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Abstract 

This paper investigates firm growth dynamics by using the theory of stochastic processes and data on 

corporate tax records covering almost all firms in Japan. We show that the growth path of high-growth 

firms (HGFs) is characterized by a single large jump rather than a gradual increase. Specifically, before 

the jump occurs, the growth path of a HGF is similar to that of non-HGFs, but then it experiences a 

rapid increase in size. This growth pattern with a jump is typical (i.e., most likely) for HGFs. To 

provide further empirical evidence, we consider the ratio of the growth rate in the first period to the 

entire growth rate over two periods. The histogram of this ratio exhibits a U-shaped curve for HGFs, 

indicating that high growth over the two periods is explained by high growth either in the first or 

second period (but not both). This U-shaped curve is consistent with the idea that a single large jump 

determines the growth path of HGFs.   
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1 Introduction

What drives firms’ growth? How do firms grow over time? These questions about firm growth

dynamics are one of the classical and most important themes in economics. Especially in the last decade,

it has been recognized that high-growth firms (HGFs) are a driving force of job creation, the emergence of

new markets, and economic growth. Thus, a better understanding of firm growth dynamics is needed not

only for researchers but also for policymakers.

However, many empirical studies investigating firm growth dynamics have reached an unpleasant

conclusion: we are unable to identify firms that will be HGFs in the future. Although some variables

relevant to firm growth dynamics are identified (e.g., firm age and size), it is known that the explanatory

power of models is quite weak and cannot be used for prediction. For example, after surveying empirical

studies in the literature, Geroski (2000) concludes that "[t]he most elementary ’fact’ about corporate growth

thrown up by econometric work on both large and small firms is that firm size follows a random walk." Does

it mean that the firm growth is completely random and that we have nothing to say about it? Is there any way

to improve our understanding of firm growth dynamics?

This paper shows that even though we are unable to identify which firms will be HGFs, we can still obtain

a meaningful implication about how firms grow over time. Rather than relying on a specific optimization

model, we examine the typical growth path of HGFs by analyzing statistical regularities found in empirical

data. The crucial assumption in our analysis is the distribution of firms’ growth rates. It is well known

that the distribution of empirical growth rates has a heavier tail than a Gaussian and is close to a Laplace

distribution. Upon further examination, we find that the growth rate distribution has a strictly heavier tail

than an exponential. Based on this empirical fact (and the random walk assumption), we show that firm

growth is characterized by a sudden, large jump rather than a gradual increase. Prior to this jump, the growth

path of a HGF is indistinguishable from that of other non-HGFs, but then it experiences a rapid increase in

size (see Figure 1). We show that this growth pattern is the norm rather than the exception for HGFs.

Our analysis consists of two parts: theoretical analysis using probability theory and empirical analysis

using comprehensive administrative data in Japan. For the theoretical analysis, we consider the two distri-

bution classes: the light-tailed and heavy-tailed distributions. The light-tailed distributions are those with

an exponentially bounded tail. Its tail probability decays rapidly, meaning that the probability of observing

extreme values is low. Examples of this distribution class include Gaussian and Laplace distributions. On

the other hand, the heavy-tailed distributions have a tail that decays slower than an exponential, leading

to a higher probability of observing extreme values. This class includes distributions with a heavy tail,

such as log-normal and Pareto distributions. Our theoretical analysis shows that the properties of firm

growth dynamics can vary significantly depending on whether the growth rate distribution is light-tailed or

heavy-tailed.

Assuming that the logarithm of firm size follows a random walk, we focus on the sample path of firms
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(a) Gradual increase (b) Increase by a sudden jump

Figure 1: The image of sample paths for HGFs. In Panel (a), firm size increases gradually and reaches a point as the
consequence of many small successes. In Panel (b), the growth path is characterized by a sudden, large jump.

that grow rapidly over n periods (i.e., firms whose growth rate over n periods exceeds a large threshold value

u). In particular, since the growth rate over n periods consists of n individual growth rates, we analyze how

each of these growth rates contributes to the overall growth rate and reaches u. Our analysis (especially

using the ruin theory, e.g., Asmussen and Albrecher (2010)) shows that if the growth rate distribution is

light-tailed, a high growth rate over n periods is primarily determined by the cumulative effect of individual

growth rates. Each growth rate contributes approximately equally to the overall high growth rate over the n

periods, and thus, the sample path exhibits a gradual increase, as depicted in Figure 1(a). In other words,

when the growth rate distribution is light-tailed, the most probable path (or event) leading to high growth

over the n periods is a gradual increase.

In contrast, when the growth rate distribution is heavy-tailed, a high growth rate over the n periods is

driven by the presence of a few large individual growth rates, or what we call a jump. More precisely, the

probability that the sum exceeds u is asymptotically equivalent to the probability that the maximum among

n individual growth rates exceeds u. A high growth rate over the n periods is dominated by a single burst in

a period, while the contribution of growth rates in other periods is negligible. Thus, the heavy-tailedness of

the growth rate distribution means that an infrequent, large jump characterizes the growth path of HGFs, as

depicted in the Figure 1(b).

Given these theoretical backgrounds, our remaining task is to empirically test (1) the random walk

assumption and (2) the distribution class that the growth rate distribution belongs to. For our empirical

analysis, we use data on corporate tax records provided by the National Tax College, which includes sales

revenues, profits, and the amount of corporate tax paid by firms. This is the population data in Japan and

covers more than almost all firms in Japan from 2014 to 2020. Constructing a panel data tracking the growth

path of these firms, we empirically test the two assumptions above.

For the random walk assumption, we focus on the autocorrelation of growth rates. For the analysis of

dependence between successive growth rates, we avoid using Pearson’s correlation coefficient, as it is not
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appropriate for cases where extremes or outliers are of importance. Instead, we use dependence measures

based on the copula theory, which is robust to such extremes. We find that the dependence between successive

growth rates is–if any–weak, and furthermore, this dependence weakens as we consider the tail regions of

the distribution. These results support the random walk assumption, particularly when focusing on HGFs.

For the growth rate distribution, we consider one-year and three-year growth rates and use the density

estimation and mean excess function to analyze the heaviness of the distribution tail. We find the growth rate

distributions for both cases have a strictly heavier tail than an exponential; that is, the growth rate distribution

is subexponential. These empirical findings imply that the growth path of HGFs is driven by a few large

jumps rather than a gradual increase.

To provide another empirical support, we consider the following ratio:

r :=
X1

X1 +X2

where X1 and X2 denote growth rates over the first- and second periods, respectively (e.g., X1 and X2 are

growth rates in 2015 and 2016, respectively, and X1 + X2 is the growth rate for the two years). Ratio r

represents the relative contribution of the growth rate in the first period to the entire growth rate over the two

periods. We examine the distribution of r across a range of different values of X1 +X2. We find that the

histogram of r exhibits a U-shaped curve with peaks at 0 and 1 when the growth rate over the entire period

is high (i.e., when X1+X2 is large). This suggests that when HGFs are considered, it is more likely that the

high growth is caused by either high growth in the first period or high growth in the second period, but not

both. This empirical finding is consistent with our theoretical analysis, which suggests that the sample path

of HGFs is characterized by sudden, large jumps. The U-shaped curve in the histogram of r reflects the fact

that these jumps tend to occur in one period or the other, rather than being spread evenly across both periods.

It is worth emphasizing that our finding is based on statistical regularities (i.e., the random walk and

the growth rate distribution) and does not specify an optimization model of firms’ behavior. As in Geroski

(2000), we assume that a firm’s growth is highly unpredictable (i.e., random), and we do not know which firm

will be a HGF in the future. However, even when a firm’s growth is random (or because of this randomness),

there exists a robust feature characterizing firm growth dynamics because it is governed by the logic of

probability theory. The U-shape curve for the ratio r, which we call the U-shape law, is one of the examples

that randomness gives rise to an empirical law for economic phenomena.

Related literature

This paper belongs to the literature on firm growth dynamics, which aims to understand observed

empirical regularities (see Coad (2009), Coad et al. (2014), Dosi et al. (2017), and Coad et al. (2022) for a

survey). In particular, a series of empirical studies discuss our two assumptions: the heavy-tailedness of the

growth rate distribution and the random walk assumption.

For the former, since the seminal work by Stanley et al. (1996), it has been recognized in the literature
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that the growth rate distribution deviates from a Gaussian and is close to a Laplace distribution (see, e.g.,

Bottazzi et al. (2001), Bottazzi and Secchi (2006), and Arata (2019)). This is one of the most robust empirical

regularities in the sense that this distribution shape is observed across different countries, times, and sectors.

Furthermore, several recent papers (e.g., Buldyrev et al. (2007);Bottazzi et al. (2011);Dosi et al. (2020))

empirically show that the tail of the growth rate distribution is strictly heavier than that of the Laplace

distribution (i.e., an exponential tail). In particular, Bottazzi et al. (2011) propose the Subbotin family, which

includes a Laplace distribution as a special case, rejecting the null hypothesis that growth rates follow a

Laplace distribution. In our paper, consistent with these empirical studies, we find that the tail of the growth

rate distribution is strictly heavier than an exponential. However, we do not specify the functional form of

the growth rate distribution. Only the fact that the tail is heavier than an exponential matters for our finding.

Regarding the random walk assumption, there is a strand of empirical studies discussing the persistence

of growth rates (e.g., Coad (2007); Coad and Hölzl (2009); Frankish et al. (2013); Dosi et al. (2020)). Their

results are mixed; for example, Coad (2007) shows that while growth rates are negatively autocorrelated for

small firms, large firms exhibit positive autocorrelation. However, if any, this autocorrelation is generally

weak, and in most cases, "lagged growth is a poor signal of future growth" (Coad et al. (2013), p.617).

Furthermore, in recent years, many researchers have focused on the persistence of high growth in the context

of HGFs (e.g., Delmar et al. (2003); Daunfeldt and Halvarsson (2015); Guarascio and Tamagni (2019);

Esteve-Pérez et al. (2022)). They show that HGFs are "one-hit wonders" (Daunfeldt and Halvarsson (2015));

that is, firms that experience a high-growth period does not repeat another high-growth period again. In

addition, there is no typical path unique to high-growth periods, meaning that the sample path of HGFs is

erratic. These studies suggest that the random walk assumption is a reasonable one to describe firm growth

dynamics. 12

The closest paper to ours is Coad et al. (2013), which assume a simple random walk with increment

±1. They compare the frequency of patterns in growth dynamics (such as four successive growth ++++

and alternating pattern + − +−) with that of the simple random walk and show that the simple random

walk provides a good approximation for growth dynamics. Following the spirit of Coad et al. (2013), we

assume that firm growth dynamics follow a random walk but extend this idea by considering the distribution

of its increments. Our analysis shows that depending of the heaviness of the distribution tail of increments,

the sample path properties of the random walk qualitatively change. By this method, our analysis provides

a unified explanation entailing the heaviness of the distribution tail, (non-)persistence, and the sample path

1Another empirical regularity which is consistent with the random walk assumption is Gibrat’s law, which states that a growth rate
is independent of its firm size. See, e.g., Lotti et al. (2009).

2Another important empirical finding that makes our stochastic approach more appealing is the lack of firm attributes characterizing
firm growth dynamics. For example, Bianchini et al. (2017) and Moschella et al. (2019) show that the persistence of high growth
is not related to any firm characteristics. These results suggest that it is necessary to use stochastic modeling without relying on
micro-founded modeling.
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properties of firm growth dynamics.

Outline

This paper is organized as follows. Section 2 considers a random walk model with increments following

a subexponential distribution. Section 3 provides empirical results using data on corporate tax records in

Japan. Section 4 concludes. In the Appendix, we check the robustness of our finding by considering firms’

age.

2 Probabilistic Method

This section provides probabilistic methods to analyze firm growth dynamics. Section 2.1 introduces

a random walk and the two distribution classes. Section 2.2 examines the relation between the summation

and maximum of iid shocks. Section 2.3 discusses the sample path properties of a random walk.

2.1 Random walk

Let Sk be the size of a firm at time k. We analyze the evolution of its logarithm over n periods, i.e.,

logSk for 0 ≤ k ≤ n. The growth rate at time k (denoted by Xk) is defined by

Xk := logSk − logSk−1

Thus, the growth rate over n periods is the sum of growth rates up to n:

logSn − logS0 =
n∑

k=1

Xk

We assume that logSk is described by a random walk with an initial point logS0, which is equivalent to the

following assumption.

Assumption 2.1. Growth rates X1, X2, ..., Xn are independent and identically distributed (iid) random

variables with a distribution F .

It is worth mentioning two predictions implied by the iid assumption. First, under the iid assumption,

a growth rate is independent of its firm size; that is, Xk does not depend on logSk−1. This property is

called Gibrat’s law, which is widely accepted in the literature as a reasonable approximation for firm growth

dynamics. Second, the iid assumption implies no autocorrelation of growth rates; for example, high growth

in a period does not imply high growth in the following periods. We will check the empirical validity of no

autocorrelation in Section 3.2.

As shown below, the property of a random walk depends on the distribution of Xk, especially on its

distribution tail. Rather than specifying the distribution ofXk, we introduce distribution classes characterized

by the heaviness of the distribution tail. Since our interest is in high-growth firms, only the right tail of the

distribution is considered.
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The first distribution class is light-tailed distributions, whose tail is exponentially bounded. More

precisely, this distribution class is determined by the existence of the moment generating function:

Definition 2.2. A distribution is light-tailed if its moment generating function exists for some λ > 0; that is,

EeλXk < ∞

for some λ > 0.

Examples of light-tailed distributions include the distribution of a bounded random variable (e.g.,

the uniform distribution), Gaussian, and Laplace distribution. The Laplace distribution is of particular

importance in our analysis: since the Laplace distribution has an exponential tail, it can be seen as the

boundary of this class. That is, if a distribution has a heavier tail than an exponential, the distribution does

not belong to the light-tailed distributions. In such a case (i.e., when the moment generating function does

not exist for any λ > 0), we say that the distribution is heavy-tailed.

Next, we introduce a subclass of heavy-tailed distributions, which is called subexponential distributions.

The formal definition is given as follows:

Definition 2.3. A heavy-tailed distribution F on R+ is subexponential if

lim
x→∞

F ∗ F (x)

F (x)
(1)

exists, where F (x) := F [x,∞) and F ∗ F (x) is the convolution of F with itself.

Let F be a distribution on R and X be a random variable drawn from F . F is subexponential if the

distribution of X+ := max{0, X} is subexponential.

For later purpose, we introduce a subclass of subexponential distributions, which requires a slightly

stronger regularity condition on their tails.

Definition 2.4. A heavy-tailed distribution F on R is strong subexponential if F satisfies the condition that

lim
x→∞

1

F (x)

∫ x

0
F (x− y)F (y)dy

exists.

One can show if the limit in Eq.(1) exists, it equals 2 (see Chapter 3 in Foss et al. (2011)). This means

that the tail probability of the sum of two iid random variables is asymptotically equivalent to the maximum

of the two iid random variables. That is, when the sum is large, it is generated by either a large value of the

first or second random variable (but not both). This property is referred to as the principle of a single jump,

as a single large jump of one component determines the sum.

It should be noted that although (strong) subexponential distributions are a proper sub-class of heavy-

tailed distributions (i.e., there exists a heavy-tailed distribution that is not subexponential), heavy-tailed

distributions that we encounter in practical applications are (strong) subexponential. For example, Pareto,
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log-normal, and Weibull distributions with an exponent less than 1 are included in (strong) subexponential

distributions. In particular, consider the Weibull distribution with parameter α > 0;

Fα(x) = e−xα
, x ≥ 0

The parameter α controls the heaviness of the tail: as α is smaller, the tail becomes heavier. Specifically,

when α = 1, it reduces to the exponential distribution. Thus, the Weibull distribution with α ≥ 1 (including

the exponential case) is light-tailed, and the Weibull distribution with α < 1 is (strong) subexponential.

2.2 Summation and maximum

Let us consider the sum of growth rates over n periods,
∑n

k=1Xk. As shown below, the tail probability

of the sum is qualitatively different depending on whether the distribution ofXk is light-tailed or heavy-tailed.

Before discussing general results, consider a simple case where X1, X2, ..., Xn are iid Gaussian random

variables with mean 0 and variance σ2. In this case, the sum is also a Gaussian with mean 0 and variance

nσ2. Thus, by using Mills’ ratio, we obtain

P(
n∑

k=1

Xk > u) = 1− Φ

(
u√
nσ

)
≤ 1√

2π
exp

(
− u2

2nσ2

)
for a large u. With a fixed n, the tail probability of the sum is controlled by σ2 and decays rapidly as u → ∞
(a Gaussian decay).

Next, consider the case where the distribution of Xk is light-tailed. In general, the tail probability of a

random variable is closely related to how rapidly the moment generating function increases as λ increases.

In particular, we impose a condition on the increasing rate of the moment generating function, which is

satisfied for the Gaussian and Laplace distributions.

Proposition 2.1. Suppose that the moment generating function of Xk satisfies

logEeλXk ≤ vλ2

2(1− cλ)
(2)

Then, the tail probability of the sum is bounded as follows:

P(
n∑

k=1

Xk > u) ≤ exp

(
− u2

2(nv + cu)

)
Proof. This is a straightforward application of concentration inequalities for sub-Gamma variables. See,

e.g., Chapter 2.4 and Corollary 2.11 in Boucheron et al. (2012).

For a Gaussian distribution, Eq.(2) is satisfied with v = σ2 and c = 0 . The resultant upper bound on

the tail probability of the sum is equivalent to the one above (up to a constant). For a Laplace distribution

with parameter b (i.e., the variance is 2b2), Eq.(2) is satisfied with v = 2b2 and c = b. In this case, with

fixed n, the probability in the central region exhibits a Gaussian decay, similar to the Gaussian case (i.e.,

the effect of the central limit theorem). In contrast, when a relatively large value of u is considered, the tail
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probability of the sum deviates from Gaussian decay. However, it should be noted that if the distribution of

a component Xk is exponentially bounded, the deviation is still bounded exponentially.

When a subexponential distribution is considered, the deviation from a Gaussian is more severe and

has another meaning. Suppose that the distribution of Xk is subexponential. One can show that the limit in

Eq.(1) can be extended to an arbitrary n, and the tail probability of the sum can be approximated as follows:

P(
n∑

k=1

Xk > u) ∼ nP(Xk > u) (3)

as u → ∞.

Note that the right-hand side of Eq.(3) is the probability of the maximum of the iid random variables

max{X1, ..., Xn} exceeds u. Intuitively, when we have a sum of subexponential random variables, the

probability that their combination with moderate values leads to an extreme value of the sum is negligible.

Instead, an extreme value of the sum is typically driven by one extreme value among its components. In

particular, Eq.(3) means that if the distribution of the sum
∑n

k=1Xk has a heavier tail than an exponential,

the distribution of each component Xk is also subexponential and shows the same decay rate as u → ∞.

We will use this property in Section 3 to test whether the distribution of firms’ growth rates is (strong)

subexponential.

2.3 Sample path properties

The previous section illustrates how the distribution of the sum depends on the tail of the distribution

of its components. Here, we discuss the conditional distribution of X1, ..., Xn conditional on the event that∑n
k=1Xk = u. In particular, we examine the most probable combination of X1, ..., Xn to generate the given

sum u.

For simplicity, let Xk be a non-negative random variable, and let f(xk) be the probability density

function of Xk (i.e., F (dx) = f(x)dx).3 Assume that f(x) can be written as follows:

f(x) = e−h(x), x ≥ 0

For example, if f(x) is the density function of an exponential distribution, then h(x) = x. When n iid

random variables with F are considered, the probability that the sum is equal to u is given by

P

(
n∑

k=1

Xk = u

)
=

∫
∑n

k=1 Xk=u
exp

(
−

n∑
k=1

h(Xk)

)
dX1 . . . dXn

What combination of X1, ..., Xn is most probable, given that their sum is equal to u? This problem

corresponds to the minimization of
∑n

k=1 h(Xk) subject to
∑n

k=1Xk = u. Let us consider the case where

h is a convex function (e.g., the case of Weibull distribution with α > 1). Jensen’s inequality implies that the

3This example is taken from Sornette (2006).
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minimum of the sum
∑n

k=1 h(Xk) is attained at X1 = ... = Xn = u/n.4 In other words, the most probable

combination of X1, ..., Xn that produces the sum
∑n

k=1Xk = u is the one where all components have the

same value of u/n. Thus, it is more likely that each component contributes equally to the sum.

In contrast, when h is a concave function (e.g., a Weibull distribution with α < 1), the way that

components X1, ..., Xn generate the sum
∑n

k=1Xk = u differs qualitatively.
∑n

k=1 h(Xk) is minimized

when Xk∗ = u for some k = k∗ and X1 = . . . = Xn = 0 for k ̸= k∗.5 This suggests that one component

dominates the sum while other components contribute nothing to the sum. Finally, note that the boundary

case is the exponential distribution in which h is a linear function. In this case, both types of behavior can

occur.

The fact that the sum is generated in two different ways can be seen by considering the ratio of X1 in

the sum. Suppose that X1, X2 ≥ 0 be two independent random variables drawn from a Weibull distribution

with parameter α.6 Let us consider the distribution of the ratio X1/(X1 +X2) conditional on the event that

their sum is equal to u (i.e., X1 +X2 = u). The probability density function of the ratio given u (denoted

by gα,u) is given by

gα,u(r) = c(r(1− r))α−1e−uα(rα+(1−r)α) (4)

where c is a normalizing constant independent of r.7

Figure 2 depicts the density gα,u with three different values of α. As seen in the figure, it is symmetric

at 1/2 for all cases (this is obvious because X1 and X2 are two iid random variables). Let us examine the

4Indeed, let X̂k be the deviation from u/n, i.e., X̂k := Xk − u/n. Jensen’s inequality states that for a real convex function φ,

φ

(∑
k xk

n

)
≤

∑
k φ(xk)

n
.

Thus, ∑
k

h(Xk) = h
(u

n
+ X̂1

)
+ . . .+ h

(u

n
+ X̂n

)
≥ nh

(u

n

)
where we used

∑
k X̂k = 0 by definition.

5This can be shown as follows: Suppose that the statement does not hold. Thus, there exist at least two k such that 0 < Xk < x.
Take such two k (denoted by k1, k2) so that Xk1 ≥ Xk2 . The concavity of the function h yields that

∑
k h(Xk) can be lowered by

replacing Xk1 , Xk2 with Xk1 − ε,Xk2 + ε. This is a contradiction.

6This example is taken from Foss et al. (2011).

7This can be proved as follows: Let ξ1, ξ2 be random variables such that ξ1 := X1
X1+X2

, ξ2 := X1 + X2. Thus, X1 and X2 are
written as X1 = ru,X2 = u(1− r). The probability of interest is

Pr(ξ1 = r|ξ2 = u) =
Pr(ξ1 = r, ξ2 = u)

Pr(ξ2 = u)

=
Pr(X1 = ru,X2 = u(1− r))

Pr(ξ2 = u)

The numerator is calculated using the fact that X1 and X2 are independent of each other. The denominator is determined by u and
independent of r. Setting the normalizing constant c, we obtain the result.
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Figure 2: The density gα,u. Three values of α are considered: α = 0.7, 1.0, 2.0.

density more closely for each value of α. For the case of α > 1 (i.e., a light-tailed case), the density is

unimodal and peaked at 1/2. This indicates that the most probable event is that X1 and X2 are of similar

size (i.e, equal to u/2). Especially for a large value of u, the density is concentrated around 1/2.

In contrast, when α < 1 (i.e., a heavy-tailed case), the density peaks at 0 and 1 and exhibits a U-shape

curve. Thus, it is more likely that either X1 or X2 (but not both) takes a large value and dominates the sum

u. Futhermore, as suggested by Eq.(4), the density is concentrated at 0 and 1 as u → ∞. Thus, for a large

value of u, it is highly unlikely that both X1 and X2 are large and contribute equally to the sum.

Finally, consider the case of α = 1 (i.e., an exponential case). The density is uniform, meaning that this

case can be seen as the boundary case. Thus, the crucial point is whether the distribution tail is heavier than

an exponential.

The rest of this section introduces two general results in probability theory (Asmussen (1982) and

Asmussen and Klüppelberg (1996)) that formalize the intuition given above. To do so, we need some

technical assumptions. Suppose that we are interested in firms that grow rapidly and outperform others.

However, if we consider a large value of
∑n

k=1Xk (e.g.,
∑n

k=1Xk > u), this event would happen with

probability 1 when EXk is positive and a longer time period is considered (here, we assume that n is not

fixed). Instead of considering this trivial case, we define growth rate as an excess from a positive value c

(close to but larger than EXk) and focus on firms whose sum of excess growth rates is large. Formally,

letting Yk := Xk − c, we consider the random walk of Y1, ..., Yn with a negative drift and focus on the event
n∑

k=1

Yk > u

for some n.

The probability of the event is less than 1 (because EYk < 0) and becomes much smaller as u is large

(i.e., a rare event). But once this rare event happens, how does the sequence of Y1, Y2... reach u? More

precisely, we consider the following conditional probability Pu := P(·|
∑n

k=1 Yk > u for some n). Under
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Pu, let Fn denote the empirical distribution; that is,

Fn(x) :=
1

n

n∑
k=1

I(Yk ≤ x)

In particular, letting ν(u) be the time at which
∑n

k=1 Yk exceeds u for the first time (i.e., ν(u) := inf{n :∑n
k=1 Yk > u}), Fν(u) is the empirical distribution of growth rates conditional on the event that the random

walk exceeds u.

For light-tailed distributions, Asmussen (1982) identifies the distribution to which the empirical distri-

bution Fν(u) converges and characterizes the fluctuations of the random walk conditioned on ν(u) < ∞.

Let Fγ denote the twisted distribution of F defined by

Fγ(x) :=

∫ x

−∞
eγydF (dy)

for γ > 0 satisfying EeγYk = 1 and E|Yk|eγYk < ∞. Note that Fγ has a positive mean. The result relevant

to our analysis is the following:

Theorem 2.2 (Theorem 3.1 and Corollary 3.1 in Asmussen (1982)). Suppose that F is light-tailed. Then,

as u → ∞ ∥∥Fν(u) − Fγ

∥∥ Pu−→ 0

If properly normalized, (
∑tν(u)

k=1 Yk − tu)0≤t≤1 converges in distribution to a Brownian bridge.

This theorem means that under Pu (i.e., conditioned on the event that
∑n

k=1 Yk exceeds u for some n),

the empirical distribution of Yk is close to Fγ for a large u. Recall that the unconditional mean of Yk is

negative; that is, most firms do not outperform the trend, and
∑n

k=1 Yk finally goes to −∞ as n → ∞. The

fact that the mean of Fγ is positive suggests that (excess) growth rates for high-growth firms (i.e., firms with∑n
k=1 Yk > u for some n), Y1, ..., Yν(u) are upward drifted, and in turn, their sum reaches u. The latter half

of the theorem presents the same picture for the sample path: since the expectation of the Brownian bridge

at any t is 0, the sum
∑tν(u)

k=1 Yk increases its value at the rate tu on average. Thus, when the distribution of

growth rate is light-tailed, the typical sample path is a gradual increase, as depicted in Figure 1(a).

For subexponential distributions, Asmussen and Klüppelberg (1996) provides the convergence of Fν(u)

and its sample path properties.

Theorem 2.3 (Theorem 1.1 and 1.2 in Asmussen and Klüppelberg (1996)). Suppose that F is strong

subexponential and belongs to the maximum domain of attraction of extreme value distributions.8 Then, as

u → ∞, ∥∥Fν(u) − F
∥∥ Pu−→ 0

8More precisely, the condition needed here is F belongs to the maximum domain of attraction of Frechet or Gumbel distributions.
This class is broad, including heavy-tailed distributions (such as Pareto, log-normal, and Weibull distributions), and does not impose
any restriction in practical applications. For extreme value theory, see Embrechts et al. (1997).
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Furthermore, {
∑⌊tν(u)⌋

k=1 Yk/ν(u)}0≤t≤1 converges in distribution to {−µt}0≤t≤1, where µ is the mean of

F .

This theorem implies that in contrast to the light-tailed case, the conditional empirical distribution of

growth rates for HGFs (i.e., firms with
∑n

k=1 Yk > u for some n) is essentially the same as the unconditional

one. Indeed, the latter half of the theorem means that up to time ν(u), the conditional random walk decreases

as −µtν(u) on average, which is the same as other non-HGFs. Intuitively, this is equivalent to saying that

the sample path for HGFs is the same as that of non-HGFs just before a large jump arrives, then the single

large jump results in the upcrossing at u, as described in Figure 1(b).

To summarize, the above discussion shows that given the random walk assumption, there are two types

of sample paths: gradual increase or sudden increase by a large jump. The type of its sample path is

determined by whether the growth rate distribution is light-tailed or subexponential. Thus, our remaining

tasks are to empirically examine (1) the random walk assumption (especially autocorrelation of growth rates)

and (2) the distribution class of the growth rate distribution. These tasks will be carried in the next section.

3 Empirical Results

This section provides our empirical analysis using data on corporate tax records in Japan. Section 3.1

describes this data. Section 3.2 analyzes the random walk hypothesis by focusing on the autocorrelation of

growth rates. Section 3.3 analyzes the heavy-tailedness of the growth rate distribution. Section 3.4 shows

that the properties of subexponential distributions discussed in Section 2 are consistent with our data.

3.1 Data description

Our data is based on corporate tax records collected by the National Tax Agency and provided by the

National Tax College. All firms in Japan are required to report their profits, which are used to calculate

the amount of their corporate tax payments. Since this report is mandatory, this data provides extensive

coverage of almost all firms in Japan.9 Firms also report their basic attributes (e.g., firm’s name, location,

and industry) and annual sales revenues. Spanning from 2014 to 2020, the data is accompanied by a unique

ID for each firm. Using this unique ID, we construct panel data for analysis.

We have two other auxiliary data provided by the National Tax College, which are combined with the

panel data. One contains information about a firm’s incorporation date, which enables us to identify a firm’s

age. In the following analysis, we defined a firm’s age as the difference between 2014 and the year of its

9When firms pay corporate tax, parent firms that own 100% of the stocks of a subsidiary can file taxes as a consolidated parent firm,
allowing them to offset the profits and losses between the parent firm and its subsidiary (known as the consolidated tax system).
In the data used for this analysis, firms utilizing this system are excluded. As of 2019, the total number of parent firms using this
system is 1, 721, and the total number of consolidated subsidiaries included is 12, 983.
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Table 1: Summary statistics of growth rates. One-, three, and six-year growth rates are considered. For example, the
three-year growth rate in 2017 represents the growth rate from 2014 to 2017, i.e., X2017 = logS2017 − logS2014.

incorporation. The other is about records of mergers. It enables us to identify the year when a merger occurs

and firm IDs involved in each merger. To focus on firms’ internal growth, we exclude firm-year observations

where a merger takes place from our main samples.10

We add several conditions for sample selection. First, we exclude micro firms from our samples.

Since our main variable of interest is the growth rate, which is defined as the log difference in sales (i.e.,

Xi,k := logSi,k − logSi,k−1 for firm i at period k), the extremely small size of a firm at the initial period

(i.e., Si,k−1) would generate an extremely large value of its growth rate. As our analysis is based on the iid

assumption of growth rates, we consider only firms with sales of larger than 100 million yen in the initial

period (i.e., in 2014). Second, we exclude firms in financial and government sectors from our samples.

Lastly, we exclude firms with ages less than ten years from our samples. An analysis of these young firms

will be given in Appendix 5.1, where we found that the growth dynamics for the young firms are different

from those for older firms. Here, we focus on firms that are neither too young nor too small, as the random

walk assumption (or Gibrat’s law) is likely to hold for them. The sample size and summary statistics of

growth rates are given in Table 1.

10Another detail about our panel data is that certain firms have multiple records within a year. This occurs because these firms have
accounting periods of less than a year, resulting in the submission of multiple financial accounts during that year. Each of these
accounts is used to calculate the corresponding tax payments. In our analysis, we aggregate a firm’s sales revenues within a year
to approximate their annual sales revenues. Then, we exclude samples if the duration of the aggregated accounting period (i.e., the
difference between the closing date of the latest accounting period and the starting date of the oldest accounting period) is less than
11 months.
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3.2 Autocorrelation

The random walk assumption implies that successive growth rates are independent of each other. We

examine the empirical validity of the random walk assumption by analyzing the autocorrelation of growth

rates. The most commonly used measure to assess the correlation between two random variables is Pearson’s

correlation coefficient. However, as explained below, it is not suitable for our analysis, and instead, we use

alternative measures based on copula theory.11

The fundamental idea of copula theory is that any bivariate distribution function F can be decomposed

as follows:

F (x1, x2) = C(F1(x1), F2(x2))

where C is a function called copula and F1, F2 are the marginal distributions. The copula function C is

independent of the marginal distributions, meaning that the dependence structure is uniquely determined by

C.

Since the dependence structure of two variables is determined by C, one might think that Pearson’s

correlation coefficient is determined solely by C. This is not the case; Pearson’s correlation coefficient can

vary when the marginal distributions change while C remains unchanged. Moreover, Pearson’s correlation

coefficient of X1 and X2 is not necessary equal to that of h1(X1) and h2(X2) for strictly increasing functions

h1 and h2. Copula theory suggests that any measure of dependence should be uniquely determined by copula

C. In addition to this limitation, Pearson’s correlation coefficient is vulnerable to extremes or outliers.

This causes a problem when analyzing high growth rates, which is of particular interest in our analysis.

To accurately assess dependence between successive growth rates, we should avoid excluding such extreme

values as outliers.

Better alternatives are Kendall’s τ , Spearman’s ρ, and Pearson’s correlation coefficient of normal scores.

Kendall’s τ is a measure of ordinal association between two variables, meaning it captures the degree to

which the variables tend to be ranked in a similar way: if (X1, X2), (X
′
1, X

′
2) are independent random pairs

with a common distribution F , (the population version of) Kendall’s τ is defined as

τ := P
[
(X1 −X ′

1)(X2 −X ′
2) > 0

]
− P

[
(X1 −X ′

1)(X2 −X ′
2) < 0

]
Kendall’s τ is within the range [−1, 1] and equal to 0 when the two variables are independent of each

other. Spearman’s ρ is a measure of rank correlation, which assesses the degree to which two variables are

correlated when their values are ranked. This is defined as the correlation coefficient of the transformed

variables F1(X1) and F2(X2):

ρ := Cor[F1(X1), F2(X2)]

Similar to Kendall’s τ , ρ is within the range [−1, 1] and equal to 0 when the two variables are independent

of each other. The correlation coefficient of normal scores is defined as the correlation coefficient between

11Copula theory has been widely used in financial literature. See Joe (2014).
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Figure 3: Scatter plot of growth rates in 2015 (y-axis) and 2016 (x-axis). The bright orange color represents the high
density of sample points.

two variables transformed into standard Gaussian variables:

ρN := Cor[Φ−1(F1(X1)),Φ
−1(F2(X2))]

where Φ is the distribution function of the standard Gaussian. Since we are familiar with (multivariate)

Gaussian distribution, this measure is useful to assess the degree of dependence between two variables.

Our empirical data suggests that the dependence between growth rates in 2015 and 2016 is very weak.

Figure 3 depicts the scatter plot of growth rates in 2015 and 2016, showing no clear dependence between

them. Kendall’s τ and Spearman’s ρ correlation coefficients are both close to zero, with values of −0.0061

and −0.017, respectively, suggesting only a slightly negative dependence. Pearson’s correlation coefficient

of normal scores is −0.070, indicating a weak negative correlation. Overall, these coefficients suggest that

dependence between successive growth rates–if any–is weak.

Although the three measures can provide valuable insight into the dependence between growth rates,

they tend to be more sensitive to dependence in the central region. This is because samples are more

abundant in the central region and therefore have a greater influence on the three measures. In other words,

the dependence in the extreme region may not be well-represented by these measures.

To address this concern, we use two additional measures: the semi-correlation of normal scores and the

tail dependence coefficient. The semi-correlation of normal scores is defined as the correlation coefficient

of the transformed variables conditioned on an event that both variables are large:

ρ+N (q) := Cor[Φ−1(F1(X1)),Φ
−1(F2(X2)) | X1 > F−1

1 (q), X2 > F−1
2 (q)]

We are interested in the behavior of ρ+N (q) when q is close to 1. The other measure is the tail dependence
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(a) Semi-correlation (b) Tail dependence coefficient

Figure 4: Tail dependence measures.

coefficient, which is defined as

λU := lim
q→1

P(X2 > F−1
2 (q) | X1 > F−1

1 (q))

This is the probability that an extreme of X2 (i.e., high growth rate at the second period) occurs conditioned

on the event the growth rate in the first period X1 is high. When λU converges to a positive value, it is called

tail dependence. When these two measures are close to 0, it suggests that extremely high growth does not

occur consecutively.

The two tail dependence measures are calculated using growth rates in 2015 and 2016. Figure 3 shows

that both measures decrease as we consider the tail region, i.e., q → 1. Thus, dependence between successive

growth rates comes mainly from dependence in the central region, and when growth rates in the tail region

are considered, it becomes weakened. Since extremes of growth rates are of main interest, this result suggests

that the random walk assumption provides a reasonable approximation for empirical firm growth dynamics.

3.3 Growth rate distribution

Here, we examine the growth rate distribution, with a specific focus on its distribution tail. The first

method is density estimation in the log scale (y-axis). Recall that if growth rates follow a Laplace distribution,

the density function in the log scale would exhibit a triangular shape; that is, the density exhibits a straight

line in the tail (i.e., an exponential tail). Thus, the deviation from the straight line in the tail region can be

seen as evidence that the growth rate distribution deviates from an exponential tail.

Figure 5 shows the density estimate in the log scale for one- and three-year growth rates. Both figures

show that in the right tail, the density does not follow a straight line but rather exhibits a curved shape.

This provides evidence that the growth rate distribution has a heavier tail than an exponential and belongs to

subexponential distributions.

The second method is the mean excess function over threshold u (denoted by e(u)). This function is
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(a) One-year growth rates (b) Three-year growth rates

Figure 5: Density estimates of growth rates. The y-axis is in the log-scale.

defined as follows:

e(u) := E[Xk − u | Xk > u] for u > 0.

e(u) is the conditional expectation of overshoot Xk − u given that Xk exceeds u. The advantage of e(u) is

that the increasing or decreasing rate of e(u) over u reflects the tail-heaviness of the underlying distribution

of Xk. For example, if Xk is drawn from an exponential distribution with parameter λ, then e(u) = λ−1;

that is, e(u) is a constant. Intuitively, if e(u) is an increasing function of u, the distribution of Xk has a

heavier tail than an exponential.

Consider the empirical counterpart of the mean excess function:

ê(u) :=
1

Fn(u)

∫ ∞

u
Fn(y)dy for u > 0,

where Fn is the empirical distribution of growth rates for n samples. Figure 6 depicts ê(u) over u for one-

year growth rates in 2015 and three-year growth rates in 2017. Both figures show that ê(u) is an increasing

function of u, though the increasing rate is not constant especially for one-year growth rates. This is another

evidence that the growth rate distribution has a heavier tail than an exponential. Consistent with the density

estimates in Figure 5, the growth rate distribution belongs to subexponential distributions.

The third method is the parametric estimation of the Weibull tail with a shape parameter α. The Weibull

tail with α means that for some x∗ and constant C, the tail of the growth rate distribution is described as

follows:

Fα(x) = Ce−(x/b)α , x ≥ x∗

where b is a scale parameter. The advantage of the Weibull tail is that it nests an exponential tail (i.e., α = 1)

and that it belongs to subexponential distributions when α is strictly less than 1.

Assuming that growth rates follow a distribution with a Weibull tail, we estimate the shape parameter
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(a) One-year growth rates (b) Three- and six-years growth rates

Figure 6: Mean excess function over threshold u.

α using the Hill’s type method developed by Gardes et al. (2011).12 Since the estimation relies only on

an upper part of samples, we use the top 1% samples, i.e., Xk > F
−1
n (0.99). The estimate of the shape

parameter, α̂, is 0.49 for one-year growth rate in 2015 and 0.56 for three-year growth rates in 2017. Both

estimates suggest that the tail of the growth rate distribution is heavier than an exponential tail (i.e., α = 1).

Thus, this provides further evidence that the growth rate distribution is subexponential.

We also assess the goodness of fit of the Weibull tail with the estimate α̂. Figure 7 illustrates the

comparison between the Weibull tail and the empirical counter cumulative distribution function (CCDF) of

growth rates. Both figures in Figure 7 show that the Weibull tail provides reasonable fit up to Xk ≈ 1.5, but

the empirical CCDF appears to be heavier than the Weibull tail for Xk ≫ 1.5. Although further exploitation

is needed for precise characterization of such extremely large values of Xk, these figures align with our

assumption that the tail of the growth rate distribution is heavier than an exponential.13

Finally, we consider the distribution of six-year growth rates, i.e.,
∑20

k=15Xk. Recall that when the

distribution of Xk is light-tailed, the distribution of the sum
∑20

k=15Xk is bounded by an exponential tail,

as discussed in Section 2.2. In other words, when the distribution of
∑20

k=15Xk has a heavier tail than an

exponential, it indicates that the distribution of Xk is subexponential.

12More precisely, in Gardes et al. (2011), the Weibull tail is defined as

lim
t→∞

log(F (λt))

logF (t)
= λα,

and the main idea for estimation is that when taking the logarithm of both sides of the equation, it is a linear function of λ with a
slope α. The asymptotic properties of the estimate of α are also given in Gardes et al. (2011).

13While the properties of the distribution tail are defined as ones in the limit x → ∞, we need to set a criterion above which samples
are considered as part of the tail when dealing with empirical data. As we will see in Section 3.4, the property of a single big jump
for subexponential distributions becomes evidence when Xk ≈ 0.8 is considered. We can expect that the tail of the distribution
starts around Xk ≈ 0.8, and therefore, the deviation from the Weibull tail at Xk ≫ 1.5 is not relevant to our analysis.
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(a) One-year growth rate (b) Three-year growth rate

Figure 7: Estimated Weibull tail with α̂. The counter cumulative distribution function for empirical growth rates is
also given for comparison.

(a) Mean excess function (b) Weibull tail

Figure 8: Mean excess function and Weibull tail for six-year growth rates. The estimate α̂ for the Weibull tail is 0.63.

Using the same methods above, we show the mean excess function and the estimated Weibull tail for

six-year growth rates in Figure 8. Here, the estimate α̂ for the Weibull tail is 0.63, which is lower than

α = 1, i.e., an exponential tail. Similar to the cases of one- and three-year growth rates, both figures show

that the distribution of six-year growth rates has a heavier tail than an exponential. Thus, the deviation from

an exponential tail for six-year growth rates implies that the distribution of one- and three-year growth rates

are not exponentially bounded, providing further evidence that the growth rate distribution is subexponential.

3.4 Sample path properties

The empirical results given in Sections 3.2 and 3.3 imply that the two assumptions in our analysis (i.e.,

the random walk assumption and subexponential growth rate distribution) hold, and therefore, the growth

dynamics for HGFs is characterized by jumps. Here, we provide additional direct evidence to further support
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Figure 9: A series of the histograms of r1 conditional on X15+X16 > u. The value of u increases from 0.2 (top-left)
to 2.4 (bottom-right) by 0.2.

the importance of this jump-type process.

Let us consider the contribution of the growth rate in the first period to the overall growth rate, which

is defined as follows:

r1 :=
X15

X15 +X16
, r3 :=

∑17
k=15Xk∑17

k=15Xk +
∑20

k=18Xk

Ratio r1 represents the contribution of the growth rate in 2015 to the growth rate over the two years (i.e.,

n = 2). Similarly, ratio r3 represents the contribution of the growth rate in the first three years to the growth

rate over the six years (i.e., n = 6). For example, when a firm’s growth rate is 3% in 2015 and 3% in 2016, r1
is equal to 1/2, meaning that both growth rates in 2015 and 2016 contribute equally to the overall two-year

growth rate. Since Xk’s are assumed to be independent and identically distributed random variables in our

analysis, the distributions of r1 and r3 are symmetric at 1/2. The question to address here is whether the

case of r1 = 1/2 (or r3 = 1/2) is a likely event or not.

Using the growth rates in 2015 and 2016 in our samples, we provide in Figure 9 the histogram of r1
conditional on the event X15 +X16 > u, where u varies from 0.2 to 2.4.14 Specifically, Figure 10 provides

the histograms of r1 for u = 0.2 and u = 1.2. These figures shows that when X15 + X16 is relatively

small (e.g., u = 0.2), the histogram of r1 exhibits a mountain shape with a peak at 1/2. That is, when the

growth rate over the entire period is not high, it is more likely that both growth rates contribute equally to

the growth rate over the entire period. In contrast, as the value of u increase (e.g., u = 1.2), the mountain

shape collapses. Instead, the histogram exhibits a U-shaped curve with peaks at 0 and 1, meaning that high

growth over the entire period is caused by a single large value of either X15 or X16 (but not both). Thus,

when HGFs (over the two years) are considered, it is more likely that a HGF has extremely high growth in a

year, which determines high growth over the entire period.

A similar U-shaped curve is observed for the histogram of r3. Figure 11 gives the histograms of r3

14When calculating the histograms of r1, we exclude samples where r1 is exactly equal to 0 or 1. This is because for some firms, the
values of current sales are exactly the same as the previous ones. To make our analysis conservative, the histograms in Figure 10
exclude these samples. Even without these samples exactly equal to 0 or 1, spikes at 0 and 1 are still clearly observed. We apply the
same procedure to r3 as well.
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(a) X15 +X16 > 0.2 (b) X15 +X16 > 1.2

Figure 10: Histogram of r1.

Figure 11: A series of the histogram of r3 conditional on
∑20

k=15 Xk > u. The value of u increases from 0.2 (top-left)
to 2.4 (bottom-right) by 0.2.

conditional on the event
∑20

k=15Xk > u, where u varies from 0.2 to 2.4. Specifically, Figure 12 provides

the histograms of r3 for u = 0.2 and u = 2.0. As in the case of r1, when u is relatively small, the histogram

peaks at 1/2. The contribution of growth in the first-half period is approximately equal to the contribution of

growth in the second-half period. In contrast, as u becomes larger, the U-shaped curve with spikes at 0 and

1 emerges. This means that high growth in the entire period (i.e., a large value of
∑20

k=15Xk) is explained

by high growth either in the first-half or second-half period (but not both). In other words, it is more likely

that HGFs have a short period during which they grow rapidly.

The observed U-shaped curve for the histograms of r1 and r3 is direct empirical evidence supporting

the implication given in Section 2: for HGFs, the most typical (or likely) path is not a gradual increase over

the entire period but a path characterized by a large jump. Since this U-shape curve captures the essence of

firm growth dynamics for HGFs, we refer to it as the U-shaped law of HGFs.
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(a)
∑20

k=15 Xk > 0.2 (b)
∑20

k=15 Xk > 2.0

Figure 12: Histogram of r3.

4 Conclusion

The understanding of firm growth dynamics is a fundamental topic in economics, and indeed, numerous

studies have been conducted on this subject so far. However, predicting firm growth, especially for HGFs,

is a formidable task, and the empirical growth process looks completely random. This paper attempts to

characterize the seemingly random dynamics using probability theory and shows that there exists a robust

empirical law governing dynamics.

My analysis is based only on two empirically testable assumptions: the random walk assumption and

the subexponential distribution of growth rates. Using comprehensive data based on corporate tax records in

Japan, we confirmed that these two assumptions hold; in particular, the empirical fact that the distribution of

growth rates has a heavier tail than an exponential has far-reaching implications for firm growth dynamics.

These empirical facts and the probability theory imply that the sample path of HGFs looks like a jump-type

process. The essence of the process is not a gradual increase but a single large jump. The U-shaped curve

of the histogram of r is direct evidence of this property.

It is worth mentioning that in our analysis, we do not specify any economic models for firm growth but

derive our implications solely from statistical regularities, such as the subexponential distribution of growth

rates. This approach is appealing, especially when the growth process is too complicated to be described by

an explicit model, and only its probabilistic features are known. Furthermore, due to this inherent complexity,

firm growth dynamics are governed by the logic of probability theory. Our finding suggests that even when

firm growth is random and unpredictable (or because of this randomness), there exists an empirical law

governing its dynamics, especially for HGFs.

23



Table 2: Summary statistics of growth rates for young firms.

5 Appendix

This appendix section provides additional empirical results regarding the U-shaped law. Section 5.1

considers young firms in Japan, which are excluded from our samples in the main text, and shows that the

U-shaped law does not hold for this group. Using Orbis data, Section 5.2 shows that when such young firms

are excluded, the U-shaped law holds for other countries as well.

5.1 Young firms

Here, we consider firm growth dynamics for young firms with ages less than ten years in 2014, which

are excluded from our main analysis in Section 3. The summary statistics of their growth rates are given in

Table 2.

As expected, the dispersion (e.g., the difference between Q1 and Q3 in Table 2) is high for younger

firms, compared with Table 1. The high dispersion of young firms is also observed using density estimates

of growth rates given in Figure 13, where the samples are decomposed into age groups. Only the density

for the group of firms with ages less than ten years deviates from the densities for other age groups. One

might think that this high dispersion of growth rates for young firms is due to the fact that young firms are

likely to be small, and the dispersion of growth rates is higher for smaller firms. To mitigate this concern,

in Figure 14, we restrict our samples to firms with sales of less than 109 yen (and larger than 108 yen).

Figure 14 shows that even when a firm’s size is controlled, the deviation of the density for young firms from

other densities is still observed. These figures suggest that the dependence of growth rates on firms’ age is

relevant for young firms with ages less than ten but weak for other age groups.

We also find the weak but positive autocorrelation of growth rates for young firms. The Spearman’s

ρ and Kendall’s τ are 0.101 and 0.078, respectively. The correlation coefficient of normal scores is 0.062.
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(a) One-year growth rate (b) Three-year growth rate

Figure 13: Density estimates of growth rates for age groups. Samples are divided into groups of 10-year intervals
based on their ages. For example, "age 20" represents the group of firms with age older than 10 and less than 20. In
Panel (a), one-year growth rates in 2015 (i.e., X15) are considered. In Panel (b), three-year growth rates in 2017 (i.e.,
X15 +X16 +X17) are considered.

(a) One-year growth rate (b) Three-year growth rate

Figure 14: Density estimates of growth rates for age groups. Only firms with sales less than 109 yen are considered.
See the explanation given in Figure 13.
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Figure 15: A series of the histograms of r1 conditional on X15 +X16 > u for young firms. The value of u increases
from 0.2 (top-left) to 2.4 (bottom-right) by 0.2.

Figure 16: A series of the histogram of r3 conditional on
∑20

k=15 Xk > u for young firms. The value of u increases
from 0.2 (top-left) to 2.4 (bottom-right) by 0.2.

Although these estimates are still small, the autocorrelation nature of growth rates for young firms seems to

be different from that for other older firms. Indeed, in the context of the empirical validity of Gibrat’s law,

the previous literature suggests that Gibrat’s law is more likely to hold for old and mature firms (see, e.g.,

Lotti et al. (2009)). Thus, we expect that the U-shape curve for the histograms of ratios r1 and r3 would not

be observed for younger firms.15

We confirm that this is the case. Figure 15 depicts the histograms of r1 for young firms using growth

rates in 2015 and 2016. As in Figure 9, we consider the values of u in X15 +X16 > u to vary from 0.2 to

2.4. However, we cannot observe the U-shaped curve of the histograms of r1 for these young firms. Even

when a large value of u is considered, the spikes at 0 and 1 are unclear. We also consider r3 but cannot

observe the U-shaped curve for young firms, as shows in Figure 16. Thus, we conclude that the U-shaped

law does not hold for young firms.

These results imply that the growth paths for young firms are different from those for older firms and

seem to be more complicated. The random walk assumption and the subexponentiality of the growth rate

distribution are not sufficient to characterize the firm growth dynamics for young firms. Although this issue

is worth exploiting, it is beyond the scope of this paper.

15Since it is assumed that growth rates are independent and identically distributed in our analysis, the dependence of growth rates on
firms’ age is not consistent with our assumption. This is why we excluded young firms with age less than ten years from our main
samples in Section 3.
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Table 3: Summary statistics of one-year growth rates for France and Italy.

5.2 Orbis data

Here, we check the universality of the U-shaped law using firm-level data for France and Italy. Specifi-

cally, we examine the shape of the growth rate distributions and the histograms of the ratio r1. We use the

Orbis data compiled by Bureau van Dĳk. The sample period ranges from 2016 to 2018.

As in Section 3, we impose several conditions on our samples. First, we exclude micro firms from our

samples and consider only firms with sales of larger than 100 thousands euro. Second, we consider firms

with age older than 10 years old. Here, a firm’s age is defined by the firm’s incorporation date. Finally, using

Zephyr data, which identify the date and firms’ IDs involved in a M&A, we exclude firm-year observations

where a M&A occurs. For these samples, firm i’s growth rate is defined as the log difference of firm i’s

sales. The summary statistics of growth rates are given in Table 3.

First, we consider the distribution of growth rates for the two countries. The density estimates of growth

rates are shown in Figure 17, where the y-axis is the log scale. Both figures show that the density in the tail

region deviates from an straight line, that is, an exponential tail. As in Japan’s case given in Section 3.3, this

deviation suggests that the growth rate distribution is subexponential for both countries.

Given the subexponentiality of the growth rate distribution, one can expect that the sample paths of

HGFs are characterized by a large jump. We consider the histogram of the ratio r1 and examine whether

a U-shaped curve appears when HGFs are considered. Figure 18 and Figure 19 provide the histograms

of r1 for France and Italy, respectively. In both cases, the histogram exhibits a mountain shape with peak

at 1/2; that is, the equal contribution to the overall (i.e., two-year) growth rate is the most likely to occur.

However, as the criteria u increases, the mountain shape collapses and the U-shaped curve with peaks at 0

and 1 emerges. Thus, consistent with Japan’s case, the U-shaped law of HGFs holds for these two countries,

leading to the universality of this law.
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(a) France (b) Italy

Figure 17: Density estimates of growth rates. The y-axis is in the log-scale.

Figure 18: A series of the histograms of r1 conditional on X17 +X18 > u for France. The value of u increases from
0.2 (top-left) to 2.4 (bottom-right) by 0.2.

Figure 19: A series of the histograms of r1 conditional on X17 +X18 > u for Italy. The value of u increases from
0.2 (top-left) to 2.4 (bottom-right) by 0.2.
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6 Online Appendix

Here, we provide additional figures that demonstrate how the histograms of r1 and r3 change as u in

X15 +X16 > u and
∑20

k=15Xk > u increases. We examine the following cases:

• firms with sales of larger than 300 million yen

• firms with sales of larger than 500 million yen

• firms in the manufacturing sector

• firms in the service sector

For the third and forth cases, we consider firms with sales of larger than 100 million yen. For each case, we

provide the histograms of r1 and r3 with different values of u. For r1 and r3, u increases from 0.2 (top-left

panel) to 2.4 (bottom-right) by 0.2.
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Figure 20: Histograms of r1 for firms with sales of larger than 300 million yen.

Figure 21: Histograms of r3 for firms with sales of larger than 300 million yen.

Figure 22: Histograms of r1 for firms with sales of larger than 500 million yen.

Figure 23: Histograms of r3 for firms with sales of larger than 500 million yen.
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Figure 24: Histograms of r1 for manufacturing sectors.

Figure 25: Histograms of r3 for manufacturing sectors.

Figure 26: Histograms of r1 for service sectors.

Figure 27: Histograms of r3 for service sectors.

31



References

Arata, Y. (2019). Firm growth and laplace distribution: The importance of large jumps. Journal of Economic Dynamics and

Control, 103:63–82.
Asmussen, S. (1982). Conditioned limit theorems relating a random walk to its associate, with applications to risk reserve processes

and the gi/g/1 queue. Advances in Applied Probability, 14(1):143–170.
Asmussen, S. and Albrecher, H. (2010). Ruin probabilities, volume 14. World scientific.
Asmussen, S. and Klüppelberg, C. (1996). Large deviations results for subexponential tails, with applications to insurance risk.

Stochastic processes and their applications, 64(1):103–125.
Bianchini, S., Bottazzi, G., and Tamagni, F. (2017). What does (not) characterize persistent corporate high-growth? Small Business

Economics, 48(3):633–656.
Bottazzi, G., Coad, A., Jacoby, N., and Secchi, A. (2011). Corporate growth and industrial dynamics: Evidence from french

manufacturing. Applied Economics, 43(1):103–116.
Bottazzi, G., Dosi, G., Lippi, M., Pammolli, F., and Riccaboni, M. (2001). Innovation and corporate growth in the evolution of the

drug industry. International journal of industrial organization, 19(7):1161–1187.
Bottazzi, G. and Secchi, A. (2006). Explaining the distribution of firm growth rates. The RAND Journal of Economics, 37(2):235–

256.
Boucheron, S., Lugosi, G., and Massart, P. (2012). Concentration inequalities A nonasymptotic theory of independence.
Buldyrev, S. V., Growiec, J., Pammolli, F., Riccaboni, M., and Stanley, H. E. (2007). The growth of business firms: Facts and

theory. Journal of the European Economic Association, 5(2-3):574–584.
Coad, A. (2007). A closer look at serial growth rate correlation. Review of Industrial Organization, 31(1):69–82.
Coad, A. (2009). The growth of firms: A survey of theories and empirical evidence. Edward Elgar Publishing.
Coad, A., Daunfeldt, S.-O., Hölzl, W., Johansson, D., and Nightingale, P. (2014). High-growth firms: introduction to the special

section. Industrial and Corporate Change, 23(1):91–112.
Coad, A. et al. (2022). Lumps, bumps and jumps in the firm growth process. Foundations and Trends® in Entrepreneurship,

18(4):212–267.
Coad, A., Frankish, J., Roberts, R. G., and Storey, D. J. (2013). Growth paths and survival chances: An application of gambler’s

ruin theory. Journal of business venturing, 28(5):615–632.
Coad, A. and Hölzl, W. (2009). On the autocorrelation of growth rates. Journal of Industry, Competition and Trade, 9(2):139–166.
Daunfeldt, S.-O. and Halvarsson, D. (2015). Are high-growth firms one-hit wonders? evidence from sweden. Small Business

Economics, 44(2):361–383.
Delmar, F., Davidsson, P., and Gartner, W. B. (2003). Arriving at the high-growth firm. Journal of business venturing, 18(2):189–216.
Dosi, G., Grazzi, M., Moschella, D., Pisano, G., and Tamagni, F. (2020). Long-term firm growth: an empirical analysis of us

manufacturers 1959–2015. Industrial and Corporate Change, 29(2):309–332.
Dosi, G., Pereira, M. C., and Virgillito, M. E. (2017). The footprint of evolutionary processes of learning and selection upon the

statistical properties of industrial dynamics. Industrial and Corporate Change, 26(2):187–210.
Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997). Modelling extremal events: for insurance and finance, volume 33. Springer

Science & Business Media.
Esteve-Pérez, S., Pieri, F., and Rodriguez, D. (2022). One swallow does not make a summer: episodes and persistence in high

growth. Small Business Economics, 58(3):1517–1544.
Foss, S., Korshunov, D., and Zachary, S. (2011). An Introduction to Heavy-Tailed and Subexponential Distributions.
Frankish, J. S., Roberts, R. G., Coad, A., Spears, T. C., and Storey, D. J. (2013). Do entrepreneurs really learn? or do they just tell

us that they do? Industrial and Corporate Change, 22(1):73–106.
Gardes, L., Girard, S., and Guillou, A. (2011). Weibull tail-distributions revisited: a new look at some tail estimators. Journal of

32



Statistical Planning and Inference, 141(1):429–444.
Geroski, P. A. (2000). Competence, Governance, and Entrepreneurship-Advances in Economic Strategy Research, chapter The

growth of firms in theory and in practice. Oxford University Press Oxford and New York.
Guarascio, D. and Tamagni, F. (2019). Persistence of innovation and patterns of firm growth. Research Policy, 48(6):1493–1512.
Joe, H. (2014). Dependence modeling with copulas. CRC press.
Lotti, F., Santarelli, E., and Vivarelli, M. (2009). Defending gibrat’s law as a long-run regularity. Small business economics,

32(1):31–44.
Moschella, D., Tamagni, F., and Yu, X. (2019). Persistent high-growth firms in china’s manufacturing. Small Business Economics,

52(3):573–594.
Sornette, D. (2006). Critical phenomena in natural sciences: chaos, fractals, selforganization and disorder: concepts and tools.

Springer Science & Business Media.
Stanley, M. H., Amaral, L. A., Buldyrev, S. V., Havlin, S., Leschhorn, H., Maass, P., Salinger, M. A., and Stanley, H. E. (1996).

Scaling behaviour in the growth of companies. Nature, 379(6568):804–806.

33


	1 Introduction
	2 Probabilistic Method
	2.1 Random walk
	2.2 Summation and maximum
	2.3 Sample path properties

	3 Empirical Results
	3.1 Data description
	3.2 Autocorrelation
	3.3 Growth rate distribution
	3.4 Sample path properties

	4 Conclusion
	5 Appendix
	5.1 Young firms
	5.2 Orbis data

	6 Online Appendix
	References



