. 
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Table 9 Estimation results of firms with fewer than 200 employees 

 

Additionality Dependent variable N ATT Significance 

Input ln(R&D) 6,307 15.163 *** 

Behavioral ln(PhD holders) 3,802 -0.220  

Output TFP 5,835 5.435 *** 

Output Labor productivity 6,307 -5.152  

 

Note 

Levels of statistical significance: *** 1%, ** 5%, * 10%. 

The models for patent quality did not converge. 
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Table 10 Covariate balance 

 

Variable Treated Mean Control Mean % Bias t-Test (p-value) 

ln(R&D) 5.565 5.537 1.5 0.54 

ln(labor) 6.914 6.898 1.0 0.30 

Propensity Score 0.3448 0.3447 0.0 0.01 

Regional and industry dummy (all) N/A N/A <10 N/A 
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Figure 1 Theoretical framework 
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Figure 2 Distribution of years of entry 

 

 

 

Source: Science Park Bureaus of Taiwan 

 

Note 

The vertical axis represents the number of firms that entered science parks. 
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Figure 3 The ATTs on R&D expenditure across different time points. The estimation results of the entire sample. 
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Figure 4 Combined dynamic graphs of the ATTs 
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From left to right: 

Figure 4 Dynamic graph of the ATT on R&D expenditure based on the estimation results of the entire sample 

Figure 5 Dynamic graph of the ATT on PhD holders based on the estimation results of the entire sample 

Figure 6 Dynamic graph of the ATT on TFP based on the estimation results of the entire sample 

Figure 7 Dynamic graph of the ATT on total IP quality based on the estimation results of the entire sample 

Figure 8 Dynamic graph of the ATT on R&D expenditure based on the estimation results of the non-HSIP sample 

Figure 9 Dynamic graph of the ATT on PhD holders based on the estimation results of the non-HSIP sample 

Figure 10 Dynamic graph of the ATT on TFP based on the estimation results of the non-HSIP sample 

Figure 11 Dynamic graph of the ATT on R&D expenditure based on the estimation results of semiconductor firms 

Figure 12 Dynamic graph of the ATT on TFP based on the estimation results of semiconductor firms 

Figure 13 Dynamic graph of the ATT on R&D expenditure based on the estimation results of biotechnology firms 

Figure 14 Dynamic graph of the ATT on PhD holders based on the estimation results of biotechnology firms 

Figure 15 Dynamic graph of the ATT on TFP based on the estimation results of biotechnology firms 

Figure 16 Dynamic graph of the ATT on R&D expenditure based on the estimation results of firms with fewer than 200 employees 

Figure 17 Dynamic graph of the ATT on TFP based on the estimation results of firms with fewer than 200 employees 
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