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Abstract 
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general equilibrium model is developed which incorporates robot automation in a large open 
economy, and a model-implied optimal instrumental variable (MOIV) is constructed from the 
JRS to address the identification challenges posed by the correlation between automation shocks 
and JRS. The analysis reveals that the elasticity of substitution (EoS) between robots and labor is 
heterogeneous across occupations, reaching up to 3 in production and material-moving jobs, 
which is significantly higher than the EoS between other capital goods and labor. The findings 
suggest that robots significantly contributed to wage polarization in the U.S. from 1990 to 2007. 
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1 Introduction
Industrial robots have been changing factory production rapidly. In the last
three decades, the size of the global robot market has grown by 12% per
year (IFR, 2021). Robotization has heterogeneous effects on workers across
occupations, raising concern about its distributional effects. Policymakers
have proposed various countermeasures to the potential harms of robotiza-
tion, such as introducing taxation on robot adoption. Motivated by these
observations, a growing literature has estimated the effects of robot penetra-
tion on employment (e.g., Acemoglu and Restrepo, 2020) and the potential
impact of robot taxes (e.g., Humlum, 2021). However, the effects of roboti-
zation also depend on under-explored factors, such as the substitutability of
robots for workers in each occupation.

In this paper, I study the effect of the increased availability of robots
on the wage inequality between occupations and welfare in the US. Using
a new dataset on the cost of adopting Japanese robots, I estimate the sub-
stitutability between robots and workers within an occupation, unlike the
previous research that reveals the substitutability between occupations. I
construct a model-implied optimal instrumental variable and estimate the
elasticity of substitution (EoS) between robots and workers that can be het-
erogeneous across occupations. Finally, I perform counterfactual exercises to
study the distributional effect of robotization in the US since 1990.

A unique feature of my dataset is the robot price measure for each 4-digit
occupation in which robots replace labor. To obtain the dataset, I use the
information about the shipment of Japanese robots, which comprise about
one-third of the world’s robot supply, from the Japan Robot Association
(JARA). JARA’s key feature is that the data are disaggregated at the level of
robot application or the specified task that robots perform. I combine JARA
data with O*NET Code Connector’s match score to get an occupation-level
robot price measure. Finally, I extract a robot cost shock that controls for
the demand factors using leave-one-out regression, which I call the Japan
robot shock (JRS).

I employ an equilibrium model of robotics automation and quality changes.
Occupations are bundles of tasks where tasks can be performed by either la-
bor or robots (factors). I impose Fréchet distribution for the task-specific
productivity of each factor, allowing aggregation of tasks to the occupa-
tional production function that features the constant elasticity of substitution
(CES) between robots and labor within each occupation. This formulation
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allows me to interpret the robot quality change in terms of the change in
the robot expenditure share parameter, which I call the automation shock.
Furthermore, I incorporate the Armington-style trade of robots to capture
Japan’s sizable robot export in my dataset.

The identification challenge in estimating the robot-labor EoS is that
the JRS can be correlated with the automation shock, which is unobserved.
To overcome this, I use the general equilibrium restriction to obtain struc-
tural residuals of occupational wages, which controls for the effect of the
automation shock. The structural residuals are interpreted as the remaining
variations of occupational wages after controlling for the impact of automa-
tion shock. The identification assumption is that these structural residuals
are uncorrelated with the JRS. This assumption implies a moment condi-
tion, which provides me with consistent parameter estimates and an optimal
instrumental variable to increase estimation precision.

Applying this estimation method, I find that the EoS between robots
and workers is around 2 when estimated with a restricted constant across
occupations. This estimate is higher than the typical values reported in the
literature on the EoS between labor and general capital, such as structure
and equipment, highlighting one of the main differences between robots and
other capital goods. Moreover, the EoS estimates are heterogeneous when
allowed to vary across occupations. Specifically, for routine occupations that
perform production and material moving, the point estimates are as high as
around 3, revealing the special susceptibility of workers to robots in these
occupations. These estimates are identified from the strong relationship be-
tween a larger robot price drop and a lower occupational wage growth rate
in these occupations. In contrast, the estimates in the other occupations
are close to 1, indicating that robots and labor are neither substitutes nor
complements in the other occupations.

The large EoS between robots and workers in production and material
moving occupations implies that the robotization in the sample period sig-
nificantly decreased relative wage in these occupations. This implies that
the robotization shock slowed the relative wage growth of occupations in the
middle deciles since robotized occupations tended to be in the middle of the
occupational wage distribution in 1990. Moreover, the higher productivity in
these occupations raises the marginal product of labor in other occupations,
raising labor demand. Quantitatively, these mechanisms explain a 6.4% in-
crease in the 90-50th percentile wage ratio, a measure of wage inequality
popularized by Goos and Manning (2007) and Autor et al. (2008).
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This paper contributes to the literature on the economic impacts of in-
dustrial robots by finding a sizable impact of robots on US wage polariza-
tion. The closest papers to mine are Acemoglu and Restrepo (2020) and
Humlum (2021). Acemoglu and Restrepo (2020) establish that the US com-
muting zones that experienced a greater penetration of robots in 1992-2007
saw lower growth in wages and employment.1 Humlum’s (2019) contribu-
tion is to estimate a model of robot importers in a small open economy and
an EoS between occupations using firm-level data on robot adoption to find
a positive real-wage effect on average with significant heterogeneity across
occupations.2 I complement these studies by providing a method of esti-
mating the within-occupation EoS between robots and labor using data on
occupation-level robot costs. The estimation result reveals the heterogeneous
substitutability of robots and workers in the US. I also consider large open
countries’ trade of robots, which introduces the terms-of-trade effect when
considering robot taxes.

Another strand of the literature studies pays attention to occupations
to learn about the potentially heterogeneous impacts of automation (e.g.,
Cheng, 2018). Among others, Jaimovich et al. (2021) construct a general
equilibrium model to study the effect of automation on the labor market of
routine and non-routine workers in a steady state. In a contribution to this
literature, I provide a matching method for industrial robot applications and
occupations, which produces the occupation-level data of robot costs.

This paper is also related to the vast literature on estimating the EoS
between capital and labor since robots are one type of capital goods (e.g.,
Arrow et al., 1961; Oberfield and Raval, 2014). Although the literature yields
a set of estimates with a wide range, the upper limit of the range appears to
be around 1.5 (Karabarbounis and Neiman, 2014; Hubmer, 2023). Therefore,
my EoS estimates around 3 in production and material-moving occupations
are significantly higher than this upper limit. In this sense, they highlight one
of the main differences between robots and other capital goods: the special

1Dauth et al. (2017) and Graetz and Michaels (2018) also use the industry-level aggre-
gate data of robot adoption to analyze its impact on labor markets. Galle and Lorentzen
(2024) studies the interaction effects of trade and automation. Furthermore, Adachi et al.
(2024) also use the JARA data to study the Japanese labor market implications of robots.
By contrast, this paper studies the US labor markets and explores robots’ impact on US
wage polarization by estimating the elasticity of substitution between robots and workers.

2There is also a growing body of studies (among others, Acemoglu et al., 2020; Koch
et al., 2021) that use the firm-level data to study the impact on workers.
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susceptibility of workers to robots across different occupations.
Caunedo et al. (2023) provides the elasticity of substitution across oc-

cupations by applying an NLP algorithm to the description of the set of
tools used in each occupation using BEA fixed asset table data. The exercise
is concerned with capital-embodied technological change (CETC), which is
modeled by the reduction in the price of various tools. In contrast, this pa-
per’s strategy for measuring robot variables differs in that I use the O*NET
Code Connector match score to compute the assignment weight. Theoreti-
cally, I treat the automation shock and the capital price decline (the JRS,
in my terminology) separately, which is a natural concern of much of the
automation literature.

2 Model
The basis of the model is a task-based framework embedded in a multi-
country Armington model. It has two main features: occupation-specific
elasticities of substitution (EoS) between robots for workers and robot trade
in a large open economy. I emphasize these features and relegate other model
elements to C.1, on which later quantitative exercises are based.

2.1 Environment
Time is discrete and has an infinite horizon t = 0, 1, . . .. There are N coun-
tries, O occupations, and two types of tradable goods (g), non-robot goods
g = G, and robots g = R. To clarify country subscripts, I use l, i, and
j, where l is a robot-exporting country, i is a non-robot good-exporting
and robot-importing country, and j is a non-robot good-importing coun-
try, whenever I can. There are representative households and producers in
each country. As in the Armington model, both goods are differentiated
by country of origin and occupation. Non-robot goods can be consumed by
households and invested to produce robots.3

In the main text, non-robot goods G are produced with two factors of
production: labor Li,o,t and robot capital KR

i,o,t in each occupation o.4 There
3In the full model in C.1, non-robot goods are also used as input for robot integration

(Graetz and Michaels, 2018; Humlum, 2021).
4C.1 shows the model with intermediate goods and non-robot capital in the production

function. The main analytical results are unchanged.
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is no international movement of factors. Producers own and accumulate
robot capital. Households own the producers’ share in each country. All
good and factor markets are perfectly competitive. Workers are forward-
looking, draw an idiosyncratic utility shock from a generalized extreme value
(GEV) distribution, pay a switching cost for changing occupation, and choose
the occupation o that achieves the highest expected value Vi,o,t among O
occupations as in Caliendo et al. (2019). The discount factor ι > 0 is shared
between all agents. The elasticity of occupation switch probability with
respect to the expected value is ϕ. The detail of the worker’s problem is
discussed in C.1.

There are bilateral and good-specific iceberg trade costs τ gij,t for each
g = G,R. There is no within-country trade cost, so τ gii,t = 1 for all i, g and
t. Due to the iceberg cost, the bilateral price of good g that country j pays
to i is pgij,t = pgi,tτ

g
ij,t.

The government in each country exogenously sets the robot tax. Specifi-
cally, buyer i of robot o from country l in year t has to pay ad-valorem robot
tax uli,t on top of the robot producer price pRli,o,t to buy from l. The tax
revenue is uniformly rebated to households in the country.

2.2 Production function, Tasks, and Automation
Production of Non-Robot Goods In country i and period t, the rep-
resentative producer of non-robot good G uses the occupation-o service TOi,o,t
and produces with the production function

Y G
i,t = AGi,t

[∑
o

(bi,o,t)
1
β
(
TOi,o,t

)β−1
β

] β
β−1

, (1)

where AGi,t is a Hicks-neutral productivity, bi,o,t is the cost share parameter
of each occupation o, and β is the elasticity of substitution between each
occupation in the production function. The parameters satisfy bi,o,t > 0,∑

o bi,o,t = 1, and β > 0.
I follow the canonical task-space framework at the occupation level (Ace-

moglu and Autor, 2011; Acemoglu and Restrepo, 2020). The occupation
service is a combination of tasks ω ∈ [0, 1] with the CES technology

TOi,o,t =

[∫ 1

0

(ti,o,t (ω))
ζ−1
ζ dω

] ζ
ζ−1

,
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where ti,o,t (ω) is the input of task ω and ζ ≥ 0 is the elasticity of substitution
between tasks. Each task is performed either by robots or labor with perfect
substitutability:

ti,o,t (ω) = ZR
i,o,t (ω) k

R
i,o,t (ω) + ZL

i,o,t (ω) li,o,t (ω)

where ZR
i,o,t (ω) and ZL

i,o,t (ω) are task-specific productivity for robots and
labor, respectively. Due to perfect competition, task prices are determined
by the marginal cost, which is the minimum of the efficiency price of labor
wi,o,t/Z

L
i,o,t (ω) and of robots cRi,o,t/ZR

i,o,t (ω) for each task ω. Write the share
of tasks performed by robots as ξi,o,t.

Following Artuc et al. (2023), I assume that these productivity is Fréchet-
distributed with scale parameter aso,t (s = R,L) and shape parameter θo,
with the restriction θo ≥ ζ. I assume that robot productivity is a technical
feature that all countries share, and thus aso,t does not vary by country. As
popularized by Eaton and Kortum (2002), the maximum stability property
of the Fréchet distribution implies that ξi,o,t is equal to the expenditure share
on robots and that

ξi,o,t =
cRi,o,tK

R
i,o,t

PO
i,o,tT

O
i,o,t

= aRo,t

(
cRi,o,t
PO
i,o,t

)1−θo

, (2)

where PO
i,o,t =

(
aRo,t(c

R
i,o,t)

1−θo + (1− aRo,t)(wi,o,t)
1−θo

)1/(1−θo)
, (3)

and cRi,o,t is the user cost of robot capital formally defined in C.2, and PO
i,o,t

is the unit cost of performing occupation o. A key parameter is θo, which
governs the elasticity of substitution between labor and robots in each oc-
cupation o. Intuitively, the more dispersed the task productivities ZR

i,o,t (ω)
and ZL

i,o,t (ω), the less sensitive the optimal allocation of labor and robots is
with respect to the price changes since the unobserved productivity difference
matters more.

Production of Robots Robots for occupation o are produced by investing
non-robot goods IRi,o,t with productivity ARi,o,t:

Y R
i,o,t = ARi,o,tI

R
i,o,t, so pRi,o,t =

PG
i,t

ARi,o,t
(4)

due to the perfect competition, where PG
i,t is the non-robot goods price index

given below in (5). The robot price is inversely proportional to the produc-
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tivity term ARi,o,t. Therefore, I call the change in ARi,o,t for i being Japan as
Japan robot shock (JRS) throughout the paper.

Trade in Goods and Robots Write non-robot goods (resp. robots) trade
elasticity as ε (resp. εR). The Armington assumption implies that the trade
of goods and robots and their price indices are given by

xGij,t =

(
pGij,t
PG
j,t

)(1−ε)

and xRij,o,t =
(
pRij,o,t
PR
j,o,t

)(1−εR)

where PG
j,t =

[∑
i

(
pGij,t
)1−ε]1/(1−ε) and PR

j,o,t =

[∑
i

(
pRij,o,t

)1−εR]1/(1−εR)
.

(5)

Here, pRij,o,t = pRi,o,tτ
R
ij,o is the price of robots used in occupation o traded

from i to j, and the producer price of robots pRi,o,t is given in the production
structure (4).

2.3 Discussion of the Model Assumptions
As comparative statics and dynamics, I consider the change in the robots’
technological efficiency parameter aRo,t in (2), but also the shock to the pro-
ductivity to produce robots in (4). Collectively, I call these two shocks robo-
tization shocks. The two robotization shocks are likely to be correlated with
each other at the occupation level since innovation in robot technology im-
proves the applicability of robots and the cost efficiency of production at the
same time.5 This will be the source of the identification challenge, discussed
further in the next section.

The robots’ technological efficiency parameter aRo,t plays a central role in
estimation and counterfactuals and is discussed in detail here. Since the task-
based framework developed in Section 2.2 contains the allocation of factors
to tasks, I can interpret aRo,t as the shifter of the share of tasks performed by
robots as opposed to labor with a proper modification to the productivity
term bi,o,t, which is discussed in detail in Section 2.5. Thus, I call the change
in aRo,t the automation shock.

5See A.1 for more concrete narratives of such a correlation.
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In contrast, the robot cost share ao,t also represents the quality of the
robots. Specifically, the quality of goods can be regarded as a non-pecuniary
attribute that all consumers agree upon in terms of its value (Khandelwal,
2010). As (2) states that the increase in ao,t implies the rise in the value of
the robots among factors, the automation shock can also be interpreted as
quality upgrading of robots relative to labor when combined with a suitable
adjustment in the TFP term.

Therefore, my model does not distinguish between automation shock and
quality upgrade but has the same implication for equilibrium. This is the
restriction of the Fréchet distribution assumption. To the best of my knowl-
edge, there has been no formal discussion on this point. Nonetheless, it
is useful to maintain this assumption since I can keep complex technology
improvements along with task automation and quality upgrades in a single
parameter ao,t.6

We do not explicitly consider the industrial heterogeneity in this paper.
The heterogeneous impact on workers is captured through the rich occu-
pational heterogeneity. Nonetheless, it is well-known that heterogeneous
robotization across industries creates varying competitive advantages due to
robot-driven productivity boosts and input-output linkages (Caliendo and
Parro, 2015). We proxy the latter effect by introducing the input-output
linkages in the roundabout production in the production function in the full
quantitative model. See C.1 for details.7

2.4 Equilibrium
The remaining part of the model is standard in the literature on dynamic
general equilibrium and given in C.1. For the sake of notation, I summarize
the solution to the workers’ dynamic discrete choice problem of occupations
by labor supply function Li,o,t(wi,t). The non-robot producer solves dynamic
robot capital investment problem under convex adjustment cost (Cooper and

6One of the reasons for the need to impose this assumption is the lack of data on the
set of tasks for each robot or the quality of robots. Relaxing this assumption using rich
data on this dimension would be future work.

7In a similar vein, regional variation is not introduced in the model (Caliendo et al.,
2019; Acemoglu and Restrepo, 2020). Such an additional consideration yields rich implica-
tions about regional heterogeneity and inequality with the cost of significantly complicating
the model. Analyzing the heterogeneous robot price effects across regions is beyond the
scope of this paper.
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Haltiwanger, 2006; recent application to the robot context is by de Souza and
Li, 2023). The prices of goods, labor, and robots equilibrate the respective
markets in general equilibrium.

2.5 Solving the Model
I apply the first-order approximation to the steady state (Blanchard and
Kahn, 1980). I have chosen this strategy over the exact solution method
like Caliendo et al. (2019) because the trade literature has shown that the
approximation errors with respect to (unilateral) productivity shocks are con-
siderably smaller than those due to bilateral trade shocks (Kleinman et al.,
forthcoming). The robotization shock considered in this paper is unilateral.
For example, my model assumes that Japanese robots have become accessible
to all countries (not only in the US). Since I focus on the steady-state change,
I drop subscript t in this subsection. I relegate the full characterization of
the approximation, including that of the transition dynamics, in C.3.

I use the hat notation to describe the log total derivative. The exogenous
shocks are the shocks to aRo,t, ARl,o, and the adjustment to the occupational
productivity term bi,o. Specifically, I only consider the automation shock that
does not change labor productivity throughout the paper, reflecting on the
rapid growth in robot technology in the past few decades relative to human
capital growth. Mathematically, this is equivalent to imposing

b̂
1

β−1

i,o
ˆ(1− aRo )

1
θo−1 = 0, (6)

for any automation shock âo so that the effect of the change in ao on labor
productivity is undone by appropriate adjustment in b̂i,o. Moreover, this
approach still captures the overall productivity growth due to change in âo.
It is the typical approach to control labor productivity growth when modeling
robot shocks in the literature. For instance, the canonical setup in Acemoglu
and Restrepo (2020) models the automation by the increased threshold for
robot availability across tasks, which does not change the labor productivity,
but the overall productivity increases because of the threshold increase.

I provide several approximation expressions that are useful in the follow-
ing sections when defining the estimator. First, combining (5) and (4), I
have the the change in the robot price index PR

i,o in the country i due to the
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change in the robot production technology ARl,o in the country l:

P̂R
i,o = −xRli,oÂRl,o +

∑
l′

xRl′i,oP̂
G
l′ , (7)

where the first term reflects the direct effect of the robot productivity change
in l, which is mediated by the import share of robots from l in i. The second
term summarizes the general equilibrium effects on the robot price index due
to the change in the production cost of robots in other countries.

Second, from (2) and (3), the labor demand in the dollar unit in (i, o)
is given by (1 − ξi,o)P

O
i,oT

O
i,o. Using this, the approximated labor market

equilibrium condition is:

ŵi,o +
∑
o′

lnLi,o
lnwi,o′

ˆwi,o′ = ˆ(1− ao) + (1− θo)(ŵi,o − P̂O
i,o) + P̂O

i,o + T̂Oi,o, (8)

where the LHS is the supply change and the RHS is the demand change.

3 Estimation Strategy
I develop an estimation method using the model-implied optimal instrumen-
tal variable (MOIV) following Adao et al. (2023). First, Section 3.1 pa-
rameterizes the model. I then introduce the data on robot prices in Japan
in Section 3.2. Finally, I define the MOIV estimator in Section 3.4. I set
the sample period to 1992-2007 (or 1990-2007 for the labor data) and write
t0 ≡ 1992 and t1 ≡ 2007 given the data availability, and I will relate the long
difference to the model’s steady state changes.

3.1 Parametrization
To allow the heterogeneity of the EoS between robots and labor across oc-
cupations and maintain the estimation power at the same time, I define the
occupation groups as follows. First, occupations are separated into three
broad occupation groups: Abstract, Service (Manual), and Routine, follow-
ing Acemoglu and Autor (2011) and described in A.2. Given the trend that
robots are introduced intensively in production and transportation (material-
moving) occupations in the sample period, I further divide routine occupa-
tions into three sub-categories: Production (e.g., welders), Transportation
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(indicating transportation and material-moving, e.g., hand laborer), and
Others (e.g., repairer). As a result, I obtain five occupation groups shown in
A.2. Within each group, I assume a constant EoS between robots and labor.
Each occupation group is denoted by subscript g, and thus, the robot-labor
EoS for group g is written as θg.

Since I use the prices of Japanese robots and study the US labor market,
I set N = 3 and aggregate country groups to the US (USA, country index
1), Japan (JPN, index 2), and the Rest of the World (ROW, index 3). The
annual discount rate is ι = 0.05. The robot depreciation rate is 10%, following
Graetz and Michaels (2018). I take the trade elasticity of ε = 4 from the
literature of trade elasticity estimation (e.g., Simonovska and Waugh (2014)),
and εR = 1.2 derived from applying the estimation method developed by
Caliendo and Parro (2015) to the robot trade data, which is discussed in
detail in D.1. The remaining parameters Θ ≡ {θg, β} are the target of the
structural estimation below.

The first-order solution matrix needs various shares in the initial steady
state. I take these shares from IFR, IPUMS USA/CPS, BACI, and the World
Input-Output Table (WIOT). I set the initial robotization share ao,0 to be
the initial US occupation-specific expenditure share cRi,o,t0KR

i,o,t0
/wi,o,t0Li,o,t0

for i = US and the initial robot tax to be zero in all countries. The remaining
measurement of labor market outcomes is standard and relegated to A.2.

3.2 Data Source
Industrial robots are defined as multiple-axe manipulators and are measured
by the number of such manipulators or robot arms.8 The main data source
for robots by occupation is the Japan Robot Association (JARA). JARA is
a General Incorporated Association composed of Japanese robot-producing
companies. In its “Export Statistics of Manipulators, Robots and Applied
Systems by Country and Application,” JARA annually surveys major robot
producers about the units and monetary values of robots sold for each des-
tination country and robot application.9 Robot application is defined as the
specified task that robots perform, which is discussed in detail in Section 3.3.

8A more formal definition from ISO is provided in A.1.
9Adopting a modern robot system is more complicated than just buying the hardware.

It requires tailored integration and configuration, up-to-date tuning via robot program-
ming, and fine maintenance. Although the data only contains the price of the hardware,
the full model considers the integration costs using the estimates of Leigh and Kraft (2018).
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I use digitized summary cross tables from JARA’s annual publications.
I use the Occupational Information Network Online (O*NET) Code Con-

nector to convert robot applications to labor occupations. The O*NET Code
Connector is an online database of occupations sponsored by the US Depart-
ment of Labor, Employment, and Training Administration and provides an
occupational search service. The search algorithm provides a match score
that shows the relevance of each occupation to the search word, discussed in
Morris (2019) and A.2.

To integrate Japanese robot data from JARA and international trade data
from BACI, I use HS code 847950 (“Industrial robots for multiple uses”) as
the definition of robots in the trade data. I match the BACI robot trade data
to JARA’s Japanese robot exports by aggregating across applications in the
JARA data. Since I do not observe the occupation-level disaggregate of the
robot trade in other countries, I impose xRij,o = xRij for all o in the estimation.
See A.4 for the details of robot measurement issues in JARA and BACI.

3.3 Data Construction
This subsection describes the construction of the price of robots at the oc-
cupation level. Although Graetz and Michaels (2018) provide data about
robot prices from IFR, the price data is aggregated but not distinguished by
occupations. In contrast, I will use the variation at the occupation level to
estimate the substitutability between robots and workers.

Step 1. Application-Occupation Match The first task is matching
robot applications and labor occupations. A heterogeneous mix of tasks
in each occupation generates a difference in the ease of automation across
occupations, implying the heterogeneous adoption level of robots (Manyika
et al., 2017).10 Formally, let a denote robot application, and o denote labor
occupation at the 4 digit level. The JARA data give me the number of robots
sold and total monetary transaction values for each application a. I write
these as robot measures XR

a , a generic notation that can mean quantity and
monetary values. I convert an application-level robot measure XR

a to an
occupation-level measure XR

o using a weighted average. For this purpose,
I search occupations in the O*NET Code Connector by the title of robot

10A.1 provides further descriptions of robot applications and labor occupations using
examples.
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application a and web-scrape the match score moa between a and o. Using
moa as the weight, I compute11

XR
o =

∑
a

ωoaX
R
a where ωoa ≡

moa∑
o′ mo′a

. (9)

where
∑

o ωoaX
R
a = XR

a since
∑

o ωoa = 1. Robot trends based on the con-
structed occupation-level measures are shown in A.3.

This matching method complements these studies by matching the data
of robot quantities with lower data requirements, as I only observe the title
of robot applications but not detailed descriptions as those in patent texts.
For example, Webb (2019) provides a natural-language-processing method
to match technological advances (e.g., robots, software, and artificial intel-
ligence) embodied in the patent title and abstract to occupations. Further-
more, Montobbio et al. (2020) extend this approach to analyzing full patent
texts by applying the topic modeling method of machine learning.

Step 2. Japan Robot Shock (JRS) The second task is to define the
measure of the JRS. Using the occupation-level robot quantity qRi,o,t and sales
(pq)Ri,o,t in destination country i, occupation o, and year t, I construct the
cost shocks to robot users in each occupation in the following steps. First, I
take the average export price pRi,o,t ≡ (pq)Ri,o,t /q

R
i,o,t.12 A concern when using

the unit value data is the simultaneity–Demand shocks, not cost shocks,
drive prices. My export price measure is based on external robot sales, and
thus, I have less concern than domestic robot prices. Nonetheless, I exclude
the US’s robot import prices from the sample to mitigate the simultaneity
concern further. Here, the argument is close to the one in Hausman et al.
(1994), that the changes in demand shocks are uncorrelated between the US
and other countries, but the price variations are primarily driven by the robot
production costs in Japan. This leave-one-out idea is used intensively in the
automation literature (e.g., Acemoglu and Restrepo, 2020).13

11Further details of matching are described in A.5, including the use of hard-cut match-
ing, which does not affect the matching result significantly.

12I have also computed the chain-weighted robot price index, which is commonly used
when measuring the capital good price. The results using this index are not qualitatively
different from the main findings.

13A related but distinct concern is that since the US is a large economy, their demand
shock may affect robot prices in the international market, which at the same time drives
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To address the concern about cross-country correlation in demand shocks
further, I exploit the fact that the data is from bilateral trade flows and
control for the destination country-specific demand effect. Formally, I fit the
fixed-effect regression

ln
(
pRi,o,t

)
− ln

(
pRi,o,t0

)
= ψDi,t + ψJo,t + ϵi,o,t, i ̸= USA (10)

where t0 is the initial year, ψDi,t is the destination-year fixed effect, ψJo,t is
the occupation-year fixed effect, and ϵi,o,t is the residual. This regression
controls for any country-year specific effect ψDi,t, which includes country i’s
demand shock or trade shock between Japan and i that are constant across
occupations. I use the remaining variation across occupations ψJo,t as a cost
shock of robot adoption and specifically define ψJo ≡ ψJo,t1 as the measured
JRS.

Using the perfect competition assumption and robot production function
(4), I relate the JRS and the robot productivity in the model by

ψJo = −ÂR2,o. (11)

I show stylized facts and reduced-form evidence about robots and workers
at the occupation level that suggest strong substitutability between robots
and labor to motivate the model and estimation in B. As addressed in Section
2.3, my model loads the robot quality component on the automation shock
term aRo,t. Other possible approaches include the hedonic and cost evaluation
approach, both of which are discussed in A.6.

3.4 Estimation Procedure
The JARA data provides information about the robot price, a critical input
to estimate the elasticity parameter that shows up in (2). However, I still
have an unobserved automation shock element, ao,t, that potentially causes
an identification threat. To deal with this concern, I will develop a moment
condition using the model restriction.

First, I decompose the automation shock âo into an “implied” component
âimp
o and “unobserved error” component âerro such that âo = âimp

o + âerro for all

the US labor demand. To address this concern, I will perform the same exercise as in
Section B using data from the small-open economy in B.3, showing a similar empirical
pattern to the US data.
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o. The implied component is implicitly defined by the steady-state change
of relative demand for robots and labor, combining (2), (7), and (11),

̂(
cRUS,oK

R
US,o

wUS,oLUS,o

)
= (1− θg) (x

R
JP,USψ

J
o − ŵUS,o) +

âimp
o

1− ao,t0
+D, (12)

where xRJP,US is the baseline import share of robots from Japan in the US,
and D ≡ (1− θg)

∑
l x

R
l,USP̂

G
l is the international spillover term due to the

changes in price indices in other countries. In other words, âimp
o is the compo-

nent of the automation shock that explains the shift in the task automation
and expenditure share of robots. In contrast, the unobserved error compo-
nent âerro is the remaining term, which I view as the measurement error.

The identification challenge is that the JRS ψJo may have a potential
correlation with the implied automation shock âimp

o . To my knowledge, no
studies in the literature address this identification challenge in the literature.
The previous literature estimates the elasticity of substitution between cap-
ital and labor using the CES demand function of the form (2), but assumes
that the technology shock is fixed or orthogonal to the price changes.14 Since
much of the automation literature provides the demand function and price
index where one can interpret the technology shock ao,t as the expansion of
the task space due to automation, it seems that addressing the correlation
of this shock with another measure of technological progress, the decline in
robot prices, needs to be addressed formally.

A key observation to address this identification challenge is that the er-
ror component âerro can be inferred from the observed endogenous variables
using the first-order approximation to the model solution and âimp

o . Namely,
the occupational labor market clearing condition (8) gives a restriction be-
tween the occupational wage and the automation shock. More specifically,
combined with âRo = âR,imp

o + âR,erro , I have

âR,erro = −âR,imp
o − (1− ao)

[
ŵi,o +

∑
o′

lnLi,o
lnwi,o′

ˆwi,o′ − (1− θo)(ŵi,o − P̂O
i,o)− P̂O

i,o − T̂Oi,o

]
(13)

where P̂O
i,o is implied by the zero-profit condition and T̂Oi,o is given by produc-

tion function, as detailed in C.1.
14See, for instance, Antras (2004); Herrendorf et al. (2015); Eden and Gaggl (2018).
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Thus, (13) gives me the structural residual after controlling for the au-
tomation shock, which I measure from the expenditure share expression in
(12). I then impose the following moment condition regarding this structural
residual and the JRS ψJ ≡

{
ψJo
}
o
.

Assumption 1. (Moment Condition)

E
[
âR,err
o |ψJ

]
= 0. (14)

Assumption 1 restricts that the structural residual âR,erro should not be
predicted by the JRS. Note that it allows that the automation shock âo

correlates with the change in the robot producer productivity ÂR2,o. The
structural residual νw,o purges out the first-order effects of all shocks, ÂR

2

and â (and accompanying adjustment b̂ according to (6)), on wage changes.
I then put the restriction that the remaining variation should not be predicted
by the JRS from the data. This is justified by the fact that the structural
residual νw, and measurement error âerro .15

Given the moment condition (14), it is straightforward to construct the
optimal instrument and implement it with the two-step estimator Adao et al.
(2023). Therefore, I relegate the detailed explanation to D.2. The estimation
section is closed with the remaining discussion on the identification assump-
tion in the following.

3.5 Discussion of the Identification Assumption
In the moment condition (14), I treat unobserved reductions in robot costs
sourced from other countries as independent from the evolution of Japanese
robot costs and discuss the plausibility of this assumption in B.4 by com-
paring the JARA data and the data from the International Federation of
Robotics (IFR), a widely-used data source of robots in the world. Further-
more, A.4 shows the international robot flows, including Japan, the US, and
the rest of the world.

When does Assumption 1 break down? One such threat is a directed tech-
nological change, in which the occupational labor demand drives the changes

15The correlation of the structural residuals with other shocks, such as trade shocks, is
unlikely to break Assumption 1 as I have confirmed that controlling for such shocks does
not qualitatively change the reduced-form findings in B.
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in the cost of robots (e.g., (Acemoglu and Restrepo, 2018)). Specifically, sup-
pose that a positive labor demand shock in occupation o induces the research
and development of robots in occupation o and drives costs down in the long
run instead of exogenous technological change in production function (4).
The structural residual νo does not control for this effect and is negatively
correlated with JRS ψJo . Another possibility that fails Assumption 1 is the
increasing returns for robot producers, which would also imply that the un-
observed robot demand increase drives a reduction of robot costs. However,
these concerns imply a negative bias to the elasticity estimates, and thus, my
qualitative results about strong substitutability are maintained.

Note that the measure of the JRS (11) does not contain the price shock
of the robots brought to the US from countries other than Japan. Since I
do not have high-quality data on robots from other countries, I simply take
the robot shocks from Japan. I mainly use this shock for identification and
estimation. Price shocks of robots from other countries are therefore included
in the implied automation shock (12).

4 Results
Table 1 gives the estimates of the structural parameters. The Case 1 column
shows the EoS parameter between robots and labor when restricted to be
constant across occupation groups. The estimate of the within-occupation
EoS between robots and labor θ is around 2 and implies that robots and
labor are substitutes within an occupation and rejects the Cobb-Douglas
case θg = 1 at the conventional significance levels. The high estimate of the
EoS between labor and automation capital is also found in Eden and Gaggl
(2018), where they estimate the elasticity between ICT capital and workers.
The point estimate of the EoS between occupations, β, is 0.83, implying that
occupation groups are complementary. The estimate is slightly higher than
Humlum’s (2019) central estimate of 0.49.

The second column shows the estimation result when I allow the hetero-
geneity across occupation groups (Case 2). I find that the EoS for routine
production occupations is 2.7. In contrast, those for other routine occupa-
tions (transportation and other routine) are close to 2, and those for other
occupation groups are not significantly different from 1. Therefore, the esti-
mates for routine production occupations indicate the special susceptibility
of workers in these occupations to robot capital. The estimate of the EoS
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Table 1: Parameter Estimates

Case 1: Homogeneous θg = θ Case 2: Heterogeneous θg

θg

Routine, Production 2.71
(0.32)

Routine, Transportation 1.76
(0.15)

2.05 Routine, Others 1.96
(0.19) (0.17)

Manual 1.01
(0.71)

Abstract 1.01
(0.62)

β
0.83 0.73
(0.03) (0.06)

Note: The estimates of the structural parameters based on the estimator described in Section A.1. Stan-
dard errors are in parentheses. Parameter θ is the within-occupation elasticity of substitution between
robots and labor. Parameter β is the elasticity of substitution between occupations. The column “Case
1: θg = θ” shows the result with the restriction that θo is constant across occupation groups. The
column “Case 2: Free θg” shows the result with θg allowed to be heterogeneous across five occupation
groups. Transportation indicates “Transportation and Material Moving” occupations in the Census 4-digit
occupation codes (OCC2010 from 9000 to 9750).

between occupations β does not change qualitatively between Case 1 and
Case 2.

As in the literature on estimating the capital-labor substitution elasticity,
the source of identification of these large and heterogeneous EoS between
robots and labor is the negative correlation between the JRS and the change
in the labor market outcome. Intuitively, if θg is large, then the steady-state
relative robot (resp. labor) demand responds strongly in the positive (resp.
negative) direction conditional on a unit decrease in the cost of using robots,
as is shown in B.2. However, my model features the automation shock ao,t
and endogenous task automation (cf. (2)) as well as the price reduction. I
discuss the relationship between these model elements and the estimates in
the following subsections.
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4.1 Decomposing the Source of Task Automation
The estimated model’s task allocation (2) allows me to back out of the au-
tomation shock. Specifically, I obtain the implied automation shock in (12)
using the observed change in the relative robot demand (the LHS of equa-
tion 12), the EoS estimates θg, and the change in the relative price of robots
xRJP,USψ

J
o − ŵUS,o. The international price spillover term D in (12) is quanti-

tatively small as the robots’ contribution to the national price index is small.
This can be confirmed by substituting the implied shock in the model-implied
price index change. The main results on distributional impacts are unchanged
in the inclusion of D, which is constant across occupations, and the appendix
results are robust in inclusion due to the small size.

Figure 1a shows a scatter plot between the JRS and automation shock,
revealing a mild positive relationship between them. This correlation is con-
sistent with the robotic innovations example discussed in A.1. In turn, Figure
1b summarizes the two shocks aggregated at the occupation group level. The
figure reveals 0.2-0.6 log points of the JRS, reflecting the observed reduction
in the price of robots from Japan. More importantly, estimated automation
shocks are positive and reveal greater variation between occupation groups.
The two highly automated occupations, transportation and production, see
1.5-2 log points increase in the task shares of robots, while the other occu-
pation groups have 0.5 log points at the maximum.

Figure 1b also shows the total automation or the change in the share of
tasks performed by the robots along the horizontal axis. Note that, according
to (2), total automation can be driven both by the exogenous change in
the scale parameter of the Fréchet distribution ao,t (the automation shock)
and the endogenous assignment of tasks due to the cheap robots caused by
the JRS AR2,o,t. I find that in the two heavily robotized occupation groups,
transportation and production, the total automation is as large as a 200
percent increase in the share of robotized tasks. This is driven by both the
automation shock and the endogenous task allocation, but the former plays
a more important role. In other occupations with less robotization, such as
the abstract and manual occupations, I do not find evidence for the task
allocations toward robots. In the counterfactual analysis, I will analyze the
role of each of these robotization mechanisms on wage polarization.

The fact that the greater increase in the penetration of robots in produc-
tion and transportation occupations is explained more by automation shocks
than by the JRS, revealed in Figure 1b, is also important for evaluating the
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Figure 1: The Automation Shock, Japan Robot Shock, and the Total Au-
tomation

(a) Calibrated Automation Shock (b) Aggregates and Total Automation

Note: The left panel shows the estimated automation shock (calibrated from equation 12 and the estimated
parameters in Table 1) on the horizontal axis and the Japan robot shock (measured by equation 11 and
regression 10) on the vertical axis. Each point is a 4-digit occupation, and the dashed line is the fitted line.
The right panel adds the total automation (implied by 2) on the horizontal axis and shows the results at
the occupation-group level. Each occupation in the group is aggregated to the group level with the initial
robot expenditure weight.

model performance. Ignoring the automation shock could lead to significant
bias in interpreting the correlation between wage changes and the JRS. In
D.3, I show that it is critical to take into account the automation shock in
estimating the EoS between robots and labor and that the large EoS in my
structural estimates is robust even after taking this point into account.

5 The Effect of Robotization on the Wage Po-
larization

I use the estimated model to answer the question about the distributional
effects of robotization. As Heathcote et al. (2010) argues, wage inequality
comprises a significant part of overall economic inequality in the US. I pri-
marily use the wage inequality measure of the wage ratio between the 90th
percentile and the 50th percentile (90-50 ratio), following Autor et al. (2008)
who showed that the 90-50 ratio has steadily increased since 1980. I study
how much such an increase can be explained by the increased use of industrial
robots from 1990.

First, I show the pattern of robot accumulations across the occupational
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Figure 2: Robots, Wage Inequality, and Polarization

(a) Estimated Automation Shock (b) The Effect of Robots on Wages

Note: The left panel shows the implied automation shocks defined in equation (12). The shocks are
aggregated into 10 wage deciles in the baseline year, 1990, weighted by the initial employment level. The
right panel shows the annualized occupational wage growth rates for each wage decile, predicted by the
first-order approximated steady-state solution of the estimated model given in equation (48).

wage distribution. Figure 2a shows the distribution of estimated automation
shocks across baseline wage deciles. The figure shows a strikingly polarizing
pattern: the automation shock hits the middle of the wage distribution more
severely than at the bottom and top of the distribution. Note that this
contrasts well with the no correlation result in Figure 12a. These findings
indicate that it was the automation shock, not the JRS, that caused the wage
distribution dynamics during the 1990s and 2000s.

In contrast, Figure 2b shows the predicted steady-state wage growths
per year due to the robotization shocks and the estimated model with the
first-order solution given in equation (50). Consistent with the high growth
rate of robot stocks in the middle of the wage distribution and the strong
substitutability between robots and labor, I find that the counterfactual wage
growth rate in the middle deciles of the initial wage distribution is more
negative than that in the other part of the wage distribution. Quantitatively,
the 90-50 ratio observed in 1990 and 2007 is, respectively, 1.588 and 1.668.
On the other hand, the 90-50 ratio predicted by the initial 1990 data and the
first-order solution (50) is 1.594. These numbers imply that the robotization
shock captured in this paper can explain an increase of 6. 4% in the 90-50
ratio.

It is worth emphasizing that I consider two shocks in this main exercise,
the automation shock â and the JRS Â2. When these two shocks are distin-
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guished in the quantitative exercise, the automation shock reduces the labor
demand due to task reallocation from labor to robots. In contrast, the JRS
increased the stock of robots and the marginal product of labor.

Other Counterfactual Analysis In addition, due to the fear of automa-
tion, policymakers have proposed regulating industrial robots using robot
taxes. The estimated model provides an answer to the short- and long-term
effects of taxing robot purchases on real wages across occupations and ag-
gregate welfare losses. In D.5, I also study the implications of counterfactual
policies regarding the regulation of robot adoption.

6 Conclusion
In this paper, I study the distributional effects of the increased use of in-
dustrial robots, with the emphasis that robots perform specified tasks and
are internationally traded. I make three contributions. First, I construct a
dataset that tracks shocks to the cost of buying robots from Japan (the Japan
robot shock, JRS) across occupations in which robots are adopted. Second,
I developed a general equilibrium model that features robot automation in
a large open economy. Third, when estimating the occupation-specific EoS
between robots and labor of the model, I construct a model-implied optimal
instrumental variable from the JRS to address the identification challenge of
the correlation between the automation shock and the JRS.

The estimates of within-occupation EoS between robots and labor are
heterogeneous and as high as 3 in production and material-moving occupa-
tions. These estimates are significantly larger than estimates of the EoS of
capital goods and workers, with a maximum of about 1.5, revealing the spe-
cial susceptibility of workers in these occupations to robot adaptation. The
estimated model also implies that robots contributed to wage polarization
across occupations in the US from 1990-2007. These results inform the policy
discussions of industrial robots.
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Online Appendix
A Background and Data
A.1 Details about Industrial Robots
Industrial robots are defined as multiple-axe manipulators. More formally,
following the International Organization for Standardization (ISO), this pa-
per defines robots as “automatically controlled, reprogrammable, multipur-
pose manipulator, programmable in three or more axes, which can be either
fixed in place or mobile for use in industrial automation applications” (ISO
8373:2012). This section gives a detailed discussion of such industrial robots.
This definition precludes any automation equipment that does not have mul-
tiple axes out of the scope of the paper, even though some of them are often
called “robots” (e.g., Roomba, an autonomous home vacuum cleaner made by
iRobot Corporation). Figure 3 shows the pictures of examples of industrial
robots that are intensively used in the production process and considered in
this paper. The left panel shows spot-welding robots, while the right panel
shows the material-handling robots.

Japan is a significant innovator, producer, and exporter of robots. For
example, as of 2017, the US had imported 5 billion dollars worth of Japanese
robots, which comprise roughly one-third of the robots used in the US. There-
fore, the cost reduction of Japanese robots significantly affects robot adoption
in the US and the world.

JARA Robot Applications The full list of robot applications available in
JARA data is: Die casting; Forging; Resin molding; Pressing; Arc welding;
Spot welding; Laser welding; Painting; Load/unload; Mechanical cutting;
Polishing and deburring; Gas cutting; Laser cutting; Water jet cutting; Gen-
eral assembly; Inserting; Mounting; Bonding; Soldering; Sealing and gluing;
Screw tightening; Picking alignment and packaging; Palletizing; Measure-
ment/inspection/test; and Material handling.

One might wonder if robots can be classified as one of these applications
since robots are characterized by versatility as opposed to older specified
industrial machinery (Kawasaki Heavy Industry, 2018). Although a robot
may indeed be reprogrammed to perform more than one task, I claim that
robots are well-classified to one of the applications listed above since the layer
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Figure 3: Examples of Industrial Robots

(a) Spot Welding (b) Material Handling

Sources: Autobot Systems and Automation (https://www.autobotsystems.com) and PaR Systems
(https://www.par.com)

of dexterity is different. Robots might be able to adjust a model change of
the products but are not supposed to perform other tasks across the 4-digit
occupation level. As SMEs are mostly high-mix and low-volume producers,
robots are still too rigid to be transitioned from one occupation to another
occupation at a reasonable cost. Due to this technological bottleneck, it is
still infeasible to have such a versatile robot that can replace a wide range of
workers at the 4-digit occupation level for the sample period of my study.

The Cost of Using Robots and Robot Aggregation Function A modern
industrial robot typically does not have stand-alone hardware (e.g., robot
joints and arms) but an ecosystem that includes the hardware and con-
trol units operated by software (e.g., computers and robot programming
language). Due to its complexity, installing robots in the production envi-
ronment often requires hiring costly system integrators who offer engineering
knowledge for integration. Therefore, the relevant costs of robots for adopters
include hardware, software, and integration costs.16 The average price mea-
sure of robots used in this paper should be interpreted as reflecting part of
overall robot costs. Even though this follows the literature’s convention due

16The current industry and occupation classifications do not allow separating system
integrators, making it difficult to estimate the cost from these classifications. In addition,
relevant costs associated with the robot still remain, e.g., maintenance fees, of which I also
lack quantitative evidence. Although understanding these components of the costs is of
first-order importance, this paper follows the literature convention and measures robots
from the market transaction of hardware.
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to the data limitation about the robot software and integration, I address this
point in the model section by separately defining the observable hardware
cost using my data and the unobserved components of the cost. Namely,
equation (23) explicitly includes the software and integration, reflecting a
feature of modern industrial robots being typically not stand-alone hardware
but an ecosystem that includes control units operated by software requiring
a significant amount of resources for integration.

Related to this, equation (23) follows the formulation of the trade of
capital goods in the sense that the robots are traded because they are dif-
ferentiated by origin country l. Note that equation (24) implies that the
origin-differentiated investment good is aggregated at first and then added
to the stock of capital following equation (23). This trick helps reduce the
number of capital stock variables and is also used in the literature of inter-
national macroeconomics.

Examples of Robotics Innovation In Section 2.2, I define the automation
shock as the change in the robot task space ao,t, and the cost shock to pro-
duce robots as the robot producer’s TFP shock ARl,o,t. In this section, I show
some examples of changes in robot technology and new patents to facilitate
understanding of these interpretations. An example of task space expansion
is adopting Programmed Article Transfer (PAT, Devol (1961)). The PAT was
a machine that moves objects by a method called “teaching and playback”.
The teaching and playback method needs one-time teaching of how to move,
after which the machine plays back the movement repeatedly and automati-
cally. This feature frees workers from performing repetitive tasks. PAT was
intensively introduced in spot welding tasks. (Kawasaki Heavy Industry,
2018) reports that among 4,000 spot welding points, 30% was done by hu-
mans previously, which PAT took over. Therefore, I interpret the adoption
of PAT as the example of the expansion of the robot task space, or increase
in ao,t, like AR.

An example of cost reduction is adopting Programmable Universal Ma-
nipulator for Assembly (PUMA). The PUMA was designed to quickly and
accurately transport, handle, and assemble automobile accessories. A new
computer language, Variable Assembly Language (VAL), made it possible
because it made the teaching process less work and more sophisticated. In
other words, PUMA made tasks previously done by other robots but at a
cheaper unit cost per unit of task.
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It is also worth mentioning that the introduction of a new robot brand
typically contains both components of innovation (task space expansion and
cost reduction). For example, PUMA also expanded the task space of robots.
Since VAL allowed the use of sensors and “expanded the range of applications
to include assembly, inspection, palletizing, resin casting, arc welding, sealing
and research” (Kawasaki Heavy Industry, 2018).

A.2 More on Data Sources
Details on the O*NET Code Connector Search In the O*NET Code
Connector Search, the match score is the result of the weighted search al-
gorithm used by the O*NET Code Connector, which is the internal search
algorithm developed and employed by O*NET since September 2005. Since
then, the O*NET has continually updated the algorithm and improved the
quality of the search results. Morris (2019) reports that the updated weighted
search algorithm scored 95.9% based on the position and score of a best 4-
digit occupation for a given query.

Additional Data Sources In addition to the JARA and O*NET data, I
use data from IFR, BACI, WIOT, IPUMS USA, and CPS. IFR is a standard
data source of industrial robot adoption in several countries (e.g., Graetz
and Michaels (2018); Acemoglu and Restrepo, 2020, AR hereafter), to which
JARA provides the robot data of Japan.17 I use IFR data to show the total
robot adoption in each destination country. BACI provides disaggregated
data on trade flows for more than 5000 products and 200 countries, which
is used to obtain the measure of international trade of industrial robots and
baseline trade shares. To obtain the intermediate input shares, I took data
from the World Input-Output Table (WIOT) from the year closest to the
initial year, 1992. IPUMS USA collects and harmonizes US census micro-
data. I use Population Censuses (1970, 1980, 1990, and 2000) and American
Community Surveys (ACS, 2006-2008 3-year sample and 2012-2016 5-year
sample). I obtain occupational wages, employment, and labor cost shares
from these data sources.

I focus on occupation codes that existed between the 1970 Census and
17As of August 2020, the JARA association consists of 381 member companies, with the

number of full members being 54, associate members being 205, and supporting members
being 112.
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the 2007 ACS that cover the sample period and pre-trend analysis period to
obtain consistent data across periods. Therefore, this paper focuses on the
intensive-margin substitution in occupations as opposed to the extensive-
margin effect of automation that creates new labor-intensive tasks and occu-
pations Acemoglu and Restrepo (2018). My dataset shows that 88.7 percent
of workers in 2007 worked in the occupations that existed in 1990. It is an
open question of how to attribute the creation of new occupations to different
types of automation goods, like occupational robots in my case.

I follow Autor et al. (2013) for the Census/ACS data cleaning procedure.
Namely, I extract the 1970, 1980, 1990, and 2000 Censuses, the 2006-2008
3-year file of American Community Survey (ACS), and the 2012-2016 5-year
file of ACS from Integrated Public Use Micro Samples. For each file, I select
all workers with the OCC2010 occupation code whose age is between 16 and
64 and who are not institutionalized. I compute education share in each
occupation by the share of workers with more than “any year in college,”
and foreign-born share by the share of workers whose birthplace is neither
in the US nor in US outlying areas/territories. I compute hours worked by
multiplying the usual weeks worked and hours worked per week. For 1970,
I used the median values in each bin of the usual weeks worked variable
and assumed all workers worked for 40 hours a week since the hour variable
does not exist. To compute hourly wage, I first impute each state-year’s
top-coded values by multiplying 1.5 and dividing by the hours worked. To
remove outliers, I take wages below the first percentile of the distribution in
each year and set the maximum wage as the top-coded earning divided by
1,500. I compute the real wage in 2000 dollars by multiplying the CPI99
variable prepared by IPUMS. I use the person weight variable to aggregate
all of these variables to the occupation level.

The occupation groups are formally defined as follows: Routine occupa-
tions include occupations such as production, transportation (material mov-
ing), sales, clerical, and administrative support. Abstract occupations are
professional, managerial, and technical occupations. Service occupations are
protective service, food preparation, cleaning, personal care, and personal
services. The routine occupations are further separated into production,
transportation, and others. Thus, I have the following five categories in terms
of OCC2010 codes in the US Census: Routine production occupations are in
[7700, 8965], Routine transportation occupations are in [9000, 9750], Routine
others are in [4700, 6130], Service (manual) occupations are in [3700, 4650],
and Abstract occupations are in [10, 3540].
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Table 2: List of Data Sources

Variable Description blackSource
ỹGij,t0 , x̃

G
ij,t0

, ỹRij,t0 , x̃
R
ij,t0

Trade shares of goods and robots BACI, IFR
x̃Oi,o,t0 Occupation cost shares IPUMS
li,o,t0 Labor shares within occupation JARA, IFR, IPUMS

sGi,t0 , s
V
i,t0
, sRi,t0 Robot expenditure shares BACI, IFR, WIOT

αi,M Intermediate input share WIOT

To estimate the model with workers’ dynamic discrete choice of occupa-
tion, I further use the bilateral occupation flow data following the idea of
Caliendo et al. (2019). Specifically, I have obtained the Annual Social and
Economic Supplement (ASEC) of the CPS since 1976. For each year, I select
all workers with the 2010 occupation code for the current year (OCC2010)
and the last year (OCC10LY) whose age is between 16 and 64 and who are
not institutionalized. I then constructed variables using the same method as
the one used for the Census/ACS above. I assume that the workers do not
flow between 4-digit occupations within the 5 occupation groups defined in
Section 3.2, but do between the 5 groups. I also assume that workers draw a
destination 4-digit occupation from the initial-year occupational employment
distribution within the destination group when switching occupations. With
these data and assumptions, I compute the occupation switching probability
by year.

Data on Initial Shares Used in Simulations I need the data baseline share
since the log-linearized sequential equilibrium solution depends on the initial
steady-state shares. I define t0 = 1992 and take data at the annual frequency.
I consider the world that consists of three countries {USA, JPN,ROW}.
Table 2 summarizes overview of the variable notations, descriptions, and
data sources. I take matrices of trade of goods and robots by BACI data.
As in Acemoglu and Restrepo (2022), I measure robots by HS code 847950
(“Industrial Robots For Multiple Uses”) and approximate the initial year
value by year of 1998, in which the robot HS code is first available.

To obtain the domestic robot absorption data, I take from IFR data the
flow quantity variable and the aggregate price variable for a selected set of
countries. I then multiply these to obtain the USA and JPN robot adoption
values. For robot prices in ROW, I take the simple average of the prices
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Figure 4: Comparison of US Price Indices between JARA and IFR

Note: The author’s calculation of US robot price measures in JARA and IFR. The JARA measures are
disaggregated by 4-digit occupations, and the figure shows the 10th, 50th (median), and 90th percentiles
each year. All measures are normalized in 1999, the year in which the first price measure is available in
the IFR data.

among the set of countries (France, Germany, Italy, South Korea, and the
UK, as well as Japan and the US) for which the price is available in 1999,
the earliest year in which the price data are available. Graetz and Michaels
(2018) discuss prices of robots with the same data source. Figure 4 shows
the comparison of the US price index measure available between JARA and
IFR. The JARA measures are disaggregated by 4-digit occupations. The
figure shows the 10th, 50th (median), and 90th percentiles each year, as in
Figure 11a. All measures are normalized in 1999, the year in which the first
price measure is available in the IFR data. Overall, the JARA price trend
variation tracks the overall price evolution measured by IFR reasonably well:
The long-run trends from 1999 to the late 2010s are similar between the
JARA median price and the IFR price index. During the 2000s, the IFR
price index dropped faster than the JARA data median price. It compares
with the JARA 10th percentile price, possibly due to robotic technological
changes in countries other than Japan in the corresponding period.

I construct occupation cost shares x̃Oi,o,t0 and labor shares within occupa-
tion li,o,t0 as follows. To measure x̃Oi,o,t0 , I aggregate the total wage income of
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Table 3: Baseline Shares by 5 Occupation Group

Occupation Group x̃O1,o,t0 lO1,o,t0 yR2,o,t0 xR1,o,t0 xR2,o,t0 xR3,o,t0
Routine, Production 17.58% 99.81% 64.59% 67.49% 62.45% 67.06%

Routine, Transportation 7.82% 99.93% 12.23% 11.17% 13.09% 11.04%
Routine, Others 28.78% 99.99% 10.88% 9.52% 11.68% 10.40%

Service 39.50% 99.99% 8.87% 8.58% 9.17% 8.32%
Abstract 6.32% 99.97% 3.43% 3.24% 3.60% 3.18%

Note: The author’s calculation of initial-year share variables is shown based on the US Census, IFR, and
JARA. As in the main text, country 1 indicates the US, country 2 Japan, and country 3 the rest of the
world. See the main text for the construction of each variable.

workers that primarily work in each occupation o in year 1990, the Census
year closest to t0. I then take the share of this total compensation measure
for each occupation. To measure li,o,t0 , I take the total compensation as the
total labor cost and a measure of the user cost of robots for each occupation.
The user cost of robots is calculated with the occupation-level robot price
data available in IFR and the set of calibrated parameters in Section 3.1.
Table 3 summarizes these statistics for the aggregated 5 occupation groups
in the US. The cost for production occupations and transportation occupa-
tions comprise 18% and 8% of the US economy, respectively, totaling more
than one-fourth. Furthermore, the share of robot cost in all occupations is
still quite low, with the highest share of 0.19% in production occupations,
revealing still small-scale adoption of robots from the overall US economy.

To calculate the effect on total income, I also need to compute the sales
share of robots by occupations yRi,o,t0 ≡ Y R

i,o,t0
/
∑

o Y
R
i,o,t0

and the absorption
share xRi,o,t0 ≡ XR

i,o,t0
/
∑

oX
R
i,o,t0

. To obtain yRi,o,t0 , I compute the share of
robots by occupations produced in Japan yR2,o,t0 = Y R

2,o,t0
/
∑

o Y
R
2,o,t0

and as-
sume the same distribution for other countries due to the data limitation:
yRi,o,t0 = yR2,o,t0 for all i. To have xRi,o,t0 , I compute the occupational robot adop-
tion in each country by XR

i,o,t0
= PR

i,t0
QR
i,o,t0

, where QR
i,o,t0

is the occupation-
level robot quantity obtained by the O*NET concordance generated in Sec-
tion 3.3 applied to the IFR application classification. As mentioned above,
the robot price index PR

i,t0
is available for a selected set of countries. To com-

pute the rest-of-the-world price index PR
3,t0

, I take the average of all available
countries weighted by the occupational robot values each year. The summary
table for these variables yRi,o,t0 and xRi,o,t0 at 5 occupation groups are shown
in Table 3. All values in Table 3 are obtained by aggregating 4-digit-level
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Table 4: 1990 Occupation Group Switching Probability

Routine Service AbstractProduction Transportation Others

Routine
Production 0.961 0.011 0.010 0.006 0.012
Transportation 0.020 0.926 0.020 0.008 0.025
Others 0.005 0.006 0.955 0.020 0.014

Service 0.003 0.002 0.020 0.967 0.007
Abstract 0.014 0.014 0.036 0.015 0.922

Note: The author’s calculation from the CPS-ASEC 1990 data is shown. The conditional switching
probability to the column occupation group is conditional on being in each row occupation.

occupations.
I take the intermediate input share αi,M , from World Input-Output Ta-

bles (WIOT). I combine the trade matrix generated above and WIOT to
construct the good and robot expenditure shares sGi,t0 , sVi,t0 , and sRi,t0 . Specif-
ically, with the robot trade matrix, I take the total sales value by summing
across importers for each exporter and the total absorption value by summing
across exporters for each importers. I also obtain the total good absorption
by WIOT. From these total values, I compute expenditure shares.

As initial year occupation switching probabilities µi,oo′,t0 , I take the 1990
flow Markov transition matrix from the cleaned CPS-ASEC data created in
A.2. Table 4 shows this initial-year conditional switching probability. The
matrix for the other years is available upon request. occupation employment
data across the world are hard to obtain. Therefore, I assign the same flow
probabilities for other countries in my estimation strategy.

A.3 Trends of Robot Stocks and Prices
Figure 5 shows the US robot trends at the occupation level. In the left
panel, I show the trend of raw stock, which reveals the following two facts.
Firstly, it shows that the overall robot stocks increased rapidly in the period,
as found in the previous literature. Second, the panel also depicts that the
increase occurred at different speeds across occupations. To highlight such a
difference, I plot the normalized trend at 100 in the initial year in the right
panel. There is significant heterogeneity in the growth rates, ranging from a
factor of one to eight. Next, Figure 5b shows the trend of prices of robots in
the US for each occupation. In addition to the overall decreasing trend, there
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Figure 5: Trends of Japanese Robot Use at the US Occupation Level

(a) Stock (b) Prices

Note: The left panel shows the trend of stocks of robots in the US for each occupation, normalized at 100
in 1992. The right panel shows the trend of robot prices in the US for each occupation. In both panels,
I highlight two occupations. “Welding” corresponds to the occupation code in IPUMS USA, OCC2010
= 8140 “Welding, Soldering, and Brazing Workers.” “Material Handling” corresponds to the occupation
code OCC2010 = 9620 “Laborers and Freight, Stock, and Material Movers, Hand.” Years are aggregated
into five-year bins (with the last bin 2012-2017 being a six-year one) to smooth out yearly noises.

is significant heterogeneity in the pattern of price falls across occupations.
The price patterns are strongly correlated across countries, with a correlation
coefficient of 0.968 between the US and non-US prices at the occupation-year
level. Motivated by this finding, I use the prices of non-US countries as the
Japan robot shock (JRS) to the US in the reduced-form analysis.

To further emphasize the trend heterogeneity, the following two occupa-
tions are colored: “Welding, Soldering, and Brazing Workers” (or “Welding”)
and “Laborers and Freight, Stock, and Material Movers, Hand” (or “Mate-
rial Handling”) in these two figures. A spot welding robot is an example of
a robot in routine-production occupations, while a material-handling robot
is in transportation (material-moving) occupations. On the one hand, the
stock of welding robots grew throughout the period in the left panel, and
their average price dropped during the 1990s. On the other hand, material
handling robot stock grew rapidly, and its price increased over the sample
period in the sample period. These findings indicate the difference in au-
tomation shock realization; Robots like welding robots followed a standard
pattern of demand quantity expansion along the demand curve, while other
robots like material handling robots expanded their adoption even though
the average price increased, indicating the role of the automation shock in
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the model section.
In Figure 5b, one might find an anomaly increasing trend during 2007-

2011. This pattern emerges because, during the Great Recession period, the
total units decreased more than the total sales. After the Great Recession,
both the growth of sales and units of robots accelerated. These observations
suggest a structural break in the robot industry during the Great Recession,
which is out of the scope of the paper.

A.4 Trade of Industrial Robots
To compute the trade shares of industrial robots, I combine BACI and IFR
data. In particular, I use the HS code 847950 (“Industrial Robots For Mul-
tiple Uses”) to measure the robots, following (Humlum, 2021; Acemoglu and
Restrepo, 2022). I use 1998 as the initial year value, as 1998 is the first
year when the HS code 847950 is available. To calculate the total absorption
value of robots in each country, I use the IFR data’s robot units (quanti-
ties), combined with the price indices of robots released by IFR’s annual
reports for selected countries (Graetz and Michaels, 2018). Note that these
price indices do not give disaggregation by robot tasks or occupations, high-
lighting the value added made by the JARA data. Figure 6 the pattern of
international trade of international robots. In the left panel, I compute the
import-absorption ratio. To remove the noise due to yearly observations and
focus on a long-run trend, I aggregated the data by five-year bins: 2001-2005
and 2011-2015. The result indicates that many countries import robots as
opposed to producing them in their own countries. Japan’s low import ratio
is outstanding, revealing that its comparative advantage in this area. It is
noteworthy that China gradually domesticated the production of robots over
the sample period. Another way to grasp the comparative advantage of the
robot industry is to examine the share of exports as in the right panel of
Figure 6. Half of the world’s robot market was dominated by the EU and
one-third by Japan in 2001-2005. The rest 20% is shared by the rest of the
world, mostly by the US and South Korea.

Figure 7 shows the trend of export and import shares of robots for the US,
Japan, and the Rest Of the World. The trends are fairly stable for the three
regions of the world, except that the import share of the US has declined
relative to the ROW.
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Figure 6: Trade of Industrial Robots

(a) Robot Import-Absorption Ratio (b) World Robot Export Share, 2001-
2005

Note: The author’s calculation from the IFR, and BACI data. The left panel shows the fraction of imports
in the total absorption value. The import value is computed by aggregating trade values across the origin
country in the BACI data (HS-1996 code 847950), and the absorption value is computed by the price
index and the quantity variable available for selected countries in the IFR data. The data are five-year
aggregated in 2001-2005 and 2011-2015, and countries are sorted according to the import shares in 2001-
2005 in descending order. The right panel shows the export share for 2001-2005 aggregates obtained from
the BACI data.

Figure 7: Robot Trade Share Trends

(a) Exports (b) Imports

Note: The author’s calculation of world trade shares is shown based on the BACI data. Industrial robots
are measured by HS code 847950 (Industrial robots for multiple uses).

Robots from Japan in the US, Europe, and the Rest of the World To
compare the pattern of robot adoption internationally, I generate the growth
rates of stock of robots between 1992 and 2017 at the occupation level for
each group of destination countries. The groups are the US, the non-US (all
countries excluding the US and Japan), and five European countries (or “EU-
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Figure 8: Growth Rates of Robots at the Occupation Level

(a) Comparison between the US and non-
US

(b) Comparison between the US and EU-
5

Note: The author’s calculation based on JARA, and O*NET. The left panel shows the correlation between
occupation-level growth rates of robot stock quantities from Japan to the US and the growth rates of the
quantities to the non-US countries. The right one shows the correlation between growth rates of the
quantities to the US and EU-5 countries. Non-US are the aggregate of all countries excluding the US and
Japan. EU-5 are the aggregate of Denmark, France, Finland, Italy, and Sweden used in Acemoglu and
Restrepo (2020). Each bubble shows an occupation. The bubble size reflects the stock of robot in the US
in the baseline year, 1992. See the main text for the detail of the method to create the variables.

5”), Denmark, Finland, France, Italy, and Sweden used in AR. The perpetual
inventory method with depreciation rate of δ = 0.1 is used to calculate the
stock of robots, following Graetz and Michaels (2018).

Figure 8 shows scatterplots of the growth rates at the occupation level.
The left panel shows the growth rates in the US on the horizontal axis and
the ones in non-US countries on the vertical axis. The right panel shows
the same measures on the horizontal axis, but the growth rates in the set
of EU-5 countries on the vertical axis. These panels show that the stocks of
robots at the occupation level grow (1992-2017) between the US and non-US
proportionately relative to those between the US and EU-5. This finding
is in contrast to AR, who find that the US aggregate robot stocks grew
at a roughly similar rate as those did in EU-5. It also indicates that non-
US growth patterns reflect growths of robotics technology at the occupation
level available in the US. I will use these patterns as the proxy for robotics
technology available in the US. In Section 2 and on, I take a further step
and solve for the robot adoption quantity and values in non-US countries in
general equilibrium including the US and non-US countries.

A potential reason for the difference between my finding and AR’s is the
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difference in data sources. In contrast to the JARA data I use, AR use IFR
data that include all robot seller countries. Since EU-5 is closer to major
robot producer countries other than Japan, including Germany, the robot
adoption pattern across occupations may be influenced by their presence. If
these close producers have a comparative advantage in producing robots for
a specific occupation, then EU-5 may adopt the robots for such occupations
intensively from close producers. In contrast, countries out of EU-5, including
the US, may not benefit the closeness to these producers. Thus they are more
likely to purchase robots from far producers from EU-5, such as Japan.

A.5 Details in Application-Occupation Matching
Details of the application-occupation matching are discussed. First, I access
O*NET Code Connector (https://www.onetcodeconnector.org/) and web-
scraped search results in the following way. For each robot application title
listed in Section A.1, I search for matches on the webpage and record all occu-
pation codes, names, and match scores. Then, I append the result files across
all applications, which is called the match score file. At this stage, since the
mounting and measurement/inspection/test robots have overall poor match-
ing quality, I dropped them from the data. Second, I merge the match score
file and the JARA data at the application level and take the weighted aver-
age of robot sales values and quantities with the weight of the score, as in
equation (9).

For example, consider spot welding and material handling robots. First,
spot welding is the task of combining two or more metal sheets into one by
applying heat and pressure to a small area called a spot. O*NET-SOC Code
51-4121.06 has the title “Welders, Cutters, and Welder Fitters” (“Welders”
below). These suggest that spot welding robots and welders perform the
same welding task. Second, material handling is a short-distance movement
of heavy materials, another primary robot application. ONET-SOC Code
53-7062.00 has the title “Laborers and Freight, Stock, and Material Movers,
Hand” (“Material Handler” below). Again, both material handling robots
and material handlers perform the material handling task. Figure 9 shows
the top-5 match scores for spot welding and material handling, with these
two occupations at the top of the match score ranking, respectively.

Hard-cut Matching of Applications and Occupations Although match-
ing between applications and occupations based on equation (9) is transpar-
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Figure 9: Examples of Match Scores

(a) Spot Welding (b) Material Handling
Note: The author’s calculation from the search result of O*NET Code Connector. The bars indicate
match scores for the search query term “Spot Welding” in the left panel and “Material Handling” in the
right panel. Occupations codes are 2010 O*NET SOC codes. In each panel, occupations are sorted in a
descending way with the relative relevance scores, and the top 5 occupations are shown.

ent in a completely automatic way instead of using the researcher’s judgment,
one may be concerned that such a matching method may potentially contain
erroneous matching due to noise in the text description in occupation dictio-
nary. For example, Figure 9 reveals a case in which spot welding robots are
matched to “Laundry and Dry-cleaning Workers” with a high score. This is
primarily because the textual description for these workers includes “Apply
bleaching powders to spots and spray them with steam to remove stains from
fabrics...,” which has a high matching score with the term “spot.”

In order to mitigate this concern, I examine a manual hard-cut match-
ing between applications and occupations. To be more specific, I drop all
application-occupation matching with a matching score of 75 or below to
exclude problematic matches while including enough data variation. I then
construct the matching score following equation (9) conditional on remain-
ing pairs and compute robot quantity and price variables. Figure 10 shows
the result of regression specification (53) using these measures. The esti-
mated coefficients are somewhat larger than the ones with the preferred data
matching procedure primarily because, in the hard-cut matching, erroneous
matches that potentially contain noises are removed. The statistical signifi-
cance remains in all columns.
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Figure 10: Wage and Robot Prices with a Hard-cut Matching Method

Note: The figure shows the relationship between the Japan Robot Shock based on the application-level
robot measures matched to occupations using the hard-cut method described in the main text (horizontal
axis) and changes in log wage (vertical axis). The sample includes all occupations that existed between
1970 and 2007; bubble sizes reflect the employment in the baseline year, and the number of observations
is 324. All variables are partialled out by control variables (the occupational female share, college share,
age distribution, foreign born share, and the China shock in equation (15)).

A.6 Potential Methods for Adjusting the Robot Prices
In the paper, I use the general equilibrium model to control for the quality
component of robot prices. However, there are other methods proposed in
the literature involving the measurement of the price of capital goods. In
this subsection, I briefly describe these methods and their limitations.

The first approach is to control for the quality change by the hedonic
approach used in, among others, the application to digital capital in Tambe
et al. (2019). The hedonic approach requires detailed information about the
detailed specifications of each robot. Unfortunately, it is difficult to keep
track of the detailed specifications of commonly used robots as the robotics
industry is rapidly changing.

The second method is a more data-driven one. Specifically, the Bank
of Japan (BoJ) provides the quality-controlled price index. Unfortunately,
the method is not clearly declared in the BoJ technical documentation. It is
claimed to be a “cost-evaluation method,” in which the BoJ asks producer
firms to measure the component of quality upgrading for price changes be-
tween periods. As I do not know the surveyed firms and quality components,
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obtaining the quality measures is challenging for me.

B Reduced-form Analysis
First, I convert the JRS variable at the O*NET-SOC 4-digit occupation level
to the ones at the OCC2010 occupation level to match the labor market mea-
sures from the US Census, American Community Survey (ACS), retrieved
from the Integrated Public Use Microdata Series (IPUMS) USA. These la-
bor data are standard in the literature, and their description is relegated to
Appendix A.2. With all these data combined, I show stylized facts about
the JRS and its relation to the labor market outcome in the US.

B.1 Trends of the Japan Robot Shock
Figure 11a plots the distribution (10th, 50th, and 90th percentile) of the
growth rates of the nominal price of Japanese robots in the US each year
relative to the initial year. The figure shows two patterns: (i) the robot
prices follow an overall decreasing trend, with a median growth rate of -17%
from 1992 to 2007, or -1.1% annually, and (ii) there is significant hetero-
geneity in the rate of price decline across occupations. Specifically, the 10th
percentile occupation experienced -34% growth (-2.8% per annum), while in
the 90th percentile occupation, the price changed little in the sample period.
This price drop is consistent with the trend of decreasing prices of general
investment goods since 1980; Karabarbounis and Neiman (2014) report a
10% decrease per decade.

Figure 11b shows the distribution of the long-run trend (1992-2007) for
each occupation group: routine, service (or manual), and abstract. Rou-
tine is further divided into production, transportation, and others to reflect
the rapid adoption of robots in production and transportation occupations.
The figure confirms a significant price variation across occupations, and that
variation is observed even within occupation groups. Perhaps surprisingly,
the average change in production robot prices is not as large as other robots
but is slightly positive. This indicates that the robotics technology change
in production occupations is not reflected by the price decline but by the
quality improvement, so the unit value rises. Furthermore, the figure also
shows the variation in JRS, or ψJi,t1 , in equation (10). The large variation
of the changes in prices by occupations persists even after controlling for
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Figure 11: Distribution of the Robot Prices and Japan Robot Shock

(a) Robot Prices in the US (b) Variation in the Japan Robot Shock

Note: The left panel shows the trend of nominal prices of robots in the US by occupations, pRUSA,o,t.
The bold and dark line shows the median price in each year, and the two thin and light lines are the
10th and 90th percentile. Three-year moving averages are taken to smooth out yearly noises. The right
panel shows the mean and standard deviation of long-run (1992-2007) raw price decline (“Raw”) and
Japan Robot Shock measured by the fixed effect ψC

o,t1
in equation (10) (“JRS”). The occupation group is

routine, service (manual), and abstract, where routine is further divided into production, transportation,
and other.

the destination-year fixed effect ψDi,t. It also confirms that after controlling
for US demand shocks, the cost of Japanese robots is strongly decreasing,
especially in the production occupation. In the following, I will use this cost
variation to study the impact on the labor market and estimate the elasticity
of substitution between robots and workers.

B.2 The Effects of the Japan Robot Shock on US Oc-
cupations

Since the labor demand may be affected by trade liberalization, notably the
China shock in my sample period, I control for the occupational China shock
by the method developed by Autor et al. (2013). Namely, I compute

IPWo,t ≡
∑
s

ls,o,t0∆m
C
s,t, (15)

where ls,o,t0 is sector-s share of employment for occupation o, and ∆mC
s,t

is the per-worker Chinese export growth to non-US developed countries.18

18Specifically, following Autor et al. (2013), I take eight countries: Australia, Denmark,
Finland, Germany, Japan, New Zealand, Spain, and Switzerland. Appendix A.2 shows
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Intuitively, an occupation receives a large trade shock if sectors that face in-
creased import competition from China intensively employ the corresponding
occupation. With this trade shock measure in the control variable, I run re-
gression (53).

In Figure 12a, the left panel shows the correlation between the JRS and
US baseline wages in 1990 at the occupation level. I find that there are
no systematic relationships between these variables. This indicates that the
JRS did not necessarily trigger wage inequality expansion during the 1990s
and 2000s. Next, the middle panel shows the result of estimation equation
(53) in a scatterplot. It reveals that a 10% reduction of Japanese robot
prices decreases US occupational wages by 1.2%. Therefore, the JRS did
have an adverse effect on US occupations, suggesting substituting labor for
robots. Finally, total expenditures on robots quantitatively affect the de-
mand for labor in each occupation, conditional on robot prices. The right
panel shows the relationship between the change in robot expenditures and
wages, suggesting negative impacts on wages also operate through the ex-
penditure margin. This result also indicates the substitutability of labor due
to robot penetration at the occupation level.

the distribution of occupational employment ls,o,t0 for each sector.
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Figure 12: The Japan Robot Shock and US Occupational Wages

(a) Japan Robot Shock and Baseline
Wage

(b) Changes in Wage and Robot
Prices

(c) Changes in Wage and Robot Ex-
penditure

Note: The left panel shows the scatterplot, weighted fit line, and the 95 percent confidence interval of the baseline (1990) US log wage (horizontal
axis) and the Japan Robot Shock in equation (10) (vertical axis) at the 4-digit occupation level. The middle panel shows the relationship between the
Japan Robot Shock (horizontal axis) and changes in log wage (vertical axis). The right panel shows the relationship between the log total expenditure
on Japanese robots in non-US countries (horizontal axis) and changes in log wage (vertical axis). In all panels, the sample is all occupations that
existed between 1970 and 2007, bubble sizes reflect the employment in the baseline year, and the number of observations is 324. In the middle and
right panel, variables are residualized by control variables (the occupational female share, college share, age distribution, foreign-born share, and the
China shock in equation (15)).
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Table 5: The heterogeneous effects of the Japan robot shock on US occupations

(1)
VARIABLES ∆ln(wage)

(−ψJ) × Routine, production -0.627***
(0.112)

(−ψJ) × Routine, transportation -0.738***
(0.0624)

(−ψJ) × Routine, others 0.00770
(0.0536)

(−ψJ) × Service -0.0639
(0.107)

(−ψJ) × Abstract 0.00693
(0.0789)

Observations 324
R-squared 0.462

Note: The table shows the coefficients in regression (53) with allowing the coefficient α1 to vary across
occupation groups. Observations are 4-digit level occupations, and the sample includes all occupations
that existed between 1970 and 2007. ψJ stands for the JRS from equation (10). Control variables of
the female share, the college-graduate share, the age distribution (shares of age 16-34, 35-49, and 50-64
among workers aged 16-64), the foreign-born share as of 1990, and the China shock in equation (15), are
included. Standard errors are clustered at the 2-digit occupation level. *** p<0.01, ** p<0.05, * p<0.1.

Next, Table 5 shows the result of regression (53) with allowing the co-
efficient α1 to vary across occupation groups defined above. I find the neg-
ative effects in routine production and routine transportation occupations.
Therefore, it demonstrates the heterogeneity in the impact across occupation
groups. This finding motivates me to consider the group-specific elasticity of
substitution between robots and workers.

Again, the novelty of these findings lies in the use of robot cost reduc-
tion at the occupation level. Therefore, I will show additional results that
complement the findings. Table 6 shows the results of regression (53) using
several alternative outcome periods and robot measures on the right-hand
side. Panel A takes the wage change between 1990-2007, the main period,
while Panel B takes the change between 1970-1990, the pre-sample period.
In each panel, columns differ by two dimensions: (i) the robot measure, out
of the robot stock in the US and other countries (non-US) and the robot
price in the US and other countries, and (ii) whether the regressions include
control variables of demographic variables and the China trade shock.

48



Table 6: Regression of Wages on Robot Measures

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES dln_wage dln_wage dln_wage dln_wage dln_wage dln_wage dln_wage dln_wage

A. 1990-2007
Robot Measure -0.169 -0.196 -0.180 -0.171 -0.0399 -0.0798 -0.210 -0.206

(0.0395) (0.0398) (0.0460) (0.0463) (0.0399) (0.0346) (0.0601) (0.0458)
R-squared 0.066 0.283 0.055 0.245 0.005 0.214 0.093 0.284

B. 1970-1990
Robot Measure 0.00691 0.00772 -0.00388 0.00142 0.00699 -0.00480 0.00866 0.0189

(0.0262) (0.0233) (0.0306) (0.0269) (0.0236) (0.0244) (0.0286) (0.0240)
R-squared 0.000 0.079 0.000 0.079 0.000 0.079 0.000 0.081
Robot Measure US Stock US Stock - US Price - US Price Non-US Stock Non-US Stock - Non-US Price - Non-US Price
Controls No Yes No Yes No Yes No Yes
Observations 324 324 324 324 324 324 324 324

Note: The author’s calculation based on JARA, O*NET, and US Census/ACS. Observations are 4-digit level occupations, and the sample is all
occupations that existed between 1970 and 2007. Panel A takes the wage change between 1990-2007, the main period, while Panel B takes the change
between 1970-1990, the pre-sample period. The regressors are robot stock in the US (columns 1 and 2), robot stock in non-US countries (columns 3
and 4), robot price in the US (columns 5 and 6), or robot price in non-US countries (columns 7 and 8). Control variables are demographic variables
(the female share, the college-graduate share, the share of age 16-34, 35-49, and 50-64 among workers aged 16-64, and the foreign-born share as of
1990), and the China trade shock defined in equation (15). Bootstrapped standard errors are reported in parentheses.
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Table 7: The heterogeneous effects of the Japan robot shock on US occupations

(1)
VARIABLES ∆ln(emp)

(−ψJ) × Routine, others -0.657***
(0.229)

(−ψJ) × Routine, transportation -0.258
(0.180)

(−ψJ) × Routine, production -0.0651
(0.143)

(−ψJ) × Service -0.126
(0.227)

(−ψJ) × Abstract -0.342
(0.256)

Observations 324
R-squared 0.126

Note: The table shows the coefficients in regression (53) with allowing the coefficient α1 to vary across
occupation groups, with the outcome variable of the long difference of log employment from 1990 to
2007. Observations are 4-digit level occupations, and the sample includes all occupations that existed
throughout 1970 and 2007. ψJ stands for the Japan robot shock from equation (10). Control variables of
the female share, the college-graduate share, the age distribution (shares of age 16-34, 35-49, and 50-64
among workers aged 16-64), the foreign-born share as of 1990, and the China shock in equation (15), are
included. Standard errors are clustered at the 2-digit occupation level. *** p<0.01, ** p<0.05, * p<0.1.

Table 7 shows the regression result of 53 with the outcome variable of
employment. I find a qualitatively similar pattern in the sense that employ-
ment in a subset of the routine occupation group (production workers) is
reduced in the occupations that experienced the JRS. In contrast, I do not
find a statistically significant point estimate for transportation workers.

Furthermore, to address a concern that the US is a large country that
affects robot prices more directly, I confirm that the effect of the robot price
reduction on labor demand is also observed in a small-open economy as well
in Appendix B.3.

Although these data patterns and regressions are informative about the
substitutability of robots, they do not definitively give answers to the value
of the substitution parameter or the distributional and aggregate effect of
robotization. First, the observed JRS may reflect the quality upgrading of
robots, meaning the quality-adjusted robot cost reduction might be even
more drastic. Second, changes in labor demand for one occupation following
the shock can have a bearing on wages and employment in other occupations
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by changing their marginal products. Third, coefficients in equation (53)
reveal the relative effect of the JRS but not the real wage impact. I develop
and estimate a general equilibrium model to overcome these issues in the
main text.

B.3 Validation Exercise in a Small Country
One concern of my reduced-form analysis is that the US is a large buyer
of robots, and thus, its demand may influence the price. To mitigate this,
I will conduct a robustness exercise using data from a small country that
is unlikely to affect the world price of robots. Specifically, I use data from
the Netherlands as a case since it is the largest exporting destination of
Japanese robots in Europe, following Germany, the UK, Italy, and France,
and yet a small-open economy at the same time. The data are taken from the
IPUMS international and provide the ISCO 1-digit level occupation indicator
in the years 2001 and 2011. I aggregate the occupational robot prices at the
same level and examine the relationship between the JRS and occupational
employment growth. Since the wage variable is not available in the IPUMS
international, I use the employment variable to proxy the labor demand
changes. Figure 13 summarizes the results. Despite a significant difference
in context and the level of data aggregation, I find a significant negative
relationship between these two variables. This exercise suggests that the
reduction of the price of Japanese robots, which is likely to hit small-open
economies exogenously, reduces the labor demand in the Netherlands.

B.4 The Effect of Robots from Japan and Other Coun-
tries

A potential concern for my empirical setting is a selection issue regarding the
robot source country. Specifically, robots from Japan may differ from those
from other countries, so the labor market implications may also differ between
them. Unfortunately, it is hard to directly compare the effects of these two
different groups of robots due to the data limitation, so I will focus on the
best comparable measures of robotization between Japan-sourced robots and
robots from all countries, which is the quantity of robot stock. Namely, I
take the total stock of robot quantity in the US from the IFR data. The IFR
data only has the total number, and they do not specify the source country. I
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Figure 13: The Effect of Japan Robot Shock in the Netherlands
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Note: The bubble plot and fitted line between the Netherlands occupational growth and the Japan robot
shock are shown. The period is from 2001 to 2011. The size of the bubble reflects the initial period size
of employment. The occupations are aggregated to the ISCO 1-digit level. The shade indicates the 95%
confidence interval.

then convert the IFR application codes to the JARA application codes to use
the allocation rule to match the JARA application codes and the occupation
codes. As a result, I obtained the robots used in the US that are sourced from
any country at the occupation level. I then run the following regression using
the obtained robot measures and my preferred measure from the JARA:

∆Yo = βQ∆KR,Q
o +Xoγ

Q + εQo , (16)

where ∆Yo is the changes in wages at the occupation-o level, ∆KQ
o is the

measure of the number of robots taken either from JARA (i.e., robots from
Japan) or IFR (i.e., robots from the world), and εQo is the error term. The
coefficient of interest is βQ, which gives me an insight into the correlation
between the changes in labor market outcomes and the changes in robot
quantity, depending on whether the robots are sourced from Japan. Specifi-
cally, if robots from Japan may substitute workers stronger than robots from
the other countries, coefficient βQ is expected to be larger when I use the
JARA robot measure than IFR.

Table 8 shows the regression result of equation (16). The IFR data result
aligns with the previous findings by Acemoglu and Restrepo (2020). Table
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Table 8: Regression Result of Labor Market Outcome on JARA and IFR Robot
Stocks

(1) (2) (3) (4)
VARIABLES ∆ln(w) ∆ ln(w) ∆ ln(w) ∆ ln(w)

∆ ln(KR,Q
JPN→USA) -0.372 -0.271

(0.0466) (0.0304)
∆ln(KR,Q

USA) -0.144 -0.111
(0.0300) (0.0185)

Observations 324 324 324 324
R-squared 0.307 0.200 0.349 0.262
Controls ✓ ✓

Note: Regression results of the changes in occupational wage are shown. Observations are 4-digit level
occupations, and the regression is between 1990 and 2007 with the sample of all occupations that existed
between 1970 and 2007. Columns 1 and 3 take robot measures from Japan from JARA data, while columns
2 and 4 take robot measures from the world from IFR data as explained in the main text. Columns 1 and
2 do not include the control variables of demographic variables (female share, age distribution, college-
graduate share, and foreign-born share) and China trade shock in equation (15), while columns 3 and 4
do. Heteroskedasticity-robust standard errors are reported in the parenthesis.

8 reveals that both the JARA- and IFR-based robot measures capture the
substitution of workers with robots, although the coefficient is somewhat
stronger for JARA robot measures than for IFR.

C Theory Appendix
C.1 The Full Model
The full model used for structural estimation extends the one in the model
section with worker dynamics, intermediate goods and non-robot capital.

Workers’ Problem I formalize the assumptions behind the derivation and
show equations (19) and (20). Workers are immobile across countries but
choose an occupation by solving a dynamic discrete choice problem (Hum-
lum, 2021). Specifically, workers choose the occupations that maximize the
lifetime utility based on switching costs and the draw of an idiosyncratic
shock. The problem has a closed-form solution when the shock follows an
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extreme value distribution, which is the property that the previous literature
utilized (e.g., Caliendo et al. (2019)).

Fix country i and period t. There is a mass Li,t of workers. In the begin-
ning of each period, worker ω ∈

[
0, Li,t

]
draws a multiplicative idiosyncratic

preference shock {Zi,o,t (ω)}o that follows an independent Fréchet distribution
with scale parameter AVi,o,t and shape parameter 1/ϕ. To keep the expres-
sion simple, I focus on the case of independent distribution. A worker ω
then works in the current occupation, earns income, consumes and derives
logarithmic utility, and then chooses the next period’s occupation with the
discount rate ι. When choosing the next period occupation o′, she pays an
ad-valorem switching cost χi,oo′,t in terms of consumption unit that depends
on current occupation o. She consumes her income in each period. Thus,
worker ω who currently works in occupation ot maximizes the following ob-
jective function over the future stream of utilities by choosing occupations
{os}∞s=t+1:

Et

∞∑
s=t

(
1

1 + ι

)s−t [
ln (Ci,os,s) + ln

(
1− χi,osos+1,s

)
+ ln

(
Zi,os+1,s (ω)

)]
(17)

where Ci,o,s is a consumption bundle when working in occupation o in period
s ≥ t, and Et is the expectation conditional on the value of Zi,ot,t (ω). Each
worker owns occupation-specific labor endowment li,o,t. I assume that her
income is comprised of labor income wi,o,t and occupation-specific ad-valorem
government transfer with the rate Ti,o,t. Given the consumption price PG

i,t,
the budget constraint is

PG
i,tCi,o,t = wi,o,tli,o,t (1 + Ti,o,t) (18)

for any worker, with PG
i,t being the price index of the non-robot good G.

Following the similar derivation as Caliendo et al. (2019), equations (17)
and (18) imply worker’s optimization conditions that can be characterized
by, for each country i and period t, the transition probability µi,oo′,t from
occupation o in period t to occupation o′ in period t+1, and the exponential
expected value Vi,o,t for occupation o that satisfy

µi,oo′,t =

(
(1− χi,oo′,t) (Vi,o′,t+1)

1
1+ι

)ϕ
∑

o′′

(
(1− χi,oo′′,t) (Vi,o′′,t+1)

1
1+ι

)ϕ , (19)
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Vi,o,t = Γ̃Ci,o,t

[∑
o′

(
(1− χi,oo′,t) (Vi,o′,t+1)

1
1+ι

)ϕ] 1
ϕ

, (20)

respectively, where Ci,o,t+1 is the real consumption, χi,oo′,t is an ad-valorem
switching cost from occupation o to o′, ϕ is the occupation-switch elasticity,
Γ̃ ≡ Γ (1− 1/ϕ) is a constant that depends on the Gamma function Γ (·).
For each i and t, employment level satisfies the law of motion

Li,o,t+1 =
∑
o′

µi,o′o,tLi,o′,t. (21)

Non-robot Good Producers’ Problem The producer’s problem is made
of two tiers–static optimization about labor input in each occupation and
dynamic optimization about robot investment. The static part is to choose
employment conditional on market prices and the current stock of robot
capital. Namely, for each i and t, conditional on the o-vector of the stock of
robot capital

{
KR
i,o,t

}
o
, producers solve

πi,t

({
KR
i,o,t

}
o

)
≡ max

{Li,o,t}o
pGi,tY

G
i,t −

∑
o

wi,o,tLi,o,t, (22)

where Y G
i,t is given by the production function (1).

The dynamic optimization problem is about choosing the quantity of new
robots to purchase or the size of the robot investment, given the current stock
of robot capital. It is derived from the following three assumptions. First,
for each i, o, and t, robot capital KR

i,o,t accumulates according to

KR
i,o,t+1 = (1− δ)KR

i,o,t +QR
i,o,t, (23)

where QR
i,o,t is the amount of new robot investment and δ is the depreciation

rate of robots. Second, I assume that the new investment is given by a CES
aggregation of robot hardware from the country l, QR

li,o,t, and the non-robot
good input I inti,o,t that represents the input of software and integration or

QR
i,o,t =

[∑
l

(
QR
li,o,t

) εR−1

εR

] εR

εR−1
αR (

I inti,o,t

)1−αR

(24)

where l denotes the origin of the newly purchased robots, and αR is the
expenditure share of robot arms in the cost of investment. Discussions about
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the functional form choice of equation (24) are made in Appendix A.1. Third,
installing robots is costly and requires a per-unit convex adjustment cost
γQR

i,o,t/K
R
i,o,t measured in units of robots, where γ governs the size of the

adjustment cost (e.g., Cooper and Haltiwanger, 2006), which reflects the
complexity and sluggishness of robot adoption.

Given these assumptions, a producer of non-robot good G in a country i
solves the dynamic optimization problem

max{{QR
li,o,t}l

,Iint
i,o,t}o

∑∞
t=0

(
1

1+ι

)t [
πi,t

({
KR
i,o,t

}
o

)
−
∑

o

(∑
l p
R
li,o,t (1 + uli,t)Q

R
li,o,t + PG

i,tI
int
i,o,t + γPR

i,o,tQ
R
i,o,t

QR
i,o,t

KR
i,o,t

)]
,

(25)

subject to accumulation equations (23) and (24), and given
{
KR
i,o,0

}
o
. A

standard Lagrangian multiplier method yields Euler equations for invest-
ment, which I derive in Appendix C.2. Note that the Lagrange multiplier
λRi,o,t represents the equilibrium marginal value of robot capital.

Intermediate Good Producers’ Problem The intermediate goods are the
same goods as the non-robot goods, but are an input to the production func-
tion. The stock of non-robot capital is exogenously given in each period for
each country, and producers rent non-robot capital from the rental market.
The non-robot good production function is given by

Y G
i,t = AGi,t

{
αi,L

(
TOi,t
)ϑ−1

ϑ + αi,M (Mi,t)
ϑ−1
ϑ + αi,K (Ki,t)

ϑ−1
ϑ

} ϑ
ϑ−1

,

where ϑ is the elasticity of substitution between occupation aggregates, in-
termediates goods, and non-robot capital, and αi,L, αi,M , and αi,K ≡ 1 −
αi,L − αi,M are cost share parameters for the occupation aggregates, inter-
mediates, and non-robot capital, respectively. Parameters satisfy ϑ > 0 and
αi,L, αi,M , αi,K > 0, and in the structural estimation, I set ϑ = 1 and compute
each country’s cost share parameters from the data. Intermediate goods are
aggregated by

Mi,t =

[∑
l

(Mli,t)
ε−1
ε

] ε
ε−1

, (26)

where ε > 0 is the elasticity of substitution. Since intermediate goods are
traded across countries and aggregated by equation (26), the elasticity pa-
rameter ε plays the role of the trade elasticity. The static decision of the
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producers now includes the rental amount of non-robot capital and the pur-
chase of intermediate goods from each source country.

Equilibrium To close the model, the employment level must satisfy an
adding-up constraint ∑

o

Li,o,t = Li,t, (27)

and market clearing conditions for robots and non-robot goods must hold.
There is one numeraire good to pin down the price system. I first define
a temporary equilibrium in each period and then a sequential equilibrium,
which leads to the definition of a steady state. The detailed expressions are
in Appendix C.2.

I define the bold symbols as column vectors of robot capital KR
t ≡[

KR
i,o,t

]
i,o
, marginal values of robot capital λRt ≡

[
λRi,o,t

]
i,o
, employment Lt ≡

[Li,o,t]i,o, workers’ value functions V t ≡ [Vi,o,t]i,o, non-robot goods prices
pGt ≡

[
pGi,t
]
i
, robot prices pRt ≡

[
pRi,o,t

]
i,o
, wages, wt ≡ [wi,o,t]i,o, bilateral

non-robot goods trade levels QG
t ≡

[
QG
ij,t

]
i,j
, bilateral non-robot goods trade

levels QR
t ≡

[
QR
ij,o,t

]
i,j,o

, and occupation transition shares µt ≡ [µi,oo′,t]i,oo′ ,
where V t and µt are explained in detail in Appendix C.1. I write St ≡[
KR′

t ,λ
R′

t ,L
′
t,V

′
t

]′
as state variables.

Definition 1. In each period t, given state variables St, a temporary equi-
librium (TE) xt is the set of prices pt ≡

[
pG

′
t ,p

R′
t ,w

′
t

]′ and flow quantities
Qt ≡

[
QG′

t ,Q
R′

t ,µ
′
t

]
that satisfy: (i) given pt, workers choose occupation

optimally by equation (19), (ii) given pt, producers maximize flow profit by
equation (22) and demand robots by equation (33), and (iii) markets clear:
Labor adds up as in equation (27), and goods markets clear with trade bal-
ances as in equations (41) and (43).

In other words, the inputs of the temporary equilibrium are all state
variables, while the outputs are all remaining endogenous variables that are
determined in each period. Adding the conditions about state variable tran-
sitions, sequential equilibrium determines all state variables given initial con-
ditions as follows.

Definition 2. Given initial robot capital stocks and employment
[
KR′

0 ,L
′
0

]′
,

a sequential equilibrium (SE) is a sequence of vectors yt ≡ [x′
t,S

′
t]
′
t that sat-
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isfies the TE conditions and employment law of motion (21), value function
condition (20), capital accumulation equation (23), producer’s dynamic op-
timization (37) and (36).

Finally, I define the steady state as a SE y that does not change over
time.

C.2 Equilibrium Characterization
To characterize the producer problem, I show the static optimization condi-
tions and then the dynamic ones. For simplicity, I focus on the case with
ϑ = 1, or Cobb-Douglas in the mix of occupation aggregates, intermediates,
and non-robot capital. To solve for the static problem of labor, intermediate
goods, and non-robot capital, consider the FOCs of equation (22)

pGi,tαi,L
Y G
i,t

TOi,t

(
bi,o,t

TOi,t
TOi,o,t

) 1
β
(
(1− ao,t)

TOi,o,t
Li,o,t

) 1
θo

= wi,o,t, (28)

where TOi,t is the aggregated occupations TOi,t ≡
[∑

o

(
TOi,o,t

)(β−1)/β
]β/(β−1)

,

pGi,tαi,M
Y G
i,t

Mi,t

(
Mi,t

Mli,t

) 1
ε

= pGli,t, (29)

and
pGi,tαi,K

Y G
i,t

Ki,t

= ri,t, (30)

where αi,K ≡ 1− αi,L − αi,M . Note also that by the envelope theorem,

∂πi,t
({
KR
i,o,t

})
∂KR

i,o,t

= pGi,t
∂Yi,t
∂KR

i,o,t

= pGi,t

αLY G
i,t

TOi,t

(
bi,o,t

TOi,t
TOi,o,t

) 1
β
(
ao,t

TOi,o,t
KR
i,o,t

) 1
θ

 .

(31)

Another static problem of producers is robot purchase. Define the “before-

integration” robot aggregate QR,BI
i,o,t ≡

[∑
l

(
QR
li,o,t

) εR−1

εR

] εR

εR−1

and the cor-

responding price index PR,BI
i,o,t . By the first order condition with respect
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to QR
li,o,t for equation (24), I have pRli,o,tQR

li,o,t =

(
pRli,o,t

PR,BI
i,o,t

)1−εR

PR,BI
i,o,t Q

R,BI
i,o,t ,

and PR,BI
i,o,t Q

R,BI
i,o,t = αPR

i,o,tQ
R
i,o,t. Thus pRli,o,tQR

li,o,t = α

(
pRli,o,t

PR,BI
i,o,t

)1−εR

PR
i,o,tQ

R
i,o,t.

Hence

QR
li,o,t = α

(
pRli,o,t

)−εR (
PR,BI
i,o,t

)εR−1

PR
i,o,tQ

R
i,o,t.

Writing PR
i,o,t =

(
PR,BI
i,o,t

)αR

(Pi,t)
1−αR

, I have

QR
li,o,t = α

(
pRli,o,t

PR,BI
i,o,t

)−εR (
PR,BI
i,o,t

Pi,t

)−(1−αR)

QR
i,o,t.

Alternatively, one can define the robot price index by P̃R
i,o,t = α

1

εR

(
PR,BI
i,o,t

) εR−(1−αR)
εR

P
1−αR

εR

i,t

and show

QR
li,o,t =

(
pRli,o,t

P̃R
i,o,t

)−εR

QR
i,o,t, (32)

which is a standard gravity representation of robot trade.
To solve the dynamic problem, set up the (current-value) Lagrangian

function for non-robot goods producers

Li,t =
∞∑
t=0

{(
1

1 + ι

)t [
πi,t

({
KR
i,o,t

}
o

)
−
∑
l,o

(
pRli,o,t (1 + uli,t)Q

R
li,o,t + PG

i,tI
int
i,o,t + γPR

i,o,tQ
R
i,o,t

QR
i,o,t

KR
i,o,t

)]}
.

− λRi,o,t
{
KR
i,o,t+1 − (1− δ)KR

i,o,t −QR
i,o,t

}
Taking the FOC with respect to the hardware from country l, QR

li,o,t, I have

pRli,o,t (1 + uli,t) + 2γPR
i,o,t

(
QR
i,o,t

KR
i,o,t

)
∂QR

i,o,t

∂QR
li,o,t

= λRi,o,t
∂QR

i,o,t

∂QR
li,o,t

. (33)

Taking the FOC with respect to the integration input I inti,o,t, I have

PG
i,t + 2γPR

i,o,t

(
QR
i,o,t

KR
i,o,t

)
∂QR

i,o,t

∂I inti,o,t

= λRi,o,t
∂QR

i,o,t

∂I inti,o,t

, (34)
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Taking the FOC with respect to KR
i,o,t+1, I have

(
1

1 + ι

)t+1
∂πi,t+1

({
KR
i,o,t+1

}
o

)
∂KR

i,o,t+1

+ γPR
i,o,t+1

(
QR
i,o,t+1

KR
i,o,t+1

)2

+ (1− δ)λRi,o,t+1

−( 1

1 + ι

)t
λRi,o,t = 0,

(35)
and the transversality condition: for any j and o,

lim
t→∞

e−ιtλRj,o,tK
R
j,o,t+1 = 0. (36)

Rearranging equation (35), I obtain the following Euler equation.

λRi,o,t =
1

1 + ι

(1− δ)λRi,o,t+1 +
∂

∂KR
i,o,t+1

πi,t+1

({
KR
i,o,t+1

})
+ γpRi,o,t+1

(
QR
i,o,t+1

KR
i,o,t+1

)2
 .

(37)
Turning to the demand for non-robot good, I will characterize bilateral

intermediate good trade demand and total expenditure. Write XG
j,t the total

purchase quantity (but not value) of good G in country j in period t. By
equation (26), the bilateral trade demand is given by

pGij,tQ
G
ij,t =

(
pGij,t
PG
j,t

)1−ε

PG
j,tX

G
j,t, (38)

for any i, j, and t. In this equation, PG
j,tX

G
j,t is the total expenditures on

non-robot goods. The total expenditure is the sum of final consumption
Ij,t, payment to intermediate goods αMpGj,tY G

j,t, input to robot productions∑
o P

G
j,tI

R
j,o,t =

∑
o,k p

R
jk,o,tQ

R
jk,o,t, and payment to robot integration

∑
o P

G
j,tI

int
j,o,t =(

1− αR
)∑

o P
R
j,o,tQ

R
j,o,t. Hence

PG
j,tX

G
j,t = Ij,t + αMp

G
j,tY

G
j,t +

∑
o,k

pRjk,o,tQ
R
jk,o,t +

(
1− αR

)∑
o

PR
j,o,tQ

R
j,o,t.

For country j and period t, by substituting into income Ij,t the period cash
flow of non-robot good producer that satisfies

Πj,t ≡ πj,t

({
KR
j,o,t

}
o

)
−
∑
i,o

(
pRij,o,t (1 + uij,t)Q

R
ij,o,t +

∑
o
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j,tI

int
j,o,t + γPR

j,o,tQ
R
j,o,t

(
QR
j,o,t

KR
j,o,t
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and robot tax revenue Tj,t =
∑

i,o uij,tp
R
ij,o,tQ

R
ij,o,t, I have

Ij,t = (1− αM)
∑
k

pGjk,tQ
G
jk,t −

(∑
i,o

pRij,o,tQ
R
ij,o,t +

(
1− αR

)∑
o

PR
j,o,tQ

R
j,o,t

)
,

(39)
or in terms of variables in the definition of equilibrium,

Ij,t = (1− αM)
∑
k

pGjk,tQ
G
jk,t −

1

αR

∑
i,o

pRij,o,tQ
R
ij,o,t.

Hence, the total expenditure measured in terms of the production side as
opposed to income side is

PG
j,tX

G
j,t =

∑
k

pGjk,tQ
G
jk,t −

∑
i,o

pRij,o,tQ
R
ij,o,t

(
1 + γ

QR
ij,o,t

KR
j,o,t

)
. (40)

Note that this equation embeds the balanced trade condition. By substitut-
ing equation (40) into the equation (38), I have

pGij,tQ
G
ij,t =

(
pGij,t
PG
j,t

)1−εG (∑
k

pGjk,tQ
G
jk,t +

∑
k,o

pRjk,o,tQ
R
jk,o,t −

∑
i,o

pRij,o,tQ
R
ij,o,t

)
.

(41)
The good and robot-o market-clearing conditions are given by,

Y R
i,t =

∑
j

QG
ij,tτ

G
ij,t, (42)

for all i and t, and

pRi,o,t =
PG
i,t

ARi,o,t
(43)

for all i, o, and t, respectively.
Conditional on state variables St =

{
KR

t ,λ
R
t ,Lt,V t

}
, equations (19),

(28), (33), (41), (42), and (43) characterize the temporary equilibrium
{
pGt ,p

R
t ,wt,Q

G
t ,Q

R
t ,Lt

}
.

In addition, conditional on initial conditions
{
KR

0 ,L0

}
, equations (23), (37),

and (36) characterize the sequential equilibrium.
Finally, the steady-state conditions are given by imposing the time-invariance

condition to equations (23) and (37):

QR
i,o = δKR

i,o, (44)
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∂

∂KR
i,o

πi
({
KR
i,o

})
= (ι+ δ)λRi,o −

∑
l

γpRli,o

(
QR
li,o

KR
i,o

)2

≡ cRi,o. (45)

Note that equation (45) can be interpreted as the flow marginal profit of
capital must be equalized to the marginal cost term. Thus, I define the
steady-state marginal cost of robot capital cRi,o from the right-hand side of
equation (45). Note that if there is no adjustment cost γ = 0, the steady
state Euler equation (45) implies

∂

∂KR
i,o

πi
({
KR
i,o

})
= cRi,o = (ι+ δ)λRi,o,

which states that the marginal profit of capital is the user cost of robots in
the steady state.

C.3 The First-Order Approximation of the General Equi-
librium

Since the GE system is highly nonlinear and does not have a closed-form
solution due to flexible robot-labor substitution, I log-linearize the system
around the initial steady state. Consider increases of the robot task space
ao,t and of the productivity of the robot production ARi,o,t in baseline period t0,
and combine all these changes into a column vector ∆. Write state variables
St =

[
KR′

t ,λ
R′

t ,L
′
t,V

′
t

]′
, and use “hat” notation to denote changes from t0,

or ẑt ≡ ln (zt) − ln (zt0) for any variable zt,. I take the following three steps
to solve the model.

Step 1 In given period t, I combine the vector of shocks ∆ and (given)
changes in state variables Ŝt into a column vector Ât =

[
∆′, Ŝt

′]′
. Log-

linearizing the TE conditions, I solve for matrices Dx and DA such that the
log-difference of the TE x̂t satisfies

Dxx̂t =D
AÂt. (46)

In this equation,Dx is a substitution matrix, andDAÂt is a vector of partial
equilibrium shifts in period t Adao et al. (2023).19

19Since the temporary equilibrium vector x̂t includes wages ŵt, equation (46) generalizes
the general equilibrium comparative statics formulation in Adao et al. (2023), who consider
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Step 2 Log-linearizing laws of motion and Euler equations around the initial
steady state, I solve for matrices Dy,SS and D∆,SS such that Dy,SSŷ =

D∆,SS∆, where superscript SS denotes the steady state. Note that there
exists a block separation DA =

[
DA,∆|DA,S

]
such that equation (46) can

be written as
Dxx̂t −DA,SŜt =D

A,∆∆. (47)
Combined with this equation evaluated at the steady state, I have

Eyŷ = E∆∆, (48)

where

Ey ≡

[
Dx −DA,T

Dy,SS

]
, and E∆ ≡

[
DA,∆

D∆,SS

]
,

which implies ŷ = E∆, where matrix E =
(
Ey
)−1

E∆ represents the first-
order approximated steady-state impact of the shock ∆. This steady-state
matrix E will be a key object in estimating the model in Section 3.2.

Step 3 Log-linearizing laws of motion and Euler equations around the new
steady state, I solve for matrices Dy,TD

t+1 and Dy,TD
t such that Dy,TD

t+1 y̌t+1 =

Dy,TD
t y̌t, where the superscript TD stands for transition dynamics, and

žt+1 ≡ ln zt+1 − ln z′ and z′ is the new steady state value for any variable z.
Log-linearized sequential equilibrium satisfies the following first-order differ-
ence equation

F y
t+1ŷt+1 = F

y
t ŷt + F

∆
t+1∆. (49)

Following the insights in Blanchard and Kahn (1980), there is a converging
matrix representing the first-order transitional dynamics F t such that

ŷt = F t∆ and F t → E. (50)

The matrix F t characterizes the transition dynamics after robotization shocks
and is used to study the effect of policy changes in the counterfactual section.

the variant of equation (46) with x̂t = ŵt.
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D Additional Results on Estimation and Sim-
ulation

I assume αR = 2/3 following the convention in the literature. By Cooper
and Haltiwanger (2006), I set the parameter of adjustment cost at γ = 0.295.
I use the estimates from the literature on the dynamic discrete choice of
occupations and set the occupation switching elasticity as ϕ = 1.4.

D.1 Robot Trade Elasticity
To estimate robot trade elasticity εR, I apply and extend the trilateral
method of Caliendo and Parro (2015). Namely, decompose the robot trade
cost τRli,t into ln τRli,t = ln τR,Tli,t + ln τR,Dli,t , where τR,Tli,t is tariff on robots taken
from the UNCTAD-TRAINS database and τR,Dli,t is asymmetric non-tariff
trade cost. The latter term is assumed to be ln τR,Dli,t = ln τR,D,Sli,t +ln τR,D,Ol,t +

ln τR,D,Di,t + ln τR,D,Eli,t , where τR,D,Sli,t captures symmetric bilateral trade costs
such as distance, common border, language, and FTA belonging status and
satisfies τR,D,Sli,t = τR,D,Sil,t , τR,D,Ol,t and τR,D,Di,t are the origin and destination
fixed effects (FEs) such as non-tariff barriers respectively, and τR,D,Eli,t is the
random error that is orthogonal to tariffs. By equation (32), I have

ln

(
XR
li,tX

R
ij,tX

R
jl,t

XR
lj,tX

R
ji,tX

R
il,t

)
=
(
1− εR

)
ln

(
τR,Tli,t τ

R,T
ij,t τ

R,T
jl,t

τR,Tlj,t τ
R,T
ji,t τ

R,T
il,t

)
+ elij,t, (51)

where XR
li,t is the bilateral sales of robots from l to i in year t and elij,t ≡

ln τR,D,Eli,t +ln τR,D,Eij,t +ln τR,D,Ejl,t − ln τR,D,Elj,t − ln τR,D,Eji,t − ln τR,D,Eil,t . The benefit
of this approach is that it does not require symmetry for non-tariff trade
cost τR,Dli , but only requires the orthogonality for the asymmetric component
of the trade cost. My method also extends Caliendo and Parro (2015) in
using the time-series variation as well as trilateral country-level variation to
complement the relatively small number of observations in robot trade data.

When implementing regression of equation (51), I further consider con-
trolling for two separate sets of FEs. The first set is the unilateral FE indicat-
ing if a country is included in the trilateral pair of countries, and the second
set is the bilateral FE for the twin of countries is included in the trilateral
pair. These FEs are relevant in my setting as a few number of countries ex-
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Table 9: Coefficient of equation (51)

(1) (2) (3) (4)
HS 847950 HS 847950 HS 8479 HS 8479

Tariff -0.272 -0.236 -0.146 -0.157
(0.0718) (0.0807) (0.0127) (0.0131)

Constant -0.917 -0.893 -1.170 -1.170
(0.0415) (0.0381) (0.00905) (0.00853)

FEs h-i-j-t ht-it-jt h-i-j-t ht-it-jt
N 4610 4521 88520 88441
r2 0.494 0.662 0.602 0.658

Note: The author’s calculation, based on BACI data from 1996 to 2018 and equation (51), is shown. The
first two columns show the result for HS code 847950 (“Industrial robots for multiple uses”), while the
last two columns show HS code 8479 (“Machines and mechanical appliances having individual functions,
not specified or included elsewhere in this chapter”). The first and third columns control the unilateral
fixed effect (FE), while the second and fourth the bilateral FE.

port robots, and controlling for these exporters’ unobserved characteristics
is critical.

Table 9 shows the result of regression of equation (51). The first two
columns show the result for the HS code 847950 (“Industrial robots for mul-
tiple uses”, the definition of robots used in, among others, Acemoglu and
Restrepo, 2022), and the last two columns HS code 8479 (“Machines and
mechanical appliances having individual functions, not specified or included
elsewhere in this chapter,” used by Humlum, 2021). The first and third
columns control for the unilateral FE, and the second and fourth the bilat-
eral FE. The implied trade elasticity of robots εR is fairly tightly estimated
and ranges between 1.13 and 1.34. Given these estimation results, I use
εR = 1.2 in the estimation and counterfactuals.

To put my estimation result in context, note that Caliendo and Parro
(2015) show in Table 1 that the regression coefficient of equation (51) is
1.52, with the standard error of 1.81, for “Machinery n.e.c”, which roughly
corresponds to HS 84. Therefore, my estimate for industrial robots falls in
the one-standard-deviation range of their estimate for a broader category of
goods.

Note that the average trade elasticity across sectors is estimated signifi-
cantly higher than these values, such as 4 in Simonovska and Waugh (2014).
The low trade elasticity for robots εR reflects the fact that robots are highly
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heterogeneous and hardly substitutable. This low elasticity implies small
gains from robot taxes, with the robot tax incidence almost on the US (robot
buyer) side rather than the robot-selling country.

D.2 Detailed Discussion of the Estimator
Using Assumption 1, I develop a consistent and asymptotically efficient two-
step estimator. Specifically, I follow the method developed by Adao et al.
(2023), who extend the classical two-stage GMM estimator to the general
equilibrium environment and define the model-implied optimal instrumental
variable (MOIV). The key idea is that the optimal GMM estimator is based
on the instrumental variable that depends on unknown structural parameters.
Therefore, the two-step estimator solves this unknown-dependent problem
and achieves desirable properties of consistency and asymptotic efficiency.
As a result, I define IVs Zo,n where n = 0, 1 as follows:

Zo,n ≡ Ho,n

(
ψJ
)
= E

[
∇Θνo (Θn) |ψJ

]
E
[
νo (Θn) (νo (Θn))

⊤ |ψJ
]−1

. (52)

For the formal statement, I need the following additional assumption.

Assumption 2. (i) A function of Θ̃, E
[
Ho

(
ψJ
t1

)
νo

(
Θ̃
)]

̸= 0 for any Θ̃ ̸=
Θ. (ii) θ ≤ θo ≤ θ for any o, β ≤ β ≤ β, γ ≤ γ ≤ γ, and ϕ ≤ ϕ ≤ ϕ for some
positive values θ, β, γ, ϕ, θ, β, γ, ϕ. (iii) E

[
supΘ ∥ Ho

(
ψJ
t1

)
νo

(
Θ̃
)
∥
]
< ∞.

(iv) E
[
∥ Ho

(
ψJ
t1

)
νo

(
Θ̃
)
∥2
]
< ∞ (v) E

[
supΘ ∥ Ho

(
ψJ
t1

)
∇Θ̃νo

(
Θ̃
)
∥
]
<

∞.

Under Assumptions 1 and 2, Adao et al. (2023) shows that the estimator
Θ2 obtained in the following procedure is consistent, asymptotically normal,
and optimal: Step 1: With a guessΘ0, estimateΘ1 = ΘH0 using Zo,0 defined
in equation (52). Step 2: With Θ1, estimate Θ2 by Θ2 = ΘH1 using Zo,1
defined in equation (52).

D.3 Model Fit
I apply the simulated data to the linear regression model:

∆ ln (lnwo) = α0 + α1 ×
(
−ψJo

)
+ α2 × IPWo,t1 +Xo ·α+ εo, (53)
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where wo is log hourly wage, and Xo is the vector of baseline demographic
control variables.20

Consider the following two simulations. First, I apply the JRS and the
implied automation shock, and I call this counterfactual wage change “tar-
geted.” The predicted wage changes are consistent with the moment con-
dition (14), and thus the linear regression coefficient α1 of equation (53) is
expected to be close to the one obtained from the data. Second, I apply only
the JRS but not the automation shock, and I call this counterfactual wage
change “untargeted.” In this case, the moment condition (14) is violated
since the structural residual does not incorporate the unobserved automa-
tion shock, which causes a bias in the regression. The difference in estimates
from the one using the targeted wage change reveals the size of this bias.
Therefore, this exercise demonstrates the importance of considering the au-
tomation shock in the estimation. The details of the method for simulating
the data are explained in D.4.

Table 10 shows the result of these exercises. The first column shows the
estimates of equation (53) using the data, the second column is the esti-
mate based on the targeted wage change, and the third column is the esti-
mate based on the untargeted wage change. Comparing the first and second
columns confirms that the targeted moments match as expected. Further-
more, examining the third column compared to these two columns, one can
see a stronger negative correlation between the simulated wage and the JRS.
This is due to the positive correlation between the JRS −ψJo and the implied
automation shock âimp

o , which is consistent with the fact that robotic inno-
vations that save costs (thus ÂR2,o > 0 or −ψ̂Jo > 0) and that upgrade quality
(thus âimp

o > 0) are likely to happen at the same time. More specifically,
with the real data, the regression specification (53) contains a positive bias
due to this positive correlation. In contrast, the untargeted wage is free from
this bias since its data-generating process does not contain the automation
shock but only the JRS. Thus, the linear regression coefficient α1 is higher
than the one obtained from the real data. In other words, if I had mistakenly
assumed that the economy did not experience the automation shock and if
I had believed that the coefficient obtained in Figure 12 is bias-free, I would
have estimated a higher EoS by ignoring the actual positive correlation be-

20The controls are the female share, the college-graduate share, the age distribution,
and the foreign-born share. B.2 provides a thorough discussion on these reduced-form
regressions.
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Table 10: Model Fit: Linear Regression with Observed and Simulated Data

(1) (2) (3)
VARIABLES ŵdata ŵ

ψJ âimp
ŵψJ

−ψJ -0.118 -0.107 -0.536
(0.0569) (0.0711) (0.175)

Observations 324 324 324
Note: The author’s calculation is shown based on the dataset generated by JARA, O*NET, and the US
Census. Column (1) is the coefficient of the JRS ψJ in the reduced-form regression with the China shock
control. Column (2) takes the change in US wages predicted by the model with ψJ and the implied
automation shock âimp. Column (3) takes the US wage change predicted by the model with only the JRS
(but not the automation shock). Heteroskedasticity-robust standard errors in parentheses.

tween −ψJo and âimp
o . This thought experiment reveals that it is critical to

take into account the automation shock in estimating the EoS between robots
and labor using the JRS and that the large EoS in my structural estimates
is robust even after taking this point into account.

D.4 Details in the Simulation Method
The simulation for the counterfactual analysis comprises three steps. First,
I back out the observed shocks from the estimated model for each year be-
tween 1992 and 2007. Namely, I obtain the efficiency increase of Japanese
robots ÂR2,o,t using equation (11). With the point estimates in Table 1, the
implied automation shock âimp

o,t using (12). To back out the efficiency shock
of robots in the other countries, I assume that ÂRi,o,t = ÂRi,t for i = 1, 3.
Then by the robot trade prices pRij,t from BACI, I fit fixed effect regression
∆ ln

(
pRij,t
)
= ψ̃Dj,t + ψ̃Ci,t + ẽij,t, and use ÂRi,t = −ψ̃Ci,t1 . The idea to back out

the negative efficiency shock ψ̃Ci,t1 is similar to the fixed-effect regression in
Section 3.2, but without the occupational variation that is not observed in
BACI data. Second, applying the backed-out shocks ÂRi,o,t and âimp

o,t to the
first-order solution of the GE in equation (50), I obtain the prediction of
changes in endogenous variables to these shocks to the first-order. Finally, I
obtain the predicted level of endogenous variables by applying the predicted
changes to the initial data in t0 = 1992.
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D.5 Counterfactual Analysis on Robot Taxes
The Effect of Robot Tax on Occupations To study the effect of coun-
terfactually introducing a robot tax, consider an unexpected, unilateral, and
permanent increase in the robot tax by 6% in the US, which I call the general
tax scenario. I also consider the tax on only imported robots by 33.6%, and
call it the import tax scenario, which implies the same amount of tax revenue
as in the general tax scenario and makes the comparison straightforward be-
tween the two scenarios.21 First, I examine the effect of the general robot
tax on occupational inequality.

In Figure 14a, I show two scenarios of the steady-state changes in real
occupational wages. In one scenario, I shock the economy only with the au-
tomation shocks. In the other scenario, I shock the economy with both the
automation shocks and the robot tax. The result shows heterogeneous effects
on real occupational wages of the robot tax. The tax mitigates the negative
effect of automation on routine production workers and routine transporta-
tion workers, while the tax marginally decreases the small gains that workers
in the other occupations would have enjoyed. Overall, the robot tax miti-
gates the large heterogeneous effects of the automation shocks, which could
go in negative and positive directions depending on occupation groups, and
compresses the effects towards zero. Figure 14b shows the dynamics of the
effects of only the robot tax. Although the steady-state effects of robot tax
were heterogeneous, as shown in Figure 14a, the effect is not immediate but
materializes after around 10 years, due to the sluggish adjustment in the
accumulation of the robot capital stock. Overall, I find that since the robot
tax slows down the adoption of robots, it rolls back the real wage effect of
automation–workers in occupations that experienced significant automation
shocks (e.g., production and transportation in the routine occupation groups)
benefit from the tax, while the others lose. Appendix D.6 discusses the effect
of robot taxes on worker welfare in each occupation.

Robot Tax and Aggregate Income Next, I study how the two robot tax
schemes affect the US real income. In Figure 15a, the solid line tracks the
real-income effect of the general robot tax over a 20-year time horizon after
the tax introduction. First, the magnitude of the effect is small because the
cost of buying robots compared to the aggregate production cost is small.

21The 6% rate of the general tax is more modest than the 30% rate considered in
Humlum (2021) for the Danish case.
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Figure 14: The Effects of the Robot Tax on Real Occupational Wages

(a) Steady-state Comparison (b) Transitional Effect of Tax

Figure 15: Effects of the Robot Tax

(a) US Real Income
(b) US Robot Stock and Import Robot
Price

Note: The left panel shows the counterfactual effect on the US real income of the two robot tax scenarios
described in the main text over a 20-year time horizon. The right panel shows that of the import robot
tax on the US total robot stocks (solid line) and the pre-tax robot price from Japan (dash-dot line) over
the same time horizon.

Second, there is a positive effect in the short run, but this effect turns negative
quickly and continues to be negative in the long run.

To understand why there is a short-run positive effect on real income, it is
useful to distinguish the source of national income in the model. A country’s
total income comprises workers’ wage income, non-robot goods producers’
profit, and the tax revenue rebate. Since robots are traded, and the US is
a large economy that can affect the robot price produced in other countries,
there is a terms-of-trade effect of robot tax in the US. Namely, the robot

70



tax reduces the demand for robots traded in the world market and lets the
equilibrium robot price go down along the supply curve. This reduction in
the robot price contributes to compressing the cost of robot investment thus
to increasing the firm’s profit, raising the real income. This positive effect is
stronger in the import robot tax scenario because the higher tax rate induces
a more substantial drop in the import robot price. While this terms-of-trade
manipulation is well-studied in the trade policy literature, my setting is novel
since it implies the upward-sloping export supply curve from the GE.

The reason for the different effects on real income, in the long run, is as
follows. The solid line in Figure 15b shows the dynamic impact of the import
robot tax on the accumulation of robot stock. The robot tax significantly
slows the accumulation of robot stocks and decreases the steady-state stock
of robots by 9.7% compared to the no-tax case. The small robot stock re-
duces the firm profit, which contributes to low real income.22 These results
highlight the role that costly robot capital (de-)accumulation plays in the
effect of the robot tax on aggregate income. Figure 15b also shows the dy-
namic effect on import robot prices in the dash-dot line. In the short run,
the price decreases due to the decreased demand from the US, as explained
above. As the sequential equilibrium reaches the new steady state where the
US stock of robots decreases, the marginal value of the robots is higher. This
increased marginal value partially offsets the reduced price of robots in the
short run.

The Effect of Robotization and the Sources of Shocks In Figure 2b, I
show the effect of two robotization shocks: the automation shock â and the
JRS Â2. Although both are relevant shocks to the robotics technology during
the sample period, the result is a mixture of these two effects, making it hard
to assess the contribution of each shock. To address this concern, Figure 16
shows the decomposition of the main exercise. The left panel shows the same
result as Figure 2b. In contrast, the center panel shows the predicted wage
changes with only the automation shock and the right only the JRS. Notably,
the automation shock reduces the labor demand and, thus, the wage across
many occupations. By contrast, the JRS decreased the price of robots and
increased the marginal product of labor, and therefore occupational wages

22For each occupation, the counterfactual evolution of robot stocks is similar to each
other in percentage and, thus, similar to the aggregate trend in percentage. This is not
surprising since the robot tax is ad-valorem and uniform across occupations.
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Figure 16: The Effect on Occupational Wages by Sources of Shocks

(a) Both Shocks (b) Automation Shock (c) Japan Robot Shock

Note: The left panel shows the annualized occupational wage growth rates for each wage decile, predicted by the first-order approximated steady-state
solution of the estimated model given in equation (48), for each of ten deciles of the occupational wage distribution in 1990, and is equivalent to
Figure 2b. The center and right panels distinguish the effect of the automation shock (center) and the Japan robot shock (right).
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increased.

D.6 Robot Tax and Workers’ Welfare
To examine how the robot tax affects workers in different occupations, I
define the equivalent variation (EV) as follows. Consider the US unilateral
(not inducing a reaction in other countries), unexpected, and permanent tax
on robot purchases as in Section D.5. Write C ′

i,o,t as the consumption stream
under the robotized economy with tax and Ci,o,t as that under the robotized
but not taxed economy, where the robotization shock is backed out in D.3.
For each country i and occupation o, EVi,o is implicitly defined as

∞∑
t=t0

(
1

1 + ι

)t
ln
([
C ′
i,o,t

])
=

∞∑
t=t0

(
1

1 + ι

)t
ln (Ci,o,t [1 + EVi,o]) . (54)

Namely, the EV is the fraction of the occupation-specific subsidy that would
make the present discounted value (PDV) of the utility in the robotized and
taxed economy equal to the PDV of the utility if the occupation-specific sub-
sidy were exogenously given every period in a non-taxed economy. Workers
in country i and occupation o prefer the economy with tax if and only if
EVi,o is positive.

Figure 17a shows this occupation-specific EV as a function of the tax
rate. The far-left side of the figure is the case of zero robot tax, thus a case
of only the robotization shock. Consistent with the occupational wage ef-
fects (cf. Figure 14a), workers in production and transportation occupations
lose significantly due to robotization. In contrast, other workers are roughly
indifferent between the robotized world and the non-robotized initial steady
state or slightly prefer the former world. Going right through the figure,
the production and transportation workers’ EV improves as the robot tax
reduces the adoption of robots that substitute their jobs. The EV of pro-
duction workers turns positive when the tax rate is around 6%, and that of
transportation workers is positive when the rate is about 7%. However, these
tax rates are too high and would negatively affect EVs in other occupations.
This is because, with such a high tax rate, robot accumulation in production
and transportation occupations was significantly reduced, which adversely
affects labor demand in other occupations.

To study if the reallocation policy by robot tax may work, I also compute
the equivalent variation in terms of monetary value aggregated by occupation

73



Figure 17: Robot Tax and Workers’ Welfare

(a) Occupational Equivalent Variation (b) Total EV and Revenue

Note: The left panel shows the US workers’ equivalent variation defined in equation (54) as a function
of the US robot tax rate. The right panel shows the monetary values of equivalent variations aggregated
across workers and robot tax revenue as a function of the robot tax rate, measured in 1990 million USD.

groups (total EV) and compare it with the robot tax revenue, both as a
function of robot tax. Figure 17b shows the result. One can confirm that the
marginal robot tax revenue is far from enough to compensate for workers’
loss that concentrates on production and transportation workers at the initial
steady state with zero robot tax rate. The robot tax revenue is negligible
at this margin compared with the workers’ loss due to robotization. As the
robot tax rate increases, the total EV rises: When the rate is as large as
2-3%, the sum of the total EV and the robot tax revenue is positive.
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