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Abstract 
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I. Introduction

A. Background and Objectives

Social, environmental, and economic issues that have a broad international impact and
require robust solutions, such as those symbolized by the Sustainable Development Goals
(SDGs), are called global problems. In considering solutions to global problems, it is essential
not to turn back from the globalized economy but to search for solutions to challenge the next
economic frontier. The next economic frontier includes cyber activities brought about by new
information technologies developed by the global economy in physical space. For example,
in smart grids and automated driving systems, physical systems have achieved significant
functional development by incorporating information systems, providing new economic value
to society. In this way, the cyber-physical economy is defined as economic activities created
during physical systems incorporating information systems.

In this context, we focus, in particular, on economic activities in cyberspace, which
are grounded by blockchain, a technology that enables crypto assets. In cyberspace, a
movement has begun to use blockchain to create autonomous decentralized organizations
(DAOs), different from conventional enterprises that centralize the distribution of goods
and services based on instructions from managers to their subordinates. In a DAO, all
participants (members) are involved in decision-making using a governance token, a crypto
asset that enables management based on the cooperation and consensus of members instead
of conventional management based on top-down instructions. The spread of DAOs, which
will replace or complement conventional companies, is expected to enable the construction of
an economy based on a new set of human-centered values rather than values that excessively
pursue economic growth.

However, today, various criminal acts and other anomalous events (anomalies) are oc-
curring in crypto asset transactions, representing economic activities in cyberspace. They
are causing significant damage to the credibility of crypto assets. An anomaly is a general
term for a peculiar transaction with characteristics that deviate significantly from those con-
sidered normal. Anomalous events are often accompanied by increased trading volume and
significant price fluctuations and may be caused by criminal acts such as price manipulation
or money laundering. Therefore, analyzing transactions during periods of substantial price
fluctuations is essential. In this study, we define an anomaly as a feature of transactions
that involve large fluctuations in price. Note that the transaction data are a record of crypto
asset transfers on the blockchain, and the price is determined when the crypto asset is ex-
changed for legal tender on the exchange market. In other words, the market where the price
of crypto asset is determined and the blockchain that transfers crypto asset are essentially
different. Regulatory authorities such as the Financial Services Agency monitor transaction
anomalies and take appropriate countermeasures. Therefore, it is of great social significance
to automatically detect criminal acts in crypto asset transactions using mathematical meth-
ods. So far, we have been working on mathematical methods to detect anomalies in crypto
asset transactions using transaction data recorded on the blockchain, which is called the
on-chain data (Ikeda, 2022; Aoyama et al., 2022; Ikeda and Chakraborty, 2023; Chakraborty
et al., 2023, 2024).

In data science, anomaly detection generally refers to finding patterns in data that do not
conform to expected behavior (Chandola et al., 2009). Anomaly detection on networks began
with Noble’s work in 2003 (Noble and Cook, 2003). Early research was limited to extracting
subgraphs of specific patterns using information theory, etc. Around 2010, reflecting data
availability on dynamic graphs, research on anomaly detection focusing on temporal changes
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began. Furthermore, around 2020, applying topology and machine learning to network sci-
ence became active. Developing a comprehensive indicator of anomalous events through the
systematic application of graph theory, topology, and high-dimensional statistical analysis
to dynamic graphs, which is the subject of this research, is in line with the development of
recent trends in network science.

Network analysis is essential for preventing financial crime and money laundering (AML).
It can improve efficiency by detecting anomalies in transaction networks and automating
fraud detection. Tools such as VISFAN use network indicators to identify suspicious trans-
actions (Didimo et al., 2011). Garćıa et al. applied network analysis to a tax investigation
study by the Spanish Revenue Agency, using algorithms for rapid fraud detection and com-
munity detection techniques for representing economic situations (Garćıa and Mateos, 2021).
Colladon et al. highlighted social network indicators to identify money laundering through
the relationship graph of economic sectors, regions, transaction volumes, and ownership links
(Fronzetti Colladon and Remondi, 2017). The CoDetect framework integrates network and
feature data for fraud detection (Huang et al., 2018). Previous studies have been limited
to detecting subgraphs corresponding to specific transaction patterns corresponding to par-
ticular irregularities (Noble and Cook, 2003; Chandola et al., 2007; Ranshous et al., 2015;
Novikova and Kotenko, 2014; Huang et al., 2018; Thudumu et al., 2020; Hilal et al., 2022;
Pourhabibi et al., 2020).

Machine learning and deep learning, especially graph neural networks, have been studied
for fraud detection (Chen et al., 2018). Due to the lack of annotated training data, unsuper-
vised anomaly detection is often used, and innovative approaches such as zero-shot learning
are adopted (Chen et al., 2018). Reviews highlight effective anomaly detection strategies in
fraud detection (Bolton and Hand, 2002; Phua et al., 2010), and social network analysis is
used to uncover organized criminal activities (Šubelj, Štefan Furlan and Bajec, 2011). Re-
cent research has focused on unsupervised and semi-supervised machine learning algorithms.
These are based on unsupervised learning methods that classify suspicious transactions using
fixed rules and thresholds defined by financial regulations or focus on cluster analysis (Yang
et al., 2023).

In this study, we systematize the mathematical basis for detecting anomalous events in
the dynamic graphs (directed and weighted graphs) of on-chain crypto asset transactions to
answer the three research questions: (1) Are there leading indicators of transactions that
precede prices? (2) Is there a correlation between the velocity of circulation and prices?
(3) Is there a herding phenomenon in the transaction network? Based on graph theory,
topology, and high-dimensional statistical analysis, we estimate multiple anomaly features
from the dynamic graph analysis of crypto asset transactions and identify anomalous events
related to the transactions. We also estimate price-related anomaly features by studying
price time series in the exchange market of crypto assets. We aim to validate individual
techniques for anomaly detection by conducting case studies in which we estimate individual
indicators of anomalous events for the dynamic graphs of specific crypto asset transactions
during the high-price period using multiple mathematical methods. In this study, we do not
limit ourselves to specific transaction patterns but use multiple mathematical methods to
estimate features of dynamic graphs that are highly correlated with price changes and use AI
to synthesize these features to detect anomalous events. This research fundamentally differs
from conventional approaches because it does not assume knowledge of trading patterns.
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Figure 1. Crypto Asset Exchange and Crypto Asset Dealer

B. Price formation on exchange markets

The price of crypto assets such as Bitcoin is determined by market supply and demand. In
other words, the exchange rate at which a transaction is concluded between people who want
to sell and people who want to buy crypto assets is the price at the time, and it fluctuates
in real-time. On platforms called crypto asset exchanges, exchanges between crypto assets
and fiat currencies (legal tender) or other crypto assets are mediated, and in particular,
the exchange rate between crypto assets and legal tender is the price of the crypto asset
denominated in the legal tender in question.

In the exchange market, a seller and a buyer each place an order specifying their desired
price and quantity, as shown in Fig. 1. These orders are called the order book, in which
sell and buy orders are sorted in order of highest to lowest price, respectively (see Table 1).
The difference between the lowest price of a sell order and the highest price of a buy order is
called the spread, and the narrower the spread, the more liquid the exchange is. The price
formation on the exchange depends on the status of the order book, and when a sell order
and a buy order match, the transaction is executed. That price becomes the price on the
exchange (in addition to “limit” orders, “market” orders are also used as the actual order
method).

In this way, the price of a crypto asset is determined by transactions based on supply
and demand, reflecting changes in the external environment, such as the fundamentals of
the crypto asset itself and interest rates in traditional finance. However, it may also reflect
exchange-specific factors such as trading volume, liquidity, transaction fees, regulations,
reliability, and hacking risk on the exchange. The price of an exchange’s shares may vary
slightly from one exchange to the next. However, even if there is a temporary price divergence
between exchanges, the difference is usually only marginal due to arbitrage. In addition to
crypto asset exchanges, there are other ways to obtain crypto assets, such as purchasing
them from dealers who own them. However, they often charge a higher spread based on the
prevailing price on the exchange, which is effectively a commission. For this reason, exchange
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Table 1. Order Book (As of 7/26/2024 14:20 BTC)

Selling Rate Buying

0.59744 10,401,034
0.00664 10,400,023
0.00359 10,400,000
0.00500 10,399,996
0.30541 10,399,993

10,399,992 0.00001
10,320,001 0.00113
10,320,000 0.00621
10,300,003 0.00701
10,300,002 0.05960

rates or their weighted averages on major crypto asset exchanges with many transactions
are usually used as price indices for crypto assets.

Crypto assets are based on blockchain technology, which allows transactions to be linked
chronologically by compiling transaction data into a single block of data and linking them
together on a chain. In order to record a transaction into the blockchain, an approval process
(connecting the correct blocks) such as Proof of Work (PoW) is required, which takes sev-
eral seconds to several minutes, depending on the type of crypto asset (Bitcoin takes about
10 minutes, Ethereum 15 to 17 seconds). However, transactions on crypto asset exchanges
are usually conducted without going through the blockchain (off-chain transactions) because
waiting for blockchain approval does not allow for real-time transactions conducted on ex-
changes and because of the fees involved. In other words, a dedicated system runs on a server
provided by the crypto asset trader to allow users to trade freely on the board, and trans-
actions are conducted within that system. The only transactions recorded in the blockchain
are when crypto assets are transferred from one exchange to another; for example, crypto
assets deposited at an exchange are transferred to a wallet on your own or to an account at
another crypto asset exchange.

The price of crypto assets is fundamentally determined by the market’s supply and
demand dynamics. These dynamics are influenced by the characteristics and environment of
the crypto assets themselves. For instance, the characteristics of representative crypto assets
like Bitcoin, Ethereum, and XRP play a significant role in price formation. Understanding
these characteristics and their influence on supply and demand is crucial for comprehending
the price dynamics of crypto assets.

[Bitcoin]

• The oldest and most popular crypto asset (the largest market capitalization).

• No initial coin offerings (ICOs) are issued, and all are issued through mining.

• The number of coins issued through mining is halved every four years, and the upper
limit of the number of coins issued is set at 21 million. It is said that the aim is to
stabilize the value by creating a sense of scarcity.

• On the other hand, it takes time to approve transactions (about 10 minutes), and it
is said that it is necessary to wait for six blocks (i.e., 60 minutes) before a transaction
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can be considered finalized.

• According to one estimate, the number of transactions that can be processed is limited
to about seven per second, and scalability is also low (one block contains an average
of 1,900 transactions).

• Compared to Ethereum, it is more challenging to make technical improvements and
has only been successfully upgraded twice in the past.

• Both the U.S. Securities and Exchange Commission (SEC) and the U.S. Commodity
Futures Trading Commission (CFTC) recognize it as a “commodity” rather than a
“security”.

• The demand for Bitcoin is increasing due to the approval of a Bitcoin spot ETF
(Exchange Traded Fund) in the U.S. in January 2024.

• The cost of mining may affect the price formation, as the cost of mining is considered at
least “worth” more than the cost to those willing to mine without purchasing Bitcoin
because of the cost of computing resources and electricity.

[Ether]

• Ethereum is not a crypto asset but a platform for running decentralized applications
(DApps). It uses a technology called smart contracts that enables automatically ex-
ecuted contracts, and various DApps have been developed in fields such as finance,
gaming, real estate, and insurance.

• Ether is the native currency of Ethereum, and Ether is required to use DApps.

• The price of Ether fluctuates depending on the activity of the Ethereum network, and
in general, when the demand for DApps increases, the price of Ether also increases.

• On the other hand, Ethereum, like Bitcoin, has scalability issues, and network con-
gestion and high transaction fees may affect the price.

• Ethereum is undergoing regular planned technical improvements (such as the transi-
tion from Pow to PoS) and is constantly undergoing significant upgrades to move to
a more efficient and secure system.

• Ether is issued by mining (currently staking). However, since the significant upgrade
“London” in August 2021, a mechanism has been introduced to burn a portion of
Ether that corresponds to gas fees (transaction fees), suppressing the increase in the
total amount issued (equivalent to a share buyback in the case of stocks). Ether does
not initially have a predetermined total issuance (cap). However, the scale of basic fee
burning has expanded, and there have been cases where it has exceeded the issuance
amount (mining amount), also affecting its scarcity.

• The U.S. Commodity Futures Trading Commission (CFTC) has ruled that it is a
“commodity”. At the same time, a senior official at the Securities and Exchange
Commission (SEC) said it was a “security” and that the decision was shaky.

• In the U.S., an application for an Ether spot ETF (Exchange Traded Fund) from an
exchange was approved.

[XRP]
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• Because it is traded on a network operated by a company called Ripple, it is considered
one of the centralized crypto assets.

• All 100 billion XRP coins were issued in 2005, and there are no plans to issue new
ones. As of March 2020, most of the coins are held by Ripple Inc. and its founders,
so not all are in circulation on the market.

• Ripple Inc, which owns a lot of the currency, may release Ripple into the market to
balance supply and demand, which could affect the price formation.

• Originally developed to make international remittances more efficient, Ripple Inc. has
partnered with banks and financial institutions to develop a remittance service using
XRP. If its use increases, the price of XRP is expected to rise.

• It is designed to disappear little by little each time it is used in the international
remittance system, and the number of coins gradually decreases, which is said to
create scarcity and stabilize value.

• XRP was sued by the U.S. Securities and Exchange Commission (SEC) for violating
securities laws, claiming that the issuance of XRP is a “security” (i.e., an investment
contract). However, the court ruled that XRP is not a “commodity” concerning its
secondary distribution. The ruling that XRP in circulation does not constitute security
has led to buyers’ widespread sense of relief.

C. Reality of Fraud and the government response

In Japan, the “Act on Prevention of Transfer of Criminal Proceeds” stipulates regula-
tions to prevent money laundering, terrorist financing, and proliferation financing. This
law mandates financial institutions and other entities to conduct transaction verification,
maintain transaction records, and report suspicious transactions, among other obligations
(HoureiRead, 2019). Money laundering refers to activities that make it difficult for inves-
tigative authorities to trace the origins of funds by making illicit proceeds from crimes or
improper transactions appear to be from legitimate sources. This can involve transferring
money into accounts under other names, selling assets using aliases, or moving funds through
multiple financial institutions. The total amount of money laundering worldwide is estimated
to be approximately 2-5% of the global GDP. Terrorist financing is the act of providing funds
or resources to terrorists to support terrorist activities or the operations of terrorist orga-
nizations. Proliferation financing refers to the provision of funds or financial services to
individuals or entities involved in the development, possession, or export of weapons of mass
destruction (nuclear, chemical, and biological weapons), who are subject to measures such as
asset freezes (Ministry-Of-Finance, 2024). The background for the establishment of this law
includes the revised FATF Recommendations (40 Recommendations) released by the Finan-
cial Action Task Force on Money Laundering (FATF) in February 2012 and the subsequent
public statement on Japan by the FATF in June 2014, which called for a swift response to
deficiencies in anti-money laundering measures.

The 2016 amendment to the Act on Prevention of Transfer of Criminal Proceeds (APTCP)
included crypto asset exchange providers as entities subject to compliance with the law. As
a result, crypto asset exchanges are now required, like financial institutions, to conduct
“Know Your Customer” processes, maintain records, and report suspicious transactions to
authorities, such as the Financial Services Agency, to prevent money laundering and financial
crimes. Moreover, a recent topic of interest is the amendment to the same law in December
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2022, which came into effect in June 2023, mandating the implementation of the Travel Rule
for crypto asset exchanges. The Travel Rule stipulates that “crypto asset exchange providers
facilitating transfers of crypto assets on behalf of users must notify the recipient’s crypto
asset exchange provider of specific information regarding both the sender and the recipi-
ent”. The FATF has recommended this rule as part of its international standards (FATF
Standards) for combating money laundering and terrorist financing, which it urges national
regulators to adopt. Under the Travel Rule, crypto asset exchange providers must obtain
information on the origin and destination of a crypto asset transfer and notify the recipient
exchange provider. This is expected to enhance transparency regarding the parties involved
in crypto asset transfers, thereby mitigating the risk of illicit use. However, it is important
to note that, in crypto asset trading, there are methods other than using crypto asset ex-
changes, such as peer-to-peer (P2P) transactions between users, which include Decentralized
Exchanges (DEXs) and unhosted wallets. These forms of P2P trading fall outside the scope
of such regulatory efforts.

Under these laws, Japanese financial institutions and other entities must detect id, entify,
and report suspicious transactions that are believed to be related to the transfer of proceeds
from crimes, such as money laundering, terrorist financing, and proliferation financing. The
Financial Services Agency has compiled reference examples of suspicious transactions, cate-
gorizing them as illustrative cases (Financial-Services-Agency, 2024). Among these examples,
reference cases for Crypto Asset Service Providers are also provided. The three main types
of transactions that are subject to reporting are (1) Large transactions involving crypto
assets, (2) Transactions conducted frequently within a short period, and (3) Transactions
where the account holder’s name is fictitious or customer information is anonymized using
anonymization techniques. On the dark web, Bitcoin addresses are often displayed. Bit-
coin is the most valuable among crypto assets, and its price is highly volatile, which can
result in large transaction amounts. One of the anonymization techniques for crypto assets
is mixing (Une, 2018). This technique involves adding many unrelated addresses to the
inputs and outputs in the transaction data of crypto assets, mixing them with the origi-
nal addresses, thereby making it more difficult for third parties to trace the transactions
or link addresses. Research has also shown that mixing-related transactions are conducted
regularly and frequently (Hirosawa and Uehara, 2018). Advanced anonymization techniques
using cryptographic technologies such as ring signatures and zero-knowledge proofs are also
known (Une, 2018). The off-chain technology known as the Lightning Network allows for
transactions between any parties, even those who have not directly opened a payment chan-
nel (a mechanism enabling off-chain transactions between two parties), making anonymous
transfers possible through this method (Financial-Services-Agency, 2019).

With the future development of Web3 and blockchain technology, as well as the gen-
eral public’s increased literacy regarding crypto assets, it is anticipated that there will be
an increase in opportunities and cases for detecting, identifying, and reporting suspicious
transactions that are believed to be related to the transfer of proceeds from crimes such as
money laundering, terrorist financing, and proliferation financing. Since some crypto asset
transactions are automated, like mixing, it is expected that humans will become increasingly
challenging to handle every case individually. Therefore, it is necessary to consider meth-
ods that utilize automation technologies, such as AI based on machine learning, wherever
possible. Developing and implementing technology that can automatically report suspicious
transactions to humans is essential.
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II. Theory of evaluation of transaction and price features

We explain the theory of various anomaly detection methods. To answer research question
1, we use transaction features, Indicators 1 to 10, and price features, Indicator 11. To answer
research question 2, we use transaction features, Indicators 3, 4, 5, and 7, and price features,
Indicator 11. Fisher’s equation of exchange suggests research question 2. The velocity of
money indicates how often money is used in transactions over a certain period; in other
words, how much money circulates in the economy. In this analysis, the velocity of money
is represented by the number of loops. To answer research question 3, we use transaction
features, Indicators 6, 8, 9, and 10. In this analysis, the herding phenomenon means most
nodes that make up the network change similarly when prices change significantly.

A. Transaction Features

a. [Indicator 1: Graph Theory] Clustering coefficient A clustering coefficient
measures the ratio to which a specific node’s neighboring nodes in a graph are linked. A
graph (network) G = (V,E) consists of a set of vertices (nodes) V and a set of edges (links)
E. A link eij connects vertex i with vertex j. The neighbor nodes Ni for a node i are defined
as its immediately connected nodes:

Ni = {vi : eij ∈ E ∨ eji ∈ E} (1)

The clustering coefficient Ci of a node i is a proportion of the number of links between the
nodes within its neighborhood divided by the number of links that could exist between them.
The clustering coefficient Ci is defined for the directed binary graphs:

Ci =
|ejk : vj , vk ∈ Ni, ejk ∈ E|

ki(ki − 1)
, (2)

where ki is the degree of node i. For the un-directed binary graphs, Ci must be multiplied
by factor 2.

b. [Indicator 2: Graph Theory] Degree Entropy Entropy is a measure of
network complexity, where low entropy means low complexity. Degree entropy S of network
is defined as follows using the degree distribution f(k) of network:

S = −
kmax∑
k=1

p(k) log p(k) (3)

p(k) =
f(k)∑kmax

k′=1 f(k′)
(4)

where degree k is the sum of in-degree kin and out-degree kout.

c. [Indicator 3: Graph Theory] Triangular motif analysis A motif is a small
pattern contained in a network. For three nodes connected by directed links, there are 16
motifs, including three motifs (motifs 1, 2, and 4) that are only partially connected.

First, we count the number of motifs Nreal
k (k = 1, · · · , 16) of the actual network. We

assume the null-hypothesis network (directed) to be a randomized graph without changing
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the in-degree and out-degree of each node. Next, we generate 1000 null-hypothesis networks
(directed) and find the number of motifs Nrand

k . Then, we calculate the Z-score Zk of each
motif k:

Zk = (Nreal
k − E[Nrand

k ])/sd[Nrand
k ], (5)

where E[·] and sd[·] are expectation value and standard deviation, respectively. If Zk is larger
than n (or smaller than −n), the increase (or decrease) in motif k is statistically significant
because the number of motifs exceeds n times the standard deviation.

Figure 2. Sixteen Triangular Motifs

d. [Indicator 4: Graph Theory] Transaction loop analysis considering the
time of edge occurrence Focusing on circular transactions in a financial network is an
interesting analysis area, particularly for identifying potential fraudulent activity or money
laundering. Circular transactions, in which funds move through a series of accounts only
to return to the original source, can often indicate an attempt to disguise the origin or
destination of funds, evade taxes, or conduct illicit activities. Circular transactions can also
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Figure 3. Definition of a loop associated with a directed link from node i to node j

help fuel high price by creating a false sense of value and stability. Of course, the high-
price periods are typically the result of multiple factors, including speculative behavior, low
interest rates, and overconfidence in asset markets. Circular transactions are one mechanism
among many that can amplify these dynamics. Therefore, the study should emphasize the
circular pattern of transactions and the circular flow of money within the networks under
consideration.

To this end, we develop a methodology to identify transaction loops in a network and
determine to what extent these loops are causal. We first define a loop associated with
a directed link from node i to node j by connecting the two nodes via the shortest path
in the backward direction, from node j to node i; the loop is irreducible in this sense.
Figure 3 illustrates the loop for the directed link as defined above. It comprises s links with
timestamps, t1, t2, . . . , ts, and is referred to as a loop of size s. The size distribution of the
loops provides important information on the topological properties of transaction networks.

The causality of each extracted loop is then evaluated by examining timestamps asso-
ciated with the constituent links and ensuring that they are aligned in chronological order.
We can carry out such an analysis as the available dataset contains information about the
occurrence of transactions over time. If transactions occurred randomly, the probability of
finding causal loops out of all loops of size s is given by 1/(s− 1)!. We thereby propose the
following indicator for anomalous transactions:

ξcl(s) =
ncl(s)

n(s)/(s− 1)!
, (6)

where n(s) and ncl(s) are the numbers of all and causal loops of size s, respectively. If the
indicator ξcl(s) exceeds the threshold ηα(s)(> 1) determined by a given significance level α
of the hypothesis test for abnormal states, a warning message should be sent out.

In passing, it is enough for us to pay attention to strongly connected components of
networks for this loop statistics analysis because loops are only embedded in them.

e. [Indicator 5: Topology] Transaction loop component by Hodge de-
composition We explain the Hodge decomposition Kichikawa et al. (2019); Fujiwara
and Islam (2020); Ikeda and Chakraborty (2023) to estimate the “potential flow” and “loop
flow” in the international remittance of crypto assets during the high-price period. The
higher-order interaction in the remittance network disintegrates into the two subsequent
two-body interactions. In this approximation, we obtained a weighted directed network for
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international remittance. A weighted directed network consisting of N nodes is defined by
adjacency matrix A and weighted adjacency matrix B:

A = [aij ] =

{
1 (if directed edge from i to j)
0 (otherwise),

(7)

B = [bij ] =

{
bij (if directed edge from i to j has a weight)
0 (otherwise),

(8)

where i = 1, · · · , N and j = 1, · · · , N .
We define total flow matrix F and weight matrix W using adjacency matrix A and

weighted adjacency matrix B as follows:

Fij = Bij −Bji, (9)

Wij = Aij +Aji. (10)

Graph Laplacian L is written as follows using weight matrix W :

Lij = Dij −Wij , (11)

where Dij = δij (
∑

k Wik) is the degree matrix. We obtain flow potential ϕ by solving the
following Laplace-like equation numerically on the network:∑

j

Lij · ϕj =
∑
j

Fij . (12)

Flow potential ϕ is arbitrary for the shift from the origin. We shift the origin to get
∑

j ϕj =

0. By taking numerical derivative of potential ϕ, we obtain potential flow matrix F pot:

F pot
ij = Wij · (ϕi − ϕj) . (13)

Finally, we obtain loop flow matrix F loop by subtracting F pot from total flow matrix F as
follows:

F loop
ij = Fij − F pot

ij = Fij −Wij · (ϕi − ϕj) . (14)

This procedure is called Hodge decomposition on a weighted directed network. We define
the potential flow ratio fpot and the loop flow ratio f loop as follows:

fpot =

∑
ij F

pot
ij∑

ij Fij
, (15)

f loop =

∑
ij F

loop
ij∑

ij Fij
. (16)

f. [Indicator 6: Topology] Classification by graph Laplacian eigenvalue
distance We introduce states into dynamic networks and analyze the temporal changes
in these states. For this purpose, we consider the distance between different graphs and
perform clustering. Following Masuda and Holme (2019), we define the distance between
graphs and the transitions of states. While distances between graphs can be defined in
various ways, we focus here on a distance based on the graph Laplacian matrix. It can
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be expressed as L = BBT using an incidence matrix B, where BT denotes the transpose
of B. This implies that the graph Laplacian is symmetric and positive-semidefinite; the
eigenvalues are nonnegative real values. In the following, the eigenvalues are assumed to be
arranged in ascending order, λ1 ≤ λ2 ≤ · · · ≤ λN , where N denotes the number of vertices.
The eigenvalues of the Laplacian matrix are of significant importance. The number of zero
eigenvalues, i.e., the dimension of the kernel of L, corresponds to the number of connected
components in the graph. In contrast, the smallest non-zero eigenvalue is known as the
spectral gap. The second smallest eigenvalue, algebraic connectivity, offers insight into the
graph’s overall connectivity. The eigenvalues can take a wide range of values, so it would be
convenient to normalize them. The symmetrically normalized Laplacian matrix is defined
by using the degree matrix D as

L̃ = D− 1
2LD

1
2 , (17)

where any eigenvalue λ of L̃ satisfies 0 ≤ λ ≤ 2. One way to introduce distances between
graphs is to define them using these eigenvalues. For example, the distance between graphs
G1 and G2 with an equal number of vertices can be defined as

d(G1, G2) =

√√√√ N∑
i=1

(λN+1−i(G1)− λN+1−i(G2))
2
. (18)

Here, λi(G) represents the i-th eigenvalue of (normalized) graph Laplacian of G.
With the distance between graphs now defined, it enables the classification of states using

topological data analysis and clustering algorithms. For example, hierarchical clustering can
be used to classify the states of a graph.

g. [Indicator 7: Topology] Topological data analysis Let V be a vertex
set, A a set of directed edges connecting the vertices of V , and w : A → R the weight
function. The triplet G = (V,A,w) is called a weighted directed graph. The specification
of a weighted directed graph G is equivalent to that of a weight matrix W = (w(x, y))x,y∈V

indexed by V , where we understand (x, y) ̸∈ A if w(x, y) = 0. We consider a time series
G := (Gn)n=0,1,2,...,T of weighted graphs as data, or equivalently, a time series of weight
matrices W := (Wn)n=0,1,2,...,T . Here we will consider two topological features for this G or
W.
(i) Traces of Powers of Weighted Adjacency Matrices. The trace of a square matrix
B = (b(x, y))x,y∈V is defined by

Tr(B) =
∑
x∈V

b(x, x). (19)

The trace of the n-th power of W has the following expression:

Tr(Wn) =
∑

(x1,x2,...,xn)∈V n

w(x1, x2)w(x2, x3) · · ·w(xn−1, xn)w(xn, x1), (20)

where w(x1, x2)w(x2, x3) · · ·w(xn−1, xn)w(xn, x1) ̸= 0 if and only if there exists a sequence
of directed edges (x1, x2), . . . , (xn, x1) with non-zero weight. For example, when n = 2,

Tr(W 2) =
∑

(x1,x2)∈V 2

w(x1, x2)w(x2, x1) (21)

13



Since the sum is taken treating w(x, y)w(y, x) and w(y, x)w(x, y) as distinct terms, it is
equivalent to counting the product of weights for all pairs of vertices twice. Of course, if
there is no directed edge between two vertices x and y or if there is a directed edge in only
one direction, then w(x, y)w(y, x) = 0. Therefore, Tr(W 2) is the total sum of the size of
mutual transactions. When n = 3, we see that

Tr(W 3) =
∑

(x1,x2,x3)∈V 3

w(x1, x2)w(x2, x3)w(x3, x1) (22)

For three vertices x, y, z, there are six possible contributions:

x → y → z → x, y → z → x → y, z → x → y → z (23)

x → z → y → x, y → x → z → y, z → y → x → z

and thus the contributions of

w(x, y)w(y, z)w(z, x), w(x, z)w(z, y)w(y, x) (24)

are counted three times each. This is equivalent to examining the total sum of transactions
along the edges of triangles. For k ≥ 4, there are combinations of multiple primitive cycles
such as, for k = 4,

x → y → z → w → x, x → y → x → z → x. (25)

The former is a primitive cycle of length 4, while the latter is a concatinated two primitive
cycles of length 2. If we focus on the contribution of transactions along primitive cycles, we
need to separate them.
(ii) Betti numbers of a flag complex defined by a directed adjacency matrix. A
directed k-simplex is an ordered sequence of (k+1) vertices (v0, v1, . . . , vk) such that for all
i and j with 0 ≤ i < j ≤ k, (vi, vj) ∈ A. We denote the set of all directed k-simplices by
Kk. The collection of all such directed k-simplices, denoted by K = (Kk)k=0,1,2,..., is called
a directed flag complex for the directed graph G. Suppose a directed graph G = (V,A) is
given as follows:

V = {0, 1, 2, 3, 4}, A = {(0, 1), (0, 2), (1, 2), (2, 1), (2, 3), (4, 2), (4, 3)} (26)

For this G, the directed flag complex K = (Ki)
2
i=0 is given by

• K0 = V = {(0), (1), (2), (3), (4)}
• K1 = A = {(0, 1), (0, 2), (1, 2), (2, 1), (2, 3), (4, 2), (4, 3)}
• K2 = {(0, 1, 2), (0, 2, 1)}

For the ordered triple (0, 1, 2), all the ordered pairs (0, 1), (0, 2), (1, 2) belong to the set
A so that (0, 1, 2) ∈ K2. Similarly, we can verify that (0, 2, 1) ∈ K2. However, for the
ordered triple (1, 2, 3), the ordered pairs (1, 2), (1, 3), (2, 3) do not all belong to A since
(1, 2), (2, 3) ∈ A but (1, 3) ̸∈ A. Therefore, (1, 2, 3) ̸∈ K2. Similarly we can verify other
ordered triples do not belong to K2.

Let Ck(K) = {∑σ∈Kk
aσσ : aσ ∈ R} be the real vector space with the elements of Kk as

a basis. For (v0, v1, . . . , vk) ∈ Kk, we define the boundary homomorphism by

∂k(v0, v1, . . . , vk) =

k∑
j=0

(−1)j(v0, v1, . . . , vj−1, vj+1, . . . , vk) (27)
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and extend it linearly. For example,

∂2(0, 2, 1) = (2, 1)− (0, 1) + (0, 2), ∂1(2, 1) = (1)− (2), (28)

from which it is easy to see that ∂1(∂2(0, 1, 2)) = 0. Moreover, ∂k+1 ◦ ∂k = 0 holds for
k = 0, 1, . . . in general, which implies Im∂k+1 ⊂ ker ∂k. The k-th homology group of the
directed flag complex K is defined by Hk(K) := ker ∂k/Im∂k+1, and its dimension is called
the k-th Betti number of the directed flag complex K. Flagser can efficiently compute these
Betti numbers and persistent homology (Luetgehetmann et al., 2019; Tauzin et al., 2020;
Tauzin, 2021a,b). For Betti numbers and persistent homology for undirected graphs, see e.g.
(Shirai, 2023) and reference therein.

h. [Indicator 8: Topology] Ricci curvature based on optimal transport
theory The local curvature of a graph reflects the properties of specific nodes and links,
and its temporal changes and differences from neighboring links can be expected to indicate
its anomaly. Consider the undirected-weighted graph consisting of n nodes with the weight
of an edge wij connecting node vi and node vj . The Ricci curvature κ(vα, vβ) along the link
connecting nodes vα and vβ is defined by

κ(vα, vβ) = 1− W1(µα, µβ)

d(vα, vβ)
. (29)

Here W1(µα, µβ) is the Wasserstein-1 distance and d(vα, vβ) is the hop distance, which is
equal to #edge between node vα and node vβ . W1(µα, µβ) is obtained by minimizing the
objective function:

W1(µα, µβ) = min
µ

n∑
i,j=1

d(vi, vj)µ(vi, vj), (30)

where µ(vi, vj) ≥ 0 are variables for vi, vj ∈ V , with the following constraints:

n∑
j=1

µ(vi, vj) = µα(vi) (31)

n∑
j=1

µ(vj , vi) = µβ(vi) (32)

for vi ∈ V . Here we note that µα(vi) = wαi/sα, sα =
∑n

i=1 wαi, µβ(vi) = wiβ/sβ , and
sβ =

∑n
i=1 wiβ .

i. [Indicator 9: High-dimensional statistical analysis] Correlation tensor
analysis We utilized the node2vec algorithm (Grover and Leskovec, 2016) to embed
weekly weighted directed networks into a D-dimensional space. We employed unbiased
random walks by setting the parameters p = 1 and q = 1, effectively reducing node2vec to
the DeepWalk method (Perozzi et al., 2014). This approach, inspired by natural language
models, captures the structural regularities of the network, particularly community structure,
by encoding it into the vector representations of the nodes. The method generates sequences
of nodes, S = V1, V2, V3, ...VS , through truncated random walks, akin to sentences in natural
language. These sequences are then processed using the SkipGram algorithm (Mikolov et
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al., 2013), mapping each node Vj to its vector representation Φ(Vj) ∈ RD, while maximizing
the co-occurrence probability of neighboring nodes within the random walks.

We introduced the correlation tensor method and its diagonalization via double SVD
(Chakraborty et al., 2023). Here, we provide a concise overview of this approach. In the
weekly XRP transaction networks, we identify N nodes that do at least one transaction every
week throughout the study period. We define these nodes as regular nodes. Each regular
node is represented in the embedding space by a time series ofD-dimensional vectors, denoted
as V α

i (t), where i ranges from 1 to N , t from 1 to T , and α from 1 to D. The correlation
tensor between the components of these regular nodes is then defined as follows:

Mαβ
ij (t) =

1

2∆T

t+∆T∑
t′=t−∆T

[V α
i (t′)− V α

i ][V β
j (t′)− V β

j ]

σV α
i
σV β

j

, (33)

In this equation, the summation is taken over five weekly networks at times t′ = {t− 2, t−
1, t, t+1, t+2}, corresponding to a time window of (2∆T +1), with ∆T = 2 for our analysis.
The terms V α

i and σV α
i

represent the mean and standard deviation of V α
i over the same

time window of five weekly networks, covering the times t− 2, t− 1, t, t+ 1, t+ 2. Notably,
a smaller ∆T value introduces more noise into the correlation tensor. However, selecting a
large ∆T is also impractical, as we aim to capture the detailed temporal evolution of the
networks. The influence of the window size (2∆T + 1) on the correlation tensor is discussed
in Chakraborty et al. (2023). While we use a dimension of D = 32 for the correlation tensor

Mαβ
ij (t) in our analysis, the results remain qualitatively consistent across other values of D.

The quantitative dependence of the largest singular value of the correlation tensor, assuming
normally distributed elements, on D is presented in Chakraborty et al. (2024).

To determine the spectrum of the correlation tensor, we employ a double SVD approach.
This involves successively diagonalizing Mαβ

ij using a bi-unitary transformation, also known
as singular value decomposition (SVD), first along the (ij)-index and then along the (αβ)-

index. The initial step expresses Mαβ
ij as a sum of matrices through the SVD method:

Mαβ
ij =

N∑
k=1

Likσ
αβ
k Rkj . (34)

The second step involves further decomposing each singular value, σαβ
k , as a sum of matrices

using SVD:

σαβ
k =

D∑
γ=1

LαγργkRγβ . (35)

Finally, we put together these steps to arrive at the following expression for Mαβ
ij :

Mαβ
ij =

N∑
k=1

D∑
γ=1

ργk(LikRkj)(LαγRγβ). (36)

In this expression, ργk represents the generalized singular values, which form an N×D matrix.
These singular values are real and positive since M is a real correlation tensor.
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j. [Indicator 10: High-dimensional statistical analysis] Feature extraction
of transaction frequency statistics In evaluating the behavior of individual nodes,
the number of their transactions and the amount of each transaction play crucial roles. Both
are important and complementary to each other: If one node makes millions of transactions
a day and another node makes only a couple of transactions a day, does it make the first
node more important than the latter? The answer is No, if the first node’s transactions
are mostly worth a small amount, say worth 1 USD, and the latter’s transactions are worth
millions of US dollars.

The concept of ”Flow-weighted Frequency (“F-frequency” for short) was invented to
deal with this aspect of the importance of both the frequency and the transaction amount
(Aoyama et al., 2022). It defines a measure of the importance of the activity of a node.
In general, this concept is useful for analyzing activities in a directed network, such as the
transactions of account holders. Here, we concentrate on using the F-frequency in the crypto
asset transaction network.

Before defining F-Frequency, let us study how to count the number of “effective nonzero
elements” in a set of numbers. For example, if the set is made of the same numbers, such
as ℓ1 = (102, 102, 102, 0, 0, 0), we just assume that they are and the answer is 3. But if
the set is made with numbers that differ from each other on a large scale, such as ℓ2 =
(103, 105, 105, 0, 0, 0), what is the appropriate counting? A useful way of counting such an
“effective” number is to use the following:

Rat(ℓ) =
Total(ℓ)

Max(ℓ)
. (37)

For the first case of ℓ1, this gives you 3, an apparent result. The second one, ℓ2, yields 2.01,
which is a reasonable value.

In the transaction network we are dealing with now, we need a measure for the inflow
and outflow. For this discussion, let us denote the time series of the daily outflow by fout
and the daily inflow by fin. All components of fout and fin are positive. In a case with no
flow, say fout = {} (an empty set), we define f̄out = {} and Mn(f̄out) = 0 and so on.

Here, we are dealing with aggregated flows by day. Alternatively, one may deal with tick
data from the flows. The difference is that if a node made several large transactions quickly,
treating them as one transaction is most appropriate. Daily aggregation would take care of
them unless several transactions were made in a time window, including 0:00 UTC. For this
reason, the daily aggregation is chosen for this article.

Now, we need to deal with both inflow and outflow. As we saw above, the effective
number of elements, or the number of transactions, is gven by Rat(·) for each of them. The
key is the difference in scale of the flows between them. To account for it, we multiply the
ratio between them;

A =

{
Rat(fin)×

Max(fin)

Max(fin, fout)
,Rat(fout)×

Max(fout)

Max(fin, fout)

}
(38)

=

{
Total(fin)

Max(fin, fout)
,

Total(fout)

Max(fin, fout)

}
(39)

This is the definition of the F-frequency.
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B. Price Features

a. [Indicators 11: The maximum price fluctuation in the week, day, hour,
minute window When we analyze time series data, it is crucial to consider whether
the time series is stationary. If we adopt the return or the logarithmic return, we can usually
transform the non-stationary process into stationary. Although we use the logarithmic return
in this article, there are two types. If we denote the open price at t-th time interval as O(t)
and the closed price at time t as C(t), by using natural logarithm, we define the logarithmic
return:

rOC(t) = logC(t)− logO(t) , (40)

where the subscript “OC” stands for “open to close”. On the other hand, if we denote the
highest price at t-th time interval as Ht and the lowest price at time t as Lt, by using natural
logarithm, we define the logarithmic return:

rLH(t) = logH(t)− logL(t) , (41)

where the subscript “LH” stands for “low to high”.
Methods like moving averages and the z-score approach identify anomalies by comparing

data points to established statistical baselines, such as mean and standard deviation. Ma-
chine learning-based methods, including supervised learning and unsupervised techniques
like clustering, learn the patterns within the data to spot outliers. Deep learning meth-
ods, such as Long Short-Term Memory (LSTM) networks and autoencoders, are particularly
effective for detecting complex and long-term dependencies in time series.

Another approach involves time series models like ARIMA, which forecasts future data
based on past trends and detects anomalies when the observed values significantly deviate
from predictions. Each method has its strengths, and the choice of technique depends on the
data characteristics, complexity, and the specific requirements of the anomaly detection task.
Combining these methods can improve the accuracy and robustness of anomaly detection in
time series data.

The z-score is defined by

zi(t) =
ri(t)− µi

σi
i ∈ {OC,LH} . (42)

Here, µi and is the average value of ri and σi is the standard deviation of ri:

µi =
1

T

T∑
j=1

ri(t) , σi =
1

T

T∑
j=1

(ti(t)− µi) . (43)

The z-score, or standard score, measures a data point’s distance from the mean regarding
standard deviations. The z-score of 0 means the data point is strictly at the mean, while
positive or negative values indicate how many standard deviations the point is above or
below the mean. Z-scores greater than 2 or 3 typically signify outliers or anomalies, as most
data in a normal distribution falls within two standard deviations of the mean. This fact
makes z-scores a simple and effective tool for identifying anomalies in a dataset.

However, in the case of financial phenomena, we encounter time series following non-
normal distributions, such as those with fat tails. Therefore, we need to use the robust
z-score defined by

Zi(t) =
0.6745× {ri(t)−Med[ri(t)]}

MAD
, (44)
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where Med[ri(t)] corresponds to the median of ri(t), and MAD is the median absolute devi-
ation defined by

MAD = Med [|Xi −Med(X)|] . (45)

In dis paper, we use the robust z-score to detect the anomalies.

III. Description of Data

A. BTC

We utilize the dataset containing all transactions recorded on the Bitcoin blockchain, starting
from the genesis block (the first block issued on January 9, 2009) up to and including block
number to the block height of 693999 (issued on August 3, 2021). A typical transaction
data contains multiple input and output addresses. Each transaction represents a transfer
of a specific amount of BTC (the monetary unit of Bitcoin) between one or more addresses,
as will be explained further. We refer to these BTC transfers as crypto flows. An address
functions like a wallet owned by a user, who could be an individual or, more commonly
nowadays, an entity involved in exchanges, services, gambling, and similar activities. We
will use a straightforward yet effective method to identify users from addresses, allowing us
to create a large graph where the nodes represent users and the edges represent crypto flows.

Let us consider an example of a transaction (TX) where Alice transferred 1 BTC to Bob
on a given day:

TX1 : {a1, a2} → {a123, a1}. (46)

Here, a1 and a2 are Alice’s addresses, while a123 belongs to Bob. Alice needed multiple
addresses as inputs for TX1 because one address alone did not have enough BTC to cover
the 1 BTC transfer. The output includes a1 as a change address. On another day, Alice
made another transaction:

TX2 : {a1, a3} → {a45, a3}. (47)

In this case, a3 is also Alice’s address. It is clear that when multiple addresses appear as
inputs in a transaction, they all belong to the same user, which in this case is Alice. Based
on TX1 and TX2, we can deduce that a1, a2, and a3 are all owned by Alice. Even though
a2 and a3 did not show up in both transactions, examining the entire transaction history
shows that many addresses can be linked to specific users.

B. ETH

There are two types of accounts on the Ethereum blockchain: Externally Owned Accounts
(EOAs) and Contract Accounts (CAs). EOAs are controlled by private keys held by indi-
viduals or organizations, analogous to user accounts in traditional systems. These accounts
can initiate transactions and are managed by human users. In contrast, CAs are governed
by smart contract codes embedded within the blockchain. Unlike EOAs, CAs do not have
private keys, and their behavior is entirely dictated by predefined rules set in the smart con-
tract code. These contracts can execute autonomously in response to specific transactions or
events, acting as decentralized agents that can enforce agreements, manage assets, or interact
with other contracts and accounts on the Ethereum network without human intervention.

It is important to note a fundamental difference between the Ethereum and Bitcoin
blockchains regarding how addresses function. In Ethereum, an address represents an actual
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account that holds a balance of Ether (ETH) and can directly interact with the network by
sending transactions or deploying smart contracts. In contrast, on the Bitcoin blockchain,
addresses do not operate as accounts. Instead, Bitcoin utilizes the Unspent Transaction
Output (UTXO) model, where addresses serve as references to unspent outputs from previous
transactions rather than holding a balance directly. Consequently, Bitcoin addresses are not
inherently linked to specific users or accounts. To associate Bitcoin addresses with individual
users, further processing—often through clustering and de-anonymization techniques— is
required to group related addresses.

Apart from rewarding miners with ETH, similar to Bitcoin’s BTC rewards, the Ethereum
blockchain introduces gas to measure the computational effort required for transactions and
smart contracts. Gas fees, paid in ETH, incentivize miners to process transactions and de-
pend on the complexity of the operation. This mechanism compensates miners and prevents
network abuse by limiting computational resources available for each transaction.

We obtained the full dataset of Ethereum blockchain transactions from block number
4,331,764 (October 2, 2017) to block number 6,345,198 (September 16, 2018) using the open-
source Cryo library (https://github.com/paradigmxyz/cryo). This library interfaces with the
Ethereum blockchain via JSON-RPC requests, eliminating the need for a local full archive
node, which would require extensive storage resources. The data is stored in Parquet format,
capturing key transaction details, including block number, transaction hash, sender account
(the origin of the ETH transfer), recipient account, transaction value (ETH transferred), and
timestamp (UTC of block mining). Additionally, the dataset includes information on gas
usage and the input code associated with each transaction, which is later utilized to classify
transaction types. To ensure data quality, we excluded failed transactions, e.g. those with
insufficient gas, transactions with a zero transfer value, and contract creation transactions,
identifiable by null values in the recipient column. The total number of transactions is around
240 million.

We focused on transactions between Externally Owned Accounts (EOA-to-EOA), which
required a method to filter out irrelevant data. We leveraged that a standard ETH transfer
consumes exactly 21,000 gas units (https://ethereum.org/en/developers /docs/gas/), and,
in the absence of smart contract execution, the input length (representing code execution)
is zero. However, some simple transactions include a small priority fee to incentivize miners
to process them faster, leading to slightly higher gas consumption than 21,000 units. We
differentiated transaction types for transactions involving smart contracts by analyzing the
input length. Fungible token transfers (ERC-20) have a fixed input length of 68 bytes,
transfer zero ETH, and require more than 21,000 gas units. The remaining data includes
internal transactions, non-fungible token (NFT) transfers, and other tokens such as ERC-
721 and ERC-1155. Figure4(a) shows a dendrogram illustrating this heuristic classification,
and Fig.4(b) presents the pie chart of the transaction type distribution. The total number
of transactions will be 123 million from block number 4,331,764 (October 2, 2017) to block
number 6,345,198 (September 16, 2018).
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Figure 4. (a) Heuristic classification of transaction on Ethereum blockchain (b) Pie chart illustrat-
ing the ratio of each type of transaction on Ethereum blockchain

C. XRP

The XRP ledger records two different types of data: direct XRP Transactions and settlement
transactions that transfer any type of credit, such as fiat currencies and crypto assets.

a. [Direct XRP Transaction] Individual users own their wallets on the XRP ledger.
Different wallets may belong to the same users. A type of credit, e.g., fiat currencies such
as USD, EUR, and JPY, and crypto assets such as XRP and BTC, is specified for a wallet.
We note that XRP is a crypto asset that should be distinguished from the XRP ledger. The
hash public key identifies a wallet. Direct XRP transactions, the most usual form of XRP
transaction, allow the exchange of XRP between two wallets. For instance, user u wants
to pay β XRP to user v, and u has at least β XRP in u’s XRP balance. Then, β XRP is
removed from u’s XRP balance and added to v’s XRP balance on the XRP ledger.

b. [Settlement Transactions] Settlement transactions transfer any credit (fiat cur-
rencies, crypto assets, and user-defined currencies) between two wallets with suitable credit
paths on the Ripple network (Moreno-Sanchez et al., 2016). On the Ripple network, remit-
tance is done as settlement transactions that transfer a type of credit, such as fiat currencies
and crypto assets, between two wallets with suitable credit paths. The settlement transac-
tion can only be performed by registered users on the Ripple network, but all transactions
are recorded in the XRP Ledger and made available to the public. Figure 5 explains a remit-
tance transaction of Y=100 on the Ripple network from user A to user B via a gateway (GW).
User A makes Y=100 deposit to GW, and GW issues an IOU to A for Y=100. This IOU is sent
from user A to user B. User B sends this IOU to GW and withdraws Y=100. At this time,
GW’s IOU disappears. Gateway is a well-known, reputed wallet on the Ripple Network that
can be trusted to create and maintain an IOU credit correctly. Here, IOU credit guarantees
a claim for the amount borrowed. Gateway plays an essential role in remittance transactions
on the Ripple Network. We note that IOU issuers are often used instead of a gateway. IOU
issuers can issue IOC credits, although they are less reputable wallets than gateways. In this
study, we do not distinguish between gateway and IOU issuer as having equivalent functions.
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A wants to send ¥100 to B.
(1) Deposit (3) Withdrawal

(2) 100JPY IOU

¥100

100JPY
IOU

¥100

100JPY
IOU

Figure 5. Settlement Transaction of Y=100 from user A to user B Gateway (GW) or IOU
issuer is a well-known reputed wallet on the Ripple Network that can trust to create and maintain
an IOU credit correctly.

D. Crypto assets to be analyzed and analysis period

This paper will analyze the period that includes the two high-price periods (period A–B and
period E–F), assuming that the crypto asset to be analyzed is XRP. The analysis period is
as shown in Fig. 6.

High-price period

High-price period

Normal-price period

Figure 6. The XRP daily closing price in USD is recorded from May 05, 2017 to
October 13, 2022. The blue horizontal line segments between different pair of blue vertical lines
represent different periods, which are explained in the main text.

IV. Analysis of XRP transaction network and price

We systematize the mathematical basis for detecting anomalous events in the dynamic graphs
of on-chain crypto asset transactions. Based on graph theory, topology, and high-dimensional
statistical analysis, we estimate multiple anomaly features from the dynamic graph analysis
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of crypto asset transactions and identify anomalous events related to the transactions. We
also estimate price-related anomaly features by studying price time series in the exchange
market of crypto assets.

A. Transaction feature vector

a. [Indicator 1: Graph Theory] Clustering coefficient We considered the
weekly network consisting of the regular nodes that carry out at least one transaction every
week from October 2, 2017, to March 4, 2018. We calculated the clustering coefficients
defined by Eq. (2) for each regular node and averaged them to obtain the clustering coefficient
for the regular network. Figure 7 (a) shows the clustering coefficient calculated for the high-
price period A-B indicated in Fig. 6, where the price is drawn in red curve. The clustering
coefficient increased during the rapid price increase period and then decreased with the price
collapse. Cluster coefficients were appropriate as a feature to capture abrupt price increases.

b. [Indicator 2: Graph Theory] Degree Entropy We calculated the entropy
defined by Eq. (3) for the regular network. Figure 7 (b) shows the entropy calculated for the
high-price period A-B indicated in Fig. 6, where the price is drawn in red curve. Entropy
increased during both the formation and collapse of the high-price period and decreased
during the normal-price period. Entropy was an appropriate feature to capture sharp rises
and falls in prices. However, it is difficult to distinguish whether prices are rising or falling
from entropy alone.

undirected，
binary

(a)
undirected，
weighted

(b)

Figure 7. (a) Clustering Coefficient (b) Entropy

c. [Indicator 3: Graph Theory] Z-score of triangular motifs We considered
the weekly network consisting of regular nodes that carry out more than one transaction
every week from October 2, 2017, to March 4, 2018. The networks were treated as the
directed binary network. We calculated the Z-score Zk of each motif k(k = 1, · · · , 16) for
regular networks using Eq. (5). Figure 8 shows the temporal change of Zk for statistically
significant motifs. While motifs 8, 9, 11, 14, 15 and 16 increased, motifs 12 and 13 decreased.
Among the increased motifs, motifs 9, 11, 14, and 16 significantly increased. The significantly
increased motifs are indicators that accurately capture the rapid price increase. However,
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except for Motif 16, none of the transactions circulate among the three nodes. This may
suggest the existence of circulation in larger loops with more than three nodes.

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

Figure 8. Temporal change of the Z-scores of statistically significant motifs: (a) Motif 8, (b) Motif
11, (c) Motif 9, (d) Motif 12, (e) Motif 13, (f) Motif 15, (g) Motif 14, and (h) Motif 16

d. [Indicator 4: Graph Theory] Number of transaction loops considering
the time of edge occurrence We examine the indicator introduced in Sec. II.A.d
by applying it to the XRP transaction networks constructed every week.

The networks exhibit the existence of multiple connections between nodes. In order to
identify loops in such networks, it is helpful to employ the concept of link network (Luo
et al., 2012; Sato et al., 2021). The link network, which is complementary to an original
network, is a representation in which its nodes correspond to the original network’s links, and
links between these nodes are created when the corresponding links in the original network
are directly connected with a common node. Then, we apply the definition of irreducible
loops to link networks. We note that a particular portion of loops constructed this way is
non-elementary in the original networks; a cycle is called elementary if no node is visited
more than once. In financial networks, understanding elementary cycles can help identify
patterns like circular transactions that contribute to anomalous behaviors such as market
manipulations. We have removed such loops from the calculations given here. Additionally,
we note that some traders engage in many transactions simultaneously, both incoming and
outgoing. These super traders significantly increase the number of loops. In order to reduce
the computational burden, nodes with both more than 500 in-degrees and out-degrees were
removed from the original networks when constructing the corresponding link networks.

Figure 9 illustrates the striking variability in the total number of loops during the ob-
servation period, with values ranging from tens to millions. Upon examination, it becomes
evident that a definitive correlation between the increase in the number of loops and the cor-
responding rise in the price of XRP, as measured by US dollars, is not feasible to ascertain.

24



Figure 10 disaggregates the results presented in Fig. 9, displaying the temporal variation in
the share of binary and triangle loops, as well as the share of hexagonal and larger loops. The
comparison indicates that the network transitions from a shorter-loop dominant structure
to a larger-loop dominant structure.

In light of the structural evolution of the XRP networks over time, we calculated the
indicator ξcl(s) defined by Eq. (6) for an intermediate size of loops, specifically rectangular
loops (s = 4). The results are shown in Fig. 11, where we generated 1000 samples by
randomly shuffling the timestamps of links to determine a threshold η0.05(4) corresponding
to the 5% significance level week by week. The indicator frequently exceeds the threshold
η0.05(4) during the two high-price periods (shaded in light red); in fact, such anomalous weeks
occurred 31 times out of 45 weeks in total. On the other hand, ξcl(s) typically exhibits lower
values, often even close to the expected values for the corresponding random networks, during
the normal-price period (shaded in light blue). The probability that ξcl(s) exceeds η0.05(4) is
empirically determined as 0.363. If we assume that the abnormal weeks occur randomly, the
binomial distribution predicts that we have 16.3 abnormal weeks with the standard deviation
σ of 3.23. Remarkably, the actual number of abnormal weeks in the two high-price periods
is 4.55σ above the expected value! In contrast, during the normal-price period of 43 weeks,
the abnormal weeks is observed to occur 11 times, which falls within the 95% confidence
interval [9.29, 21.9] expected for the corresponding random networks.

We thus see that the indicator ξcl(s) provides a valuable device for detecting anomalous
transactions based on XRP.
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Figure 9. Temporal change in the total number of loops (black line) in relation to the price of
XRP in US dollars (red line)
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Figure 10. Temporal variation of the share of binary and triangle loops (black line) compared with
that of hexagonal and larger loops (red line)
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Figure 11. Excess of the indicator ξcl(s) for causal rectangular loops over the 5% significance level
threshold together with the results, 1−η0.05(4), for the expected value of ξcl(4) in the corresponding
random networks (distinguished by green line).

e. [Indicator 5: Topology] Ratio of trading loop components by Hodge
decomposition We calculated the potential flow component fpot using Eq. (15) and
the loop flow component f loop using Eq. (16). Figure 12 shows the temporal change of the
potential flow ratio fpot in dark blue and the loop flow ratio f loop in light blue. Here, the
price is drawn in the dotted curve. Loop flows were larger than potential flows throughout
the rapid price increase and collapse periods. The potential flow ratio increased during the
rapid price increase period and decreased during the price collapse period. The loop flow
ratio showed the opposite trend to potential flows, decreasing during the rapid price increase
period and increasing during the price collapse period. Motif analysis shows that several
types of triangular motifs increase during the high-price period, and we can expect that loop-
forming transactions contribute to price appreciation. However, the Hodge decomposition
results show a decrease in the proportion of loop flows. This seemingly contradictory result
is consistent with interpreted as a relative increase in potential flows because of the increase
in transactions due to the participation of many new users during the rapid price increase
period.
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Figure 12. Hodge Decomposition (a) the potential flow (dark blue), the loop flow (light blue),
and the price (dotted curve) (b) the potential flow ratio (dark blue), the loop flow ratio (light blue),
and the price (dotted curve)

f. [Indicator 6: Topology] Classification by graph Laplacian eigenvalue
distance We analyzed the distance from the average eigenvalue of clusters in the high-
price period. We applied the price data taken from https://coinmarketcap.com/currencies/

xrp/historical-data/, and used the closing price. We focused on two high-price periods:
from October 2, 2017, to March 4, 2018, and from February 1, 2021, to August 1, 2021. We
refer to these periods as the high-price period in 2017 and the high-price period in 2021,
respectively. Regular nodes are defined as those that transact at least once a week during
each high-price period. The number of regular nodes for the high-price period in 2017 and
the high-price period in 2021 is 71 and 735, respectively. We construct networks where the
nodes represent regular nodes, and the edges represent transaction relationships between
them. The distance between two networks Gi and Gj is given in Eq. (18), and we define the
distance matrix D whose component is

[D]ij := d(Gi, Gj), (48)

where i, j represents the index of the periods. In this paper, we employ the Laplacian
matrix (11). Figure 13 shows heat maps of the distance matrix for two the high-price
periods. Both graphs have a three-block structure, with the middle block corresponding to
periods of rapid price changes.

Next, we classify the states using a hierarchical clustering algorithm. There are several
variations in defining cluster distances; here, we employ the Ward method, which minimizes
the increase in within-cluster variance at each step of clustering.

Figure 14 shows the dendrogram of clustering results. The cophenetic correlation coef-
ficients are 0.823 and 0.837 for the high-price period in 2017 and the high-price period in
2021, respectively, indicating that the clustering results are reasonably accurate. To obtain
the time evolution of states, we set a threshold in the dendrogram so that there are three
states. The time evolution of these three states is shown in Fig. 15. For reference, the price
time series is indicated by a red line. Both graphs show a change in status during periods
of rapid price change. Note that the labels of the states are for convenience only, and their
order has no particular significance. These results suggest that distance-based indicators
may be useful for capturing such high-price periods.
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Figure 13. Heat maps of the distance matrix (48) for regular nodes during the high-price periods
of 2017 (left) and 2021 (right).

Figure 14. Dendrogram representing the classification of the network of regular nodes using hier-
archical clustering during the high-price periods of 2017 (left) and 2021 (right).

Figure 15. Time evolution of the state during the high-price periods of 2017 (left) and 2021 (right).
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g. [Indicator 7: Topology] Topological data analysis, number of trans-
action loops, Betti number The analysis focuses on weekly transaction data for
XRP spanning from October 2, 2017, to December 26, 2021, covering 221 weeks. Each
week’s dataset includes the source node ID (sender’s XRP address), the destination node
ID (recipient’s XRP address), and the total amount of XRP transactions from the source
to the destination node, which serves as the weight of the transaction. From this data, a
directed weighted graph is constructed for each week, where the nodes represent XRP ad-
dresses and the directed edges represent transactions from one address to another. This
graph construction process is repeated for all 221 weeks, generating a time series of directed
weighted graphs. For each graph in this time series, we compute the trace of powers of the
weighted adjacency matrix A and the Betti numbers. These calculations provide insights
into the network’s evolving transactional relationships and topological features over time.
For each weekly weighted adjacency matrix, the column sum quantifies the total amount
of XRP a node receives, while the row sum indicates the total amount sent. We construct
subgraphs by selecting nodes with column or row sums exceeding certain thresholds such as
104, 105, 106, and 107. Subsequently, we use z-score to detect outliers for these subgraphs.
As a result of the calculations, since the results obtained using a threshold of 107 were nearly
identical to those obtained with thresholds ranging from 104 to 106, we chose 107 as it yields
the smallest graph size.

Figure 16 shows the traces of powers of each weighted adjacency matrix (see Indicator
7 (i)). In all powers more than or equal to 3, red points, indicating a z-score exceeding 3,
can be observed during the second high-price period, spanning from week 175 to week 200.
Additionally, in the trace of A2 and A3, which are equivalent to examining the total sum
of transactions along the mutual edges and the edges of triangles, respectively, red points
are observed preceding the high-price period. Of course, the validity of such an observation
must be verified with a broader variety of data.

Figure 17 shows the time series of the 0th, 1st, and 2nd Betti numbers for weighted
directed graphs (see Indicator 7 (ii)) and the price of XRP, respectively. As the correlation
between the 1st Betti number and the price of XRP is observed, we compare the 10-week
moving average of the 1st Betti number and the price of XRP in Fig. 18. The red-colored
10-week moving average curve reaches its peak shortly before the second high-price period.

h. [Indicator 8: Topology] Average Ricci curvature We calculated the Ricci
curvature using Eq. (29) for undirected binary simple graphs to show the meaning of the
graph’s curvature. Figure 19 shows the Ricci curvature of undirected binary simple graphs:
(a) Tree, (b) Grid, and (c) Clique. For a tree shown in Fig. 19 (a), the curvature along
nodes A and B shows negative value κ(A,B) = −0.5, while the curvatures along edges in
an orthogonal direction to edge AB are positive. This means that the tree is embedded in
the saddle point. The average Ricci curvature of the tree is 0.091. For a grid shown in Fig.
19 (b), the curvature along nodes A and B shows κ(A,B) = 0. All curvatures along edges
in other edges show small values. This means that the grid is embedded in a plane. The
average Ricci curvature of the grid is 0.108. For a clique shown in Fig. 19 (c), the curvature
along nodes A and B shows κ(A,B) = 0.625. All curvatures along edges in other edges
show the same positive values. This means the creek is embedded in a sphere with constant
positive curvature. The average Ricci curvature of the clique is 0.625.

Next, we computed the Ricci curvature for the actual XRP transaction network consisting
of regular nodes during the normal-price period (Oct. 2nd–8th, 2017) and the peak of the
high-price period (Jan. 1st–7th, 2018). Although this actual XRP transaction network is a
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Figure 16. Traces of powers of the weighted adjacency matrix. Red points indicate z-score is more
than 3.

黒は終値．色付きは ⁄&!(() *(()(( = 1,2,3)．ただし，&! ( は (週目の Betti number．
*(()は (週目の node number （ひとつ前のグラフのマゼンダの値）．

!!: 1st Betti number (#=1)
!": 2nd Betti number (#=2)
!#: 3rd Betti number (#=3)

・さらに column sum ないし row sum が10&以上で制限した場合のBetti number を node number で normalization し，
closing price と重ねたグラフが以下．

Figure 17. Price of XRP (black) and Betti numbers (from the left, the 0th(green), 1st(red), and
2nd(blue) Betti number.

・moving average（移動平均）：一定の range ごとの平均値を，区間をずらしながら求めた値．時系列データを平滑にした
い場合よく用いる．
・以下は1st Betti number の，幅 3，5，10の移動平均．例えば，幅 3 の移動平均は，「1，2，3週の1st Betti number の平
均」「4，5，6週の1st Betti number の平均」…「219，220，221週の1st Betti number の平均」をプロットする．

Figure 18. Price of XRP (black) and 10-week moving average of the 1st Betti number (red).

30



directed weighted network, link weights were ignored in this curvature calculation. Figure
20 shows the Ricci curvature distribution in the normal-price period (Oct. 2nd–8th, 2017)
and the peak of the high-price period (Jan. 1st–7th, 2018). Panels (a) and (b) show the
normal-price period, while panels (c) and (d) show the peak of the high-price period.

Both the normal-price period and the peak of the high-price period, the curvature distri-
butions have positive mean curvature. A small fraction of transaction links exhibit negative
curvature. The network consisting of regular nodes has a higher density of transaction links,
which can exhibited as positive curvature. A comparison of the distributions (a) and (b)
with (c) and (d) shows that the curvature distribution shifts toward a larger mean curvature
at the highest price than at the normal-price period. In other words, it corresponds to a
higher density of trading links at the highest price than at the normal -price period.
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Figure 19. Ricci curvature of undirected binary simple graphs (a) Tree, (b) Grid, and (c)
Clique
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Figure 20. Ricci Curvature Distribution in the normal-price period (Oct. 2nd–8th,
2017) and the peak of the high-price period (Jan. 1st–7th, 2018) (a) Cumulative dis-
tribution in the normal time, (b) Complementary cumulative distribution in the normal time, (c)
Cumulative distribution in the highest price, and (d) Complementary cumulative distribution in the
highest price

i. [Indicator 9: High-dimensional statistical analysis] Maximum singular
value of correlation tensor The network formed by XRP transactions between wal-
lets changes every week over time. Our analysis focuses on the period from October 2, 2017,
to March 2018, which includes the high-price period in XRP prices. This time frame includes
22 weekly networks. Following Eq. (33) we compute the correlation tensor between the com-
ponents of regular nodes for each week. With 22 weekly networks, we obtain 18 weekly
correlation tensors by Eq. (33). Each weekly correlation tensor consists of N ×N ×D ×D
elements. To extract key insights from these tensors, we diagonalize them using a double
singular value decomposition (SVD).The double SVD is an extension of the standard SVD

applied to matrices. By applying the double SVD to the weekly correlation tensor Mα,β
ij (t),

we obtain the singular values ργk(t).
The relevance of the empirical correlation tensor is assessed by comparing it with the

reshuffled correlation tensor. To calculate the reshuffled correlation tensor, we randomize
the components of the embedded regular node vector vαi within the time window (2∆T +1).
We then compute the reshuffled correlation tensor, following Eq. (33), using these reshuffled
embedded regular node vectors. We compare the singular values ργk of the empirical correla-
tion tensor with those of the reshuffled correlation tensor ργk (reshuffled). The comparison is
presented in Fig. 21 for the week of November 13 to November 19, 2017. The results indicate
that the largest singular value of the empirical correlation tensor exceeds the largest singular
value of the randomized correlation tensor.

To explore the connection between the largest singular value ρ11 and the XRP/USD price,
we compare the variation in the daily XRP/USD price with the largest singular value ρ11
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in Fig. 22. We calculate their correlation to quantify the relationship between the weekly
XRP/USD price and the largest singular values ρ11. The weekly XRP/USD price is defined
as the average daily closing price of XRP/USD for each week, denoted as XRP/USD. We
then compute the Pearson correlation between ρ11(t) and the weekly XRP/USD price for the
following week, XRP/USD(t+1). The result is a correlation coefficient of r = −0.908 with a
p-value of 1.912× 10−7, indicating a strong and statistically significant negative correlation.

Figure 21. The sorted singular values of the empirical, reshuffled, and randomized
correlation tensors for the week of November 13 to November 19, 2017. These values
reflect the average computed from 20 distinct, uncorrelated network embeddings.

Figure 22. The comparison between the daily XRP/USD price (black curve) and the
largest singular value ρ11 (blue curve). The dotted grey vertical lines indicate the boundaries
of the weekly windows.

j. [Indicator 10: High-dimensional statistical analysis] Feature extraction
of transaction frequency statistics We have examined the nodes that were active
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during the normal-price period, 7/2/201 (Mon) - 12/30/2017 (Sat), which interval is 182
days, or 26 weeks, using the F-Frequency explained in a previous section. Limiting the data
to direct XRP to XRP transactions, we find 5,001,431 transactions altogether. In total,
512,879 nodes were active during this period, either as senders or receivers.

For example, a node “rwW.......Q3C” is among them, The daily activity is shown in Fig.
23. From this, we find

Total(fin) = 7.644× 106, Max(fin) = 5.000× 105,

Total(fout) = 1.444× 107, Max(fout) = 5.000× 106,
(49)

which yield;
A = {1, 529, 2, 887} (50)

The F-Frequency of the top 400 nodes in this list covers nodes active for more than 120
days are plotted in Fig. 24. Further analyses using F-frequency was detailed in Aoyama et
al. (2022). During the high-price period from the winter of 2017, in the case of Bitcoin, we
discovered the structure of three groups of players, namely the users balancing surplus and
deficit of cryptoassets (Bal-branch), those accumulating the cryptoassets (In-branch), and
those reducing it (Out-branch) in the diagram of flow-weighted frequency. We found that
the regime switching among Bal-, In-, Out-branches was brought about by the regular users
in the case of Bitcoin, while such users are simply absent in the case of XRP.

Figure 23. Daily characteristic of the sample node
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Figure 24. F-frequency A = (Ain, Aout) of the top 400 nodes.

B. Price feature vector

a. [Indicator 11: Time Series Analysis] The maximum price fluctuation in
the week, day, hour, minute window As explained in Subsection B, we calculate
the robust z-score, i.e., Zi, i ∈ {OC,LH}, in Bitfinex for different time intervals: 1 week, 1
day, 1 hour, and 1 minute.

Figures 25 present the results of calculating the robust z-score ZOC. The dotted lines in
these figures represent reference lines at ZOC = ±3, with points outside these lines considered
anomalous values. Figure 25(a) shows the analysis results with a one-week time interval,
revealing anomalous values during the high-price period but none during the normal-price
period. However, anomalous values are observed between the normal-price and the second
high-price periods. Figures 25(b) presents results with a one-day interval, following the same
general trend as Figures 25(a), but with an increased number of anomalous values due to
the shorter interval. Figures 25(c) and (d) depict analyses with time intervals of one hour
and one minute, respectively, revealing many points that qualify as anomalous values.

Figures 26 illustrate the results of calculating the robust z-score ZLH. The broken lines
in these figures are reference lines at ZLH = ±3, and the figures are arranged in the same
order as in Figures 25. A similar phenomenon is observed across Figures 26(a)–(d) as in
Figures 25(a)–(d).

This paper proposes a method for detecting anomalies by analyzing money transfer
networks. Since the formation of such networks requires a certain time frame—typically a
day or a week—rather than shorter intervals like a minute or an hour, future analyses should
focus on the topology of money transfer networks when anomalous values detected over a
week or a day are observed. We plan to discuss this analysis in more detail in a forthcoming
paper.
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Figure 25. The robust z-score ZOC in time intervals: 1 week, 1 day, 1 hour, and 1 minute. Red
dashed lines show Z = ±3. Therefore, we regard the points up or down the range surrounded by
this red dashed line as anomalous events.
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Figure 26. The robust z-score ZLH in time intervals: 1 week, 1 day, 1 hour, and 1 minute. Red
dashed lines show Z = ±3. Therefore, we regard the points up or down the range surrounded by
this red dashed line as anomalous events.
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V. Implication

Today, various criminal acts and other anomalous events are occurring in trading crypto
assets, representing economic activities in cyberspace. They are causing significant damage
to the credibility of crypto assets. Therefore, mathematical methods are of great social
significance in automatically detecting criminal activities in crypto asset transactions. In
this study, we examined the detection of anomalous events based on graph theory, topology,
and high-dimensional statistics for a network that indicates the crypto asset transaction
changes with time between nodes, i.e. a dynamic graph.

The validation results imply that it would be beneficial to develop an anomaly detection
AI system that estimates individual indicators of anomalous events using multiple validated
mathematical methods and then estimates a comprehensive indicator of anomalous events by
inputting these indicators. In this study, we define anomaly as a feature of transactions that
involve large fluctuations in price. Note that the transaction data is a record of crypto asset
transfers on the blockchain, and the price is determined when the crypto asset is exchanged
for legal tender on the exchange market. In other words, the market where the price of
crypto asset is determined and the blockchain that transfers crypto asset are essentially
different. However, this study has demonstrated that multiple anomaly features obtained
from mathematical analysis can detect large fluctuations in prices in advance. Figure 27
summarizes the concept of anomaly detection AI implied by this validation study. This
study corresponds to “Step 1 Elemental Technologies for Anomaly Detection”.

Among the components of a feature vector, one feature may show an anomaly, but
another feature may not. An AI is needed to determine whether a feature vector is anomalous
or not from a comprehensive viewpoint based on a feature vector consisting of multiple
anomaly feature values. As such, an AI, for example, the Boltzmann machine, is promising
(Moro and Prati, 2023; Stein et al., 2024). The Boltzmann machine estimates (outputs)
a comprehensive indicator of anomalous events by inputting a feature vector consisting of
multiple anomaly features binarized to {0,1}. The parameters are learned with inputting
a feature vector of normal periods using a probabilistic sampling method. By inputing a
feature vector consisting of multiple anomaly features, a Boltzmann machine reconstructs
the feature vector using the parameters leaned in the normal period. If the reconstructed
feature vector does not match the input feature vector, the system outputs a comprehensive
indicator to warn there are signs of anomaly.

If the comprehensive indicator warns of an anomaly, the graph Laplacian eigenvectors of
the transaction network and the Ricci curvature of each edge based on the optimal transport
problem are used to identify the node (trader) and edge (transaction) responsible for the
anomalous event. Random graphs with curvatures equal to the average curvature of the
actual dynamic graphs are generated, and edges with significantly larger curvatures can be
identified by comparing them. Edges with large curvature are expected to be more likely
to be anomalous transactions. The right part of Fig. 27 “Step 2 Anomaly Detection AI
System” will be left as a future study.
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VI. Summary

A. Verification of elemental technologies

We summarize the results of each analysis below. The analysis compared the transaction fea-
tures, Indicators 1, 2, 3, 5, 7, and 9 with the price features; Indicator 11 and the comparison
exhibited that these indicators preceded prices. Therefore, the effectiveness of Indicators
1, 2, 3, 5, 7, and 9 is confirmed to verify research question 1. The transaction features,
Indicators 3, 4, 5, and 7 exhibited that the loop increased; therefore, the velocity of cir-
culation increased during the high-price periods. Thus, the effectiveness of Indicators 3, 4,
5, and 7 is confirmed to verify research question 2. The transaction features, Indicators
6, 7 (Betti number), 8, and 9 exhibited a herding phenomenon in which most nodes that
make up the network change similarly when prices change significantly. Therefore, the effec-
tiveness of Indicators 6, 7 (Betti number), 8, and 9 is confirmed to verify research question 3.

[Transaction Feature Vector]

• [Indicator 1: Graph Theory] Clustering coefficient The clustering coefficient
increased during the rapid price increase period and then decreased with the price
collapse. Cluster coefficients were appropriate as a feature to capture abrupt price
increases.

• [Indicator 2: Graph Theory] Degree Entropy Entropy increased during both
the formation and collapse of the high-price period and decreased during the the
normal-price period. Entropy was an appropriate feature to capture sharp rises and
falls in prices. However, it is difficult to distinguish whether prices are rising or falling
from entropy alone.

• [Indicator 3: Graph Theory] Z-score of triangular motif Temporal change of
the Z-scores increased for motifs 8, 9, 11, 14, 15 and 16, and decreased for motifs 12
and 13. Among the increased motifs, motifs 9, 11, 14, and 16 significantly increased.
The significantly increased motifs are indicators that accurately capture the rapid
price increase. However, except for Motif 16, none of the transactions circulate among
the three nodes. This may suggest the existence of circulation in larger loops with
more than three nodes.
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• [Indicator 4: Graph Theory] Number of transaction loops considering the
time of edge occurrence During the two high-price periods, the indicator ξcl(s)
defined by Eq. (6) for rectangular loops (s = 4) frequently exceeds the threshold
η0.05(4). On the other hand, during the normal-price period, ξcl(s) typically exhibits
lower values. The statistical test using the corresponding random networks shows
the statistical significance of the indicator ξcl(s), which suggests that the indicator
captures such high-price periods.

• [Indicator 5: Topology] Ratio of trading loop components by Hodge decom-
position Loop flows f loop were larger than potential flows fpot throughout the rapid
price increase and collapse periods. The potential flow ratio increased during the rapid
price increase period and decreased during the price collapse period. The loop flow
ratio showed the opposite trend to potential flows, decreasing during the rapid price
increase period and increasing during the price collapse period. Motif analysis shows
that several types of triangular motifs increase during the high-price period, and we
can expect that loop-forming transactions contribute to price appreciation. However,
the Hodge decomposition results show a decrease in the proportion of loop flows. This
seemingly contradictory result is consistent with interpreted as a relative increase in
potential flows because of the increase in transactions due to the participation of many
new users during the rapid price increase period.

• [Indicator 6: Topology] Classification by graph Laplacian eigenvalue dis-
tance The distance calculated from the average eigenvalue of clusters in the high-
price period for a weekly network consisting of Regular nodes classifies the three states
using a hierarchical clustering analysis. The time evolution of these three states shows
a correlation with the rapid price change during the high-price periods. The results
suggest that distance-based indicators capture such high-price periods.

• [Indicator 7: Topology] Topological data analysis, number of transaction
loops, Betti number The z-score exceeding 3 for the traces of powers of weighted
adjacency matrix A shows a significant increase during the second high-price period.
However, the trace of A2 and A3, which are equivalent to examining the total sum of
transactions along the mutual edges and the edges of triangles, respectively, increased
preceding the second high-price period. The time series of the 1st Betti numbers for
weighted directed graphs shows a significant correlation with the XRP price during
the first and second high-price periods.

• [Indicator 8: Topology] Average Ricci curvature The Ricci curvatures calcu-
lated for the actual XRP transaction network consisting of regular nodes during the
normal-price period (Oct. 2nd–8th, 2017) and the peak of the high-price period (Jan.
1st–7th, 2018) show a distribution with positive mean curvature. A small fraction of
transaction links exhibit negative curvature. The network consisting of regular nodes
has a higher density of transaction links, which can be exhibited as positive curvature.
The curvature distribution shifts toward a larger mean curvature at the highest price
than at the normal-price period. The Ricci curvature detected a higher density of
trading links at the highest price than at the normal-price period.

• [Indicator 9: High-dimensional statistical analysis] Maximum singular value
of correlation tensor The largest singular value of the empirical correlation tensor
exceeds the largest singular value of the randomized correlation tensor. The compar-
ison between the daily XRP price and the largest singular value ρ11 shows a strong
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negative correlation from October 2, 2017, to March 2018, which includes the high-
price period in XRP prices. A correlation coefficient between ρ11(t) and the weekly
XRP price was r = −0.908 with a p-value of 1.912 × 10−7, indicating a statistically
significant negative correlation. The correlation tensor’s largest singular value is an
indicator that accurately captures the rapid price increase.

• [Indicator 10: High-dimensional statistical analysis] Feature extraction of
transaction frequency statistics In the case of Bitcoin, we discovered the structure
of three groups of players, namely the users balancing surplus and deficit of cryptoas-
sets (Bal-branch), those accumulating the cryptoassets (In-branch), and those reducing
it (Out-branch) in the diagram of flow-weighted frequency. In the case of XRP, the F-
frequency A = (Ain, Aout) of the top 400 nodes, which covers nodes active more than
120 day in total, does not show the regime switching among Bal-, In-, Out-branches,
as shown in Fig. 24. The additional analysis for the second high-price period might
be desired.

[Price Feature Vector]

• [Indicator 11: Time Series Analysis] The maximum value of the high-low
ratio calculated in the week, day, hour, minute window Detecting anomalous
behavior using the Z-score is very sensitive to the time interval selection: 1 week,
1 day, 1 hour, and 1 minute. Therefore, to detect reliable anomalous behavior, we
need to analyze not only the z-score for the logarithmic returns of prices but also in
conjunction with trading volume.

B. Future Study

We will also perform anomaly detection analysis for BTC and ETH, as well as XRP. We will
verify that the methods of graph theory, topological geometry, and high-dimensional statis-
tical analysis presented in this study are broadly effective to clarify the transaction feature
for all major cryptocurrencies. Furthermore, as shown in the right part; “Step 2 Anomaly
Detection AI System” in Fig. 27, we will research concept for estimating comprehensive
indices using Boltzmann machines. By conducting these studies, we will establish methods
for detecting anomalies in crypto asset transactions, thereby improving the social reliability
of cryptocurrencies and contributing to the realization of a new cyber-physical economy.

In this study, we define large price fluctuations as anomalous events, and therefore focus
on identifying the senders and transactions that caused these large price fluctuations. On
the other hand, financial institutions and exchange market operators identify senders and
transactions that are highly likely to be linked to criminal activity in order to report vari-
ous anomalous transactions to regulatory authorities such as the Financial Services Agency.
We believe that systematically investigating the correspondence between senders and trans-
actions identified by financial institutions and exchange market operators and senders and
transactions that caused large price fluctuations identified by our anomaly detection AI sys-
tem has great significance as a crisis management issue. We will continue to conduct research
in the future to enable the automation of the anomaly detection process at financial institu-
tions and exchange market operators, and to standardize and improve the quality of reports,
as well as to enable the effective use of reports at the Financial Services Agency, through
the realization of an anomaly detection AI system with such functions.
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Appendix A. Reference examples of suspicious transactions

Financial Services Agency reported the reference examples of suspicious transactions, cate-
gorizing them as illustrative cases (Financial-Services-Agency, 2024). The content is sum-
marized below into six categorized items:

• Examples focusing on the patterns of cash usage: Transactions involving large amounts
of cash for buying and selling crypto assets, transactions conducted frequently within a
short period, and transactions where crypto assets are purchased using a large quantity
of small-denomination currency.

• Examples focusing on the potential concealment of the actual account holder: Transac-
tions involving money or crypto assets using accounts suspected to be under fictitious
or borrowed names, Transactions using accounts of corporations suspected of hav-
ing no natural substance, Transactions involving crypto assets using accounts where
customers request transaction-related documents to be sent to an address different
from the registered one or wish to avoid notifications, Transactions using accounts
held by customers found to possess multiple accounts, Transactions involving money
or crypto assets by customers who have no apparent reason to conduct face-to-face
transactions with the service provider or use the crypto asset automatic exchange ma-
chine, Transactions where customers use anonymization techniques when depositing
crypto assets into accounts, Transactions accessed from the same IP address despite
being conducted by customers with different names and addresses, Transactions where
there is no reasonable explanation for the login IP address being located outside the
country or the browser language being foreign, even though the customer is a domes-
tic resident, Transactions that make IP address tracking difficult, Account opening
transactions where the address obtained during transaction verification differs from
the IP address of the computer used, Cases where the same mobile phone number is
registered as the contact information for multiple accounts or customers.

• Examples focusing on the usage patterns of accounts: Transactions involving accounts
where, after opening the account, a large or frequent deposit and withdrawal of money
or crypto assets occurs in a short period, followed by account closure or suspension of
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transactions, Transactions involving accounts with frequent deposits and withdrawals
of large amounts of crypto assets, Transactions involving accounts that frequently send
crypto assets to a large number of addresses, Transactions involving accounts that fre-
quently receive crypto assets from a large number of addresses, Transactions involving
accounts that receive funds or crypto assets from names believed to be anonymous or
fictitious, Transactions involving accounts that suddenly have large deposits or with-
drawals of money or crypto assets, Transactions that appear unnatural in terms of
manner or frequency when compared to the purpose of transactions, occupation, or
business details confirmed at the time of account opening.

• Examples focusing on the form of transactions: Transactions where a large amount of
crypto assets is suddenly bought, sold, or exchanged for other crypto assets, Transac-
tions involving the sale of a large quantity of crypto assets with the condition of cash
delivery, Transactions involving a suspiciously large amount of crypto assets that raise
doubts about whether the individual owns them, Transactions involving the frequent
sale of crypto assets for cash delivery within a short period, Transactions involving
customers who attempt to specify a third party’s bank account for the deposit of funds
or the transfer of proceeds from a sale.

• Examples focusing on transactions with foreign entities: Transactions involving cus-
tomers based in countries or regions that are non-cooperative in anti-money laundering
and counter-terrorist financing measures or are known as sources of illegal drugs.

• Other examples: When a public servant or company employee conducts high-value
transactions that do not match their income, When multiple individuals visit at the
same time and split the buying or selling of crypto assets so that each amount is
just below the threshold requiring transaction verification (as per legal or internal
rules), When the same customer visits the same or nearby branches or crypto asset
automatic exchange machines several times on the same day or on consecutive days,
splitting transactions to keep each below the threshold requiring verification, Transac-
tions where the customer remains uncooperative and transaction verification cannot
be completed even though the transaction was conducted before verification was com-
pleted, Transactions involving customers who refuse to provide explanations or submit
documents when asked to verify the ultimate beneficial owner or the actual controller
due to suspicion that they are not acting on their own behalf, Transactions where
the ultimate beneficial owner or actual controller of a corporate customer is possibly
involved in proceeds of crime, Transactions conducted by internal employees or related
parties where the beneficiary of the transaction is unknown, Transactions where there
is suspicion that an internal employee has committed crimes under Article 10 (Con-
cealment of Criminal Proceeds, etc.) or Article 11 (Receipt of Criminal Proceeds, etc.)
of the Act on Punishment of Organized Crimes and Control of Crime Proceeds, Trans-
actions involving deposits made with counterfeit or stolen currency or stolen crypto
assets where there is suspicion that the currency was forged or stolen, or the crypto
assets were stolen, Transactions involving customers who unnaturally emphasize the
secrecy of the transaction and attempt to prevent reporting, Transactions involving
members or associates of organized crime groups, Transactions that appear unnatural
in manner or involve customers exhibiting unnatural behavior or attitudes based on the
knowledge and experience of staff, Transactions with non-profit organizations where
there is no reasonable explanation for the source or ultimate use of the funds, Transac-
tions involving countries, regions, or third parties that have no reasonable relationship
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with the activities of the non-profit organization verified at the time of account open-
ing, Transactions with foreign Politically Exposed Persons (PEPs) where there is no
reasonable explanation for the purpose of the transaction, Transactions with foreign
PEPs where there is no reasonable explanation for the source of wealth or funds used
in the transaction, Transactions with foreign PEPs from countries or regions known
to have high levels of corruption, Transactions with foreign PEPs based in countries
or regions that have not signed or ratified international anti-corruption treaties such
as the UN Convention against Corruption or the OECD Anti-Bribery Convention,
or are non-cooperative in activities based on these treaties, Transactions where the
customer’s address used for depositing or withdrawing crypto assets anonymizes part
or all of the crypto asset transactions on the blockchain, Transactions with customers
who have addresses that receive deposits from or make withdrawals to a large num-
ber of addresses on the blockchain, Transactions flagged or inquired about by public
agencies or other external entities as potentially involving proceeds of crime.

Appendix B. Collecting Method of Price Time Series

Collecting price information from multiple markets is crucial when discussing anomalous
market behaviors. The CryptoCurrency eXchange Trading (CCXT) module in Python is
pivotal in this process. As depicted in Figure B.1, the upper panel showcases a sample code
used to gather 100 daily data sets of OHLCV for XRP/USD in Bitfinex from January 1,
2020. The lower panel displays the truncated execution results, highlighting the efficiency
and reliability of the CCXT module.

If we apply the code shown in the upper panel of Figure B.1 for different market codes and
terms, we obtain the bar chart shown in Figure B.2. In this figure, the abscissa represents
time, and the ordinate represents the list of market codes. The two red shading ranges
correspond to the high-price periods; on the other hand, the blue shaded range corresponds
to the stable period.

This paper meticulously focuses on two high-price periods and one stable period, em-
ploying data from Bitfinex, Bitstamp, Currencycom, and Exmo. The solid lines in Figure
B.3 represent the daily closed values for these four markets. Figure B.3 shows that the data
is not stationary. It is evident from this figure that these values align closely, with only
a few deviations on certain days, reinforcing the thoroughness and reliability of our analy-
sis. Hence, hereafter, we only use OHLCV in Bitfinex to detect anomalous price behavior.
Bitfinex is the most popular in those four markets.
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Figure B.1. Python code
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