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Abstract 
 
Dynamic Treatment Regimes (DTRs) are sequences of decision rules that recommend treatments based on 
patients’ time-varying clinical conditions. The Sequential Multiple Assignment Randomized Trial (SMART) is 
an experimental design that can provide high-quality evidence for constructing optimal DTRs. In a conventional 
SMART, participants are randomized to available treatments at multiple stages with balanced randomization 
probabilities. Despite its relative simplicity of implementation and desirable performance in comparing embedded 
DTRs, the conventional SMART faces inevitable ethical issues including assigning many participants to the 
empirically inferior treatment or the treatment they dislike, which might slow down the recruitment procedure 
and lead to higher attrition rates, ultimately leading to poor internal and external validities of the trial results. In 
this context, we propose a SMART under the Experiment-as-Market framework (SMART-EXAM), a novel 
SMART design that holds the potential to improve participants’ welfare by incorporating their preferences and 
predicted treatment effects into the randomization procedure. We describe the steps of conducting a SMART-
EXAM and evaluate its performance compared to the conventional SMART. The results indicate that the SMART-
EXAM can improve the welfare of the participants enrolled in the trial, while also achieving a desirable ability to 
construct an optimal DTR when the experimental parameters are suitably specified. We finally illustrate the 
practical potential of the SMART-EXAM design using data from a SMART for children with attention-
deficit/hyperactivity disorder (ADHD). 
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1 Introduction

The management of chronic and relapsing diseases requires adjusting treatments at different

time points based on previous treatment histories and disease status to improve the final

outcomes of interest. Dynamic treatment regimes (DTRs) are sequences of decision rules that

can formalize the patient-centered disease management model designed to guide clinicians

in prescribing the right treatments to the right patients. The advantages of DTRs over

fixed treatments have been recognized by researchers in various health domains, from the

perspectives of maximizing treatment effectiveness, minimizing side effects, and improving

cost-effectiveness. The sequential multiple assignment randomized trial (SMART), an exper-

imental design with multiple randomization stages, is considered the gold-standard design

for constructing optimal DTRs (Murphy, 2005; Wang and Chakraborty, 2023). Figure 1

illustrates a SMART for children with attention-deficit/hyperactivity disorder (ADHD) (Pel-

ham Jr et al., 2016). At stage 1, children with ADHD were randomized to either low-intensity

behavioral modification (BMOD) or low-dose oral methamphetamine (MEDS). After eight

weeks of treatment, the response status of each child was assessed using the Impairment

Rating Scale and an individualized list of target behaviors on a monthly basis. If the children

showed insufficient response to the treatment, they were re-randomized to either intensify

the initial treatment or augment with another treatment. Responders continued with the

initial treatment and got re-randomized if the disease conditions deteriorated at any time

after eight weeks. In this SMART, there were four embedded DTRs, one of which is: “begin

with low-intensity BMOD and add MEDS at stage 2 for non-responders.”

[Figure 1 about here.]

Numerous methods have been established to analyze data from SMARTs, with the aim of

estimating stage-specific treatment effects, comparing the embedded DTRs, or constructing

more tailored DTRs (Oetting et al., 2011; Nahum-Shani et al., 2012). From the design
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perspective, the conventional SMART (henceforth referred to as the SMART where there

is no confusion), i.e., SMART with balanced randomization probabilities across treatments

at each stage, can maximize the ability to compare the embedded DTRs (Murphy, 2005).

However, with various data sources available, e.g., electronic health records, cohort stud-

ies, patient databases, and previous trials, for estimating treatment effects, it has become

debatable whether it is ethical to evenly randomize participants without considering the

potential individualized treatment effects. Furthermore, in recent years, a broader trend

towards patient-centered care has emerged, with a growing emphasis on patient preferences

and shared decision making (Fukami, 2023). Under this framework, healthcare providers

and patients exchange information about patients’ disease-related characteristics and the

benefits and side effects of each treatment, and finally achieve a consensus about which

treatment(s) should be prescribed. This paradigm shift is grounded in the principle of patient

autonomy, with the aim of promoting patients’ participation in healthcare decision-making.

In view of this paradigm shift, it may be unreasonable to evenly randomize participants

ignoring their preferences in SMARTs altogether. Particularly noteworthy is the fact that

the treatment components in a SMART are often available in routine care which may make

participants hesitate to join the trial due to concerns about lower probabilities of receiving

their preferred treatment by entering into the trial (Edwards and Braunholtz, 2000). Ignoring

the above issues may exert a negative impact on the recruitment procedure and demotivate

participants from sticking to their assigned treatments, which may ultimately reduce the

power and internal and external validities of the trial results (Gaines and Kuklinski, 2011).

The above ethical issues are also present in randomized controlled trials (RCTs). The

response-adaptive randomization (RAR) (Eisele, 1994; Rosenberger and Hu, 2004; Robertson

et al., 2023) was proposed to allow for potential adjustments of randomization probabilities,

in accordance with accumulating information about the treatment performance. In addition,
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a lot of work has been done to either incorporate participants’ preferences during random-

ization or estimate average choice-specific treatment effects (ACTE), i.e., the conditional

treatment effect among those who would choose a particular treatment option. Specifically,

two-stage randomized designs (Rücker, 1989) first randomize participants into either the

randomization group or the choice group. Participants in the randomization group will be

randomized again to the available treatments, while participants in the choice group will

receive their preferred treatment. By randomizing twice, such designs enable researchers

to estimate ACTE (Knox et al., 2019) and increase the probability of allocating partici-

pants to their preferred treatment as compared to conventional RCTs. In addition, fully

randomized preference designs (Torgerson et al., 1996) first elicit participants’ preferences

before randomization, and then use the elicited preferences to estimate ACTE. One of their

limitations is that there may be discrepancies between participants’ stated preferences and

actual choices, and it may be unethical to continue with balanced randomization probabilities

after asking about their preferences. In partially randomized preference designs, participants

with strong preferences are given their preferred treatment, while those with mild preferences

are randomized to available treatments. While such designs have the potential to recruit

more participants with strong preferences who would have refused to participate had they

got randomized, the estimated average treatment effects (ATEs) are restricted among those

with mild preferences instead of a wider population (Walter et al., 2017).

There have been several SMARTs that incorporated participants’ preferences during the

randomization procedure (Fava et al., 2003; McKay et al., 2015). The Sequenced Treatment

Alternatives to Relieve Depression (STAR*D) was a multisite, multi-stage, first-generation

SMART for patients with major depressive disorder (Fava et al., 2003). In STAR*D, par-

ticipants were randomized within their preferred treatment categories (switch or augment)

during the second and third stages. From the analysis perspective, there have been some
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works (Wang et al., 2012; Johnson et al., 2021; Xu et al., 2022) to construct composite

outcomes accounting for both treatment efficacy and other factors, e.g., toxicity and quality

of life, to evaluate DTRs. The parameters in the outcome regarding these factors may be

chosen based on patients’ preferences, e.g., whether patients prefer higher treatment effects,

lower side effects, or lower costs. All of these works demonstrate the paramount importance

of incorporating preferences in SMARTs.

Furthermore, attempts have been made to incorporate predicted treatment effects in

SMARTs. Cheung et al. (2015) proposed a SMART with adaptive randomization (SMART-

AR) using Q-learning to determine the randomization probabilities in favor of superior

treatments based on the complete data trajectories from previous participants in the trial.

Wang et al. (2022) introduced a response-adaptive SMART (RA-SMART) that employs a

framework akin to the “play the winner” rule, i.e., the inferior treatment at stage 1 will have

a lower randomization probability at stage 2. Wu et al. (2023) presented a SMART with

interim monitoring, where early termination is permitted if there is sufficient evidence of

treatment efficacy. Nevertheless, none of the aforementioned designs simultaneously incor-

porated participants’ preferences and treatment effects into the randomization procedure.

Recently, Narita (2021) proposed an extension of the RCT — the Experiment-as-Market

(EXAM) design, which allows for incorporating both participants’ preferences and treatment

effects into the randomization procedure, while maintaining robust inferences comparable

to RCTs. Inspired by this, the current paper proposes a novel SMART design under the

Experiment-as-Market framework (SMART-EXAM), which has the potential to improve

participants’ welfare in terms of both the participants’ preferences and their final outcomes.

By taking treatment effects and participants’ preferences into account to individualize the

randomization probabilities, the SMART-EXAM mimics a shared decision-making process
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between patients and healthcare providers in a clinical trial setting, which enables partici-

pants to actively participate in the randomization procedure.

The remainder of the article is divided into five sections. Section 2 illustrates the structure

of a generic two-stage SMART used throughout this paper and presents analysis methods

to compare embedded DTRs in a SMART. Section 3 presents the detailed procedure of

conducting a SMART-EXAM and its theoretical properties. In Section 4, we conduct a

simulation study to evaluate the empirical performance of the SMART-EXAM compared to

the SMART. In Section 5, we demonstrate the practical potential of the SMART-EXAM

using data from a SMART ADHD study. The last section comes with conclusions and

discussions about the SMART-EXAM.

2 Set up and Notation

To facilitate the exposition, we focus on a two-stage SMART that is consistent with the

SMART ADHD study (Pelham Jr et al., 2016). The observed trajectory for the i-th partici-

pant is denoted by (O1i, A1i,O2i, A2i, Yi), which is assumed to be independent and identically

distributed. Oti (t = 1, 2) denotes the vector of covariates obtained prior to treatment at

stage t. Among covariates O2i, Ri is the indicator for intermediate response status, with

Ri = 1/0 for responders and non-responders, respectively. Ati is the treatment indicator at

stage t, with A1i ∈ {−1, 1}, A2i ∈ {−1, 1} for non-responders, and A2i = 0 for responders.

Yi is the final continuous outcome and without loss of generality, we assume that higher

values of Yi are preferred. Define H ti ∈ Ht as the history data of the i-th participant at

stage t, with H1i = O1i, H2i = (O1i, A1i,O2i), where Ht is the space of possible histories

at stage t. Under the SMART shown in Figure 1, the j-th two-stage DTR in the space of

DTRs of interest D is denoted as dj = (dj1, dj2), j = 1, . . . , J , where dj1, dj2 ∈ {−1, 1}, and

J is the total number of embedded DTRs. For example, d1 = (1, 1) means that, first treat

participants with A1 = 1, if they do not respond, switch to A2 = 1, otherwise continue with
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the initial treatment. Under the Neyman-Rubin causal inference framework (Rubin, 1974),

the potential outcome under DTR dj = (dj1, dj2) is denoted as

Y dj = Rdj1Y s(dj1,0) + (1−Rdj1)Y s(dj1,dj2), (1)

where s(dj1, 0) denotes the treatment sequence of receiving A1 = dj1, responding, and contin-

uing with the initial treatment, while s(dj1, dj2) denotes the treatment sequence of receiving

A1 = dj1, not responding, and switching to A2 = dj2. Here we use the prefix s to differentiate

the notations for DTR dj and the treatment sequence. Y s(dj1,0) and Y s(dj1,dj2) are the potential

outcomes for participants with treatment sequences s(dj1, 0) and s(dj1, dj2), respectively. The

expected outcome of DTR dj is µdj
= E(Y dj) = πdj1µs(dj1,0) + (1 − πdj1)µs(dj1,dj2), where

πdj1 is the response rate for treatment dj1 at stage 1; µs(dj1,0) and µs(dj1,dj2) are the expected

outcomes of those with treatment sequences s(dj1, 0) and s(dj1, dj2), respectively. The optimal

DTR is defined as the DTR with the highest expected outcome µdj
, i.e., d∗ = argmax

dj∈D
µdj

.

In this paper, the primary goal is to select an optimal DTR d∗ among the embedded

DTRs in a SMART. Although there are various methods for estimating DTR means, e.g., G-

computation and augmented inverse probability weighting (AIPW), we mainly focus on the

inverse probability weighting (IPW) due to both its unbiasedness and ease of implementation

in the context of the SMART-EXAM. Under usual causal assumptions in the Neyman-Rubin

causal framework, the IPW estimator for the expected outcome of DTR dj = (dj1, dj2) is

defined as

µ̂dj
=

∑N
i=1 W

dj

i Yi∑N
i=1W

dj

i

, (2)

where N is the total sample size, W
dj

i =
I(A1i=dj1)

p1,dj1,i

{
Ri +

(1−Ri)I(A2i=dj2)

p2,dj2,i

}
is the weight of

the i-th individual for DTR dj = (dj1, dj2), p1,dj1,i = Pr(A1i = dj1), and p2,dj2,i = Pr(A2i =

dj2|Ri = 0, A1i = dj1). The variance estimator of the DTR mean estimator (Oetting et al.,
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2011) is

V̂ar(µ̂dj
) =

∑N
i=1(W

dj

i (Yi − µ̂dj
))2

N2
. (3)

The estimated optimal DTR d̂
∗
is thus defined as d̂

∗
= argmax

dj

µ̂dj
.

3 SMART with the Experiment-as-Market Framework (SMART-EXAM)

As an extension of RCTs, the EXAM aims to strike a balance between making accurate

inferences for future patients and improving the welfare of enrolled participants through an

imaginary centralized market (Narita, 2021). One can view the EXAM as a shared decision-

making randomization procedure where healthcare providers rely on existing evidence about

treatment effects to determine the most effective treatment, while participants indicate their

preferences based on previous treatment experience and information provided by profession-

als about potential benefits and side effects of each treatment. The EXAM can generate ran-

domization probabilities that take into account the perspectives of both healthcare providers

and participants and achieve a so-called consensus about the randomization probabilities.

It has been proved that the EXAM can improve participants’ welfare while ensuring valid

inferences about the ATEs, on the grounds that the EXAM can be seen as a special case of

stratified randomized trials based on predicted treatment effects and preferences.

Building upon the work of Narita (2021), the current paper proposes a novel SMART design

- the SMART-EXAM - to simultaneously incorporate participants’ preferences and treatment

benefits into the randomization procedure. Note that the embedded DTRs in a SMART are

often stepped-up treatment strategies, i.e., for non-responders, stepped-up treatments are

provided to “rescue” the initial treatment. In this case, it is critical to improve the allocation

at stage 2. Furthermore, participants tend to have preferences for stage-2 treatments, as is

shown in a pilot study for adolescent depression (Gunlicks-Stoessel et al., 2016). Against this
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backdrop, the current paper focuses on SMART-EXAMs with individualized randomization

at stage 2, while maintaining balanced randomization at stage 1.

3.1 Key Definitions

To facilitate discussion, we first provide basic definitions for a SMART-EXAM. Among non-

responders to the initial treatment a1, we define:

Definition 1 (Preferences): Let Λi ∈ {0, 1} denote the stage-2 preference indicator of the

i-th participant, with Λi = 1 and Λi = 0 corresponding to the cases where the participant

prefers A2 = 1 and A2 = −1, respectively.

Definition 2 (Treatment capacity and Treatment demand): Let Ca2|a1 be the capacity

for a2 among non-responders to a1, such that
∑

a2∈{−1,1}Ca2|a1 = Nnr
a1
, where Nnr

a1
is the

number of non-responders to a1. The treatment demand Da2|a1 is defined as the total number

of non-responders to a1 who prefer a2, i.e., Da2|a1 =
∑Nnr

a1
i=1 {I(a2 = 1)Λi+I(a2 = −1)(1−Λi)}.

Define the excess-demand and the oversupplied stage-2 treatment as ae2 = {a2 ∈ {−1, 1} :

Da2|a1 ⩾ Ca2|a1} and ao2 = {a2 ∈ {−1, 1} : Da2|a1 < Ca2|a1}, respectively.

The choice of treatment capacities depends on various factors (Dumville et al., 2006). For

example, allocating less capacity to the more expensive treatment can reduce trial costs,

while allocating higher capacity to the treatment with a higher drop-out rate and variance

can enhance the overall statistical efficiency. In addition, considerations may also involve

assigning more capacity to the treatment on which researchers may be interested in gaining

more information, e.g., side effects or treatment experience and assigning more capacity to

the treatment that most participants prefer.

Definition 3 (Individualized treatment effects): Under the Neyman-Rubin causal infer-

ence framework, the effect of A2 = ae2 on the outcome compared with A2 = ao2 conditional

on the history H2i for participants i = 1, . . . , Nnr
a1

is denoted as ζ2,ae2,i = E[Yi|H2i, A2i =
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ae2]−E[Yi|H2i, A2i = ao2]. For the simplicity of notations, we use ζi for such treatment effects

where there is no confusion. For example, the outcome model can be specified as

Q2(H2i, A2i;γ2,α2) = E[Yi|H2i, A2i] = γT
2H20i +αT

2H21iA2i, (4)

where H20i and H21i are potentially different features of H2i, and H21i is the vector

of covariates in H2i that are believed to interact with the treatment. The individualized

treatment effect ζ̂i is 2α̂T
2H21i if ae2 = 1, or −2α̂T

2H21i if ae2 = −1, where α̂T
2 is the

estimated coefficients based on previous data. Note that when estimating treatment effects

using observational data, careful attention should be paid to adjust for potential confounders.

In addition to Q-learning with linear regression, other advanced statistical methods, e.g.,

random forest, regression trees, and boosting, etc. (Knaus et al., 2021), can be utilized to

estimate ζi. Here we use the model in Eq. (4) only for the purpose of illustration.

Treatment effects and preferences are two complementary measures of participants’ welfare,

which are sometimes found to be correlated through some common predictors, e.g., age and

previous treatment experience. For instance, in the SMART ADHD study, Nahum-Shani

et al. (2012) found that non-responders with lower adherence have higher effects of augmen-

tation over intensification compared to those with higher adherence. It is also reasonable to

assume that non-responders with lower adherence are more likely to prefer augmentation than

those with higher adherence. As a result, there is a positive association between treatment

effects and preferences. It aligns with the shared decision-making procedure with less trade-

off between preferences and treatment effects as perceived by healthcare providers.

Definition 4 (Utility): Define the utility of the i-th participant as ui = p2,1,i Λi + (1 −

p2,1,i)(1− Λi).

To appreciate the implications of the utility, we introduce the indicator for whether the i-th

participant receives the preferred treatment or not, denoted by Ki = I(A2i = 1)Λi+ I(A2i =

−1)(1−Λi). The probability of receiving the preferred treatment, i.e., the expected value of
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Ki, conditional on participants’ indicated preferences, is thus denoted as ui = E[Ki|Λi] =

p2,1,i Λi + (1− p2,1,i)(1− Λi).

Utility holds significant importance for participants when deciding whether or not to

participate in the trial. As stated in Section 1, participants may refuse to participate due

to concerns about a relatively lower probability of receiving their preferred treatment by

entering into the trial. However, some “altruistic” participants may accept making small

sacrifices and participating to contribute to future patients. The higher the probability of

receiving their preferred treatment, the less is altruism required and more participants may

agree to participate in SMARTs (Edwards and Braunholtz, 2000).

3.2 Procedure of conducting a SMART-EXAM

Figure 2 graphically illustrates a SMART-EXAM that individualizes the stage-2 randomiza-

tion probabilities, and the corresponding detailed algorithm is available in Web Appendix

A. The stage-1 randomization is the same as that in the SMART, while at the intermediate

decision point, the preference indicators Λi are collected and treatment effects ζ̂i are esti-

mated based on previous trials or observational studies. In the following procedure, the ζ̂i

are normalized so that they have a mean of 0 and a standard deviation of 1. To produce less

variable randomization probabilities, the normalized treatment effects ζ̂i should be discretized

by one of the binning strategies, e.g., creating contiguous intervals with equal frequencies

and specifying the categorized value of treatment effect ζ̃i as the mean value of the interval.

[Figure 2 about here.]

Subsequent to estimating treatment effects, each non-responder is given a budget m =

1. The same budget for each participant is to ensure giving equal importance to every

participant’s welfare. Define Ψi as the treatment price of a unit randomization probability

of ae2 for participant i; there exist η ∈ (−1, 0) and β ∈ R such that Ψi = ηζ̃i + β. Note
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that β and η are common parameters for the price function; the individualization of price Ψi

is induced by the heterogeneous treatment effect ζ̃i. Intuitively, ζ̃i < ζ̃i′ corresponds to the

cases where the i′-th participant will benefit more when ζ̃i′ > 0 (or lose less when ζ̃i′ < 0)

from treatment ae2 than the i-th participant. Thus it is more reasonable to give the i′-th

participant a higher randomization probability for ae2 than the i-th participant when the

treatment resources are limited. This can be accomplished by a negative value of η, which

ensures that, Ψi > Ψi′ if ζ̃i < ζ̃i′ , i.e., the price of a unit randomization probability for ae2 is

lower for those with higher treatment effects, such that they can “buy” more randomization

probabilities for ae2 compared to those with lower treatment effects. The values of β depend

on treatment capacities, which will be described later.

The randomization probabilities are derived by solving the utility maximization function

subject to budget constraints. For participant i:

p̂2,ae2,i = argmax
p2,ae2,i

∈P
ui s.t. p2,ae2,i Ψi ⩽ m, (5)

where P ≡ {p2,ae2,i|p2,ae2,i ∈ [0, 1]}, and p2,ae2,i Ψi is the expected expense of “buying”

randomization probabilities for treatment ae2. The underlying rationale of Eq. (5) is to

maximize the utility, i.e., the probability of receiving the preferred treatment, subject to the

budget constraint, with the price determined by the predicted treatment effects. The budget

constraint takes predicted treatment effects into the optimization problem and ensures that

the limited treatment resources favor those who can benefit more from the treatment.

To ensure that a non-null subset of participants follow each embedded DTR, i.e., the

positivity assumption holds for valid inferences, ϵ ∈ [0, ϵ̄] is introduced to keep the random-

ization probabilities within the range [ϵ, 1 − ϵ], where ϵ̄ = mina2 p
0
2,a2

, and p02,a2 =
Ca2|a1
Nnr

a1

is

the non-individualized randomization probability for a2 with treatment capacity Ca2|a1 . The

final stage-2 randomization probability is p̃2,a2,i = (1 − q)p̂2,a2,i + qp02,a2 , where q ≡ inf
i,a2

{q′ ∈

[0, 1]|(1 − q
′
)p̂2,a2,i + q

′
p02,a2 ∈ [ϵ, 1 − ϵ]}. Alternatively, other methods such as trimming
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the extreme probabilities to a predetermined value can also avoid violating the positivity

assumption. The values of β in the price function are adjusted through an iterative procedure

shown in Figure 2, to ensure that the randomization probabilities derived from the above

procedure meet the capacity constraints:
∑Nnr

a1
i=1 p̃2,a2,i = Ca2|a1 for each a2 ∈ {−1, 1}, i.e.,

the expected number of non-responders allocated to a2 under the current randomization

mechanism equals to the capacity of a2; thus, the design satisfies a system-level capacity

constraint. Note that in Figure 2, interval l can be interpreted as the step size for updating

the value of β. (d2ae2 + d2ao2)/(N
nr
a1
) is compared to κ to assess whether the sum of the square

differences between the expected number of participants and the capacity for each treatment,

i.e., d2ae2 + d2ao2 , is within a desired range [0, κNnr
a1
] or not.

By the above procedure, participants with the same Λi and ζ̃i will be given the same

randomization probabilities as they have the same utility and budget constraint. In other

words, non-responders can be divided into B groups indexed by Gi ∈ {1, . . . , B} based on

Λi and ζ̃i, such that for those in the group g = 1, . . . , B, p̃2,a2,i is the same and is denoted

by p2,a2|a1,g. The DTR means can be estimated by Eq. (2). The procedure for individualizing

stage-1 randomization probabilities in a SMART-EXAM is available in Web Appendix B.

3.3 Theoretical properties of the SMART-EXAM

The following are three theoretical properties of the SMART-EXAM, and the corresponding

proofs are provided in Web Appendix C.

Property 1: When the participants’ preferences and predicted treatment effects are not

of concern, a SMART-EXAM with capacity Ca2|a1 can be reduced to a SMART with non-

individualized randomization probabilities p02,a2 =
Ca2|a1
Nnr

a1

, by setting Λi = Λj and ζ̃i = ζ̃j for

all i and j (j ̸= i) among non-responders to the initial treatment a1.

Property 2: Under the three causal assumptions in the Neyman-Rubin causal frame-
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work: 1) sequential exchangeability assumption (SEA); 2) consistency assumption (CA); and

3) positivity assumption (PA), which are detailed in Web Appendix C, the IPW estimator for

the value of DTR dj in a SMART-EXAM is a consistent estimator of the expected outcome

of dj, i.e., µ̂dj

p−→ µdj
.

Property 3: The large-sample distribution of µ̂dj
for DTR dj is

√
N(µ̂dj

− µdj
)

d−→

N(0, σ2
dj
), where

σ2
dj

=
π1,dj1

pdj1
{σ2

s(dj1,0)
+ (µdj

− µs(dj1,0))
2}

+
∑

g

[
(1− πdj1)πg|dj1
p1,dj1p2,dj2|a1,g

× {σ2
s(dj1,g,dj2)

+ (µdj
− µs(dj1,g,dj2))

2}
]
,

(6)

with µs(dj1,g,dj2) = E[Y |A1 = dj1, R = 0, G = g, A2 = dj2], σ
2
s(dj1,g,dj2)

= Var(Y |A1 = dj1, R =

0, G = g, A2 = dj2), µs(dj1,0) = E[Y |A1 = dj1, R = 1], σ2
s(dj1,0)

= Var(Y |A1 = dj1, R = 1),

and πg|dj1 = Pr(G = g|A1 = dj1, R = 0)

4 Simulations

Using 500 simulation replicates, we compare the performance of the SMART-EXAM with

the SMART in different settings detailed in Section 4.1.

4.1 Data generation

Table 1 provides the parameter specification for generating data from SMART designs. As

discussed in Section 3.1 that there may be positive or negative associations between treatment

effects and preferences, we consider two simplified scenarios for generating participants’

preferences. The first assumes a negative association between preferences Λi and treatment

effects ζi, i.e., participants with higher effects of A2 = ae2 are less likely to prefer A2 = ae2

compared to those with lower effects. The second assumes a positive association between

preference Λi and treatment effect ζi. It is important to note that our approach to generating

preference indicators does not imply that the SMART-EXAM requires a specific association

between these two measures. Rather, it serves as a means to explore the performance of the
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SMART-EXAM with different degrees of trade-off between preferences and treatment effects.

We reemphasize that, since our goal was not to capture the full complexity of participants’

preferences, we only assume a simplified association between these two measures in simulation

studies, which is sufficient to provide valuable insights.

Furthermore, we consider different parameter sets for ϵ and η in SMART-EXAMs detailed

in Table 1. Recall that ϵ controls the range of the randomization probabilities and η is

the coefficient in the price function. Parameter sets 1) - 3) are to explore the impact of ϵ

on the performance of SMART-EXAMs, and SMART-EXAMs with smaller values of ϵ are

expected to generate more extreme probabilities for improving participants’ welfare; while

parameter sets 2) and 4) - 6) are to investigate the impact of η on the performance of

SMART-EXAMs. The predicted treatment effects ζ̂i are derived based on pilot SMARTs

with different sample sizes Np = 100, 200, 300 simulated in the same manner as above.

These pilot SMARTs are to investigate the sensitivity of the SMART-EXAM to the quality

of the external information. We also consider different sample sizes for the full-scale SMART

N = 200, 300, 400, 500 and treatment capacities C1|a1 , including 0.5Nnr
a1
, 0.6Nnr

a1
, and 0.7Nnr

a1
,

denoted by C = 0.5, C = 0.6, and C = 0.7 respectively for the simplicity of illustration.

Furthermore, we include a SMART-EXAM with adaptive randomization named SMART-

AR-EXAM and assume equal treatment capacity, i.e., C = 0.5. In a SMART-AR-EXAM,

the first Nmin = 100 participants will get randomized using balanced randomization. The

data from these participants instead of a pilot SMART are then used to estimate treatment

effects and to generate the randomization probabilities for the remaining participants. The

SMART-AR-EXAM and the SMART-EXAM resemble the duality between adaptive and

fixed RCTs, where the former is an adaptive design that allows for updating randomization

probabilities based on the accumulating data, while the latter generates fixed but unbalanced

randomization probabilities based on external information.
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[Table 1 about here.]

4.2 Metrics for the design performance

The true value of µdj
is approximated via IPW based on a simulated SMART of size

100, 000. The DTR mean µ̂dj
and its variance σ̂2

dj
are estimated by Eq. (2) and Eq. (3),

respectively. The metrics to compare these designs can be divided into two categories: the

first is the welfare of enrolled participants, including the participants’ average outcome

Ȳ = 1
Nnr

∑Nnr

i=1 Yi, where Nnr is the number of non-responders, the average probability of

receiving the preferred treatment ū = 1
Nnr

∑Nnr

i=1 ui, and the number of participants in DTR

dj denoted by Ndj
. Note that we only focus on non-responders when comparing participants’

welfare because responders only have one treatment option at stage 2. The second is the

learning ability of SMART designs, evaluated by whether they correctly estimate the true

optimal DTR or not denoted by I(d̂
∗
= d∗), and the true value of the estimated optimal

DTR µd̂
∗ , which can be interpreted as the expected outcome if the estimated optimal DTR

d̂
∗
learned from the current SMART is given to the entire population. These metrics are

collected in each simulation replicate and averaged over to get the expected value.

4.3 Simulation results

This subsection gives the simulation results for the setting with a pilot SMART of size

Np = 200. Results for other settings with pilot SMARTs of size Np = 100, 300 are provided

in Web Appendix D. Figure 6 shows that, when setting equal treatment capacity for each

treatment, the SMART has better learning ability represented by E[µd̂
∗ ], i.e., the Monte

Carlo estimate of the true value of the estimated optimal DTR, compared to the SMART-

EXAM C = 0.5, except for the cases with sample size N = 500 and a positive association

between treatment effects and preferences, where SMART-EXAM with C = 0.5 performs

slightly better than the SMART. However, as ϵ increases, the learning abilities of SMART-

EXAM with C = 0.5 become closer to the SMART. A possible explanation might be that a
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lower value of ϵ corresponds to more extreme randomization probabilities, resulting in higher

variances of estimated DTR means and thus less accurate estimation of optimal DTRs. As

the sample size N increases, the learning abilities for all these designs improve.

In addition, all the SMART-EXAM designs demonstrate a substantial improvement in

the average probability of receiving the preferred treatment E[ū] and final outcome E[Ȳ ]

compared to the SMART, which is as expected given that the SMART does not take into

account the participants’ preferences and treatment effects during randomization. While the

SMART-AR-EXAM performs better in selecting the true optimal DTR compared to the

SMART-EXAM with C = 0.5 in most scenarios, it offers fewer improvements in terms of

E[ū] and E[Ȳ ]. This is reasonable given that some participants in a SMART-AR-EXAM are

randomized using balanced randomization probabilities instead of individualized randomiza-

tion based on treatment effects and preferences.

[Figure 3 about here.]

One can also see from Figure 6 that when C increases from 0.5 to 0.7, E[µd̂∗ ] and E[Ȳ ]

increase, as more participants are randomized to the true superior treatment A2 = 1.

However, in reality, the true superior treatment is unknown and the treatment capacity

C should be specified based on various factors mentioned in Section 3.1. The coefficient η

has a relatively smaller impact on the performance of SMART-EXAMs. Nonetheless, as the

absolute value of η increases, there is a slight upward trend in the mean outcomes E[Ȳ ]. This

finding aligns with the underlying concept of η, where higher values of η amplify the predicted

treatment effect’s impact on the randomization probabilities, resulting in better performance

in improving the outcome. Moreover, SMART-EXAMs demonstrate higher mean outcomes

E[Ȳ ] in scenarios with a positive association between treatment effects and preferences

compared to those with a negative association, which is not unanticipated given that the

tradeoff between preferences and treatment effects of a positive association is expected to be



17

less than that of a negative association. We also provide results under settings with other

pilot SMARTs in Web Figures 1-2 in Web Appendix D, which show similar patterns to the

aforementioned findings.

In addition to IPW estimators, we explore using AIPW for estimating DTR means. Fur-

thermore, we employ other metrics to evaluate the operating characteristics of the SMART-

EXAM designs. More specifically, we consider 1) the probabilities of being selected as the

optimal DTR for each DTR dj by IPW and AIPW, denoted as Pr(dj = d̂
∗IPW

) and

Pr(dj = d̂
∗AIPW

); 2) the average estimated value of DTR dj by IPW and AIPW, denoted

as E[µ̂IPW
dj

] and E[µ̂AIPW
dj

], and 3) the average number of participants assigned to DTR dj,

i.e., N̄dj
for the scenario with sample size N = 200, Np = 200, η = −1 and ϵ = 0.1, 0.2, 0.3.

Web Tables 1-3 in Web Appendix D show that, in all these SMART designs, E[µ̂IPW
dj

] and

E[µ̂AIPW
dj

] are close to the true value of the corresponding DTR; thus, all of these designs

achieve the desired performance of estimating DTR means. Furthermore, when ϵ = 0.3, all

SMART-EXAMs exhibit better performance than the SMART in terms of selecting the true

optimal DTR, except that the SMART-EXAM with C = 0.5 performs slightly worse than the

SMART when there is a negative association between treatment effects and preferences; the

probability of selecting the true optimal DTR for the SMART-EXAM with C = 0.5 is 0.812,

whereas for the SMART it is 0.824. The SMART-AR-EXAM demonstrates a comparable

performance to the SMART in terms of selecting optimal DTRs and estimating DTR means,

thus it may serve as an alternative design that can incorporate participants’ welfare when

there is no prior information about treatment effects.

5 Empirical Application

In this section, we illustrate the merits of the SMART-EXAM using the aforementioned

SMART ADHD study as a previous/pilot SMART. Investigators from the University of

Michigan provide manually generated data based on this two-stage ADHD SMART with a
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sample size N = 150, comprised of 51 responders and 99 non-responders (Almirall et al.,

2011). The baseline covariates include O11: the indicator for oppositional defiant disorder

(ODD) diagnosis, coded as 1/0, O12: continuous ADHD score reflecting ADHD symptoms

at the end of the previous school year, O13: the indicator for medication prior to first-stage

treatments, coded as 1/0, and O14: the indicator for whether the race is White or not, coded

as 1/0. The intermediate potential tailoring variables include O21: the number of months

until non-response and O22: the indicator for adherence to the stage-1 treatments, coded

as 1/0 for higher and lower adherence. Imagine that researchers wish to further explore

the effectiveness of the embedded DTRs for children with ADHD, and plan to conduct

a new SMART. To assess the potential benefits in terms of participants’ welfare gained by

implementing a SMART-EXAM compared to a conventional SMART, we simulate data from

these designs based on the original data. Note that for the illustration purpose, we assume

the intermediate decision point is at one fixed time point for the SMART ADHD study thus

ignoring the variable O21. The specification for the required parameters is provided in Web

Table 4 in Web Appendix D.

We assume equal treatment capacities, i.e., C = 0.5 for the SMART and SMART-EXAMs.

For SMART-EXAMs, we specify η = −1, m = 1, and consider various values of ϵ =

0.1, 0.2, 0.3. As stated in Section 3.1, even though the original SMART ADHD study did

not collect participants’ preferences for stage-2 treatments, it is reasonable to assume that,

participants with lower adherence to the initial treatment, i.e., O22 = 0, are more likely

to prefer A2 = 1, i.e., augmentation, than those with higher adherence, i.e., O22 = 1.

This corresponds to the scenario with a positive association between treatment effects and

preferences in Section 4.1. We consider three possible settings for the preference data based

on the above assumption, which is detailed in Web Table 4 in Web Appendix D.
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5.1 Application results

As shown in Table 2, the SMART-EXAM with ϵ = 0.1 performs worse than the other

designs in terms of selecting the true optimal DTR, denoted by Pr(d̂
∗IPW

= d∗), in all these

scenarios. However, it outperforms the other designs in terms of improving the probability

of receiving the preferred treatment and the mean outcomes. As ϵ increases, the learning

ability of the SMART-EXAM improves and becomes closer to that of the SMART, while

still continuing to improve E[ū] and E[Ȳ ] compared to the SMART. These findings convey

that, based on the original data, when conducting a new SMART for children with ADHD,

the SMART-EXAM can increase the chance of allocating participants to their preferred

treatment and improve the outcomes for enrolled participants, while still maintaining its

effectiveness in estimating optimal DTRs with a moderate value of ϵ.

[Table 2 about here.]

6 Discussion

A conventional SMART randomizes participants with non-individualized and balanced ran-

domization probabilities. Despite its implementation simplicity and desirable performance in

comparing embedded DTRs, it faces some ethical issues. To mitigate these issues, we propose

the SMART-EXAM, a novel SMART design that incorporates participants’ preferences and

predicted treatment effects into the randomization procedure, to advance health promotion

among both the participants enrolled in the trial and future patients. We provide a detailed

illustration of conducting a SMART-EXAM and assess its empirical properties through an

extensive simulation study. The simulation results demonstrate that the SMART-EXAM

can improve the average probability of receiving the preferred treatment and the final

outcome compared with the conventional SMART, while also achieving a comparable ability

to construct optimal DTRs for future patients with a moderate value of ϵ, which controls the
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range of randomization probabilities. We argue that by incorporating participant preferences

and predicted treatment effects, the SMART-EXAM has the potential to encourage more

people to participate in the trial and alleviate the lost-to-follow-up issue, finally resulting in

a more diverse and representative sample compared to the conventional SMART.

It is important to note that each SMART design has its own strengths and weaknesses.

The choice of design should depend on the primary research goals and specific contexts.

For instance, if patient enrollment is challenging due to their reluctance to get randomized

with balanced probabilities, the SMART-EXAM may be a better choice. Conversely, if the

primary focus is on improving treatment effectiveness for enrolled participants, the SMART-

AR may be more appropriate, as it continuously updates randomization probabilities based

on accumulating information about treatment effects. When maximizing statistical power

becomes a priority, the conventional SMART may be a suitable choice. The SMART-EXAM

offers investigators the flexibility to adjust experimental parameters based on their specific

research focus and clinical experience. Specifically, when the primary focus is to maximize

the statistical power for future patients instead of participants’ welfare, the SMART-EXAM

can be reduced to a SMART with non-individualized randomizations by setting Λi = Λj and

ζi = ζj, j ̸= i for all participants. In addition, higher values of ϵ can also increase the learning

ability of the SMART-EXAM. In contrast to many adaptive trials that lack strict capacity

constraints, the SMART-EXAM incorporates a pre-specified treatment capacity Ca2|a1 to

control the expected number of participants in each treatment. This feature resembles the

SMART where the sample size is predetermined for each treatment arm and is particularly

useful when treatment resources are limited or when investigators wish to prespecify the

sample size for each treatment for the purpose of grant application.

The SMART-EXAM can be potentially extended to SMARTs with more than two stages or

more than two treatment options at each stage. Furthermore, Walter et al. (2017) summarized
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a statistical framework for estimating treatment effects, selection effects, and preference

effects based on data from patient-preference designs introduced in Section 1. The SMART-

EXAM serves as another potential design to quantify these estimands.

Despite its great potential, several limitations of the SMART-EXAM need to be acknowl-

edged. One limitation of the SMART-EXAM, which is also shared by various types of

adaptive designs (Robertson et al., 2023), is that there are no explicit sample size calculation

formulae for these designs. Simulation studies based on postulated parameters are needed

to ensure sufficient statistical power. Given a sufficient sample size, the SMART-EXAM

is expected to effectively identify the optimal DTR due to the consistency of the IPW

estimators of DTR means, i.e., as the sample size increases, the estimated DTR means

all converge to their true values, enabling the accurate identification of the true optimal

DTR. Additionally, participants in a SMART-EXAM may feel disappointed when receiving

a treatment they dislike after they have indicated their preferences. To manage expectations

and minimize potential disappointment, it is crucial to ensure that participants have a

realistic understanding of the SMART-EXAM by emphasizing that while this design could

improve the average probability of receiving the preferred treatment, it cannot guarantee that

every participant will be allocated to their preferred treatment. Another potential solution

is to predict the preference using previous data resources instead of letting participants

indicate their preferences. An additional challenge in a SMART-EXAM is the existence

of participants without specific treatment preferences. One potential approach is to use

balanced probabilities for participants without preferences, a straightforward adjustment

that can be integrated into the existing SMART-EXAM algorithm. In addition, researchers

may consider combining the no-preference group with one of the preference groups based on

the specific context. For example, Chakraborty et al. (2013) merged participants who had
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no preferences with those who preferred augmentation with a new treatment. This combined

group can be considered as participants open to either treatment option.
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Figure 1. An example of a two-stage SMART design for children with ADHD. R denotes
randomization. BMOD and MEDS represent behavioral modification and oral metham-
phetamine respectively.
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Figure 2. The schematic plot for a SMART-EXAM that individualizes the stage-2
randomization probabilities to account for participants’ welfare.
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Figure 3. Simulation results for the setting with a pilot SMART of size Np = 200. A,
B, C, and D correspond to the sample size N = 200, 300, 400, 500 respectively. The left
(right) panel of each subfigure corresponds to the negative (positive) association between
preferences and treatment effects. E[µd̂

∗ ] denotes the Monte Carlo estimate of the true value
of the estimated optimal DTR; E[ū] denotes the Monte Carlo estimate of the probability of
being assigned to the preferred treatment, and E[Ȳ ] denotes the Monte Carlo estimate of
the mean outcome.
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Table 1
Parameter specification for generating data from SMART designs in the simulation study. ζ2,1,i is the treatment

effect of a2 = 1 compared to a2 = −1 on the outcome; ϵ is the parameter that controls the range of the randomization
probabilities generated by SMART-EXAMs; η is the coefficient for the treatment effect in the price function.

Variable Specification

The stage-1 treatment A1 (A1 + 1)/2 ∼ Bernoulli(0.5)

Intermediate response status R R ∼ Bernoulli(0.5)

Tailoring variables O21 and O22 Standard normal distribution N(0, 1)

The outcome Y
For non-responders: Yi = 2 − A1i + A2i + 0.5A1iA2i −
0.5O21,iA2i + 0.5O22,iA2i + τ, τ ∼ N(0, 32)

For responders: Yi = 3 +A1i + τ, τ ∼ N(0, 32)

Preference indicator Λi
Negative association: Pr(Λi = 1) = logit−1(−0.2ζ2,1,i+1)

Positive association: Pr(Λi = 1) = logit−1(0.2ζ2,1,i+0.5)

ϵ and η 1) ϵ = 0.1, η = −1; 2) ϵ = 0.2, η = −1; 3) ϵ = 0.3, η = −1;
4) ϵ = 0.2, η = −0.7; 5) ϵ = 0.2, η = −0.4; 6) ϵ = 0.2, η =
−0.1
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Table 2

The application results. Pr(d̂
∗IPW

= d∗) is the probability of selecting the true optimal DTR by IPW; E[µ
d̂
∗IPW ] is

the Monte Carlo estimate of the true value of the estimated optimal DTR by IPW; E[ū] is the Monte Carlo estimate
of the probability of receiving the preferred treatment; E[Ȳ ] is the Monte Carlo estimate of the mean outcome among
non-responders. The true optimal DTR and the true DTR means are approximated using a simulated SMART of

sample size 10,000.

Scenario Design Pr(d̂
∗IPW

= d∗) E[µ
d̂
∗IPW ] E[ū] E[Ȳ ]

S1 SMART 0.984 3.504 0.500 3.002

SMART-EXAM ϵ = 0.1 0.922 3.468 0.817 3.263

SMART-EXAM ϵ = 0.2 0.978 3.500 0.741 3.200

SMART-EXAM ϵ = 0.3 0.984 3.504 0.664 3.136

S2 SMART 0.984 3.504 0.500 3.002

SMART-EXAM ϵ = 0.1 0.942 3.480 0.792 3.156

SMART-EXAM ϵ = 0.2 0.960 3.491 0.722 3.115

SMART-EXAM ϵ = 0.3 0.980 3.502 0.652 3.074

S3 SMART 0.984 3.504 0.500 3.002

SMART-EXAM ϵ = 0.1 0.940 3.479 0.745 3.245

SMART-EXAM ϵ = 0.2 0.980 3.501 0.687 3.186

SMART-EXAM ϵ = 0.3 0.988 3.506 0.629 3.128
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