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Abstract 

How does the existence or absence of employee startups influence the patterns of subsequent 

technological development? By studying the development of laser diode technology in the U.S. and 

Japan at both the inventor and organizational levels using the difference-in-differences approach, this 

study empirically examines the impact of opportunities for startups promoted by SBIR in the U.S. on 

the technological trajectory of existing technology. According to the estimation results, an increase in 

employee startups promoted by SBIR could impede the subsequent development of the current 

technology earlier and cause it to stagnate at a lower level than what could have been achieved with 

no employee startups (as seen in Japan). This implies that the cumulative effects of technological 

development could vanish if R&D personnel strategically exit their parent firms to target different 

submarkets. 
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1. Introduction 
Do employee startups promote innovation? This study explores whether the 

rise of opportunities to launch employee startups drives technological change. Using 
difference-in-differences (DID) estimation to study the development of laser diode 
technology in the U.S. and Japan, this study empirically examines the impact of 
employee startups promoted by the Small Business Innovation Research (SBIR) in the 
U.S. on the technological trajectory of existing technology. 

Employee startups have played a vital role in industries, especially technology-
intensive industries. These startups have emerged from parent firms’ internal resources 
to be marketed separately and generate additional value (Klepper and Sleeper 2005, 
Franco and Filson 2006, Agarwal et al. 2007). A notable example is Fairchild 
Semiconductor and its spin-off/spin-out firms in Silicon Valley (Saxenian 1990a, 
1990b). Employee startups and their supporting institutions, such as financing for 
startups, knowledge hubs, and flexible labor markets, have attracted considerable 
attention as factors that promote innovation. Since the early 2000s, many policies have 
been implemented to promote venture businesses and employee startups (Lundvall and 
Borrás 2005, Motohashi 2005, Park 2014). 

However, do they promote innovation? Earlier literature on technological 
development and the history of technology has discussed that cumulative technological 
development plays a critical role in increasing the level of technology, making it 
suitable for industrial use (Abernathy 1978, Rosenberg and Trajtenberg 2004). How 
does the emergence of employee startups influence the level of cumulative 
technological development? Typically, incumbent firms improve the technology of 
existing products (Tushman and Anderson 1986, Christensen 1993). If employees leave 
the incumbents and start or join a startup, this would hinder the level of cumulative 
technological development of the incumbent firms. Some case studies have indicated 
that a flexible system of transactions, which promotes employee startups, could retard 
cumulative technological development (R.L. Florida and Kenney 1990, Numagami 
1996, Shimizu 2019), although no empirical studies have comprehensively examined 
such effects.  

It is challenging to empirically examine how the emergence of employee 
startups affects the trajectory of technology. For empirical analysis, we need samples 
that meet the following three conditions. First, we need a country/region that has 
witnessed rise in employee startups and a country/region that has not. This is because 
when policy intervention stimulates employee startups, the influence can be at the 
country/regional level. Second, those countries/regions were on a similar technological 
trajectory before the policy that led to a rise in employee startups was implemented in a 
country. Those countries/regions should not have any significant differences other than 
the fact that a startup support system was introduced. For example, if one of the 
countries had advanced in technological development than the other, it would be 
difficult to determine the effects of policy intervention because the difference in 
technological development itself could have changed the trajectory. This point related to 
the parallel trend assumption of the DID analysis. The third point is related to causal 
inference. The intervention is ideally exogenous. For example, this point is crucial when 
we conduct a randomized controlled trial (RCT). The subjects in RCTs are divided into 
two groups: treatment and control. The treatment group (also called the experimental 
group) receives the researcher-focused treatment. The subjects would be randomly 
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allocated to one of these groups to enable statistical control over the intervention. As 
RCTs help in examining the causal relationship between the treatment and the effects, 
social scientists use them in several settings, such as in development economics 
(Banerjee et al. 2016), education (D.T. Campbell and Stanley 2015), health service 
(Cochrane 1972), and moral hazards in health insurance (Manning and Marquis 1996). 
However, as the RCT setting is not well maintained in social sciences, exogenous 
shocks to subjects such as earthquakes, terrorist attacks, and Napoleon’s invasion, 
which is considered to randomly divide subjects into two groups, have been examined 
as a natural experiment (Acemoglu et al. 2011, Baker and Bloom 2013, Hikichi et al. 
2017).  

Given these conditions, we examine inventors and their organizations 
committed to laser diode R&D in the U.S. and Japan. The section titled “Laser Diodes, 
SBIR, and Technology Development” discusses how laser diode R&D in the U.S. and 
Japan meets these requirements. This study also shows that policies that encourage 
employee startups stifle subsequent technological development on a given technological 
trajectory. Although employee startups have attracted attention from different fields, 
such as entrepreneurship, regional clusters, and industry dynamics, few studies have 
empirically analyzed the impact of employee startups on subsequent technological 
development. As literature review shows that it can be assumed that a parent firm’s 
productivity can reduce if skilled personnel leave and launch startups because the core 
source of a firm’s competitive advantage in a knowledge-intensive industry is strongly 
embodied in its employees’ human capital. Thus, a society that witnesses a high level of 
employee entrepreneurship and spin-offs may have  technological development patterns 
that differ from that in which entrepreneurial spin-outs are rarely observed.  
 
2. Previous Literature 

This study attempts to bridge the gap in the literature on employee startups and 
that on innovation patterns. Employee startups have been examined from various 
perspectives, such as entrepreneurship, regional clusters, and knowledge spillovers.1 
Studies on employee startups have focused on identifying entrepreneurs (Begley and 
Boyd 1987, Crant 1996) and locating employee startups (Garvin 1983, A.C. Cooper 
1985, Saxenian 1994), the initial market focus of employee startups (Anton and Yao 
1995, Wiggins 1995, Klepper and Sleeper 2005), the relationships between employee 
startups and their parent firms, and the differences in the performance of employee 
startups (Agarwal et al. 2004, B.A. Campbell et al. 2012). 

Previous literature on the relationship between employee startups (particularly 
spin-outs) and their parent organizations has observed that conflicts between the 
startup’s founder and the parent firm may have existed on the formation of the employee 
startup (Klepper and Thompson 2010, Thompson and Chen 2011). An employee who 

 
1 Employee startups can be classified into two categories: spin-offs and spin-outs. The former 
applies when the employee startup has capital investment from its parent firm, which is a type 
of divestiture. The latter is when the employee startup does not have any capital ties with its 
parent company; this study focuses on this type. Due to the lack of information, much of the 
previous literature on employee startups has not classified them into these two categories. For a 
detailed literature review of employee startups, see Klepper (2001). 
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plans to spin out tends to transfer as many tangible and intangible assets as possible 
(e.g., his/her specific expertise and interpersonal networks) to the new workplace 
(Agarwal and Audretsch 2001). The parent firm also suffers adverse effects because the 
firm’s capable human resources exit and move to employee startups (B.A. Campbell et 
al. 2012). The extent of the negative impact resulting from the loss of talented personnel 
from the parent firm depends on the firm’s ability to find replacements with similar 
skills and other relevant attributes in the labor market or nurture such personnel 
internally. When firm-specific skills, tacit knowledge, or special expertise are crucial 
and the pool of talented personnel is limited in the labor market, a firm generally needs 
time to regain these human resources (Collins and Harrison 1975, Nonaka and Takeuchi 
1995, Coff 1997, Zucker et al. 1998). Studies on startups in Silicon Valley and 
observations of employee startups have shown that talented personnel contribute greatly 
to knowledge spillovers and high-tech clustering. In contrast, they might also delay the 
ongoing R&D projects of their parent organizations (R.L. Florida and Kenney 1990).  

Another line of argument regarding the relationship between a parent 
organization and its employee startups has suggested that employee startups influence 
the subsequent development of existing technology. Most literature indicate that 
employee startups initially tend to target a new submarket to avoid directly challenging 
their parent firm (Christensen 1993, Anton and Yao 1995, Wiggins 1995, Klepper 1996, 
Buenstorf and Klepper 2010). Submarkets appeal to different users and require 
production knowledge and methods that differ from existing markets (Buenstorf and 
Klepper 2010). Submarkets are areas where new entrants can launch their own 
businesses using existing technology. By leveraging the valuable discoveries and 
expertise that a founder has accumulated at an incumbent firm, employee startups in a 
high-tech industry typically target untapped markets (Klepper 2001, 2006, 
Bhaskarabhatla and Klepper 2014). This means that the increase in the number of 
employee startups can distribute resources from existing R&D projects to different 
submarkets (Shimizu 2019). In other words, studies suggest that the rise of employee 
startups could influence the trajectory of technological change, which has not yet been 
empirically examined. 

While studies on employee startups have not examined the pattern of 
technological change, it has been an important research stream in the literature on the 
development of technology. The literature on economic history has repeatedly shown 
that the level of subsequent technological development drives the extent to which a 
technology’s potential is realized (Rosenberg 1979, Mokyr 1990, Allen 2009). Because 
newly invented technology is usually rough and nascent, its subsequent cumulative 
development plays a crucial role in the full realization of its potential (Rosenberg 1979). 
Subsequent cumulative technological development is crucial for highly versatile 
technology, otherwise known as general-purpose technology (GPT). Electricity, steam 
engines, lasers, and artificial intelligence are generally regarded as typical examples of 
GPTs. GPTs have received attention because the occasional arrival of a new GPT yields 
large positive externalities for industrial growth and macroeconomic outcomes 
(Helpman 1998, Lipsey et al. 1998, Lipsey et al. 2005). A GPT initially has much scope 
for improvement, is eventually widely used, and has many technological 
complementarities (Lipsey et al. 1998). Therefore, the initial impact of GPTs on overall 
productivity growth is minimal. Recognizing the potential of highly versatile 
technology requires subsequent technological development. Specifically, the degree to 
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which the basic technology that defines its fundamental performance plays a critical role 
in realizing the potential of highly versatile technology (Arthur 2009). For example, if 
the steam engine’s thermal efficiency had not been developed and remained low, steam 
engines would not have been widely used as a source of energy (Mokyr 1990, 2002).  

The pattern of subsequent technological development has been discussed in 
two different research streams: one based on the concepts of paradigms and trajectories 
and other on management studies vis-à-vis the dominant design. Thomas Kuhn 
introduced the concept of paradigms to explain the pattern of development in science 
(Kuhn 1962). A paradigm is loosely defined as a distinct pattern of finding, reasoning, 
and problem-solving in science and technology. Based on Kuhn’s discussion of 
paradigms, Dosi introduced a technological trajectory defined as “a cluster of possible 
technological directions whose boundaries are defined by the nature of the paradigm 
itself” (Dosi 1982, p. 154). Specifically, the paradigm defines the direction of 
subsequent technological advances. Once a certain technological trajectory emerges, it 
sets the direction for subsequent technological development (Constant 1980, Dosi 1982, 
Mackenzie 1990). Technological trajectories are created by multiple actors. Similar to 
the normal science paradigm described by Kuhn (1962), technological trajectories 
emerge through interactions among several actors; that is, a certain technological 
trajectory emerges when most actors take a cumulative technological approach to the 
same technological problem. 

The other research stream involves management studies in terms of the concept 
of dominant design. Dominant design is a key technological feature that has become a 
de facto industry standard. It determines the direction(s) of subsequent technological 
development (Utterback and Abernathy 1975, Abernathy 1978, Suárez 2004). 
Interpretations of the concepts, underlying causal mechanisms, and units of analysis 
vary in existing empirical literature on dominant design (Murmann and Frenken 2006). 
However, most studies show reveals that several new designs and various new materials 
are created before dominant design emerges. After the emergence of a dominant design, 
subsequent technological development becomes incremental, cumulative, and 
standardized. 

Although the research fields and terminologies do not entirely match, both 
research streams suggest that subsequent cumulative technological development will 
reduce if most actors do not invest their resources in the same technological problems 
with the same technological approach. Moreover, while the extant literature on 
technological trajectories and dominant design has generally described the pattern of 
technological development, it has not articulated how the pattern varies according to the 
rise of employee startups. Building on the existing work on employee startups and 
innovation patterns, this study examines how employee startups influence the 
technological trajectory of subsequent technological development by closely examining 
laser diodes. Studies  on employee startups and technological innovation (R.L. Florida 
and Kenney 1990) have shown that the subsequent development of the existing 
technology is adversely affected when submarkets are highly cultivated by 
entrepreneurial employee startups. Therefore, this study examines whether the rise of 
employee startups delays the level of subsequent development of basic technology. 

Bhaskarabhatla and Klepper (2014) explored a similar theme in their paper. 
They studied the U.S. laser industry from the 1960s to the early 21st century and found 
that the emergence of submarkets, which are usually developed by employee startups, 
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can fundamentally alter an industry’s market structure and the character of innovation. 
As they described industrial evolution in terms of submarkets by exploring lasers, their 
paper provides significant insights for this study. The unit of analysis here is much 
smaller than in this comparative study. To elaborate, Bhaskarabhatla and Klepper (2014) 
combined different types of lasers, such as CO2, He–Ne, ion, gas, ruby, dye, solid state, 
and laser diodes, and considered them a single industry. However, the performance 
specifications of these lasers are fairly diverse (Dupuis 2004, Coleman et al. 2012). 
Many lasers are not technically similar to each other. For example, ruby lasers, which 
first became operational worldwide in 1960, and laser diodes, also called semiconductor 
lasers, which were invented in 1962, are not closely related in terms of their 
technologies and application markets, although they share much in fundamental 
physics. Different types of lasers are used in completely different and independent 
markets, such as compact disk players, missile tracking, welding, and inertial 
confinement fusion. This means that their potential for substitution is fairly limited. 
Therefore, if we consider all lasers as a single industry and each type of laser and its 
applications as a submarket, we may overestimate the role of submarkets developed by 
startups in industry evolution. Therefore, this study focuses on laser diodes and their 
applications. This allows us to discuss how inventors utilize their knowledge in 
submarkets that are closely related to laser diode technology. 
 
3. Laser Diodes, SBIR, and Technological Developments 

Lasers are generally considered to belong to the class of versatile technologies. 
Among the many varieties of laser (e.g., CO2, YAG, He–Ne, ruby, and laser diodes), 
laser diodes are the most widely sold and used globally. Laser diodes are typically used 
in telecommunications, optical information storage, sensors, pointers, displays, 
measurements, and medical applications; they are also used for pumping other lasers. 
Laser diode was one of the most important technologies underpinning the dramatic 
changes that occurred in information technology in the latter half of the twentieth 
century.  

R&D in laser diodes in the U.S. and Japan allows for an empirical study of how 
the increase in employee startups affects the trajectory of technology for three reasons. 
As explained earlier, we need two societies because when the policy that led to the rise 
of employee startups is implemented, the influence can be at the country level. One is a 
society in which the rise of employee startups has been observed and the other is one in 
which no rise of employee startups has been observed. If we only consider societies 
with institutions that encourage spin-outs, we cannot distinguish whether subsequent 
technological development has been reduced by spin-outs or by technological maturity 
because we have nothing to compare with; therefore, this study compares the U.S. and 
Japan. Both countries had the same level of technological maturity; however, the U.S. 
implemented a system to promote spin-outs. In the laser diode industry, numerous 
startups were founded after 1982 in. the U.S., whereas they were virtually absent in 
Japan (Forrest et al. 1996).  

Second, these countries were on a similar technological trajectory before the 
policy intervention that led to surge in employee startups implemented in the U.S. 
Earlier studies on laser diode technology have shown that U.S. and Japanese incumbent 
firms have been the main actors throughout the history of laser diode research (Agrawal 
1995, Forrest et al. 1996, Yoshikuni 2009). Throughout the 1960s and 1970s, U.S. firms, 
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such as Bell Laboratories, RCA, GE, IBM, Xerox, and HP, and Japanese firms, such as 
NTT, Hitachi, NEC, Fujitsu, and Sony, targeted the same markets, faced the same 
technological problems and aimed to achieve the same goals (Ikegami and Matsukura 
2000, Dupuis 2004). Scientists and engineers in the U.S. and Japan competed to develop 
technologies that determined the fundamental performance of laser diodes, such as 
operating lifetime, reliability, and wavelength. However, U.S. scientists and engineers 
began to diverge from their Japanese counterparts in the 1980s, when they began to 
leave their parent organizations to launch startups.  

There were a large number of employee startups in the field of laser diodes in 
the U.S. Most startups emerged in the mid-1980s (Olsen 2009, Shimizu 2010). The only 
exception was Laser Diode Laboratories, launched in 1967, which was a spin-out from 
RCA. The rest of the startups were launched from the mid-1980s onward. Startup 
foundations were promoted by SBIR. 

SBIR, a competitive award-based program launched in 1982, was designed to 
encourage small businesses to engage in federal research/research and development 
(R/R&D) with the potential for commercialization. As SBIR has provided opportunities, 
including further R&D and commercialization, by awarding funding, it has a significant 
impact not only on the SBIR recipients but also on the scientists/engineers and 
managers who are yet to be awarded funding but are interested in pursuing future 
opportunities provided by SBIR. In total, 1,403 projects were awarded by the SBIR for 
laser diode research between 1982 and 2018. As some firms received SBIR awards 
successively, a simple aggregation of the number of projects awarded each year can lead 
to an overestimation. Therefore, firms awarded multiple times were identified and 
counted as a single entity to avoid overestimating the number of firms awarded funding. 
In total, 420 firms received awards between 1982 and 2018. This figure captures only 
firms receiving SBIR awards. Therefore, the number of startups shown in this 
technological field is, in fact, a modest estimation. 

SBIR has been examined from different perspectives, such as its purpose and 
performance (Audretsch et al. 2002, Audretsch 2003, R.S. Cooper 2003), long-term 
effects (Lerner 1996), entrepreneurial risk (Link and Scott 2010), and 
multidimensionality (Lanahan and Feldman 2015). Although the negative impact of 
SBIR has been observed on university spin-offs in digital technology(Fini et al. 2023), 
many studies on SBIR have concurred that SBIR stimulated R&D and its 
commercialization (Lerner 1996, Audretsch et al. 2002, Audretsch 2003, Link and Scott 
2010). While previous literature has explored the extent to which SBIR increased its 
commercialization, it has not considered the counterfactual situation that would have 
occurred if SBIR were not implemented. However, by examining the award recipients 
of the SBIR program at the NASA Langley Research Center, Archibald and Finifter 
(2003) showed that the recipients experienced a reduction in basic research along with 
increased commercial success, whereas the project experienced higher rates of 
commercial success (Archibald and Finifter 2003). A similar pattern was observed in 
another study. Toole and Czarnitzki examined university spin-offs from 1994 to 2004 
and found that SBIR led to the nontrivial impact of the academic brain drain from 
academic research to commercialization and reduced knowledge accumulation in 
academics (Toole and Czarnitzki 2007, 2010).  

While many employee startups emerged in the laser diode industry in the U.S., 
such startups were virtually nonexistent in Japan (Japan Development Bank 1986, 
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Ikegami and Matsukura 2000). Examining the laser diode and optoelectronics industry 
in the U.S. and Japan, the industrial report highlighted the following:  

 
Due to the vibrant entrepreneurial industry base that is an integral 
part of the U.S. economy, and which is apparently nearly absent in 
Japan, numerous small companies have spun-off from their larger, 
parent companies. (Forrest et al. 1996, p. xvii) 

 
The rise of startups in the U.S., which were largely promoted by SBIR, and the virtual 
absence of such startups in Japan provides a excellent opportunity for conducting quasi-
natural experiments. This is because organizations in both countries were competing to 
solve the same technical problem in the same technological field, resulting in 
development of the same technological trajectory. 

Regarding the difference in employee startups between the U.S. and Japan, 
studies have explored the factors that promoted startups in the U.S., such as 
entrepreneurship, the growth of venture capital, the knowledge pool, and networks 
(Dore 1986, R. Florida and Kenney 1988, Bygrave and Timmons 1992, P.A. Gompers, 
1994; Saxenian, 1994; Kaplan, 1995; Kenney, 2000; Paul A. Gompers et al. 2010). The 
rarity of startups in Japan has been explained by the less-developed venture capital 
system, well-developed in-house labor market, seniority-based pay, assumption of 
lifetime employment, and poor conditions for reemployment (Aoki and Dore 1994, Itoh 
1994). Opportunities for launching employee startups were limited in Japan. Although it 
is still interesting to explore how this difference emerged over time, the important point 
for this study lies in empirically investigating how the existence or absence of employee 
startups influences the pattern of subsequent technological development, given the 
difference in the occurrence of spin-outs between the U.S. and Japan. 

The U.S. employee startups targeted customized and untapped submarkets, 
such as those for short-distance communications, sensors, and optical pumping, using 
basic laser diode technology. However, such startups were virtually absent in Japan, and 
Japanese incumbent firms continued to compete in the same technological areas (Forrest 
et al. 1996, Shimizu 2010, 2019). 

One might suppose that the reason why untapped markets began to develop in the 
U.S. during the mid-1980s is that U.S. firms matured technologically before Japanese 
firms in the life cycle of technology. However, since the mid-1970s, U.S. and Japanese 
firms have been fiercely competing in R&D over improving the reliability and 
extending the longevity of laser diodes, along with laser oscillation with new materials, 
which continued into the 1980s (Dupuis 2004). Lasers began to be used in their primary 
applications, such as optical communications and DVD pickups, only in the 1990s. 
Fundamental technologies, such as the highly reliable DFB laser, the basis of today’s 
optical communications, and the blue semiconductor laser, the technical basis for the 
blue LED that won the Nobel Prize in Physics in 2014, were born in the 1990s and later 
(Nakamura et al. 2000). There is no evidence that laser diode technology was already 
mature in the 1980s, or that only the U.S. firms had already matured technology. 

SBIR was created to strengthen the role of innovation in R&D by small firms. The 
fact that this objective was justified and that SBIR was institutionalized does not in 
itself mean that this policy intervention is exogenous to innovation.  However, since the 
SBIR was not exclusively for laser diode technology, the development of laser diode 
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technology did not affect the timing of the SBIR implementation. As described earlier, 
after SBIR was introduced, numerous startups were established in the laser diode 
industry, while such startups were virtually absent in Japan. Therefore, using this 
context with the DID approach, this study derives an appropriate counterfactual to 
estimate the causal effect of the increase in employee startups on technological change. 
 
4. Estimation Strategy and Data 

Because our study focuses on the effects of treatment (the rise of opportunities 
for employee startups), a statistical challenge is to show that the differences in 
technological trajectory can be attributed to the treatment alone. Therefore, using the 
DID approach, this study conducts a quasi-natural experiment to derive an appropriate 
counterfactual to estimate the causal effect of the rise of employee startups on 
technological change (Bertrand et al. 2004, Abadie 2005, Smith and Todd 2005). 
Specifically, given that SBIR provided funding opportunities and stimulated the rise of 
employee startups, this study examines how the opportunity to establish startups offered 
by SBIR influenced the subsequent development of basic technology, determining the 
technical performance of the technology, from which other technologies are derived. 

We examine how the opportunities created by SBIRs have influenced 
technology trajectories at the level of two different units of analysis: inventor and 
organizational. Regarding the extent of inventor level, the opportunities provided by 
SBIRs are expected to influence inventors. Specifically, it is likely to influence the 
inventor’s choice of R&D projects, such as whether to continue existing R&D or 
laterally utilize knowledge for new R&D projects. The second unit of analysis is at the 
organizational level. It can be assumed that the opportunities provided by SBIR also 
influence the organizations’ R&D projects. The inventors conduct R&D in the 
organization; thus, this study focuses on inventor-level analysis. However, because 
R&D projects are usually conducted as a division of labor in an organization, the R&D 
project selection is the result of organizational decision-making. Moreover, 
organizational level analysis is also important for examining whether SBIR has an 
impact on both new entrants and incumbents. 
 We identify basic technology using International Patent Classification (IPC) 
number, H01S5. First , H01 is the number given to basic electrical elements. H01S5 is 
specifically the technology classified as basic electric elements of laser diodes (also 
called semiconductor lasers). H01S5 is ascribed to technology specifically related to 
laser diodes, such as structure, processes, apparatus for excitation, and arrangements for 
controlling the laser output parameters, including operating longevity, reliability, and 
wavelength. H01S5 was recognized as an important basic technology, which is an 
important basis for subsequent use of laser diodes (Japan Patent Office 1998). 
Concretely, we construct the following dummy variable. We give one to a patent with a 
primary IPC code of H01S5, which is precisely defined as a basic laser diode 
technology. We assign 0 to a laser diode patent whose primary IPC is not H01S5. This is 
a conservative measurement for basic technology. Because the estimation using patents 
with a primary IPC of H01S5 might be too narrow in scope, we construct another 
dummy variable by running the same exercise with it as a robustness check. We assign 
one to patents for which H01S5 is included in the IPC, and we assign 0 to the rest of the 
laser patents. 
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Counting the value of the former dummy variable for each inventor in a given 
year gives us an outcome variable Number of Basic Patent Primary at the inventor 
level. Counting the value of the same dummy variable for each patent assignee in a 
given year redefines the outcome variable at the organizational level. Analogously, 
counting the value of the latter dummy variable for each inventor in a given year 
facilitates another outcome variable referred to as Number of Basic Patent Included at 
the inventor level. Counting the value of the same dummy for each assignee in a given 
year redefines the outcome variable at the organizational level. In sum, we obtain four 
outcome variables: two each for the inventor-level analysis and the organizational-level 
analysis. Number of Basic Patent Primary is the number of patents with a primary IPC 
of H01S5 obtained by an inventor or organization in a given year. The Number of Basic 
Patent Included is the number of patents an inventor or organization obtained in a given 
year where H01S5 was included in the IPC. Number of Basic Patent Included counts the 
number of basic laser diode patents more broadly than Number of Basic Patent Primary. 
 For each outcome variable denoted by 𝑦𝑦, we assume that 𝑦𝑦 has an exponential 
conditional mean function given by 

 
E[𝑦𝑦|𝑋𝑋, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇] = 

exp (𝑋𝑋𝛽𝛽1 + 𝛽𝛽2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽3𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝛽𝛽4𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) . 
 
Here, Post Period is a dummy variable assuming a value of 1 if the application year of 
the patent concerned is a given cutoff year or later and 0 otherwise. We use two 
different cutoff years, 1982 and 1984, because it is reasonable to consider the possibility 
that SBIR influences scientists’ and engineers’ R&D activities with a lag. Country is a 
dummy variable taking one if the assignee is located in the U.S., where SBIR was 
introduced in 1982; otherwise, 0. Interaction Term is the product of Post Period and 
Country. 𝑋𝑋 is a vector containing control variables and a constant. 

At the inventor level, the control variables are Incumbent, University, 
Cumulative Number of Basic Patents, Latest Number of Laser Diode Patents, H-index, 
Top 1%, Unemployment, and GDP per Capita Growth. Incumbent is a dummy variable 
taking the value 1 if an organization had already patented in the field before 1984. 
University is a dummy variable that has the value  one if the organization to which the 
inventor belongs is an academic or public research institution, otherwise 0. The 
inventor’s affiliation is identified by the patent assignee. If the patent has more than one 
assignee, the inventor’s affiliation is identified in the following two steps. First, we 
check the assignees of other patents acquired by the inventor of the patent in question. If 
the inventor’s organization cannot be identified in the first step, the inventor’s name is 
checked in the papers published in Applied Physics Letters and Electronics Letters, 
which are the most widely published journals in this field, to identify the inventor’s 
affiliation. If the inventor has multiple affiliations with an academic/public institution 
and a firm, the University dummy variable is assigned 1 for the inventor because the 
inventor’s R&D is likely to be more basic than that of a firm’s inventor. Cumulative 
Number of Basic Patents is the number of patents obtained by the inventor or 
organization before the patent in question being applied for. Latest Number of Laser 
Diode Patents is the log-transformed number of laser diode patents that the inventor 
obtained in a given year. H-index and Top 1% are explained below.. Unemployment is 
the unemployment rate of the year in which the patent concerned applied in the 
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assignee’s country. GDP per Capita Growth is an analogous counterpart to the GDP 
growth rate. Unemployment and GDP are introduced to control for macroeconomic 
environments.  

H-index and Top 1% are introduced to analyze inventor’s ability. Studies on 
scientists’ preferences for technological research have shown that scientists and 
inventors tend to choose the area of R&D based on their past R&D performance. 
Therefore, scientists must accumulate knowledge about existing art in the field and 
field-specific learning and problem-solving skills (Cohen and Levinthal 1990). 
Newcomers to the field lack fundamental understanding and basic skills needed in the 
field and need time to reach the technological frontier (Jones 2009). Thus, experienced 
scientists with significant research performance are less likely to change their area of 
research than those who have not achieved such significant research performance, even 
when they move to another organization (Jones 2009, Arts and Fleming 2018). 
Therefore, employers usually expect such high-performing scientists and engineers to 
continue to work in their fields rather than explore other fields. However, some 
employers may want to recruit high-performing scientists and engineers to actively 
explore submarkets. Furthermore, the presence of extremely high-performing scientists 
would also enhance the firm’s reputation, making it easier to raise funds and recruit new 
scientists and engineers. Therefore, this study uses a squared term for high-performing 
researchers and confirms the nonlinear relationship. This study uses h-index, which was 
invented to assess scholars’ performance by measuring both the number and quality of 
works to identify high-performing inventors (Hirsch 2005). We count the number of 
patents obtained by inventors in the field of laser diodes and their citations and derive 
the h-index for all inventors. We refer to it as H-index. Top 1% is a dummy variable 
taking the value one if the related inventor is among the top 1% in terms of their h-
index. If inventors who have the same h-index as the top 1% of inventors, this study 
does not differentiate between inventors with the same h-index but draws a line at the 
next h-index number. 
 At the organizational level, the control variables are Incumbent, University, 
Cumulative Number of Basic Patents, Latest Number of Laser Diode Patents, 
Unemployment and GDP. While the definitions of Incumbent, Unemployment, and GDP 
are identical to those at the inventor level, the definitions of the remaining variables are 
similar to those at the inventor level. University is a dummy variable that takes a value 
of 1 if the organization is an academic or a public research institution. Cumulative 
Number of Basic Patents is the number of patents obtained by concerned patent 
assignee before the concerned patent application year. Latest Number of Laser Diode 
Patents is the log-transformed number of laser diode patents that the patent assignee 
obtained in a given year. Table 1 presents a summary of the variables for reference. 
 

<Insert Table 1> 
 

Regarding the distribution of 𝑦𝑦, we first consider the Poisson density function 
to conduct the Poisson regression analysis, a well-known count-data regression analysis, 
for our baseline analysis. We then consider the negative binomial (NB) density function 
to conduct the NB regression analysis and check the robustness of the baseline analysis 
results. 
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 Of particular interest in the regression analysis is the treatment effect of SBIR 
opportunities on the outcome variables. Similar to many other nonlinear DID models 
and contrary to the linear DID model, the treatment effect is not equal to the interaction-
term coefficient in the Poisson and NB DID models, 𝛽𝛽4 in our model. Among several 
(often cumbersome) methods for capturing the treatment effect in nonlinear DID models 
in the literature (Ai and Norton 2003, Athey and Imbens 2006, Greene 2010, Puhani 
2012, Leitgöb 2014), we adopt the difference-in-semi-elasticities (DIS) estimator 
developed by Shang, Nesson, and Fan (2018) for nonlinear DID models with 
exponential conditional mean functions including the Poisson and NB DID models and 
provide a straightforward interpretation of the treatment effect that follows (Shang et al. 
2018). 
 The DIS estimator to be obtained in our specification is  

𝐷𝐷𝐷𝐷𝐷𝐷 = [exp(𝛽𝛽2 + 𝛽𝛽4) − 1] − [exp(𝛽𝛽4) − 1] . 
Here, the first term is the percentage change in the number of patents obtained by an 
inventor or organization due to the introduction of SBIR in the U.S. and the second term 
is the Japanese counterpart. We refer to these as semi-elasticity in the U.S. and Japan, 
respectively. Subtracting the semi-elasticity in Japan from that in the U.S., the DIS 
estimator is interpreted as stating that the number of patents obtained by an inventor or 
organization in the U.S. increases by SBIR compared with that in Japan by 100 × 𝐷𝐷𝐷𝐷𝐷𝐷 
percentage points (ppt). For example, if the semi-elasticity in the U.S is −0.2 and in 
Japan it is −0.05, the resulting DIS estimate is −0.15, which can be interpreted as the 
number of patents obtained by an inventor or organization in the U.S. decreases by 
SBIR in comparison to that in Japan by 15 ppt. As such, the DIS estimator allows us to 
interpret the interaction effect in terms of semi-elasticity, which is analogous to the 
semi-elasticity interpretations of other coefficients, 𝛽𝛽1, 𝛽𝛽2, and 𝛽𝛽3 in our model. Hence, 
a positive (negative) DIS estimate is interpreted as indicating that SBIR has had a 
positive (negative) impact on the development of basic technology at the innovator or 
organizational level, while a zero DIS estimate is interpreted as indicating that it has 
not.  
 Patents are the primary data source for this study. Not all technological 
developments are covered by patents  because not all technologies are patentable; 
moreover, a firm might decide to strategically hide its invention(s) (Griliches 1990, 
Jaffe and Trajtenberg 2002). However, patents have been widely used to examine 
technological change in a particular area of technology or industry because they provide 
important information, such as the inventors’ name, the name and address of the 
assignee, a technological description, and the date of application.  

This study uses two different patent sources: patents granted by the United 
States Patent and Trademark Office (USPTO) and Japan Patent Office (JPO). 
Specifically, we use USPTO and JPO patents to examine R&D activities by inventors 
affiliated with U.S. and Japanese organizations, respectively. Then, we estimate the 
impact of SBIR on R&D in the U.S. relative to Japan. These two datasets are combined 
because analyzing patent data of one of the two countries may underestimate the R&D 
of startups in the other country. Companies file patents in the countries in which they 
conduct business. Therefore, companies not intending to expand overseas will not file 
patents in foreign countries. If many startups are not interested in expanding business 
overseas in the early stages of their growth, then analyzing patents in one of the 
countries may underestimate the startup’s R&D. If only U.S. patents were used for 
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analysis, it could underestimate the R&D of Japanese startups and SMEs and 
overestimate that of U.S. startups. The opposite is true if only Japanese patents are used. 
R&D conducted in the U.S. and Japan can be easily examined using patent data from 
third countries, this underestimates the R&D of startups and SMEs in both countries. 
Therefore, in this study, we use patents from the U.S. Patent Office for R&D of U.S. 
organizations and patents from the Japanese Patent Office for R&D of Japanese 
organizations. As explained earlier, this study investigates whether there is a difference 
between Japan and the U.S. in the change in the semi-elasticity of basic R&D outcomes 
before and after introducing a system to promote startups (SBIR). Therefore, there is no 
technical problem in analyzing the R&D outcomes of Japanese organizations using 
Japanese patents those of U.S. organizations using U.S. patents. However, for a 
robustness check, the same analysis is also conducted using only the patent granted by 
the USPTO. 

We collect the patents granted from 1958, when the first patent was issued for 
laser diodes, to 2010 through a keyword search for laser diodes, semiconductor lasers, 
or semiconductor lasers in either the patent title or the abstract. At both the inventor-
level and organizational-level analyses, the sample period of our datasets is from 1958 
to 2010. Besides analyzing the dataset of the full sample period, we analyze the datasets 
of the subsample period for a robustness check. By checking the assignee’s address, we 
identify patents granted by U.S. or Japanese organizations. Patents are categorized into 
technological classifications using IPC codes. This study uses IPC codes to identify 
laser diode technologies, as explained earlier.  
 
5. Empirical Results 
 Tables 2 and 3 report the descriptive statistics of the variables and their 
correlation matrix for inventor- level analysis with USPTO and JPO patent data. 
 

<Insert Table 2 and 3> 
 

Table 4 presented the results of the inventor-level analysis using USPTO and 
JPO data. Model 1 is the baseline model. Models 2 to 13 use different sets of control 
variables (Models 2 to 6), different regression methods (Models 7 and 8), a different 
outcome variable (Models 9), different cutoff years (Models 10 and 11), or different 
data sampling periods (Models 12 to 13) to check for the robustness of the results in 
Model 1. In all these models, the treatment effect of SBIR opportunities on the outcome 
variable is of particular interest. Following Shang, Nesson, and Fan (2018), we 
compared with the value of the DIS estimator, which is obtained by subtracting the 
semi-elasticities in Japan from the U.S. counterpart. Table 4 also reports the estimated 
values of 𝛽𝛽’s and the sample size and calculated pseudo R-squared and log pseudo-
likelihood with robust standard errors in parentheses. Each estimated value of 𝛽𝛽  is 
interpreted as the semi-elasticity of the outcome variable with respect to the explanatory 
or control variable concerned, except for that of 𝛽𝛽4.  
 

<Insert Table 4> 
 

In all models, the estimation results show that SBIR treatment has a negative 
impact on the subsequent development of laser diode base technology at a statistically 
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significant level of 1%. The reported DIS estimates vary from −0.258 to −0.383, which 
implies that, compared with Japan, where employee startups virtually nonexistent, the 
opportunities offered by SBIR reduced the number of basic laser diode patents by an 
inventor more in the U.S. by 25.8 to 38.3 ppt. This is because the number of laser diode 
basic patents has been decreased in the U.S. by 32.7 to 54.8 ppt while it has been 
decreased by at most 17.4 ppt or not been significantly decreased in Japan. 

Considering the results on the control variables, the coefficients of all the 
control variables except Unemployment and New Entrant are statistically significant and 
positive in many models. They suggest that inventors at universities, who score highly 
on the h-index, have obtained many basic patents in the past, or have obtained many 
laser diode patents recently are more likely to patent basic technology and that inventors 
are more likely to patent basic technology in the period of economic expansion. The 
results on the coefficient of Unemployment are unstable. As expected, the results that 
the coefficients of New Entrant are negative in all models and that the coefficient values 
are large, ranging from -0.318 to -0.5, means that new entrants have lower levels of 
basic R&D, as expected. Furthermore, even after controlling for the effect of new 
entrants, the results showing a negative DIS indicate that the effect of SBIR on reducing 
basic research extends to inventors in incumbent firms. 

 In all models, the coefficient of H-index is positive and that of its squared term 
is negative, indicating a nonlinear relationship between top inventors and non-high-
performing inventors shifting from basic research. Although the coefficient of the 
squared term is much smaller than that of H-index, so the effect of being a very top 
inventor on the shift from basic research is marginal, this result indicates that the degree 
of the shift from basic research varies according to the inventor. Models 3 and 4 use a 
dummy for the top 1% and top 10% of high-performing scientists, respectively, instead 
of H-index. The results are consistent with the models using H-index. 

All models except Models 7 and 8 are estimated using Poisson regression 
under the assumption that 𝑦𝑦 is conditionally distributed according to the Poisson density 
function. Models 7 and 8 are estimated using two variants of the NB regression, referred 
to as NB1 and NB2, under the assumption that the conditional distribution of 𝑦𝑦 is the 
NB density function. The NB regression model typically includes the Poisson model as 
a special case by relaxing the Poisson model’s equidispersion (equality of mean and 
variance) property. Specifically, in the NB model, the variance of 𝑦𝑦  is given by 
(mean) + 𝛼𝛼(mean)𝑝𝑝, with 𝑝𝑝 = 1 for NB1 and 𝑝𝑝 = 2 for NB2 (Cameron and Trivedi 
2013). Parameter 𝛼𝛼  is called the overdispersion parameter, because if 𝛼𝛼 = 0 , the 
variance is equal to the mean, whereas if 𝛼𝛼 > 0 , the variance exceeds the mean, 
implying that the Poisson model underestimates the data dispersion. Accordingly, we 
must check whether 𝛼𝛼 > 0  is observed and the robustness of the results from the 
Poisson model in that case. 

The log-transformed value of Log Alpha represents the result of the 
overdispersion 𝛼𝛼 in Models 7 and 8. In both models, it is observed to be statistically 
significant and negative at the 1% level with −0.459 and −1.492, implying 𝛼𝛼  being 
0.632 and 0.225 and not equal to zero. This implies that the Poisson model (Models 1–3 
and 6 and 14) underestimates the dispersion of the outcome. A comparison with log 
pseudo-likelihood implies that the NB2 model is reasonable. However, most estimation 
results, including the SBIR treatment effect, are robust to the choice of regression 
model. 
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Models 10 and 11 use different cutoff years of 1982 and 1983, and the DIS 
estimate is similar to that in Model 1.  

Models 12 and 13 analyze subsample datasets in which the sample periods end 
in 1993 (10 years from 1984) and 2003 (20 years from 1984), respectively. We have two 
reasons for doing so: one is that the sample period from 1958 to 2010 might be too long 
to examine the effect of SBIR with the DID design because conditions might have 
changed since the SBIR was introduced. The other reason is that the effect of SBIR on 
the subsequent technological development of the existing technology might change as 
time evolves after the introduction of SBIR. On the one hand, the impact of SBIR might 
diminish over time. On the other hand, the impact of SBIR might be increasing because 
supporting institutions were established after the SBIR was introduced. While 
networking among scientists and engineers grows and venture capitalists begin to 
evaluate the SBIR-awarded project highly, launching a startup becomes an increasingly 
realistic option for scientists and engineers as such institutions develop. In both Models 
12 and 13, the DIS estimate remains significantly positive at the 1% level, indicating 
that the introduction of SBIR reduced the invention of basic technology.  

Next, let us look at the impact of SBIR at the organizational level. Since the 
SBIR is a system that encourages spin-outs, its direct impact will be on researchers who 
conduct R&D. However, the opportunities provided by the SBIR would also have an 
impact on the organization's R&D selection. The analysis at the organizational level is 
essentially the same exercise as at the inventor level. 
 

<Insert Table 5 and 6> 
 

Table 5 shows the descriptive statistics of the organizational-level analysis 
using the USPTO and JPO data, and Table 6 shows the correlation matrix. 
 

<Insert Table 7> 
 

Table 7 shows the result of the organizational-level analysis using USPTO and 
JPO data. The results are consistent with those of the inventor-level analysis. The 
reported DIS estimates vary from −0.274 to −0.394, which indicates that the 
opportunities provided by SBIR reduce the number of basic laser diode patents by an 
organization more in the U.S. than in Japan by 27.4 to 39.4 ppt. This result shows that 
the SBIR implementation reduced basic R&D in both individual and organizational 
levels, indicating that incentives for individual inventors and entrepreneurs have 
changed in the U.S. and firms, in turn, are changing their R&D targets. 

Next, as a robustness check, we analyze the results using the USPTO data 
alone, while considering that when only the USPTO data are used, Japanese 
organizations that did not have a patent in the U.S. are not included in the data. 
 

<Insert Table 8, 9, and 10> 
 

Table 8 shows the descriptive statistics of the inventor-level analysis using the 
USPTO data alone, and Table 9 shows the correlation matrix. Table 10 shows the results 
of the inventor-level analysis using USPTO data alone. This differs from the earlier 
analysis in that the USPTO is also used to analyze Japanese firms. This empirical result 
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is consistent with Table 4 although we should be cautious in comparing the coefficients 
because of different data being used. 
 

<Insert Table 11, 12, and 13> 
 
 Table 11 shows the descriptive statistics of the organizational-level analysis 
using the USPTO data alone, and Table 12 shows the correlation matrix. Table 13 
reports the results of the organizational-level analysis using the USPTO data only. The 
basic models of our analysis, Models 1 through 7, show consistent estimation results 
with previous analyses using USPTO and JPO data. However, the DIS estimation is 
somewhat unstable for Model 8, which uses NB1, and Model 9, which broadly defines 
the basic patent. 
 
6. Conclusions 

This study examines whether the rise of opportunities to launch employee 
startups drives technological change. Empirical analyses show that the opportunities 
provided by SBIR designed to promote R&D and its commercialization affected the 
trajectory of basic laser diode technology. Earlier studies have indicated that progress on 
the technological trajectory is likely to retain some cumulative features, which will 
gradually increase productivity (Kuhn 1962, Rosenberg 1979, Dosi 1982). This study 
showed that the cumulative features of technological development gradually 
disappeared due to the surge in employee startups promoted by SBIR in the U.S. The 
divergence from the R&D of the basic laser diode structure is one sign that the U.S. 
inventors have shifted their focus from R&D to other fields in submarkets that startups 
have attempted to enter. 

This study assesses the impact of SBIR on both the inventor and  the 
organizational. The empirical results at the organizational level were also consistent 
with the inventor estimates, showing the SBIR had shifted U.S. firms’ focus on R&D 
from basic to applied. The increased focus on applied R&D was more pronounced 
among new entrant firms, consistent with earlier literature, indicating that spin-out firms 
utilize knowledge produced at their parental organizations and target untapped markets 
(Agarwal et al. 2004, B.A. Campbell et al. 2012).  

The study findings suggest the possibility that SBIR channeled inventors to 
reduce their level of R&D efforts in basic technology and rush into commercialization. 
Many scientists engaged in R&D are leaving their parent firms to use their accumulated 
technological knowledge laterally and to launch startups targeting an untapped 
submarket. If the supply of skilled scientists is abundant, this trend does not have a 
significant impact on subsequent technological development because incumbent firms 
can immediately hire new scientists to fill the vacancies created by spin-outs. However, 
the pool of skilled scientists is not instantly increased as skilled scientists are highly 
knowledgeable. Professional R&D experience in a laboratory and formal graduate-level 
education in physics are the prerequisites for a scientist to be will be deemed skilled in 
this domain. As submarkets with high expected returns are not infinite but rather 
limited, scientists/engineers must rush to a preferred submarket. The fiercer the 
competition to fill untapped submarkets, the earlier the spin-out. If most scientists 
engaged in R&D disengage from trajectory-oriented activities to utilize technology 
laterally and launch a startup, this will eventually hamper the technological trajectory. 
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Employee startups, which utilize the existing technology laterally and shift R&D to 
individual submarkets can lead to earlier fade out of the technological trajectory and 
remain at a lower level than if no entrepreneurial spin-out had occurred. 

The estimation results are consistent with previous literature examining various 
funding sources and innovation in the U.S. and with the finding that the association with 
U.S. government funding, NIH research, and SBIR grants hindered technical innovation 
(Pahnke et al. 2015). The study findings also explain why Japanese firms were good 
imitators and achieved great process innovations, whereas U.S. firms were successful in 
terms of product innovation but were poor imitators (Rosenberg 1988). A general 
explanation for this observation is entrepreneurship and cultural differences. However, 
the study findings suggest that institutional factors promoting employee startups play an 
important role in establishing or hampering technological trajectories to promote 
subsequent cumulative technological development. 

One might suppose that it is reasonable that basic research in the U.S. was 
reduced because SBIR encourages the commercialization of R&D results by startups. 
Indeed, an increase in applied development research is naturally expected due to the 
impact of SBIR. However, the decline in basic research is not the intended result of 
SBIR. The SBIR’s reduction in basic technology development has been confirmed even 
after controlling for new entrants and thus extends to researchers who were conducting 
R&D in incumbent firms. This is an unintended consequence of the change in the 
incentives for inventors provided by SBIR. Furthermore, SBIR’s impact may still be 
considered positive because SBIR has certainly stimulated commercialization from 
basic technological development although it has delayed subsequent development of 
basic technology. It can be assumed that some submarkets would grow significantly and 
develop into important markets. Moreover, if many scientists continue to engage in 
R&D along the existing technological trajectory, the aggregate amount of R&D 
investment in this area will gradually increase. Increasing R&D investment in the 
existing technological trajectory, on the one hand, reduces the potential for 
technological breakthroughs and lowers the profitability of firms, on the other. 
Therefore, we must consider resource allocation in both basic research and its 
development/commercialization to fully evaluate the impact on innovation of employee 
startups developed by SBIR, which is an important point for future research. 

However, as basic R&D was nascent when SBIR was introduced (Ikegami and 
Matsukura 2000, Dupuis 2004), Japanese firms held a large share of the global market 
for laser diodes since the mid-1980s (Forrest et al. 1996, Wood and Brown 1998). They 
developed blue lasers based on R&D in basic technologies such as material structure. 
This process led to the development of white LEDs, which won the Nobel Prize in 
Physics in 2014 and opened up a huge market (Nakamura et al. 2000), considered to 
represent the opportunity costs to shift R&D from basic to applied research at an earlier 
stage was significant. 

As the study findings are based on our field observations, caution must be 
exercised about generalizations. Moreover, other factors not explored in this study could 
explain the observed patterns. A classic explanation might be that Japanese firms tended 
to have advantages in incremental process innovations, whereas U.S. firms tended to 
allocate more resources to radical and revolutionary product innovations. One could 
attribute this difference to the cultural differences between the U.S. and Japan. This 
explanation assumes that the U.S. culture prefers revolutionary innovation, while the 
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Japanese culture prefers cumulative innovation. However, if this explanation is correct, 
the trajectories would have diverged even before SBIR was introduced. As this study 
focuses on longitudinal scrutiny of the laser diode industry and a discussion of the 
different patterns of innovation between the U.S. and Japan, and owing to space 
limitations, we have not explored other examples. However, detailed and longitudinal 
studies in future research could unravel the mechanisms through which the different 
patterns emerge and provide useful comparisons to offer a better understanding of the 
patterns of subsequent technological development.  
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Table 1: Description of Variables 

Variables Description 
No. of Basic Patent Primary Number of patents with a primary IPC of H01S5 for an inventor/organization obtained in a given year 

No. of Basic Patent Included Number of patents an inventor/organization obtained where H01S5 is included in the IPC 

Post Period 1 if the patent concerned is applied in a given treatment year (1982, 1983, or 1984) or later; otherwise, 0 

Country 1 if the assignee is located in the U.S.; otherwise, 0 

Interaction Term Product of Post period and Country 

Incumbent 1 if an organization had already patented in the field before 1984; otherwise, 0 

University 1 if assignee is a university; otherwise, 0 

H-index H-index of the inventor 

H-index_Squared Squared term of the H-index 

Top 1% 1 if the inventor concerned is among the top 1% inventors in terms of the H-index, otherwise 0 

Top 10% 1 if the inventor concerned is among the top 10% inventors in terms of the H-index; otherwise, 0 

Cumulative Number of Basic Patents Number of patents obtained from the inventor before the concerned patent application year 

Latest Number of Laser Diode Patents Log-transformed number of laser diode patents that the inventor obtained in a given year 

Unemployment Unemployment rate in the year when the patent concerned applied in the assignee’s country 

GDP GDP per capita growth rate in the year when the patent concerned applied in the assignee’s country 
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Table 2: Descriptive Statistics for USPTO and JPO Inventor Level 

 Variable Obs Mean Std. dev. Min Max 

1 No. of Basic Patent Primary 36,240 0.334  0.764  0 17 

2 No. of Basic Patent Included 36,240 0.641  1.197  0 66 

3 Country 36,240 0.430  0.495  0 1 

4 Post Period 82 36,240 0.965  0.184  0 1 

5 Interaction 82 36,240 0.418  0.493  0 1 

6 Post Period 83 36,240 0.954  0.210  0 1 

7 Interaction 83 36,240 0.415  0.493  0 1 

8 Post Period 84 36,240 0.941  0.235  0 1 

9 Interaction 84 36,240 0.413  0.492  0 1 

10 New Entrant 36,240 0.427  0.495  0 1 

11 Top 1% 36,240 0.065  0.246  0 1 

12 Top 10% 36,240 0.307  0.461  0 1 

13 Hindex 36,240 1.836  2.912  0 44 

14 Hindex Squared 36,240 11.850  64.201  0 1936 

15 University 36,240 0.059  0.236  0 1 

16 Cumulative Number of Basic 
Patents 36,240 0.950  3.578  0 59 

17 Latest Number of Laser Diode 
Patents 36,240 0.233  0.451  0 4.431  

18 Unemployment 36,240 4.500  1.719  1.2 9.708  

19 GDP per Capita Growth 36,240 1.660  1.804  -5.370  6.911  
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Table 3: Correlation Matrix USPTO and JPO Inventor Level 

 Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 No. of Basic Patent Primary                   

2 No. of Basic Patent Included 0.640                   

3 Country -0.156  -0.122                  

4 Post Period 82 -0.027  -0.034  0.037                 

5 Interaction 82 -0.157  -0.124  0.976  0.162                

6 Post Period 83 -0.032  -0.037  0.053  0.868  0.161               

7 Interaction 83 -0.157  -0.124  0.971  0.161  0.995  0.186              

8 Post Period 84 -0.042  -0.043  0.070  0.765  0.166  0.882  0.187             

9 Interaction 84 -0.158  -0.125  0.966  0.160  0.989  0.185  0.995  0.209            

10 New Entrant -0.163  -0.138  0.479  0.165  0.501  0.190  0.506  0.215  0.511           

11 Top 1% 0.167  0.249  0.040  0.019  0.042  0.016  0.041  0.017  0.040  -0.016          

12 Top 10% 0.206  0.250  0.048  0.006  0.053  0.007  0.053  0.008  0.053  -0.045  0.395         

13 Hindex 0.174  0.270  -0.071  0.017  -0.059  0.018  -0.057  0.019  -0.055  -0.083  0.629  0.568        

14 Hindex Squared 0.052  0.162  0.082  0.020  0.086  0.022  0.087  0.025  0.088  0.023  0.455  0.252  0.828       

15 University -0.023  -0.031  0.108  0.019  0.111  -0.002  0.110  -0.019  0.110  0.096  -0.039  -0.026  -0.059  -0.027      

16 Cumulative Number of Basic 
Patents 0.355  0.286  -0.135  0.035  -0.130  0.038  -0.129  0.040  -0.128  -0.127  0.334  0.301  0.377  0.241  -0.039     

17 Latest Number of Laser Diode 
Patents 0.393  0.516  0.031  0.026  0.040  0.024  0.041  0.016  0.043  0.007  0.309  0.333  0.343  0.228  -0.048  0.173    

18 Unemployment -0.131  -0.122  0.660  0.120  0.640  0.120  0.624  0.125  0.608  0.337  0.006  -0.008  -0.095  0.025  0.077  -0.097  0.026   

19 GDP per Capita Growth 0.064  0.056  -0.040  -0.115  -0.047  -0.084  -0.033  -0.084  -0.038  -0.091  0.007  0.022  0.018  0.005  -0.004  -0.002  -0.018  -0.311  
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Table 4: Estimation Results at USPTO and JPO Inventor Level 

  1 2 3 4 5 6 7 8 9 10 11 12 13 
 Poisson Poisson Poisson Poisson Poisson Poisson NB2 NB1 Poisson Poisson Poisson Poisson Poisson 
 1984 1984 1984 1984 1984 1984 1984 1984 1984 1982 1983 1984 1984 

 Primary Primary Primary Primary Primary Primary Primary Primary 
Primary 
Included Primary Primary Primary Primary 

Variables Full Full Full Full Full Full Full Full Full Full Full 
Until 
1993 

Until 
2003 

                            

Post Period -0.191*** -0.108** -0.109** -0.112** -0.106** -0.116*** -0.158*** -0.138*** 
-

0.0909*** -0.0459 -0.0575 -0.0677 -0.0995** 

 (0.0463) (0.0464) (0.0461) (0.0454) (0.0464) (0.0446) (0.0376) (0.0427) (0.0289) (0.0481) (0.0445) (0.0499) (0.0451) 
Country -0.0686 -0.108 -0.121 -0.119 -0.0962 0.0966 0.0559 0.123 0.332*** 0.123 0.153* 0.116 0.480*** 

 (0.0922) (0.0924) (0.0917) (0.0899) (0.0926) (0.0912) (0.0822) (0.0911) (0.0605) (0.0976) (0.0923) (0.157) (0.0955) 
Interaction -0.605*** -0.340*** -0.351*** -0.423*** -0.372*** -0.466*** -0.413*** -0.490*** -0.473*** -0.487*** -0.521*** -0.328*** -0.508*** 

 (0.0869) (0.0871) (0.0862) (0.0848) (0.0875) (0.0853) (0.0775) (0.0879) (0.0556) (0.0943) (0.0882) (0.0911) (0.0858) 
University 0.0444 0.0990** 0.115** 0.134*** 0.113** 0.145*** 0.175*** 0.164*** 0.0412 0.155*** 0.152*** 0.212** 0.186*** 

 (0.0478) (0.0479) (0.0476) (0.0468) (0.0479) (0.0468) (0.0449) (0.0463) (0.0331) (0.0469) (0.0470) (0.0828) (0.0507) 
Cumulative Number 
of Basic Patents 0.0613*** 0.0590*** 0.0528*** 0.0470*** 0.0563*** 0.0474*** 0.0677*** 0.0471*** 0.0343*** 0.0472*** 0.0472*** 0.0326*** 0.0457*** 

 (0.00187) (0.00187) (0.00201) (0.00175) (0.00198) (0.00185) (0.00332) (0.00119) (0.00159) (0.00184) (0.00184) (0.00304) (0.00189) 
Latest Number of 
Laser Diode Patents 0.0734*** 0.0754*** 0.0703*** 0.0684*** 0.0681*** 0.0894*** 0.251*** 0.0849*** 0.0880*** 0.0894*** 0.0894*** 0.246*** 0.0851*** 

 (0.00909) (0.00917) (0.00912) (0.00874) (0.00958) (0.00949) (0.0159) (0.00209) (0.00526) (0.00948) (0.00948) (0.0182) (0.0104) 

Unemployment 
-

0.0317*** -0.0240** -0.0232** -0.0104 -0.0205* -0.0129 -0.000696 -0.0115 
-

0.0437*** -0.0102 -0.0118 0.0147 
-

0.0822*** 

 (0.0114) (0.0114) (0.0113) (0.0109) (0.0113) (0.0109) (0.00957) (0.00924) (0.00729) (0.0107) (0.0108) (0.0250) (0.0130) 
GDP per Capita 
Growth 0.0675*** 0.0611*** 0.0621*** 0.0602*** 0.0614*** 0.0623*** 0.0501*** 0.0627*** 0.0401*** 0.0628*** 0.0636*** 0.0484*** 0.0738*** 

 (0.00744) (0.00731) (0.00727) (0.00711) (0.00728) (0.00709) (0.00636) (0.00598) (0.00447) (0.00712) (0.00710) (0.00854) (0.00738) 
New Entrant  -0.500*** -0.494*** -0.437*** -0.499*** -0.447*** -0.425*** -0.464*** -0.318*** -0.466*** -0.458*** -0.393*** -0.380*** 

  (0.0298) (0.0295) (0.0299) (0.0297) (0.0299) (0.0270) (0.0276) (0.0208) (0.0297) (0.0298) (0.0580) (0.0338) 
Top 1%   0.366***           

   (0.0511)           
Top 10%    0.624***          

    (0.0249)          
Hindex     0.0184*** 0.165*** 0.106*** 0.165*** 0.164*** 0.165*** 0.165*** 0.201*** 0.189*** 
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     (0.00447) (0.0112) (0.0125) (0.00682) (0.00979) (0.0112) (0.0112) (0.0309) (0.0123) 

Hindex Squared      

-
0.00722**

* 

-
0.00566**

* 

-
0.00765**

* 

-
0.00562**

* 

-
0.00720**

* 

-
0.00721**

* 

-
0.00886**

* 

-
0.00786**

* 

      (0.000986) (0.000893) (0.000427) (0.000667) (0.000985) (0.000986) (0.00302) (0.00102) 
Log Alpha       -0.459*** -1.492***      

       (0.0585) (0.0552)      
Constant -0.939*** -0.946*** -0.961*** -1.213*** -0.983*** -1.324*** -1.540*** -1.286*** -0.611*** -1.392*** -1.381*** -1.732*** -1.257*** 

 (0.0578) (0.0575) (0.0568) (0.0566) (0.0576) (0.0598) (0.0523) (0.0511) (0.0412) (0.0632) (0.0601) (0.0836) (0.0624) 
Semielasticity in the 
United States -0.548*** -0.361*** -0.369*** -0.414*** -0.380*** -0.441*** -0.435*** -0.466*** -0.431*** -0.413*** -0.439*** -0.327*** -0.455*** 

 (0.0316) (0.0456) (0.0444) (0.0405) (0.0445) (0.0393) (0.0372) (0.0404) (0.0263) (0.0474) (0.0419) (0.0518) (0.0389) 
Semielasticity in 
Japan -0.174*** -0.103** -0.104** -0.106*** -0.100** -0.109*** -0.146*** -0.129*** 

-
0.0869*** -0.0449 -0.0559 -0.0655 -0.0947** 

 (0.0382) (0.0417) (0.0413) (0.0406) (0.0417) (0.0397) (0.0321) (0.0372) (0.0264) (0.0459) (0.0420) (0.0467) (0.0408) 
DIS -0.375*** -0.258*** -0.265*** -0.308*** -0.280*** -0.332*** -0.289*** -0.337*** -0.344*** -0.368*** -0.383*** -0.261*** -0.361*** 

 (0.0515) (0.0633) (0.0623) (0.0589) (0.0626) (0.0574) (0.0504) (0.0556) (0.0381) (0.0662) (0.0603) (0.0692) (0.0574) 
Observations 36,240 36,240 36,240 36,240 36,240 36,240 36,240 36,240 36,240 36,240 36,240 11,490 26,867 
Pseudo R2 0.104 0.111 0.114 0.128 0.112 0.129 0.111 0.0898 0.144 0.129 0.129 0.208 0.127 
Log pseudolikelihood -25734 -25526 -25458 -25042 -25504 -25009 -24131 -24700 -35708 -25024 -25017 -8983 -19358 
Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 5: Descriptive Statistics at the USPTO and JPO Organization Level 
 

Variable Obs Mean Std. dev. Min Max 

1 No. of Basic Patent Primary 6,704 0.791  2.454  0 40 

2 No. of Basic Patent Included 6,704 1.487  4.089  0 67 

3 Country 6,723 0.581  0.493  0 1 

4 Post Period 82 6,704 0.953  0.213  0 1 

5 Interaction 82 6,704 0.558  0.497  0 1 

6 Post Period 83 6,704 0.941  0.236  0 1 

7 Interaction 83 6,704 0.553  0.497  0 1 

8 Post Period 84 6,704 0.930  0.254  0 1 

9 Interaction 84 6,704 0.550  0.498  0 1 

10 New Entrant 6,704 0.734  0.442  0 1 

11 University 6,704 0.090  0.286  0 1 

12 Cumulative Number of Basic 
Patents 

6,704 9.479  38.103  0 531 

13 Latest Number of Laser Diode 
Patents 

6,704 0.607  0.876  0 4.564  

14 Unemployment 6,723 4.845  1.774  1.100  9.708  

15 GDP per Capita Growth 6,723 1.614  1.921  -5.370  12.162  
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Table 6: Correlation Matrix USPTO and JPO Organizational Level 
 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 No. of Basic Patent Primary 
              

2 No. of Basic Patent Included 0.913  
             

3 Country -0.224  -0.225  
            

4 Post Period 82 -0.040  -0.051  0.038  
           

5 Interaction 82 -0.218  -0.219  0.953  0.251  
          

6 Post Period 83 -0.042  -0.050  0.054  0.891  0.243  
         

7 Interaction 83 -0.217  -0.218  0.945  0.248  0.991  0.279  
        

8 Post Period 84 -0.047  -0.055  0.072  0.816  0.246  0.917  0.278  
       

9 Interaction 84 -0.217  -0.217  0.938  0.247  0.984  0.277  0.993  0.302  
      

10 New Entrant -0.318  -0.328  0.188  0.371  0.266  0.417  0.281  0.421  0.287  
     

11 University -0.044  -0.047  -0.012  -0.014  -0.007  -0.021  -0.008  -0.017  -0.008  -0.035  
    

12 Cumulative Number of Basic 
Patents 

0.625  0.610  -0.223  0.031  -0.212  0.035  -0.210  0.036  -0.209  -0.334  -0.051  
   

13 Latest Number of Laser Diode 
Patents 

0.653  0.713  -0.191  -0.020  -0.176  -0.022  -0.174  -0.032  -0.174  -0.429  -0.072  0.493  
  

14 Unemployment -0.170  -0.178  0.646  0.124  0.612  0.105  0.586  0.101  0.568  0.149  -0.013  -0.102  -0.126  
 

15 GDP per Capita Growth 0.060  0.062  -0.042  -0.159  -0.055  -0.111  -0.034  -0.115  -0.040  -0.110  0.029  -0.047  0.027  -0.325  
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Table 7: Estimation Results at USPTO and JPO Organization Level 

  1 2 3 4 5 6 7 8 9 
 Poisson Poisson NB2 NB1 Poisson Poisson Poisson Poisson Poisson 
 1984 1984 1984 1984 1984 1982 1983 1984 1984 

 Primary Primary Primary Primary 
Primary 
Included Primary Primary Primary Primary 

Variables Full Full Full Full Full Full Full 1993 2003           

Post Period -0.241*** -0.234*** -0.225*** -0.250*** -0.267*** -0.264*** -0.269*** -0.158** -0.219***  
(0.0644) (0.0672) (0.0731) (0.0681) (0.0422) (0.0778) (0.0713) (0.0748) (0.0694) 

Country 0.325** 0.319** 0.435*** 0.369*** 0.452*** 0.210 0.259* 0.339* 0.532***  
(0.129) (0.131) (0.133) (0.139) (0.0865) (0.136) (0.133) (0.201) (0.142) 

Interaction -0.696*** -0.684*** -0.676*** -0.697*** -0.635*** -0.579*** -0.630*** -0.388*** -0.574***  
(0.115) (0.119) (0.121) (0.133) (0.0756) (0.128) (0.124) (0.130) (0.121) 

University 0.290*** 0.289*** 0.362*** 0.339*** 0.300*** 0.292*** 0.289*** 0.432*** 0.333***  
(0.0685) (0.0686) (0.0709) (0.0736) (0.0418) (0.0691) (0.0686) (0.0903) (0.0709) 

Cumulative Number 
of Basic Patents 

0.00159*** 0.00157*** 0.00218*** 0.00193*** 0.000902*** 0.00152*** 0.00156*** 0.000681 0.00126*** 
 

(0.000266) (0.000266) (0.000319) (0.000187) (0.000222) (0.000263) (0.000264) (0.000495) (0.000296) 
Latest Number of 
Laser Diode Patents 

1.133*** 1.129*** 1.217*** 1.066*** 1.174*** 1.124*** 1.128*** 1.181*** 1.141*** 
 

(0.0243) (0.0280) (0.0232) (0.0194) (0.0211) (0.0282) (0.0282) (0.0345) (0.0343) 
Unemployment -0.0309 -0.0307 -0.0424** -0.0382** -0.0483*** -0.0220 -0.0237 -0.0238 -0.0725***  

(0.0191) (0.0191) (0.0186) (0.0159) (0.0140) (0.0194) (0.0193) (0.0356) (0.0232) 
GDP per Capita 
Growth 

0.0570*** 0.0566*** 0.0532*** 0.0606*** 0.0413*** 0.0556*** 0.0577*** 0.0494*** 0.0546*** 
 

(0.0124) (0.0124) (0.0122) (0.0101) (0.00846) (0.0124) (0.0124) (0.0161) (0.0133) 
New entrant 

 
-0.0226 -0.0512 -0.0858* 0.0900* -0.0562 -0.0330 -0.0176 0.0157   
(0.0688) (0.0560) (0.0514) (0.0473) (0.0678) (0.0685) (0.0964) (0.0745) 

Log Aalpha 
  

-0.875*** -0.521*** 
     

   
(0.100) (0.0875) 

     

Constant -1.483*** -1.474*** -1.623*** -1.314*** -0.850*** -1.441*** -1.457*** -1.580*** -1.407***  
(0.0965) (0.103) (0.0961) (0.0894) (0.0714) (0.111) (0.106) (0.125) (0.116) 

Semielasticity in the 
United States 

-0.608*** -0.601*** -0.594*** -0.612*** -0.594*** -0.569*** -0.593*** -0.421*** -0.548*** 
 

(0.0355) (0.0409) (0.0406) (0.0450) (0.0271) (0.0471) (0.0442) (0.0629) (0.0468) 
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Semielasticity in 
Japan 

-0.214*** -0.209*** -0.202*** -0.222*** -0.235*** -0.232*** -0.236*** -0.147** -0.197*** 
 

(0.0506) (0.0532) (0.0584) (0.0530) (0.0323) (0.0597) (0.0544) (0.0638) (0.0557) 
DIS -0.394*** -0.392*** -0.392*** -0.391*** -0.360*** -0.338*** -0.357*** -0.274*** -0.351***  

(0.0642) (0.0649) (0.0694) (0.0686) (0.0402) (0.0725) (0.0666) (0.0880) (0.0706) 
Observations 6,704 6,704 6,704 6,704 6,704 6,704 6,704 1,975 4,742 

Pseudo R2 0.561 0.561 0.262 0.248 0.622 0.560 0.561 0.594 0.561 
Log pseudolikelihood -5377 -5377 -5129 -5230 -7312 -5390 -5381 -1935 -4104 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 8: Descriptive Statistics of the USPTO Inventor Level 
 

Variable Obs Mean Std. dev. Min Max 

1 No. of Basic Patent Primary 33,336 0.319  0.876  0 30 

2 No. of Basic Patent Included 33,336 0.654  1.379  0 66 

3 Country 33,336 0.467  0.499  0 1 

4 Post Period 82 33,336 0.976  0.152  0 1 

5 Interaction 82 33,336 0.454  0.498  0 1 

6 Post Period 83 33,336 0.970  0.170  0 1 

7 Interaction 83 33,336 0.451  0.498  0 1 

8 Post Period 84 33,336 0.964  0.187  0 1 

9 Interaction 84 33,336 0.448  0.497  0 1 

10 New Entrant 33,336 0.481  0.500  0 1 

11 Top 1% 33,336 0.082  0.275  0 1 

12 Top 10% 33,336 0.406  0.491  0 1 

13 Hindex 33,336 1.823  3.583  0 44 

14 Hindex Squared 33,336 16.162  73.215  0 1936 

15 University 33,336 0.046  0.209  0 1 

16 Cumulative Number of Basic 
Patents 

33,336 0.842  3.218  0 52 

17 Latest Number of Laser Diode 
Patents 

33,336 0.294  0.486  0 4.431  

18 Unemployment 32,813 4.832  1.629  1 10 

19 GDP per Capita Growth 33,336 1.453  1.980  -5.370  11.623  
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Table 9: Correlation Matrix USPTO Inventor Level 
 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 No. of Basic Patent Primary 
                  

2 No. of Basic Patent Included 0.686  
                 

3 Country -0.133  -0.126  
                

4 Post Period 82 -0.015  -0.016  -0.019  
               

5 Interaction 82 -0.134  -0.128  0.974  0.146  
              

6 Post Period 83 -0.014  -0.017  -0.019  0.893  0.129  
             

7 Interaction 83 -0.134  -0.128  0.969  0.145  0.994  0.162  
            

8 Post Period 84 -0.019  -0.015  -0.013  0.803  0.119  0.899  0.149  
           

9 Interaction 84 -0.135  -0.128  0.963  0.144  0.988  0.161  0.994  0.179  
          

10 New Entrant -0.112  -0.091  0.406  0.153  0.432  0.171  0.438  0.191  0.444  
         

11 Top 1% 0.204  0.270  -0.023  0.004  -0.019  -0.004  -0.020  -0.006  -0.020  -0.067  
        

12 Top 10% 0.218  0.260  -0.143  0.021  -0.133  0.021  -0.131  0.024  -0.130  -0.118  0.363  
       

13 Hindex 0.173  0.258  -0.062  0.053  -0.051  0.056  -0.049  0.063  -0.047  -0.065  0.619  0.519  
      

14 Hindex Squared 0.084  0.186  0.021  0.030  0.026  0.032  0.027  0.036  0.028  -0.016  0.502  0.261  0.850  
     

15 University -0.020  -0.036  0.189  0.020  0.191  0.014  0.190  0.017  0.190  0.094  -0.042  -0.036  -0.046  -0.030  
    

16 Cumulative Number of Basic 
Patents 

0.336  0.293  -0.128  0.029  -0.123  0.029  -0.122  0.033  -0.121  -0.104  0.397  0.294  0.563  0.430  -0.036  
   

17 Latest Number of Laser Diode 
Patents 

0.398  0.521  -0.094  0.060  -0.082  0.065  -0.080  0.072  -0.078  0.005  0.289  0.316  0.324  0.241  -0.051  0.202  
  

18 Unemployment -0.066  -0.059  0.634  0.057  0.612  0.027  0.593  -0.001  0.575  0.264  -0.032  -0.085  -0.016  0.012  0.128  -0.071  0.058  
 

19 GDP per Capita Growth 0.011  0.011  0.085  -0.098  0.075  -0.059  0.088  -0.071  0.083  -0.040  0.019  -0.008  -0.034  -0.005  -0.001  -0.013  -0.086  -0.245  
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Table 10: Estimation Results at the USPTO Inventor Level 

  1 2 3 4 5 6 7 8 9 10 11 12 13 
 Poisson Poisson Poisson Poisson Poisson Poisson NB2 NB1 Poisson Poisson Poisson Poisson Poisson 
 1984 1984 1984 1984 1984 1984 1984 1984 1984 1982 1983 1984 1984 

 Primary Primary Primary Primary Primary Primary Primary Primary 
Primary 
Included Primary Primary Primary Primary 

Variables Full Full Full Full Full Full Full Full Full Full Full 
Until 
1993 

Until 
2003               

Post Period -0.337*** -0.263*** -0.262*** -0.262*** -0.246*** -0.280*** -0.300*** -0.287*** -0.225*** -0.235*** -0.188*** -0.161*** -0.240***  
(0.0613) (0.0612) (0.0612) (0.0602) (0.0610) (0.0600) (0.0584) (0.0664) (0.0335) (0.0777) (0.0703) (0.0587) (0.0601) 

Country 0.157 0.131 0.130 0.204** 0.148 0.204** 0.243*** 0.240** 0.296*** 0.175 0.255** -0.243* 0.191*  
(0.0992) (0.0989) (0.0988) (0.0969) (0.0985) (0.0976) (0.0940) (0.104) (0.0553) (0.110) (0.104) (0.144) (0.101) 

Interaction -0.736*** -0.550*** -0.550*** -0.607*** -0.522*** -0.525*** -0.472*** -0.547*** -0.531*** -0.496*** -0.577*** -0.184* -0.368***  
(0.0915) (0.0922) (0.0922) (0.0908) (0.0925) (0.0913) (0.0886) (0.101) (0.0502) (0.107) (0.0996) (0.0977) (0.0914) 

University 0.380*** 0.383*** 0.384*** 0.390*** 0.352*** 0.346*** 0.348*** 0.356*** 0.112*** 0.340*** 0.342*** 0.541*** 0.360***  
(0.0563) (0.0562) (0.0564) (0.0561) (0.0562) (0.0560) (0.0561) (0.0565) (0.0390) (0.0560) (0.0560) (0.0940) (0.0660) 

Cumulative Number 
of Basic Patents 

0.0487*** 0.0470*** 0.0468*** 0.0421*** 0.0560*** 0.0513*** 0.0936*** 0.0521*** 0.0278*** 0.0514*** 0.0513*** 0.0261*** 0.0552*** 

 
(0.00263) (0.00267) (0.00303) (0.00229) (0.00416) (0.00405) (0.00494) (0.00158) (0.00242) (0.00408) (0.00407) (0.00425) (0.00356) 

Latest Number of 
Laser Diode Patents 

1.081*** 1.090*** 1.088*** 0.984*** 1.144*** 1.117*** 1.124*** 1.070*** 1.118*** 1.112*** 1.114*** 1.314*** 1.129*** 

 
(0.0244) (0.0241) (0.0241) (0.0255) (0.0240) (0.0245) (0.0206) (0.0153) (0.0187) (0.0245) (0.0245) (0.0318) (0.0282) 

Unemployment -0.0376*** -0.0335*** -0.0332*** -0.0256** -0.0384*** -0.0410*** -0.0446*** -0.0454*** -0.0416*** -0.0325*** -0.0370*** 0.0528** -0.0371***  
(0.0125) (0.0124) (0.0124) (0.0118) (0.0125) (0.0124) (0.0107) (0.00976) (0.00715) (0.0124) (0.0124) (0.0213) (0.0135) 

GDP per Capita 
Growth 

0.0396*** 0.0331*** 0.0330*** 0.0321*** 0.0317*** 0.0329*** 0.0212*** 0.0334*** 0.0315*** 0.0337*** 0.0347*** 0.0316*** 0.0382*** 

 
(0.00766) (0.00752) (0.00751) (0.00714) (0.00813) (0.00792) (0.00617) (0.00534) (0.00413) (0.00794) (0.00792) (0.00950) (0.00876) 

New Entrant 
 

-0.358*** -0.357*** -0.307*** -0.364*** -0.338*** -0.322*** -0.350*** -0.181*** -0.357*** -0.349*** -0.467*** -0.284***   
(0.0297) (0.0297) (0.0299) (0.0294) (0.0294) (0.0270) (0.0251) (0.0180) (0.0292) (0.0293) (0.0642) (0.0339) 

Top 1% 
  

0.0103 
          

   
(0.0431) 

          

Top 10% 
   

0.533*** 
         

    
(0.0271) 

         

Hindex 
    

-0.0275*** 0.0501*** 0.0276*** 0.0632*** 0.0370*** 0.0489*** 0.0492*** 0.0769*** 0.0458***      
(0.00462) (0.0109) (0.00914) (0.00670) (0.00599) (0.0109) (0.0109) (0.0211) (0.0123) 
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Hindex Squared 

     
-0.00412*** -0.00406*** -0.00496*** -0.00140*** -0.00408*** -0.00409*** -0.00374** -0.00389***       
(0.000717) (0.000577) (0.000410) (0.000331) (0.000716) (0.000716) (0.00178) (0.000836) 

Log Alpha 
      

-0.576*** -2.178*** 
     

       
(0.0498) (0.124) 

     

Constant -1.147*** -1.140*** -1.142*** -1.440*** -1.116*** -1.184*** -1.195*** -1.142*** -0.568*** -1.247*** -1.282*** -1.506*** -1.211***  
(0.0705) (0.0698) (0.0701) (0.0695) (0.0702) (0.0692) (0.0635) (0.0693) (0.0376) (0.0848) (0.0779) (0.0754) (0.0710) 

Semielasticity in the 
United States 

-0.658*** -0.556*** -0.556*** -0.581*** -0.536*** -0.553*** -0.538*** -0.565*** -0.531*** -0.519*** -0.535*** -0.291*** -0.455*** 

 
(0.0216) (0.0293) (0.0293) (0.0272) (0.0308) (0.0294) (0.0297) (0.0323) (0.0171) (0.0353) (0.0320) (0.0531) (0.0361) 

Semielasticity in 
Japan 

-0.286*** -0.231*** -0.231*** -0.231*** -0.218*** -0.244*** -0.259*** -0.249*** -0.202*** -0.210*** -0.171*** -0.149*** -0.213*** 

 
(0.0438) (0.0470) (0.0471) (0.0463) (0.0477) (0.0453) (0.0433) (0.0499) (0.0267) (0.0614) (0.0583) (0.0500) (0.0473) 

DIS -0.372*** -0.325*** -0.326*** -0.350*** -0.318*** -0.309*** -0.279*** -0.316*** -0.329*** -0.309*** -0.363*** -0.143* -0.242***  
(0.0503) (0.0566) (0.0567) (0.0549) (0.0581) (0.0553) (0.0535) (0.0600) (0.0321) (0.0707) (0.0672) (0.0749) (0.0608) 

Observations 32,813 32,813 32,813 32,813 32,813 32,813 32,813 32,813 32,813 32,813 32,813 7,546 21,827 

Pseudo R2 0.199 0.204 0.204 0.213 0.206 0.211 0.135 0.119 0.236 0.210 0.210 0.237 0.186 

Log pseudolikelihood -21076 -20958 -20958 -20701 -20894 -20769 -20343 -20727 -30739 -20794 -20786 -4911 -14024 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 11: Descriptive Statistics at the USPTO Organizational Level 
 

Variable Obs Mean Std. dev. Min Max 

1 No. of Basic Patent Primary 5,724 0.644  2.228  0 51 

2 No. of Basic Patent Included 5,724 1.324  3.998  0 92 

3 Country 5,745 0.680  0.467  0 1 

4 Post Period 82 5,724 0.958  0.201  0 1 

5 Interaction 82 5,724 0.653  0.476  0 1 

6 Post Period 83 5,724 0.950  0.219  0 1 

7 Interaction 83 5,724 0.648  0.478  0 1 

8 Post Period 84 5,724 0.942  0.234  0 1 

9 Interaction 84 5,724 0.644  0.479  0 1 

10 New Entrant 5,724 0.768  0.422  0 1 

11 University 5,724 0.068  0.251  0 1 

12 Cumulative Number of Basic 
Patents 

5,745 5.193  19.028  0 312 

13 Latest Number of Laser Diode 
Patents 

5,724 0.631  0.864  0 4.575  

14 Unemployment 5,745 5.123  1.711  1.1 9.708  

15 GDP per Capita Growth 5,745 1.511  1.991  -5.370  12.162  
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Table 12: Correlation Matrix USPTO Organizational Level 
 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 No. of Basic Patent Primary 
              

2 No. of Basic Patent Included 0.898  
             

3 Country -0.209  -0.225  
            

4 Post Period 82 0.006  0.009  0.011  
           

5 Interaction 82 -0.203  -0.217  0.940  0.288  
          

6 Post Period 83 0.007  0.010  0.015  0.909  0.266  
         

7 Interaction 83 -0.202  -0.216  0.929  0.284  0.989  0.313  
        

8 Post Period 84 0.002  0.008  0.027  0.844  0.260  0.928  0.303  
       

9 Interaction 84 -0.202  -0.215  0.921  0.282  0.980  0.310  0.992  0.334  
      

10 New Entrant -0.255  -0.272  0.127  0.382  0.230  0.420  0.249  0.433  0.257  
     

11 University -0.037  -0.044  0.111  0.018  0.111  0.011  0.108  0.013  0.107  -0.014  
    

12 Cumulative Number of Basic Patents 0.557  0.577  -0.225  0.039  -0.210  0.041  -0.207  0.042  -0.206  -0.361  -0.037  
   

13 Latest Number of Laser Diode Patents 0.576  0.640  -0.282  0.060  -0.256  0.062  -0.253  0.058  -0.253  -0.363  -0.081  0.533  
  

14 Unemployment -0.093  -0.095  0.590  0.074  0.550  0.029  0.519  0.010  0.497  0.079  0.073  -0.082  -0.100  
 

15 GDP per Capita Growth -0.005  0.000  0.030  -0.113  0.010  -0.058  0.034  -0.070  0.027  -0.095  -0.001  -0.040  -0.041  -0.274  

 

 

  



33 
 
Table 13: Estimation Results at the USPTO Organization Level 

  1 2 3 4 5 6 7 8 9 
 Poisson Poisson NB2 NB1 Poisson Poisson Poisson Poisson Poisson 
 1984 1984 1984 1984 1984 1982 1983 1984 1984 

 Primary Primary Primary Primary Primary Primary Primary Primary 
Primary 
Included 

Variables Full Full Full Full Full Full Full Until 1993 Until 2003           

Post Period -0.602*** -0.583*** -0.659*** -0.603*** -0.511*** -0.502*** -0.475*** -0.563*** -0.545***  
(0.116) (0.126) (0.120) (0.133) (0.0757) (0.154) (0.144) (0.132) (0.131) 

Country 0.405** 0.393** 0.330** 0.368** 0.270*** 0.343* 0.428** -0.0710 0.328*  
(0.164) (0.167) (0.161) (0.180) (0.103) (0.184) (0.178) (0.229) (0.173) 

Interaction -0.459*** -0.445*** -0.261* -0.411** -0.337*** -0.413** -0.493*** 0.0205 -0.244  
(0.154) (0.153) (0.151) (0.174) (0.0929) (0.175) (0.168) (0.162) (0.156) 

University 0.438*** 0.435*** 0.442*** 0.482*** 0.336*** 0.420*** 0.423*** 0.582*** 0.401***  
(0.100) (0.100) (0.0993) (0.103) (0.0635) (0.0997) (0.0999) (0.167) (0.110) 

Cumulative Number 
of Basic Patents 

0.00153** 0.00145** 0.00326*** 0.00192*** 0.000595 0.00130* 0.00136* 0.00678*** 0.00415*** 
 

(0.000716) (0.000710) (0.000809) (0.000423) (0.000568) (0.000701) (0.000706) (0.00186) (0.00101) 
Latest Number of 
Laser Diode Patents 

1.235*** 1.230*** 1.243*** 1.153*** 1.222*** 1.214*** 1.221*** 1.226*** 1.180*** 
 

(0.0366) (0.0417) (0.0292) (0.0237) (0.0230) (0.0412) (0.0415) (0.0610) (0.0525) 
Unemployment -0.0746*** -0.0726*** -0.0656*** -0.0685*** -0.0400*** -0.0575** -0.0653*** 0.0213 -0.0588**  

(0.0231) (0.0238) (0.0211) (0.0185) (0.0147) (0.0243) (0.0241) (0.0365) (0.0255) 
GDP per Capita 
Growth 

0.0216 0.0208 0.0218* 0.0217** 0.0318*** 0.0204 0.0228 0.0396** 0.0367** 
 

(0.0150) (0.0147) (0.0132) (0.0108) (0.00892) (0.0150) (0.0149) (0.0196) (0.0173) 
New entrant 

 
-0.0387 -0.0782 -0.128** -0.0117 -0.0884 -0.0663 -0.123 -0.0187   
(0.0792) (0.0632) (0.0545) (0.0497) (0.0786) (0.0790) (0.137) (0.0939) 

Log Alpha 
  

-0.628*** -0.472*** 
     

   
(0.102) (0.0964) 

     

Constant -1.297*** -1.292*** -1.340*** -1.102*** -0.752*** -1.357*** -1.385*** -1.555*** -1.314***  
(0.124) (0.125) (0.122) (0.135) (0.0770) (0.152) (0.142) (0.152) (0.134) 

Semielasticity in the 
United States 

-0.654*** -0.642*** -0.602*** -0.637*** -0.572*** -0.600*** -0.620*** -0.419*** -0.546*** 
 

(0.0314) (0.0399) (0.0416) (0.0431) (0.0292) (0.0463) (0.0438) (0.0702) (0.0519) 
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Semielasticity in 
Japan 

-0.452*** -0.442*** -0.483*** -0.453*** -0.400*** -0.395*** -0.378*** -0.430*** -0.420*** 
 

(0.0634) (0.0702) (0.0620) (0.0730) (0.0454) (0.0931) (0.0893) (0.0751) (0.0759) 
DIS -0.202*** -0.200*** -0.119* -0.184** -0.172*** -0.205** -0.242*** 0.0118 -0.125  

(0.0733) (0.0745) (0.0711) (0.0827) (0.0496) (0.0963) (0.0924) (0.0934) (0.0830) 
Observations 5,724 5,724 5,724 5,724 5,724 5,724 5,724 1,456 3,794 

Pseudo R2 0.514 0.514 0.239 0.221 0.588 0.512 0.513 0.439 0.491 
Log pseudolikelihood -4348 -4348 -4120 -4217 -6244 -4368 -4361 -1217 -3002 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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