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This paper analyzes one of the classic empirical regularities in the literature on firm growth: Zipf's 
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observed only among younger firms (e.g., firms under 50 years of age). This empirical finding 

contradicts previous research which assumes that Zipf's law is observed only when the size distribution 

of firms from each age cohort is aggregated. To address this empirical inconsistency, this paper 

provides another explanation for Zipf's law. Specifically, Zipf's law is explained by two assumptions: 

the random walk assumption (i.e., the log of a firm’s sales follows a random walk) and the heavy-

tailed assumption that the growth rate distribution has a heavier tail than an exponential. In my analysis, 

the stationarity assumption (i.e., the firm size distribution is at the stationary state) is not needed. This 
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1 Introduction

Zipf’s law is one of the most important stylized fact in economics. Interestingly, this statistical regularity

has bee found in different fields, such as the firm size distribution, income and wealth distributions, and the

distribution of city sizes. Many economists have examined the mechanism generating this regularity.

However, previous explanations proposed so far have several drawbacks which are inconsistent with

empirical data. First, while it is assumed that the observed Zipf’s law is the result of aggregation of different

age cohorts (i.e., a group of firms born at the same year), empirical data shows that even when focused on

firms with the same age, the tail of the firm size distribution exhibits Zipf’s law. Specifically, as shown later,

Zipf’s law is clearer when young firms (e.g., a firm’s age is smaller than 50). Since the previous models

predict that Zipf’s law emerges only when different age cohorts are aggregated, this empirical fact cannot be

accounted for. Second, it is known that in realistic time scale, the convergence of the firm size distribution

to the stationary distribution is very slow. Especially in the tail region, where Zipf’s law holds, the existing

models cannot explain changes in the distribution tail or its tail exponent over time. These inconsistencies

with empirical data suggest that we need another new explanation about Zipf’s law.

This paper aims to provide another new explanation about Zipf’s law, which resolve the inconsistencies

mentioned above. My explanation is based only on the following two assumptions: the random walk

assumption about the underlying growth process and the growth rate is heavy-tailed (or subexponential,

whose definition is given later). For the former, I assume that the logarithm of a firm’s sales follows a

random walk, where a growth rate is an independently and identically distributed (iid) random variable.

This assumption has been widely used in the literature and provides a good approximation for the empirical

process. For the latter, as confirmed by my empirical data, the growth rate distribution is assumed to be

heavy-tailed. More precisely, the tail of the growth rate distribution is not exponentially bounded; that is,

so-called Cramer’s condition is not met. With these two assumptions, I show that the firm size distribution

for each age cohort has a tail following Zipf’s law, and that the firm size distribution at the aggregate level

(i.e., the firm size distribution for all firms) also satisfies Zipf’s law.

A notable feature that differentiate my explanation from the existing models is that the stationarity

assumption is not required in my analysis. I show that Zipf’s law has nothing to do with the stationary

assumption, and that the tail of the firm size distribution, where Zipf’s law holds is directly related to the tail

of the growth rate distribution. As a result, when the underlying growth rate distribution changes and has a

heavier tail than before, it directly affects the tail of the firm size distribution. For this reason, the difficulty

about slow convergence in the existing models is fully resolved in my explanation.

My theoretical analysis focuses on the classification of zones where the sum of n iid random variables

(i.e., the growth rates) takes. Intuitively speaking, under the subexponential assumption, there are three

different zones, where the probability of the sum can be characterized by different mechanisms (see Figure 1).

The first one is so-called Cramer’s zone, which is a zone around the center. The probability of the sum
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Figure 1: Three different zones for the probability of the sum of n iid random variables.

taking a value in this zone can be characterized by the central limit theorem, i.e., the probability can be well

approximated by the Gaussian distribution. This zone expands as n increases at the rate of n1/2. The second

zone is an extreme zone, which the probability of the sum taking an extremely large value. One can show

that when the growth rate follows a subexponential distribution, the probability of the sum is asymptotically

equal to the probability of the maximum among n variables. This property is called the principle of a single

big jump; that is, the maximum dominates the sum.

The third one is a zone between the two zones above, which is the most relevant to our analysis. In this

zone, although neither the normal convergence nor the principle of a single big jump hold, the probability

of the sum is still determined by the tail probability of growth rates. I show that widely observed Zipf’s

law corresponds to the probability of the sum taking a value in this zone, and therefore, it reflects the

tail probability of growth rates. Since my explanation requires only the simple two assumptions, it also

demonstrates the universality of Zipf’s law.

I test whether the theoretical predictions are supported by empirical data, covering a large part of an

economy. I use data complied by Orbis for European countries and data complied by Tokyo Shoko Research

(TSR) for Japan. These datasets have more than millions firms in each country, and especially for larger

firms, the coverage is almost comprehensive. Since the interest of my analysis is in the tail of the firm size

distribution (i.e., larger firms), the shape of the tail of the firm size distribution can be properly estimated

using these data. Variables of interest are annual sales revenues (as a measure of firm size) and firms’ age,

which is calculated using the date of incorporation. These two variables are available in both datasets.

Using these data, I first check the two assumptions. For the random walk assumption, I examine the

autocorrelation of growth rates and find that the autocorrelation is quite weak. I also try the random walk

test. For the subexponentiality of the growth rate distribution, I employ the density estimation, the mean

excess function, and the estimation of the Weibull tail coefficient. All of them support that the the growth
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rate distribution has a heavier tail than an exponential, and therefore, that it is subexponential.

Empirical findings that strongly support my explanation about Zipf’s law and differentiate it from

existing models is (1) that the firm size distribution for each age group exhibits Zipf’s law especially for

young groups and (2) that the tail exponent of the firm size distribution is equal to that of the growth rate

distribution. When an age cohort is considered (i.e., n is fixed), we confirm that the firm size distribution

for this age group has three zones, and in particular, the distribution exhibits Zipf’s law outside Cramer’s

zone. This is what my theoretical analysis predicts. Especially for (2), I focus on the distribution of growth

rates in a longer term (e.g., ten-years growth rates). Note that the long-term growth rate distribution has two

aspects. On the one hand, the long-term growth rate is the sum of annual growth rates, and thus, it can be

seen as the sum of iid random variables. On the other hand, the firm size distribution is generated by the

long-term growth rates, and thus, the long-term growth rates comprise the sum (i.e., firm size). I show that

the long-term growth rate distribution has these two properties, which are consistent with my theoretical

predictions.

Because of the robustness and universality of Zipf’s law, many models and explanations have been

proposed in the existing literature. Compared to them, the novelty of my explanation is that it is parsimonious.

What is required is only two assumptions, both of which are testable by empirical data. Another feature worth

emphasizing is the absence of the stationarity assumption. To the best of my knowledge, the existing models

have assumed that Zipf’s law is the consequence of the stationary distribution, which is compatible to the

idea that an economy is in an equilibrium. As a result, the limiting situation (i.e., n → ∞) is the main interest

in such models, and they turn out to struggle with the slow convergence to the stationary distribution. In

contrast, my explanation reveals that first of all, Zipf’s law has nothing to do with the stationarity assumption,

and therefore, is free from the slow convergence issues.

1.1 Related literature

This paper is based on an empirical finding about the shape of the growth rate distribution (for a

survey, see Coad (2009) and Dosi et al. (2017)). Since Stanley et al. (1996), it has been widely recognized

that the growth rate distribution deviates from a Gaussian. Specifically, compared to a Gaussian, the

growth rate distribution has a high kurtosis and a heavier tail, which is well approximated by a Laplace

distribution. Furthermore, recent empirical papers have pointed out the possibility that the tail of the growth

rate distribution is strictly heavier than an exponential. Bottazzi et al. (2011) and Dosi et al. (2020) introduce

the Subbotin family of distributions, which includes Gaussian and Laplace distributions as special cases, and

rejects the null hypothesis that the growth rate distribution is exponential. In Arata et al. (2023), the authors

consider a distribution family called subexponential distributions, and provide an empirical evidence that the

tail of the growth rate distribution is heavier than an exponential. In the present paper, following the line of

these empirical papers, it is assumed that the growth rate distribution has a heavier tail than an exponential.

4



I show that this assumption is crucial to the shape of the firm size distribution, especially to the mechanism

of Zipf’s law.

This paper contributes to the firm growth literature especially regarding to Zipf’s law. The universality

of Zipf’s law of the firm size distribution has been widely mentioned in the literature; see, e.g., (Axtell (2001);

Gabaix (2009); Luttmer (2010)).1 Theoretical explanation about the mechanism behind Zipf’s law has also

been proposed. A series of papers by Luttmer (Luttmer (2007); Luttmer (2011)) consider "blueprints" as

a source of firm business and model firm growth as the accumulation of blueprints. In particular, Luttmer

(2011) emphasizes that it takes a unrealistically longer time to become a large firm, and to address this

issue, he introduces the type of blueprint, that is, high- and low-quality blueprints. More recently, Beare and

Toda (2022) propose an unified framework incorporating models in previous works and investigate how the

exponent of the Pareto tail is determined.

The points that differentiate this paper from the previous literature above are two-folds. First, because

of large jumps implied by the heaviness of the growth rate distribution, a small firm can be a giant by a few

jumps within a short period. Roughly speaking, in the previous models, a growth process is the accumulation

of small shocks (or successes), which explains why it takes long time until it becomes a large firm. In contrast,

with a heavier tail of the growth rate distribution, the firm growth process is characterized by a few large

jumps. For this reason, there is no need to introduce multiple types into a model. Second, in my analysis, the

stationarity assumption that the firm size distribution is the stationary distribution is not imposed. Almost

all of the models proposed so far has assumed that the distribution converges to a stationary distribution as

n → ∞, which exhibits the observed Zipf’s law. In my analysis, I find that Pareto tail is observed only for

young firms, suggesting that it is necessary to consider a finite value of n. I show that Zipf’s law has nothing

to do with the stationarity assumption, and therefore, the slow convergence problem mentioned above does

not occur here.

1.2 Outline

The remainder of this paper is organized as follows. Section 2 summarizes existing models for Zipf’s

law and explains why they are inconsistent with empirical data. Section 3 provides a new explanation about

Zipf’s law. Section 4 provides its empirical support. Section 5 concludes.

1Some recent papers have further analyzed Zipf’s law using comprehensive firm-level data. Kondo et al. (2023) use firm level data
in the U.S. and find that the firm size distribution is heavy-tailed but not follows a Pareto tail. They argue that the tail of the firm
size distribution is better approximated by a log-normal tail.
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2 Motivation and previous models

This section reviews previous models for Zipf’s law and provides motivating examples. In Section 2.1,

I review main mechanisms generating Zipf’s law using Beare and Toda (2022). In Section 2.2, I provides

empirical findings that are inconsistent with the main mechanism in the previous literature.

2.1 Review of previous models

A stylized empirical regularity regarding firms’ sizes is Zipf’s law, which suggests that the tail of the

firm size distribution follows a Pareto tail. Specifically, letting log(sales) be S, Zipf’s law can be represented

as a straight line with a slope of α in the tail of the distribution:

logP(S > x) = −αx+ const.

According to previous literature, it is known that α is close to 1.

As discussed in the Introduction, many theories have been proposed so far to explain Zipf’s law. Among

them, the most fundamental model assumes that the firm size distribution is a superimposition of the firm size

distributions produced by cohorts of firms born in different years. That is, letting S0 represent the logarithm

of a firm’s initial size (a random variable) and Xt represent the growth rate in period t, if we consider Si,t

as the logarithm of the sales in period t of a firm born in period i, then, by definition, it can be written as

follows:
Si=0,t=n = S0 +Xt=1+ Xt=2+ Xt=3 + ...+Xn

Si=1,t=n = S0+ Xt=2+ Xt=3 + ...+Xn

Si=2,t=n = S0+ Xt=3 + ...+Xn

...
Additionally, firms can exit the market stochastically, leading to a decline in the number of firms established

in period i as time goes by. In particular, when a firm’s exit follows a Poisson process, the distribution of the

number of firms would be described by an exponential distribution.

Letting P(Si,n > x) be the distribution of firm sizes at time n for firms born at period i, the firm size

distribution at the aggregate is given by:

P(Sn > x) =
n∑

i=0

ni,nP(Si,n > x)

Here, ni,n represents the proportion of firms born in period i at time n. In almost all of the previous models,

the limiting distribution of Sn as n → ∞ is considered, i.e., the steady-state distribution of P(Sn > x),

which is used to explain the Pareto tail of Zipf’s law. Note that in this model, the size distribution of firms

born in period i, represented by P(Si,n > x), does not necessarily follow Zipf’s law. For instance, if Xk

follows a Gaussian distribution, the distribution for each age cohort would be also Gaussian. Thus, Zipf’s

law is observed only at the aggregate level, and for this reason, the proportions of firms born in period i,
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denoted by ni,n, and its determinant, the "birth rate" of the firms, play a crucial role in explaining Zipf’s law

in previous literature (cf. Beare and Toda (2022)).

One of the important predictions of this model is that the tail part, which represents Zipf’s law, is

dominated by firms with a higher age. As mentioned above, when the birth rate of firms is constant, and

the exit rate does not depend on the firm’s size but exits at a constant rate over time, the number of firms

decreases geometrically as their age increases. On the other hand, if the distribution P(Si,n > x) is Gaussian,

its tail decreases rapidly compared to the geometric decrease, specifically at a rate of exp(−x2). Therefore,

firms that contribute to the tail part of the firm size distribution at the aggregate are those where the variance

of P(Si,n > x) becomes large; in other words, older firms constitute the tail. This characteristic can be seen

as a consequence of considering the stationary distribution for the explanation of Zipf’s law, and therefore,

it is a common feature in most theoretical models proposed in previous studies.

2.2 Firm size distribution

Here, we examine whether Zipf’s Law holds true using enterprise-level data.2 Specifically, we examine

whether Zipf’s Law holds true as a result of aggregating the samples as previous research has stated, or if it

holds true within each age cohort by dividing the samples according to firms’s ages.

Figure 2 illustrates the size distribution (density) of firms’ size on a logarithmic scale. In other words,

if Zipf’s law holds, it would be represented as a straight line. As shown in Figure 2, in the right region, the

distribution is well approximated by a straight line, and the slope is also found to be close to −1. Therefore,

consistent with the results of previous research, this suggests that Zipf’s law holds in my data.

Which age group’s sample is responsible for this Pareto tail? Here, to define a firm’s age, I utilize the

incorporation date of a firm as the firm’s birth year. That is, a firm’s age is defined as the corresponding

year (in this case, 2018) minus the year of incorporation. Figure 2 (b) compares samples divided into three

age groups: those with an age less than 50, those with an age between 50 and 70, and those with an age

older than 70. From this figure, it is evident that the distribution of firm sizes for younger-aged firms exhibits

a Pareto tail in its tail, whereas for the older-aged firms, it deviates from the Pareto tail and is closer to a

Bell-shaped curve. Essentially, the observed Pareto tail that could be observed across the entire sample is

actually brought about by samples of younger-aged firms. This result contradicts the theoretical prediction

of previous models, which posited that older-aged firms form the Pareto tail.

To further investigate the Pareto tail, the samples are divided based on 5-year intervals of a firm’s age,

and the distribution of firm sizes for each age group is compared. For instance, here "age 10" refers to firms

aged between 5 and 10 years old. Figure 3 (a) focuses on the age cohorts ranging from 5 to 50 years old,

while (b) targets the age cohorts of 50 years and older.

These figures illustrate how the firm size distribution changes as the age of the firms increases. When

2Details about the data used are provided in Section 4.1.
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(a) Aggregate (b) Three age groups

Figure 2: Firm size distribution

(a) Firms with ages below 50 (b) Firms with ages 50 and above

Figure 3: Firm size distribution by age cohort.

firms are young, they exhibit Pareto tail in a broad range, particularly in the region of firms’ sales exceeding

100 million yen. Moreover, the Pareto tails of the firm size distributions in each sample share a common

slope. As the age of firms further increases, the firm size distribution deviates from the straight line of the

Pareto tail and shows a curved shape. This difference of the distribution shape according to firms’ ages

reveals the mechanism behind Zipf’s law. In order to comprehend Zipf’s law, an explanation consistent with

the nature of these age-specific firm size distributions is necessary.

3 New explanation

This section provides a new explanation of Zipf’s law without the stationarity assumption. In Section

3.1, I introduce a general setting for a random walk and consider normal convergence. In Section 3.2, I

explain three zones of the value of the sum of independent random variables and show that the Pareto tail

corresponds to the distribution in intermediate and extreme zones. In Section 3.3, I consider the effect of a

firm’s initial size on the firm size distribution.
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3.1 Setup

As in previous section, let us start with the random walk assumption: Letting Xk be the log growth rate

at period k, the log of a firm’s sales (denoted by Sn) is given by

Sn := S0 +X1 + ...+Xn

We assume that Sn follows a random walk.

Assumption 3.1. Sn follows a random walk with an initial condition S0.

In other words, we assume that the growth rates X1, ..., Xn are iid random variables. For a moment,

ignore the contribution of the initial state S0 to the sum (i.e., assume that S0 = 0). In that case, Sn can be

viewed as the sum of n iid random variables. Our main question to be addressed here is as follows: what is

the distribution of Sn?

The fundamental theorem of probability theory (i.e., the central limit theorem) tells us that the sum of n

iid random variables, when properly normalized, converges to the standard Gaussian distribution as n goes

to infinity (see, e.g., Petrov (1995)). More formally, letting

Zn = σ−1n−1/2Sn, Fn(x) = P(Zn < x)

where σ is the standard deviation of Xk, the normal convergence means that for an arbitrary (fixed) x,
1− Fn(x)

1− Φ(x)
→ 1,

Fn(−x)

Φ(−x)
→ 1 (1)

Here, Φ is the standard Gaussian distribution. From this theorem, given that n is sufficiently large, one might

think that the distribution of Sn can be well approximated by a Gaussian, including a tail zone. However,

this idea turns out to be wrong in general, and this point becomes crucial to the analysis of Zipf’s law, as we

discuss later.

Before discussing general settings, we consider the case where Xk follows a Laplace distribution. In

this case, we can obtain the analytical expression of the probability distribution of the sum and shows how

the distribution changes as n increases.

Suppose that the probability density of Xk is given as follows:

P(dx) =
1

2
exp(−|x|)dx

Then, consider the distribution of the sum
∑n

k=1Xk. The densities for n = 2, 3 and 4 are given as follows

(see Kotz et al. (2001)):

P∑2
k=1 Xk

(dx) =
1

2
· 1
2
(1 + |x|) exp(−|x|),

P∑3
k=1 Xk

(dx) =
1

3
· 9

16

(
1 + |x|+ 1

3
|x|2

)
exp(−|x|),

P∑4
k=1 Xk

(dx) =
1

4
· 1

24

(
15 + 15|x|+ 8|x|2 + |x|3

)
exp(−|x|)

Figure 4 presents these densities in the log-scale. When x is small (i.e., x is in the central zone), the densities

looks like a bell shape (normal convergence), which expands as n increases. In contrast, when x is large,
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(a) Laplace (b) Weibull

Figure 4: Density of the sum
∑n

k=1 Xk for different n.

the density is determined by the term exp(−|x|), i.e., the same exponential decay as the component Xk.

Especially when the log scale is considered (i.e., logP∑n
k=1 Xk

(dx)), its density is close to a straight line in

the tail.

We can see a similar behavior when a distribution with a Weibull tail is considered, though an exact

formula for the density of the sum is not available. We generate pseudo-samples using the following

distribution:

P(X > x) =
1

2
exp(−|x|α)

where α < 1.0 (in the figure, α is set to 0.7). Figure 4 (b) describes the evolution of the densities of the

sum
∑n

k=1Xk as n increases from n = 1 to 20. As in the Laplace case, the peak of the density diminishes

and gets closer to the Gaussian shape around the center zone as n increases. In contrast, in the tail zone, the

densities deviate from a Gaussian and exhibit approximately straight lines, which are parallel.

3.2 Three zone

Let us return to our general settings, i.e., the random walk assumption. I consider the two distribution

classes for the growth rate distribution F . We say that the distribution of Xk is light-tailed if it satisfies

Cramer’s condition: for some λ > 0,

EeλXk < ∞

Roughly speaking, the distribution is light-tailed if its tail is exponentially bounded. Gaussian and exponential

distributions are examples of light-tailed distributions. We say that the distribution is heavy-tailed if the

distribution is not light-tailed.

Requiring slight regularity conditions on the distribution tails, we can consider a subclass of the heavy-

tailed distributions called subexponential distributions. We say that a distribution on the positive real half-line
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R+ is subexponential if it satisfies the following condition:

lim
x→∞

F ∗ F (x)

F (x)
(2)

exists, where F (x) := F [x,∞) and F ∗ F (x) is the convolution of F with itself. We say that a distribution

on the whole real line R is subexponential if the distribution of X+
k := max{0, Xk} is subexponential.

It should be noted that the subexponential distributions is a broad subclass of heavy-tailed distribu-

tions, and indeed, distributions widely used in empirical applications (e.g, Weibull and Pareto distribu-

tions) are subexponential. In particular, when F is a heavy-tailed distribution on R+, one can show that

lim infx→∞
F∗F (x)

F (x)
= 2. That is, the regularity condition only requires the existence of the limit and, if

it exists, it is equal to 2. Recall that the probability that the maximum of the elements is larger than x is

given by nF (x). Thus, the property limx→∞
F∗F (x)

F (x)
= 2 (or limx→∞

F ∗n(x)

F (x)
= n in general), means that

the probability of the sum is asymptotically equivalent to the probability of the maximum of the elements as

x → ∞. In other words, a large deviation of the sum is generated by a large deviation of a single element.

For this reason, this property is called the principle of a single big jump and will be discussed below.

In my analysis, I assume that growth rates X1, X2, ..., Xn are iid random variables with a common

subexponential distribution F . Specially, I consider as F a distribution with a finite variance and a Weibull

tail. Its empirical validity is checked in Section 4.3.

Assumption 3.2. The distribution F is subexponential.

Given the two assumptions, what is the distribution of the sum Sn? The discussion and examples in

Section 3.1 suggest that the distribution of Sn can be approximated by a Gaussian distribution in the central

zone (i.e., for the small deviation zone) due to the central limit theorem. On the other hand, as suggested by

the principle of a single big jump, the tail of the distribution of Sn can be approximated by the tail of the

distribution of Xk multiplied by a factor n. Thus, the distribution of Sn has three zones of x:

• Cramer’s deviation zone: the normal convergence holds.

• Extreme deviation zone: the principle of a single big jump holds.

• Intermediate deviation zone: a zone between the two zones above.

This statement can be made rigorous as follows:

Theorem 3.1 (See Chapter 5 in Borovkov and Borovkov (2008)). For x ≤ σ1(n)

P (Sn ⩾ x) =

[
1− Φ

(
x√
n

)]
e−nΛ

0
κ(x/n)(1 + o(1))

For x ≫ σ1(n)

P (Sn ⩾ x) = ne−M (1 + ε(x, n))

In particular, for x ≫ σ2(n)

P(Sn ≥ x) = nV (x)(1 + o(1))

First, the approximation in the case of x ≤ σ1(n) corresponds to the so-called Cramer’s approximation,
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and the factor e−nΛ0
κ(x/n) is called Cramer’s correction. Especially when x ≪ n1/6, this correction term

converges to 1, and therefore, P(Sn ≥ x) is approximated by a Gaussian distribution. Outside of the zone

x ≤ σ1(n), the distribution of Sn is controlled mainly by the term M and the tail of the distribution of the

element has a more impact. Especially in the log-scale (i.e., when logP(Sn ≥ x) is considered), M can be

simplified: for x ≫ σ1(x), we have

logP(Sn ≥ x) = (1 + o(1)) log nV (x)

Obviously, this approximation holds also for x ≫ σ2(n).

For later purpose, let us obtain the concrete expression ofσ1(n), σ2(n)whenF has a Weibull distribution

with exponent α < 1.

Suppose that the firm size distribution at the aggregate is the superposition of P(Sn > x) with different

n and that each P(Sn > x) is described by the theorem above. Furthermore, the tail of the distribution

V (x) is close to an exponential (i.e., a Weibull tail with α close to 1). Then, in the zone x ≫ σ1(n), the

distributions logP(Sn > x) with different n has a common slope with different intercept. Therefore, when

aggregated, the firm size distribution in the log scale has the same slope as that of logP(Sn > x). Indeed,

suppose

logP(Sn > x) = bn − ax,

i.e., a straight line with slope a and intercept bn. If nn is the fraction of firms with index n, the distribution

at the aggregate in the log-scale becomes

log
(∑

n

nnP(Sn > x)
)
= log

((∑
n

nnBn

)
exp(−ax)

)
= b− ax

where Bn := ebn and b := log(
∑

n cnBn). This is our main mechanism generating Zipf’s law at the

aggregate.

3.3 Initial growth

So far, the contribution of the initial state S0 to Sn has been ignored in the analysis. Here, I consider

how the distribution of Sn is affected by the distribution of S0.

Let us consider the random walk with an initial size S0, whose distribution is denoted by F0. Thus, Sn

is the combination of two random variables: one is S0 and the other is the sum of X1, ..., Xn, each of which

is drawn from a common distribution F . I assume that F0 is also subexponential distribution and belong to

semi-exponential distributions.

Assumption 3.3. The distribution F0 is subexponential (and belongs to semi-exponential distributions).

This assumption will be empirically checked later. Then, one can get the extension of Theorem 3.1 as

follows:

Theorem 3.2 (Theorem 11.3.1 in Borovkov and Borovkov (2008)). Suppose that the conditions [·,=]τ , [·,=]ξ
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are met and that functions lτ , lξ satisfy condition [D]. Then, if s(τ)1 → ∞, s
(ξ)
1 → ∞,

P(Sn ≥ x) ∼ e−M
(τ,ξ)(x,n) + ne−M

(ξ,ξ)(x,n)

In particular, if s(τ)2 → ∞, s
(ξ)
2 → ∞,

P(Sn ≥ x) ∼ Vτ (x) + nVξ(x)

First, consider the extreme deviation zone, where s
(τ)
2 → ∞, s

(ξ)
2 → ∞. This theorem says that as

n increases, the second term dominates the distribution of Sn. This is obvious because as a firm’s age

increases, the contribution of a firm’s growth rates X1, ..., Xn dominates the firm size, and the effect of the

initial size becomes less important. Furthermore, this theorem shows that the tail of distribution of Sn is

determined by the tails of F0 and F . In particular, when lτ and lξ have a common slope (but with different

intercept), the tail of the distribution of S0 becomes

P(Sn ≥ x) ∼ (cτ + cξn)e
−ax

Thus, when logP(Sn ≥ x) is considered, we would observe the same slope at the aggregate. Suppose that

lτ and lξ have different slopes. When the log scale is considered, by taking the derivative of the right-hand

side, we have
d

dx
logP(Sn ≥ x) =

−l′τ (x)Vτ − nl′ξ(x)Vξ

Vτ + nVξ

That is, the slope of logP(Sn ≥ x) is given by the weighted average of the slopes of F0 and F .

For the intermediate deviation zone, we can obtain a similar implication about the tail of the distribution

ofSn, though the expression is more complicated. As in Section 3.2, the functionM (τ,ξ) can be approximated

by M (τ,ξ) = lτ (x)(1 + o(1)). Thus, the slope of logP(Sn ≥ x) is given by
d

dx
logP(Sn ≥ x) =

−(1 + o(1))l′τ (x)Vτ − n(1 + o(1))l′ξ(x)Vξ

Vτ + nVξ

As in the case of the extreme deviation zone, the slope is determined by the weighted average of the slopes

of F0 and F .

4 Empirical results

This section provides empirical evidences for my new explanation of Zipf’s law. Section 4.1 provides

the summary statistics of firms’ sizes and growth rates in my samples. Section 4.2 shows that the random

walk assumption provides good approximation for the empirical growth process. Section 4.3 shows that the

growth rate distribution is subexponential. Finally, Section 4.5 provides additional empirical support for the

idea that the firm growth process is determined by a few large jumps.3

3Using firm-level data from the Orbis, I have conducted a similar analysis for other countries. I have obtained results similar to those
found in this section. These results are available upon request from the author.
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Table 1: Summary statistics of firms’ sizes. The period is from 2009 to 2019. The summary statistics are calculated
using the log of annual sales (i.e., log(sale)).

4.1 Summary statistics

The data used in the following is firm-level data complied by Tokyo Shoko Research. It includes both

listed and non-listed firms, covering more than one million firms for each year. This data is based on a survey

conducted by TSR. Since TSR is a rating agency, the firms surveyed by TSR are determined by requests

from TSR’s clients. Therefore, almost all large firms are expected to be included in this survey, and their

information is anticipated to be updated frequently. Consequently, for the tail part of the distribution of firm

sizes, which is of interest in this analysis, it is considered that nearly all firms are thoroughly covered.

In the following analysis, several conditions are imposed on my main sample. First, I use the sales

revenue of non-consolidated firms as the definition of firm size. Firms for which sales revenue is not available

are excluded from the sample. Within the TSR data, there are firms that report earnings multiple times within

a year (i.e., the duration of its accounting period is less than 12 months). In this analysis, only firms with an

accounting period of 12 months are considered. In addition, we analyze data from 2009 to 2019 (11 years) as

my sample period. This period is chosen to avoid the effects of the global financial crisis and the COVID-19

pandemic. As a result of this procedure, for example, the sample size for the 2018 data is 1,305,878. The

summary statistics on firm sizes, including other years, are provided in Table 1.

Another important variable in my analysis is the firm’s growth rate. For analyzing firm growth rates, I

use samples derived from the samples for firm size mentioned above, with two additional conditions imposed.

The first condition is that the firm’s initial size (sales revenue in 2009) exceeds 100 million yen. The reason

for this consideration is that if a firm’s sales are too small, the fluctuations in the firm’s growth rate become too
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large, which deviates significantly from the assumption of Gibrat’s Law in theoretical analysis. Additionally,

this condition also implies that only firms already in existence in 2009 are included in the analysis, and firms

established after 2009 are not considered in the analysis of growth rates. The second condition is about the

firm’s age. When a firm is young, its growth rate tends to fluctuate more than others, which again deviates

from the assumptions of Gibrat’s Law. Here, I am analyzing firms that were established before 2005 (i.e.,

firms that are at least 5 years old as of 2009). The firm’s size at its inception and its growth rate immediately

after being established are considered separately as the initial growth rate (i.e., S0). This point will be

discussed in more detail in Section 4.5.

The summary statistics for the firm growth rates of these samples are provided in Table 2. This table

shows the summary statistics of one-year growth rates for different years, as well as the growth rate statistics

for longer periods with 2009 as the base year. As is evident from these tables, the fluctuations in one-year

firm growth rates are very stable from 2009 to 2019. Another point is that as we consider growth rates over

longer periods, the range of growth rate fluctuations increases. While this latter point is obvious, it will be

analyzed in more detail in the following sections.

4.2 Random walk assumption

Here, I empirical check whether the random walk assumption actually holds. Specifically, I consider

whether the growth rates in each year are independent random variables.
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Table 2: Summary statistics of firm growth rates. Here, I present the summary statistics for the one-year firm growth
rates for different years, as well as the growth rate statistics for longer periods with 2009 as the base year. For example,
g_19_09 represents the summary statistics for the growth rate from 2009 to 2019.
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In this analysis, we use two rank correlation coefficients: Spearman’s ρ and Kendall’s τ .4 These are

defined as follows:
ρ := Cor [F1 (X1) , F2 (X2)] ,

τ := P
[(
X1 −X ′1

) (
X2 −X ′2

)
> 0

]
− P

[(
X1 −X ′1

) (
X2 −X ′2

)
< 0

]
Here, F1, F2 are the marginal distributions of X1, X2 respectively, and X ′ := (X ′1, X

′
2) is an independent

copy of X := (X1, X2). As is clear from the definition, Spearman’s ρ is the correlation coefficient of the

ranks F1(X1), F2(X2), rather than the random variables themselves. Kendall’s τ measures the degree of

concordance. Both coefficients take values from -1 to 1, and in the case of independent random variables,

they become 0.

The matrices of correlation coefficients for different years are given in Table 3 and Table 4. As the

duration between the two growth rate periods increases, the correlation coefficients become closer to 0. In

other words, it is unlikely that shocks pushing up the growth rate over the long term are at work, and shocks

from the distant past have little impact on the current growth rate. Also, as shown in these tables, the absolute

values of the coefficients of growth rates over two consecutive periods are less than 0.1. This suggests that

growth rates for different years can be considered as independent random variables, meaning that the random

walk assumption provides a good approximation.

4The most widely used coefficient for quantifying the dependence between two variables is probably Pearson’s correlation coefficient,
which is defined as follows:

ρX1,X2 =
E [(X1 − µX1) (X2 − µX2)]

σX1σX2

Here, µX and σX are the expectation and the standard deviation of X , respectively.
However, there are several statistical issues with using Pearson’s correlation coefficient, especially in our analysis. First, Pearson’s

correlation coefficient is an appropriate measure of dependence if the distribution of random variables under consideration are
multivariate Gaussian distributions because, in that case, the dependence between the random variables is fully captured by the
Pearson’s correlation coefficient alone. But, as in our case, when the marginal distributions significantly deviate from a Gaussian
distribution, we cannot use this interpretation. This is because Pearson’s correlation coefficient captures not only correlation
relationships but also has properties dependent on marginal probabilities. To put it more precisely, consider a bivariate distribution,
which can be decomposed as follows:

F (x1, x2) = C(F1(x1), F2(x2))

Here,F1, F2 are the marginal distributions of each variable, and the functionC (called copula function) determines all the dependence
between variables. Pearson’s correlation coefficient depends on not only the copulaC but also the marginal distributions as well. For
example, even if C remains unchanged, Pearson’s correlation coefficient can change simply by changing the marginal distributions,
making it unsuitable for comparison based on the value of Pearson’s correlation coefficient (for copula theory, see Joe (2014)).

Another more practical problem with Pearson’s correlation coefficient is its vulnerability to extremely large values. By its
definition, Pearson’s correlation coefficient captures the linear relationship between random variables, and therefore, in cases like
ours where extremely large values occur, the coefficient is heavily dependent on those samples. In particular, since these extremely
large values (i.e., high growth) are of our main interest, it is not appropriate to exclude them as outliers from the analysis. When the
tails of the marginal distributions are thick, a more robust dependence measure against extreme values is needed.
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Table 3: Matrix of Spearman’s ρ. Samples are the same as in Table 2.

Table 4: Matrix of Kendall’s τ . Samples are the same as in Table 2.
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(a) p = 0.75 (b) p = 0.80

Figure 5: Histogram of the occurrence frequency of growth rates greater than F−1(p) and the binomial distribution.

The rank correlation coefficients mentioned above are measures that quantify the dependence across

the entire domain of the variables. On the other hand, our primary concern is not the entire domain but the

tail region, e.g., whether extreme values are more likely to occur consecutively once it has occurred. To

consider this, let us consider the number of occurrences of high growth within the 11-year sample period

(i.e., among 10 growth rates, X1, X2, ..., X10) for each firm. For example, in the most extreme case, if my

sample consists of two groups, high-growth firms and non-high-growth firm (due to some determinants),

high growth occurs multiple times in the group of high-growth firms, while it does not occur at all in the

other group within the sample period. Another extreme case is the one where the random walk assumption

holds; in that case, the occurrence frequency follows a binomial distribution. More precisely, if we consider

the p-th quantile as an extreme value, it would have the following distribution:

F (X = x) =
( n

x

)
px(1− p)n−x

In the remainder of this subsection, I compare the number of occurrence of high growth and the binomial

distribution with different values of p.

The results are given in Figure 5 and Figure 6. Firstly, for Figure 5, we consider the number of

moderately positive growth during the sample period with p = 0.75 and 0.80. In this case, the histogram

deviates both qualitatively and quantitatively from the theoretical values given by the binomial distribution

with the same values of p. This suggests that the random walk assumption does not strictly hold for this

region, and there exists some dependence between growth rates for different years. On the other hand, as

seen in Figure 6, when considering high growth for p = 0.97, 0.99, the histogram of the number of high

growth rates is very close to the theoretical values of the binomial distribution. Since our main interest is

in this tail region, as far as considering the dependence of extreme values is concerned, the random walk

assumption can be considered a good approximation for the underlying growth process.
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(a) p = 0.97 (b) p = 0.99

Figure 6: Histogram of the occurrence frequency of growth rates greater than F−1(p) and the binomial distribution.

(a) For 2019-2018
(b) For different years

Figure 7: Growth rate distributions.

4.3 Growth rate distribution

In this subsection, I examine the second assumption in my analysis, i.e., whether the distribution of

firm growth rates follows a subexponential distribution, specifically a distribution with a Weibull tail. First,

I provide the density estimates for one-year growth rates. The results are shown in Figure 7. As can be seen

in Figure 7 (a), consistent with previous studies, the distribution deviates from the Gaussian distribution

and has a peak at the center and heavy tails. Although previous studies often used the Laplace distribution

for the approximation of the growth rate distribution, this figure shows that the tails curve rather than being

straight lines, indicating that the tails are heavier than an exponential. This suggests that the distribution is

subexponential. Furthermore, Figure 7 (b) compare the density estimates for different years. As seen in this

figure, the shape of the distribution is stable across years.

What is more relevant to my analysis is the distribution of long-term growth rates. I investigate how the
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(a) Normal scale (b) Log scale

Figure 8: Growth rate distributions.

growth rate distribution changes as longer periods are considered. Figure 8 shows the density estimates of

the growth rate distributions over k periods (k = 1, 2, ..., 10). Both graphs shows the same density estimates,

but it has a log-scaled y-axis in the right panel (b). As can be clearly seen from Figure 8 (a), as k increases,

the density around 0 approaches a bell-shaped curve. This is expected by the central limit theorem, and

it indicates that the density converges to a Gaussian as k → ∞. However, this bell-shaped curve occurs

only around the central region, and outside this region, a different shape emerges. In particular, Figure 8(b)

shows that in the log scale, the density in the right tail zone has a shape close to a straight line. Additionally,

as k increases, the straight line appears to shift upward in parallel.

This feature is consistent with the shape described in Section 3.2: that is, as k increases, the Cramer

approximation holds in the central part. Moving further outward from that region, the slope of the density

function (in the log scale) is determined by the tail probability of one-year growth rate (i.e., P(X1 > u) for

a large u), and an increase in k only shifts the intercept in parallel, while keeping the slope unchanged.

The remainder of this subsection uses statistical methods to verify that the growth rate distribution is

subexponential, particularly that it has a tail close to a Weibull tail. First, I use the mean excess function over

threshold u (denoted as e(u)), which is defined as follows (for details, see Embrechts et al. (1997)):

e(u) := E[Xk − u | Xk > u] for u > 0.

That is, e(u) represents the conditional expectation of overshoot Xk − u given that Xk exceeds u.

The reason for using the mean excess function e(u) is that it can reveal the tail-heaviness of the

distribution of Xk based on whether e(u) is an increasing or decreasing function of u. In particular, if the

distribution of Xk is an exponential distribution with parameter λ, then e(u) = λ−1, i.e., e(u) is constant.

Therefore, if e(u) is an increasing function of u, it indicates that the distribution of Xk has a heavier

tail than an exponential distribution, which can be used as an evidence that the growth rate distribution is

subexponential.

There are two examples for the functional form of the mean excess function relevant to our analysis.
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(a) One-year growth rates (b) k-year growth rates

Figure 9: Mean excess function over threshold u.

The first example is the case where the tail of the growth rate distribution follows a Pareto tail, and in this

case, this mean excess function becomes a linear function of u. The second example is when the firm growth

rate distribution has a Weibull tail. As u becomes larger, the mean excess function is known to take the

following functional form:

e(u) =
u1−α

cα
(1 + o(1))

as u → ∞ (cf. Table 3.4.7 in Embrechts et al. (1997)). Depending on which functional form it is closer

to, we can identify which class of distributions among subexponential distributions is more appropriate to

approximate the tail of the growth rate distribution.

The results of the empirical mean excess function are given in Figure 9. In Figure 9 (a), the mean

excess function is calculated using the one-year firm growth rates for each year. As is evident from this figure,

the mean excess function is an increasing function of u for each year. Moreover, while the mean excess

function is an increasing function of u, its slope is decreasing as the value of u increases. This indicates that

the growth rate distribution has a heavier tail than an exponential distribution, and is closer to a Weibull tail

rather than a Pareto tail.

In Figure 9 (b), the mean excess function for growth rates over k(k = 1, 2, ..., 10) years is calculated,

using 2009 as the base year. For every k, the mean excess function is an increasing function of u (especially

in the tail part), and roughly speaking, these mean excess functions are close to each other (i.e., they do not

depend on the value of k). This is because, as a property of subexponential distributions, the tail part of the

distribution for k periods is determined by the tail probability of the one-year growth rate.

The second statistical method for analyzing the tail of the growth rate distributions is the one proposed

by Gardes et al. (2011); El Methni et al. (2012). As discussed above, within the family of subexponential

distributions, there exist two groups: distributions with a Pareto tail and ones with a Weibull tail. Our

particular interest is to examine which of these two tails better approximate the tail of the growth rate

distribution. Their method allows us to statistically verify which of the two is better approximation.
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More precisely, letting Kx(y) =
∫ y
1 ux−1du for x ∈ R, consider a family of survival distributions with

two parameters τ ∈ [0, 1] and θ > 0 defined by

F (x) = exp(−K←τ (logH(x))) for x ≥ x∗ > 0, with τ ∈ [0, 1]

where H is an increasing function such that H← ∈ Rθ and θ > 0. Here, Rθ stands for the regularly varying

functions with parameter θ. Parameter τ represents the distribution classes ranging from Weibull-type tail

(τ = 0) to Pareto tail (τ = 1). Intuitively, a larger value of τ means a heavier tail of the distribution.

Parameter θ is the shape parameter for each distribution tail corresponding to τ ; for example, when τ = 0, θ

coincides with Weibull-tail coefficient β.

This estimation method consists of two parts. First, I estimate the parameter τ , and based on this

estimated value, then I estimate the shape parameter θ of the tail part. Using this method, I can check

whether the tail of the growth rate distribution follows a Weibull tail or a Pareto tail, i.e., the two important

groups of subexponential distributions. Furthermore, if it belongs to a Weibull tail, I examine whether the

shape parameter θ is less than 1 (i.e., the case of the exponential case) to confirm the assumption made in

my theoretical analysis.

The results of the estimation for τ are presented in Figure 10. As shown in the figure, most of the

estimated values are close to 0, suggesting that the Weibull tail provides a good approximation. These results

are consistent with the shape of the empirical mean excess function discussed above.

Additionally, in the case of τ = 0, which corresponds to a Weibull tail, one should expect to see the

following linear relationship:

log xu − log xv ≃ θ (Kτ (− log u)−Kτ (− log v))

= θ (log(− log u)− log(− log v))

Here, xu and xv are the u and v-quantile values of growth rates, respectively. The empirical verification

of this relationship can be seen in Figure 10(b). As evident from the figure, the relationship aligns with a

straight line, supporting the assumption that the tail is approximated by a Weibull tail.

Finally, under the assumption that the tail part follows a Weibull tail (i.e. τ = 0), I estimate the shape

parameter θ and calculate the tail probability from it. Then, I compare the tail probability of the actual growth

rates to see how well the Weibull tail assumption approximates it. The results are presented in Figure 11. It

can be said that the estimated tail probability reasonably well approximates the tail probability of the firm

growth rates. Therefore, these results support the assumption in my analysis that the growth rate distribution

follows a Weibull tail.

4.4 Initial size

Up to this point, I have considered only the growth rates X1, X2, ..., Xn, assuming the initial size S0

to be S0 = 0. Also in previous studies, the initial size S0 is often assumed to be constant and small, and

it is often assumed that the initial size does not affect the shape of the limiting distribution of firm sizes as
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(a) Estimate of τ (b) Linear relationship

Figure 10: Estimate of τ

Figure 11: Estimate of the tail probability of firm growth rates. It compares the estimated tail probability based on
Gardes et al. (2011) with counter cumulative distribution functions of growth rates.
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n → ∞. However, as shown in this subsection, there are firms that are positioned in the tail region of the

firm size distribution even immediately after their establishment. Since younger firms generate Zipf’s law,

the effect of the distribution of S0 on the overall firm size distribution cannot be ignored.

As a premise for the discussion, I explain what "initial size" (i.e., S0) means in my analysis. By

definition, the "initial size" is thought of as the scale (sales) of a firm when it was established. However,

since the TSR data used in this analysis is based on surveys, there is a possibility that firms newly established

might not be included in the database. In my analysis, to increase its coverage, instead of considering the

size of a firm immediately after its establishment, I decided to include the firm’s growth over the first five

years as part of the initial size, denoted as S0. For instance, if a firm is established in 2005, the size of the

firm in the nth period, Sn, would be as follows.

Sn = log(sales revenue in 2005) + g06 + g07 + g08 + g09︸ ︷︷ ︸
S0

+ g10︸︷︷︸
X1

+...+ g19︸︷︷︸
X10

Here, gt represents the growth rate in the tth period, and both log(sales revenue in 2005) and g06 + g07 +

g08 + g09 are included in S0. The distribution of S0 will be analyzed below.5

The density estimate for the initial size S0 is provided in Figure 12. As can be seen from this figure,

the heterogeneity of the initial size S0 is substantial. Despite being less than five years old, some firms

are situated in the tail region of the overall firm size distribution, comprising the Zipf’s law. Such high

heterogeneity indicates that when analyzing the firm size distribution, one cannot assume the initial size

S0 to be constant. In addition, the tail part of the distribution of S0 is close to a straight line, confirming

that it follows a Pareto tail. When calculated using Hill’s method for its slope, the slope is found to be

0.872, indicating that it has a thicker tail than the overall firm size distribution. This also suggests that the

distribution (or heterogeneity) of S0 is an element that cannot be ignored when analyzing the distribution of

firm sizes.

4.5 Further empirics

Building on the analysis from Section 4.2 to Section 4.4, we can analyze how the shape of the firm size

distribution changes with firm age. Indeed, as explained below, this matches the change in the shape of the

distribution observed in Figure 3. When n is small, as discussed in Section 3.3, the tail of the firm size

distribution is determined by the tail of the distribution of the initial size S0 and the distribution of growth

rates in the intermediate zone and the extreme deviation zone. In particular, when viewed on a log-scale,

the slope of the firm size distribution is determined by the weighted average of these two slopes. As n

5Another issue to consider when thinking about firms initial sizes is the case where a firm’s establishment results from a reorganization
of a corporate group. For instance, there might be situations where a new firm is established by transferring the businesses of
multiple firms belonging to a certain corporate group, and this transfer of business operations could span several years. Treating the
apparent growth of a firm due to such business transfers the same way as the growth of a firm at other times is not appropriate for
the analysis here. To mitigate the impact of these data issues, a firm’s growth from the first five years has been included in S0.
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(a) For 2009 (b) From 2009 to 2019

Figure 12: In Panel (b), the density estimates of S0 for different years are given.

increases, the firm size distribution in the log-scale changes in such a way that its slope remains unchanged,

but its intercept rises, i.e., essentially a parallel upward shift. Furthermore, as n becomes larger, the domain

of the Cramer approximation expands, and the impact of the initial size diminishes, causing the firm size

distribution closer to a Gaussian distribution.

This is the underlying mechanism of forming the firm size distribution and explains how the shape of

the firm size distribution, as observed in Figure 3, depends on firm age. Notably, this demonstrates that

the Pareto tail of the firm size distribution, known as Zipf’s law, is explained by groups of younger firms.

In the remainder of this section, I will provide further empirical evidence to show that the aforementioned

explanation is consistent with the data.

According to the explanation above, the slope of the distribution of firm sizes by age, especially in the

range where the influence of the distribution of S0 is weak, is determined by the tail probabilities of the

growth rate distribution. Specifically, since the differences in the distribution by firm age, when measured in

log-scale, involve only a vertical shift upwards in the y-intercept, the proportion in the tail zone explained by

an age cohort should not depend on the firm size (see Section 2.1). This property is verified in Figure 13. As

is clear from this figure, the age composition of firms in the tail zone is independent of firm size, and the ratio

remains stable. This result is consistent with my explanation, contrasting with the traditional explanation

which suggests that older firms dominate more as we consider the tail part.

Specifically, Figure 13 (b) takes into account even younger age groups of firms. As can be seen from

this figure, when considering larger sizes in the tail zone, the proportion of younger firms increases. This is

because, as observed in Section 4.4, the slope of the tail of the distribution of S0 is steeper than the slope of

the growth rate distribution, implying that when considering a larger size range, their proportion rises. This

result also serves as evidence that the younger age cohort of firms plays a crucial role in explaining Zipf’s

law.

Lastly, to verify that a few large jumps determine the tail of the growth rate distribution, we compare the

growth rate caused by these rare jumps with the actual growth rate distribution. That is, as seen in Figure 6,
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(a) Age cohort from 25 to 50 (b) Age cohort from 10 to 50

Figure 13: Composition of age cohorts in the tail zone.

Figure 14: Approximation by a few large jumps. Growth rates from 2009 to 2019 are considered.

we consider only growth rates above the 0.97-quantile value (setting all others to 0) and compare whether

this growth rate approximates the tail of the actual growth rate well. In other words, we verify whether the

growth rate due to jumps, represented by

1{X1>F−1
1 (0.97)}X1 + 1{X2>F−1

2 (0.97)}X2 + ...+ 1{Xn>F−1
n (0.97)}Xn

can approximate the distribution of
∑n

k=1Xk.

The result is given in Figure 14. Here, we consider the growth rates from 2009 to 2019 (i.e., n = 10) as

reference. As indicated by this figure, the tail of the growth rate distribution for n = 10 is well approximated

by the distribution tail caused by jumps. In other words, rather than achieving high growth over 10 years by

continuously realizing moderately large growth rates multiple times, the growth rate for n = 10 is determined

by a few extremely large jumps. This aligns with the assumptions considered in our previous analysis and

explains why even young firms can exist in the tail of the firm size distribution.
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5 Conclusion

What was carried out in this analysis is explained by two demonstrable hypotheses related to Zipf’s

Law. One is the hypothesis of a random walk, and the other is the hypothesis that the probability distribution

of corporate growth rates follows a heavy-tailed distribution. Especially the latter implies that the process

of corporate growth is determined by jumps or by a process where a few jumps can lead to a significant

increase. Using company-level data that covers the entirety of Japan’s companies, these two hypotheses are

shown to hold true, and it is demonstrated that Zipf’s Law can be explained by these two hypotheses.

A significant contribution of this study lies in its explanation of Zipf’s Law without assuming a

stationary distribution. In most previous research cases, Zipf’s Law has been presumed to result from a

stationary distribution, implying that larger, more mature companies explain the phenomenon. However,

this assumption presented challenges, as older companies with higher ages were expected to be the tail-end

large companies that would converge towards a stationary distribution over time. Contrarily, with real data,

it becomes apparent that younger companies are more central to Zipf’s Law, and older companies actually

deviate from the Zipf’s Law pattern. What this analysis reveals is that Zipf’s Law is not a consequence

of a slowly converging stationary distribution over a long time. Instead, it emerges as a result of younger

companies experiencing rapid growth within a short span.
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