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1. Introduction

Do employee startups promote innovation? This study explores whether the
rise of opportunities to launch employee startups drives technological change. Using
difference-in-differences (DID) estimation to study the development of laser diode
technology in the U.S. and Japan, this study empirically examines the impact of
employee startups promoted by the Small Business Innovation Research (SBIR) in the
U.S. on the technological trajectory of existing technology.

Employee startups have played a vital role in industries, especially technology-
intensive industries. These startups have emerged from parent firms’ internal resources
to be marketed separately and generate additional value (Klepper and Sleeper 2005,
Franco and Filson 2006, Agarwal et al. 2007). A notable example is Fairchild
Semiconductor and its spin-off/spin-out firms in Silicon Valley (Saxenian 1990a,
1990b). Employee startups and their supporting institutions, such as financing for
startups, knowledge hubs, and flexible labor markets, have attracted considerable
attention as factors that promote innovation. Since the early 2000s, many policies have
been implemented to promote venture businesses and employee startups (Lundvall and
Borras 2005, Motohashi 2005, Park 2014).

However, do they promote innovation? Earlier literature on technological
development and the history of technology has discussed that cumulative technological
development plays a critical role in increasing the level of technology, making it
suitable for industrial use (Abernathy 1978, Rosenberg and Trajtenberg 2004). How
does the emergence of employee startups influence the level of cumulative
technological development? Typically, incumbent firms improve the technology of
existing products (Tushman and Anderson 1986, Christensen 1993). If employees leave
the incumbents and start or join a startup, this would hinder the level of cumulative
technological development of the incumbent firms. Some case studies have indicated
that a flexible system of transactions, which promotes employee startups, could retard
cumulative technological development (R.L. Florida and Kenney 1990, Numagami
1996, Shimizu 2019), although no empirical studies have comprehensively examined
such effects.

It is challenging to empirically examine how the emergence of employee
startups affects the trajectory of technology. For empirical analysis, we need samples
that meet the following three conditions. First, we need a country/region that has
witnessed rise in employee startups and a country/region that has not. This is because
when policy intervention stimulates employee startups, the influence can be at the
country/regional level. Second, those countries/regions were on a similar technological
trajectory before the policy that led to a rise in employee startups was implemented in a
country. Those countries/regions should not have any significant differences other than
the fact that a startup support system was introduced. For example, if one of the
countries had advanced in technological development than the other, it would be
difficult to determine the effects of policy intervention because the difference in
technological development itself could have changed the trajectory. This point related to
the parallel trend assumption of the DID analysis. The third point is related to causal
inference. The intervention is ideally exogenous. For example, this point is crucial when
we conduct a randomized controlled trial (RCT). The subjects in RCTs are divided into
two groups: treatment and control. The treatment group (also called the experimental
group) receives the researcher-focused treatment. The subjects would be randomly



allocated to one of these groups to enable statistical control over the intervention. As
RCTs help in examining the causal relationship between the treatment and the effects,
social scientists use them in several settings, such as in development economics
(Banerjee et al. 2016), education (D.T. Campbell and Stanley 2015), health service
(Cochrane 1972), and moral hazards in health insurance (Manning and Marquis 1996).
However, as the RCT setting is not well maintained in social sciences, exogenous
shocks to subjects such as earthquakes, terrorist attacks, and Napoleon’s invasion,
which is considered to randomly divide subjects into two groups, have been examined
as a natural experiment (Acemoglu et al. 2011, Baker and Bloom 2013, Hikichi et al.
2017).

Given these conditions, we examine inventors and their organizations
committed to laser diode R&D in the U.S. and Japan. The section titled “Laser Diodes,
SBIR, and Technology Development” discusses how laser diode R&D in the U.S. and
Japan meets these requirements. This study also shows that policies that encourage
employee startups stifle subsequent technological development on a given technological
trajectory. Although employee startups have attracted attention from different fields,
such as entrepreneurship, regional clusters, and industry dynamics, few studies have
empirically analyzed the impact of employee startups on subsequent technological
development. As literature review shows that it can be assumed that a parent firm’s
productivity can reduce if skilled personnel leave and launch startups because the core
source of a firm’s competitive advantage in a knowledge-intensive industry is strongly
embodied in its employees’ human capital. Thus, a society that witnesses a high level of
employee entrepreneurship and spin-offs may have technological development patterns
that differ from that in which entrepreneurial spin-outs are rarely observed.

2. Previous Literature

This study attempts to bridge the gap in the literature on employee startups and
that on innovation patterns. Employee startups have been examined from various
perspectives, such as entrepreneurship, regional clusters, and knowledge spillovers. !
Studies on employee startups have focused on identifying entrepreneurs (Begley and
Boyd 1987, Crant 1996) and locating employee startups (Garvin 1983, A.C. Cooper
1985, Saxenian 1994), the initial market focus of employee startups (Anton and Yao
1995, Wiggins 1995, Klepper and Sleeper 2005), the relationships between employee
startups and their parent firms, and the differences in the performance of employee
startups (Agarwal et al. 2004, B.A. Campbell et al. 2012).

Previous literature on the relationship between employee startups (particularly
spin-outs) and their parent organizations has observed that conflicts between the
startup’s founder and the parent firm may have existed on the formation of the employee
startup (Klepper and Thompson 2010, Thompson and Chen 2011). An employee who

! Employee startups can be classified into two categories: spin-offs and spin-outs. The former
applies when the employee startup has capital investment from its parent firm, which is a type
of divestiture. The latter is when the employee startup does not have any capital ties with its
parent company; this study focuses on this type. Due to the lack of information, much of the
previous literature on employee startups has not classified them into these two categories. For a
detailed literature review of employee startups, see Klepper (2001).



plans to spin out tends to transfer as many tangible and intangible assets as possible
(e.g., his/her specific expertise and interpersonal networks) to the new workplace
(Agarwal and Audretsch 2001). The parent firm also suffers adverse effects because the
firm’s capable human resources exit and move to employee startups (B.A. Campbell et
al. 2012). The extent of the negative impact resulting from the loss of talented personnel
from the parent firm depends on the firm’s ability to find replacements with similar
skills and other relevant attributes in the labor market or nurture such personnel
internally. When firm-specific skills, tacit knowledge, or special expertise are crucial
and the pool of talented personnel is limited in the labor market, a firm generally needs
time to regain these human resources (Collins and Harrison 1975, Nonaka and Takeuchi
1995, Coff 1997, Zucker et al. 1998). Studies on startups in Silicon Valley and
observations of employee startups have shown that talented personnel contribute greatly
to knowledge spillovers and high-tech clustering. In contrast, they might also delay the
ongoing R&D projects of their parent organizations (R.L. Florida and Kenney 1990).

Another line of argument regarding the relationship between a parent
organization and its employee startups has suggested that employee startups influence
the subsequent development of existing technology. Most literature indicate that
employee startups initially tend to target a new submarket to avoid directly challenging
their parent firm (Christensen 1993, Anton and Yao 1995, Wiggins 1995, Klepper 1996,
Buenstorf and Klepper 2010). Submarkets appeal to different users and require
production knowledge and methods that differ from existing markets (Buenstorf and
Klepper 2010). Submarkets are areas where new entrants can launch their own
businesses using existing technology. By leveraging the valuable discoveries and
expertise that a founder has accumulated at an incumbent firm, employee startups in a
high-tech industry typically target untapped markets (Klepper 2001, 2006,
Bhaskarabhatla and Klepper 2014). This means that the increase in the number of
employee startups can distribute resources from existing R&D projects to different
submarkets (Shimizu 2019). In other words, studies suggest that the rise of employee
startups could influence the trajectory of technological change, which has not yet been
empirically examined.

While studies on employee startups have not examined the pattern of
technological change, it has been an important research stream in the literature on the
development of technology. The literature on economic history has repeatedly shown
that the level of subsequent technological development drives the extent to which a
technology’s potential is realized (Rosenberg 1979, Mokyr 1990, Allen 2009). Because
newly invented technology is usually rough and nascent, its subsequent cumulative
development plays a crucial role in the full realization of its potential (Rosenberg 1979).
Subsequent cumulative technological development is crucial for highly versatile
technology, otherwise known as general-purpose technology (GPT). Electricity, steam
engines, lasers, and artificial intelligence are generally regarded as typical examples of
GPTs. GPTs have received attention because the occasional arrival of a new GPT yields
large positive externalities for industrial growth and macroeconomic outcomes
(Helpman 1998, Lipsey et al. 1998, Lipsey et al. 2005). A GPT initially has much scope
for improvement, is eventually widely used, and has many technological
complementarities (Lipsey et al. 1998). Therefore, the initial impact of GPTs on overall
productivity growth is minimal. Recognizing the potential of highly versatile
technology requires subsequent technological development. Specifically, the degree to



which the basic technology that defines its fundamental performance plays a critical role
in realizing the potential of highly versatile technology (Arthur 2009). For example, if
the steam engine’s thermal efficiency had not been developed and remained low, steam
engines would not have been widely used as a source of energy (Mokyr 1990, 2002).

The pattern of subsequent technological development has been discussed in
two different research streams: one based on the concepts of paradigms and trajectories
and other on management studies vis-a-vis the dominant design. Thomas Kuhn
introduced the concept of paradigms to explain the pattern of development in science
(Kuhn 1962). A paradigm is loosely defined as a distinct pattern of finding, reasoning,
and problem-solving in science and technology. Based on Kuhn’s discussion of
paradigms, Dosi introduced a technological trajectory defined as “a cluster of possible
technological directions whose boundaries are defined by the nature of the paradigm
itself” (Dosi 1982, p. 154). Specifically, the paradigm defines the direction of
subsequent technological advances. Once a certain technological trajectory emerges, it
sets the direction for subsequent technological development (Constant 1980, Dosi 1982,
Mackenzie 1990). Technological trajectories are created by multiple actors. Similar to
the normal science paradigm described by Kuhn (1962), technological trajectories
emerge through interactions among several actors; that is, a certain technological
trajectory emerges when most actors take a cumulative technological approach to the
same technological problem.

The other research stream involves management studies in terms of the concept
of dominant design. Dominant design is a key technological feature that has become a
de facto industry standard. It determines the direction(s) of subsequent technological
development (Utterback and Abernathy 1975, Abernathy 1978, Sudrez 2004).
Interpretations of the concepts, underlying causal mechanisms, and units of analysis
vary in existing empirical literature on dominant design (Murmann and Frenken 2006).
However, most studies show reveals that several new designs and various new materials
are created before dominant design emerges. After the emergence of a dominant design,
subsequent technological development becomes incremental, cumulative, and
standardized.

Although the research fields and terminologies do not entirely match, both
research streams suggest that subsequent cumulative technological development will
reduce if most actors do not invest their resources in the same technological problems
with the same technological approach. Moreover, while the extant literature on
technological trajectories and dominant design has generally described the pattern of
technological development, it has not articulated how the pattern varies according to the
rise of employee startups. Building on the existing work on employee startups and
innovation patterns, this study examines how employee startups influence the
technological trajectory of subsequent technological development by closely examining
laser diodes. Studies on employee startups and technological innovation (R.L. Florida
and Kenney 1990) have shown that the subsequent development of the existing
technology 1is adversely affected when submarkets are highly cultivated by
entrepreneurial employee startups. Therefore, this study examines whether the rise of
employee startups delays the level of subsequent development of basic technology.

Bhaskarabhatla and Klepper (2014) explored a similar theme in their paper.
They studied the U.S. laser industry from the 1960s to the early 21st century and found
that the emergence of submarkets, which are usually developed by employee startups,



can fundamentally alter an industry’s market structure and the character of innovation.
As they described industrial evolution in terms of submarkets by exploring lasers, their
paper provides significant insights for this study. The unit of analysis here is much
smaller than in this comparative study. To elaborate, Bhaskarabhatla and Klepper (2014)
combined different types of lasers, such as CO2, He—Ne, ion, gas, ruby, dye, solid state,
and laser diodes, and considered them a single industry. However, the performance
specifications of these lasers are fairly diverse (Dupuis 2004, Coleman et al. 2012).
Many lasers are not technically similar to each other. For example, ruby lasers, which
first became operational worldwide in 1960, and laser diodes, also called semiconductor
lasers, which were invented in 1962, are not closely related in terms of their
technologies and application markets, although they share much in fundamental
physics. Different types of lasers are used in completely different and independent
markets, such as compact disk players, missile tracking, welding, and inertial
confinement fusion. This means that their potential for substitution is fairly limited.
Therefore, if we consider all lasers as a single industry and each type of laser and its
applications as a submarket, we may overestimate the role of submarkets developed by
startups in industry evolution. Therefore, this study focuses on laser diodes and their
applications. This allows us to discuss how inventors utilize their knowledge in
submarkets that are closely related to laser diode technology.

3. Laser Diodes, SBIR, and Technological Developments

Lasers are generally considered to belong to the class of versatile technologies.
Among the many varieties of laser (e.g., CO2, YAG, He—Ne, ruby, and laser diodes),
laser diodes are the most widely sold and used globally. Laser diodes are typically used
in telecommunications, optical information storage, sensors, pointers, displays,
measurements, and medical applications; they are also used for pumping other lasers.
Laser diode was one of the most important technologies underpinning the dramatic
changes that occurred in information technology in the latter half of the twentieth
century.

R&D in laser diodes in the U.S. and Japan allows for an empirical study of how
the increase in employee startups affects the trajectory of technology for three reasons.
As explained earlier, we need two societies because when the policy that led to the rise
of employee startups is implemented, the influence can be at the country level. One is a
society in which the rise of employee startups has been observed and the other is one in
which no rise of employee startups has been observed. If we only consider societies
with institutions that encourage spin-outs, we cannot distinguish whether subsequent
technological development has been reduced by spin-outs or by technological maturity
because we have nothing to compare with; therefore, this study compares the U.S. and
Japan. Both countries had the same level of technological maturity; however, the U.S.
implemented a system to promote spin-outs. In the laser diode industry, numerous
startups were founded after 1982 in. the U.S., whereas they were virtually absent in
Japan (Forrest et al. 1996).

Second, these countries were on a similar technological trajectory before the
policy intervention that led to surge in employee startups implemented in the U.S.
Earlier studies on laser diode technology have shown that U.S. and Japanese incumbent
firms have been the main actors throughout the history of laser diode research (Agrawal
1995, Forrest et al. 1996, Yoshikuni 2009). Throughout the 1960s and 1970s, U.S. firms,



such as Bell Laboratories, RCA, GE, IBM, Xerox, and HP, and Japanese firms, such as
NTT, Hitachi, NEC, Fujitsu, and Sony, targeted the same markets, faced the same
technological problems and aimed to achieve the same goals (Ikegami and Matsukura
2000, Dupuis 2004). Scientists and engineers in the U.S. and Japan competed to develop
technologies that determined the fundamental performance of laser diodes, such as
operating lifetime, reliability, and wavelength. However, U.S. scientists and engineers
began to diverge from their Japanese counterparts in the 1980s, when they began to
leave their parent organizations to launch startups.

There were a large number of employee startups in the field of laser diodes in
the U.S. Most startups emerged in the mid-1980s (Olsen 2009, Shimizu 2010). The only
exception was Laser Diode Laboratories, launched in 1967, which was a spin-out from
RCA. The rest of the startups were launched from the mid-1980s onward. Startup
foundations were promoted by SBIR.

SBIR, a competitive award-based program launched in 1982, was designed to
encourage small businesses to engage in federal research/research and development
(R/R&D) with the potential for commercialization. As SBIR has provided opportunities,
including further R&D and commercialization, by awarding funding, it has a significant
impact not only on the SBIR recipients but also on the scientists/engineers and
managers who are yet to be awarded funding but are interested in pursuing future
opportunities provided by SBIR. In total, 1,403 projects were awarded by the SBIR for
laser diode research between 1982 and 2018. As some firms received SBIR awards
successively, a simple aggregation of the number of projects awarded each year can lead
to an overestimation. Therefore, firms awarded multiple times were identified and
counted as a single entity to avoid overestimating the number of firms awarded funding.
In total, 420 firms received awards between 1982 and 2018. This figure captures only
firms receiving SBIR awards. Therefore, the number of startups shown in this
technological field is, in fact, a modest estimation.

SBIR has been examined from different perspectives, such as its purpose and
performance (Audretsch et al. 2002, Audretsch 2003, R.S. Cooper 2003), long-term
effects (Lerner 1996), entrepreneurial risk (Link and Scott 2010), and
multidimensionality (Lanahan and Feldman 2015). Although the negative impact of
SBIR has been observed on university spin-offs in digital technology(Fini et al. 2023),
many studies on SBIR have concurred that SBIR stimulated R&D and its
commercialization (Lerner 1996, Audretsch et al. 2002, Audretsch 2003, Link and Scott
2010). While previous literature has explored the extent to which SBIR increased its
commercialization, it has not considered the counterfactual situation that would have
occurred if SBIR were not implemented. However, by examining the award recipients
of the SBIR program at the NASA Langley Research Center, Archibald and Finifter
(2003) showed that the recipients experienced a reduction in basic research along with
increased commercial success, whereas the project experienced higher rates of
commercial success (Archibald and Finifter 2003). A similar pattern was observed in
another study. Toole and Czarnitzki examined university spin-offs from 1994 to 2004
and found that SBIR led to the nontrivial impact of the academic brain drain from
academic research to commercialization and reduced knowledge accumulation in
academics (Toole and Czarnitzki 2007, 2010).

While many employee startups emerged in the laser diode industry in the U.S.,
such startups were virtually nonexistent in Japan (Japan Development Bank 1986,



Ikegami and Matsukura 2000). Examining the laser diode and optoelectronics industry
in the U.S. and Japan, the industrial report highlighted the following:

Due to the vibrant entrepreneurial industry base that is an integral
part of the U.S. economy, and which is apparently nearly absent in
Japan, numerous small companies have spun-off from their larger,
parent companies. (Forrest et al. 1996, p. xvii)

The rise of startups in the U.S., which were largely promoted by SBIR, and the virtual
absence of such startups in Japan provides a excellent opportunity for conducting quasi-
natural experiments. This is because organizations in both countries were competing to
solve the same technical problem in the same technological field, resulting in
development of the same technological trajectory.

Regarding the difference in employee startups between the U.S. and Japan,
studies have explored the factors that promoted startups in the U.S., such as
entrepreneurship, the growth of venture capital, the knowledge pool, and networks
(Dore 1986, R. Florida and Kenney 1988, Bygrave and Timmons 1992, P.A. Gompers,
1994; Saxenian, 1994; Kaplan, 1995; Kenney, 2000; Paul A. Gompers et al. 2010). The
rarity of startups in Japan has been explained by the less-developed venture capital
system, well-developed in-house labor market, seniority-based pay, assumption of
lifetime employment, and poor conditions for reemployment (Aoki and Dore 1994, Itoh
1994). Opportunities for launching employee startups were limited in Japan. Although it
is still interesting to explore how this difference emerged over time, the important point
for this study lies in empirically investigating how the existence or absence of employee
startups influences the pattern of subsequent technological development, given the
difference in the occurrence of spin-outs between the U.S. and Japan.

The U.S. employee startups targeted customized and untapped submarkets,
such as those for short-distance communications, sensors, and optical pumping, using
basic laser diode technology. However, such startups were virtually absent in Japan, and
Japanese incumbent firms continued to compete in the same technological areas (Forrest
et al. 1996, Shimizu 2010, 2019).

One might suppose that the reason why untapped markets began to develop in the
U.S. during the mid-1980s is that U.S. firms matured technologically before Japanese
firms in the life cycle of technology. However, since the mid-1970s, U.S. and Japanese
firms have been fiercely competing in R&D over improving the reliability and
extending the longevity of laser diodes, along with laser oscillation with new materials,
which continued into the 1980s (Dupuis 2004). Lasers began to be used in their primary
applications, such as optical communications and DVD pickups, only in the 1990s.
Fundamental technologies, such as the highly reliable DFB laser, the basis of today’s
optical communications, and the blue semiconductor laser, the technical basis for the
blue LED that won the Nobel Prize in Physics in 2014, were born in the 1990s and later
(Nakamura et al. 2000). There is no evidence that laser diode technology was already
mature in the 1980s, or that only the U.S. firms had already matured technology.

SBIR was created to strengthen the role of innovation in R&D by small firms. The
fact that this objective was justified and that SBIR was institutionalized does not in
itself mean that this policy intervention is exogenous to innovation. However, since the
SBIR was not exclusively for laser diode technology, the development of laser diode



technology did not affect the timing of the SBIR implementation. As described earlier,
after SBIR was introduced, numerous startups were established in the laser diode
industry, while such startups were virtually absent in Japan. Therefore, using this
context with the DID approach, this study derives an appropriate counterfactual to
estimate the causal effect of the increase in employee startups on technological change.

4. Estimation Strategy and Data

Because our study focuses on the effects of treatment (the rise of opportunities
for employee startups), a statistical challenge is to show that the differences in
technological trajectory can be attributed to the treatment alone. Therefore, using the
DID approach, this study conducts a quasi-natural experiment to derive an appropriate
counterfactual to estimate the causal effect of the rise of employee startups on
technological change (Bertrand et al. 2004, Abadie 2005, Smith and Todd 2005).
Specifically, given that SBIR provided funding opportunities and stimulated the rise of
employee startups, this study examines how the opportunity to establish startups offered
by SBIR influenced the subsequent development of basic technology, determining the
technical performance of the technology, from which other technologies are derived.

We examine how the opportunities created by SBIRs have influenced
technology trajectories at the level of two different units of analysis: inventor and
organizational. Regarding the extent of inventor level, the opportunities provided by
SBIRs are expected to influence inventors. Specifically, it is likely to influence the
inventor’s choice of R&D projects, such as whether to continue existing R&D or
laterally utilize knowledge for new R&D projects. The second unit of analysis is at the
organizational level. It can be assumed that the opportunities provided by SBIR also
influence the organizations’ R&D projects. The inventors conduct R&D in the
organization; thus, this study focuses on inventor-level analysis. However, because
R&D projects are usually conducted as a division of labor in an organization, the R&D
project selection is the result of organizational decision-making. Moreover,
organizational level analysis is also important for examining whether SBIR has an
impact on both new entrants and incumbents.

We identify basic technology using International Patent Classification (IPC)
number, HO1S5. First , HO1 is the number given to basic electrical elements. HO1S5 is
specifically the technology classified as basic electric elements of laser diodes (also
called semiconductor lasers). HO1S5 is ascribed to technology specifically related to
laser diodes, such as structure, processes, apparatus for excitation, and arrangements for
controlling the laser output parameters, including operating longevity, reliability, and
wavelength. HO1S5 was recognized as an important basic technology, which is an
important basis for subsequent use of laser diodes (Japan Patent Office 1998).
Concretely, we construct the following dummy variable. We give one to a patent with a
primary IPC code of HOISS5, which is precisely defined as a basic laser diode
technology. We assign 0 to a laser diode patent whose primary IPC is not HO1S5. This is
a conservative measurement for basic technology. Because the estimation using patents
with a primary IPC of HO1S5 might be too narrow in scope, we construct another
dummy variable by running the same exercise with it as a robustness check. We assign
one to patents for which HO1S5 is included in the IPC, and we assign 0 to the rest of the
laser patents.



Counting the value of the former dummy variable for each inventor in a given
year gives us an outcome variable Number of Basic Patent Primary at the inventor
level. Counting the value of the same dummy variable for each patent assignee in a
given year redefines the outcome variable at the organizational level. Analogously,
counting the value of the latter dummy variable for each inventor in a given year
facilitates another outcome variable referred to as Number of Basic Patent Included at
the inventor level. Counting the value of the same dummy for each assignee in a given
year redefines the outcome variable at the organizational level. In sum, we obtain four
outcome variables: two each for the inventor-level analysis and the organizational-level
analysis. Number of Basic Patent Primary is the number of patents with a primary IPC
of HO1S5 obtained by an inventor or organization in a given year. The Number of Basic
Patent Included is the number of patents an inventor or organization obtained in a given
year where HO1S5 was included in the IPC. Number of Basic Patent Included counts the
number of basic laser diode patents more broadly than Number of Basic Patent Primary.

For each outcome variable denoted by y, we assume that y has an exponential
conditional mean function given by

E[y|X, Post Period, Country, Interaction Term] =
exp (Xf1 + B,Post Period + f3Country + ByInteraction Term) .

Here, Post Period is a dummy variable assuming a value of 1 if the application year of
the patent concerned is a given cutoff year or later and 0 otherwise. We use two
different cutoft years, 1982 and 1984, because it is reasonable to consider the possibility
that SBIR influences scientists’ and engineers’ R&D activities with a lag. Country is a
dummy variable taking one if the assignee is located in the U.S., where SBIR was
introduced in 1982; otherwise, 0. Interaction Term is the product of Post Period and
Country. X is a vector containing control variables and a constant.

At the inventor level, the control variables are Incumbent, University,
Cumulative Number of Basic Patents, Latest Number of Laser Diode Patents, H-index,
Top 1%, Unemployment, and GDP per Capita Growth. Incumbent is a dummy variable
taking the value 1 if an organization had already patented in the field before 1984.
University is a dummy variable that has the value one if the organization to which the
inventor belongs is an academic or public research institution, otherwise 0. The
inventor’s affiliation is identified by the patent assignee. If the patent has more than one
assignee, the inventor’s affiliation is identified in the following two steps. First, we
check the assignees of other patents acquired by the inventor of the patent in question. If
the inventor’s organization cannot be identified in the first step, the inventor’s name is
checked in the papers published in Applied Physics Letters and Electronics Letters,
which are the most widely published journals in this field, to identify the inventor’s
affiliation. If the inventor has multiple affiliations with an academic/public institution
and a firm, the University dummy variable is assigned 1 for the inventor because the
inventor’s R&D is likely to be more basic than that of a firm’s inventor. Cumulative
Number of Basic Patents is the number of patents obtained by the inventor or
organization before the patent in question being applied for. Latest Number of Laser
Diode Patents is the log-transformed number of laser diode patents that the inventor
obtained in a given year. H-index and Top [% are explained below.. Unemployment is
the unemployment rate of the year in which the patent concerned applied in the
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assignee’s country. GDP per Capita Growth is an analogous counterpart to the GDP
growth rate. Unemployment and GDP are introduced to control for macroeconomic
environments.

H-index and Top 1% are introduced to analyze inventor’s ability. Studies on
scientists’ preferences for technological research have shown that scientists and
inventors tend to choose the area of R&D based on their past R&D performance.
Therefore, scientists must accumulate knowledge about existing art in the field and
field-specific learning and problem-solving skills (Cohen and Levinthal 1990).
Newcomers to the field lack fundamental understanding and basic skills needed in the
field and need time to reach the technological frontier (Jones 2009). Thus, experienced
scientists with significant research performance are less likely to change their area of
research than those who have not achieved such significant research performance, even
when they move to another organization (Jones 2009, Arts and Fleming 2018).
Therefore, employers usually expect such high-performing scientists and engineers to
continue to work in their fields rather than explore other fields. However, some
employers may want to recruit high-performing scientists and engineers to actively
explore submarkets. Furthermore, the presence of extremely high-performing scientists
would also enhance the firm’s reputation, making it easier to raise funds and recruit new
scientists and engineers. Therefore, this study uses a squared term for high-performing
researchers and confirms the nonlinear relationship. This study uses h-index, which was
invented to assess scholars’ performance by measuring both the number and quality of
works to identify high-performing inventors (Hirsch 2005). We count the number of
patents obtained by inventors in the field of laser diodes and their citations and derive
the h-index for all inventors. We refer to it as H-index. Top 1% is a dummy variable
taking the value one if the related inventor is among the top 1% in terms of their h-
index. If inventors who have the same h-index as the top 1% of inventors, this study
does not differentiate between inventors with the same h-index but draws a line at the
next h-index number.

At the organizational level, the control variables are Incumbent, University,
Cumulative Number of Basic Patents, Latest Number of Laser Diode Patents,
Unemployment and GDP. While the definitions of Incumbent, Unemployment, and GDP
are identical to those at the inventor level, the definitions of the remaining variables are
similar to those at the inventor level. University is a dummy variable that takes a value
of 1 if the organization is an academic or a public research institution. Cumulative
Number of Basic Patents is the number of patents obtained by concerned patent
assignee before the concerned patent application year. Latest Number of Laser Diode
Patents is the log-transformed number of laser diode patents that the patent assignee
obtained in a given year. Table 1 presents a summary of the variables for reference.

<Insert Table 1>

Regarding the distribution of y, we first consider the Poisson density function
to conduct the Poisson regression analysis, a well-known count-data regression analysis,
for our baseline analysis. We then consider the negative binomial (NB) density function
to conduct the NB regression analysis and check the robustness of the baseline analysis
results.
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Of particular interest in the regression analysis is the treatment effect of SBIR
opportunities on the outcome variables. Similar to many other nonlinear DID models
and contrary to the linear DID model, the treatment effect is not equal to the interaction-
term coefficient in the Poisson and NB DID models, 5, in our model. Among several
(often cumbersome) methods for capturing the treatment effect in nonlinear DID models
in the literature (Ai and Norton 2003, Athey and Imbens 2006, Greene 2010, Puhani
2012, Leitgob 2014), we adopt the difference-in-semi-elasticities (DIS) estimator
developed by Shang, Nesson, and Fan (2018) for nonlinear DID models with
exponential conditional mean functions including the Poisson and NB DID models and
provide a straightforward interpretation of the treatment effect that follows (Shang et al.
2018).

The DIS estimator to be obtained in our specification is

DIS = [exp(Bz + Bs) — 1] — [exp(Bs) — 1] .

Here, the first term is the percentage change in the number of patents obtained by an
inventor or organization due to the introduction of SBIR in the U.S. and the second term
is the Japanese counterpart. We refer to these as semi-elasticity in the U.S. and Japan,
respectively. Subtracting the semi-elasticity in Japan from that in the U.S., the DIS
estimator is interpreted as stating that the number of patents obtained by an inventor or
organization in the U.S. increases by SBIR compared with that in Japan by 100 X DIS
percentage points (ppt). For example, if the semi-elasticity in the U.S is —0.2 and in
Japan it is —0.05, the resulting DIS estimate is —0.15, which can be interpreted as the
number of patents obtained by an inventor or organization in the U.S. decreases by
SBIR in comparison to that in Japan by 15 ppt. As such, the DIS estimator allows us to
interpret the interaction effect in terms of semi-elasticity, which is analogous to the
semi-elasticity interpretations of other coefficients, B;, f,, and 3 in our model. Hence,
a positive (negative) DIS estimate is interpreted as indicating that SBIR has had a
positive (negative) impact on the development of basic technology at the innovator or
organizational level, while a zero DIS estimate is interpreted as indicating that it has
not.

Patents are the primary data source for this study. Not all technological
developments are covered by patents because not all technologies are patentable;
moreover, a firm might decide to strategically hide its invention(s) (Griliches 1990,
Jaffe and Trajtenberg 2002). However, patents have been widely used to examine
technological change in a particular area of technology or industry because they provide
important information, such as the inventors’ name, the name and address of the
assignee, a technological description, and the date of application.

This study uses two different patent sources: patents granted by the United
States Patent and Trademark Office (USPTO) and Japan Patent Office (JPO).
Specifically, we use USPTO and JPO patents to examine R&D activities by inventors
affiliated with U.S. and Japanese organizations, respectively. Then, we estimate the
impact of SBIR on R&D in the U.S. relative to Japan. These two datasets are combined
because analyzing patent data of one of the two countries may underestimate the R&D
of startups in the other country. Companies file patents in the countries in which they
conduct business. Therefore, companies not intending to expand overseas will not file
patents in foreign countries. If many startups are not interested in expanding business
overseas in the early stages of their growth, then analyzing patents in one of the
countries may underestimate the startup’s R&D. If only U.S. patents were used for
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analysis, it could underestimate the R&D of Japanese startups and SMEs and
overestimate that of U.S. startups. The opposite is true if only Japanese patents are used.
R&D conducted in the U.S. and Japan can be easily examined using patent data from
third countries, this underestimates the R&D of 