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Abstract
A series of public administration reforms were implemented in Japan to cope with the secular
stagnation since the 1990s, some of which took the form of the incorporation of public organizations.
Drawing on the incorporation of Kohsetsushi, technology extension service providers established by
local governments, which was a policy program implemented in the early 2000s, this study evaluates
its average treatment effect on the treated (ATT) by applying the difference-in-differences (DID)
model to panel data (2000-2021). Unlike the uniform and simultaneous incorporation of national
universities, it was local governments that decided whether and when to incorporate their Kohsetsushi,
which implies a staggered treatment. Applying the conventional two-way fixed effects DID (TWFE
DID) model to panel data with staggered treatments may yield biased ATTs due to forbidden
comparisons between late and early treated units where early treated units are used as a control group.
This study adopted the DID model proposed by Callaway and Sant’Anna (2021) (CS DID) to correct
the bias by avoiding contaminated comparisons. The ATTs in terms of scientific knowledge and
inventive activities are significantly positive for both models. In contrast, the ATTs in terms of
technology extension are heterogeneous and significantly positive for the TWFE DID model but
insignificant for the CS DID model. Sources of heterogeneity are discussed from the perspectives of

agglomeration externalities, learning capacity, and industrial knowledge bases.
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1. Introduction

Many countries have implemented the practice of incorporating public organizations since the
1980s. An early example is the movement of new public management, the privatization of public
organizations in Western countries. In Japan, this incentive system reform has been introduced to
help the country escape the secular stagnation since the 1990s. The incorporation began at the
national level in the late 1990s and expanded to the regional level in the early 2000s. The latter was
legitimized in 2003 by the Local Independent Administrative Corporation Law (LIACL). It
endowed Local Independent Administrative Corporations (LIACs) with a legal entity status,
enabled them to own intellectual property (IP), and promoted commercialization of IP, with greater
managerial discretion and possibility of rent sharing than when they were simply a division of local
governments. The performance of LIACs is evaluated by a third-party panel every mid-term, lasting
3or5years (LIACL, Articles 11 and 25).* The LIACL applied to technology transfer organizations
established by local governments, Kohsetsushi.

The first generation of Kohsetsushi was established in the wake of Japan’s modern economic
growth in the late 19th century. Kohsetsushi were initially established in the agricultural sector
(Fukugawa, 2019) and expanded to the manufacturing sector throughout the 20th century
(Fukugawa, 2016). Currently, there are 67 manufacturing Kohsetsushi branches corresponding to
industrial agglomerations across all 47 prefectures. They help local small- and medium-sized
enterprises (SMEs) upgrade their basic technological skills through technology extension (e.g.,
consultation, education, and training). Manufacturing Kohsetsushi conduct their own research,
publish manuals, technical reports, and scientific papers, patent inventions, and license the patents
mainly to local SMEs. Furthermore, they connect client firms with other sources of knowledge in
regional innovation systems, such as universities. Through collaboration and networking, they help
local SMEs build long-term capabilities to innovate for themselves and exploit spillovers from
external sources of knowledge. These functions render manufacturing Kohsetsushi an innovation
intermediary for local SMEs that mitigate innovation system failures arising from SMEs’ poor
social capital and knowledge resources (Fukugawa 2018, 2021).

Unlike the Bayh-Dole Technology Transfer Act (BDA) of 1980 in the US and the incorporation of

! As Kohsetsushi play multiple roles in the regional innovation systems, it is difficult to measure
their contributions using a single performance indicator. In light of this, the assessment committee
sets up various numerical goals for incorporated Kohsetsushi to accomplish in the next term. In this
performance assessment, technology extension is customarily weighted higher than research and
inventive activities (Fukugawa 2022). Thereafter, according to the results, the third-party panel
provides suggestions to be incorporated by LIACs when reformulating their activities in the next
mid-term (LIACL, Article 3). Therefore, resource allocation of incorporated Kohsetsushi is
determined not only by incentive systems but also by evaluation schemes.
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national universities of 2004 in Japan, which were uniformly and simultaneously applied to all
universities, the incorporation of Kohsetsushi is at the discretion of local governments. The first
local governments to decide on this incorporation were those of lwate and Tokyo in 2006, and the
most recent was the government of Kanagawa in 2017. As of 2023, 17% of manufacturing
Kohsetsushi headquarters are incorporated under the LIACL. This unique implementation of the
incentive system reform has important implications on panel data analysis to estimate the average
treatment effects on the treated (ATT). Recent studies argue that applying the conventional two-
way fixed effects (TWFE) model to panel data with the staggered treatment yields biased ATTs due
to bad comparisons between late treated groups and early treated groups where early treated groups
act as a control group (Gardner, 2021; Goodman-Bacon, 2021; Baker et al. 2022). Based on the
model proposed by Callaway and Sant’Anna (2021) to address this concern, this study evaluates
the ATTs of the incorporation of Kohsetsushi on technology transfer activities. By doing so, this
study contributes to previous literature that has discussed the effects of the incentive system reforms,
such as the BDA (Henderson et al., 1998; Mowery et al., 2001; Sampat et al., 2006; Link and Hasselt,
2019) and the incorporation of national universities in Japan (Toyoda 2019), as well as clarifying
the economic consequences of the incorporation of Kohsetsushi, of which econometric assessment
was performed only recently (Fukugawa, 2022).

The remainder of this paper is organized as follows. Section 2 lays out theoretical framework based
on two theories that explain the effects of the incentive system reform for regionally embedded
technology transfer organizations. Section 3 presents econometric models, variables and data
employed for empirical analysis. Section 4 presents estimation results. Section 5 discusses their
implications from the perspectives of agglomeration externalities, organizational learning capacity,
and industrial knowledge bases. Section 6 concludes the paper.

2. Theoretical framework

As noted in the previous section, innovation intermediaries promote both creation and
dissemination of knowledge. This study analyzes how the incorporation of public innovation
intermediaries affects their roles in knowledge creation and dissemination from two conceptual
perspectives: agglomeration externalities and knowledge bases. Agglomerations make technology
transfer efficient. As Marshall-Arrow-Romer (MAR) externalities and Jacobs externalities imply,
intra- and inter-industry agglomerations of business activities facilitate spillover. Although previous
studies show that different types of externalities dominate according to empirical periods, industrial
life cycle stages, dependent variables, geographical areas, and industrial classification levels, they
share basic understanding that agglomeration externalities enhance innovation and productivity
(Henderson 1997, Beaudry and Breschi 2003, Beaudry and Schiffauerova 2009, Neffke et al. 2011,
de Groot et al. 2016). Innovation intermediaries located in agglomerations readily identify target
technologies and clients, which exerts scale economies for their efforts in knowledge creation,
intermediation, and dissemination. In fact, local branches of manufacturing Kohsetsushi were
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established according to agglomerations, such as textiles and ceramics (Fukugawa and Goto 2016).
This suggests that agglomerations make spillover from manufacturing Kohsetsushi localized and
efficient. Therefore, it is reasonable for manufacturing Kohsetsushi located in growing
agglomerations to allocate most resources to technology extension that exerts localized spillover,
such as technical consultation to provide solutions to problems arising from daily operations of local
firms. Meanwhile, for manufacturing Kohsetsushi located in declining agglomerations, sparing
most resources into extension activities becomes irrelevant with scale economies degrading, which
encourages them to develop technology transfer channels with geographically broader spillover. As
the geographical range of spillover is expanded by the research quality of knowledge providers,
manufacturing Kohsetsushi in declining agglomerations find it necessary to enhance their research
resources. Specifically, they increase technical staff with PhD and engage more in inventive
activities to spread their knowledge broadly. The improvement in the research quality enables them
to finance their research from sources other than local governments, such as national funding
agencies and private foundations. These moves exhibit conceptual fits with the economic
implications of the LIACL that provides LIACs with high-powered incentives for research and
inventive activities. For instance, change in IP ownership motivates LIACs to commercialize their
patents. Enhanced managerial freedom of LIACs enables timely deployment of specialized human
resources. The introduction of the independent budgetary scheme encourages LIACs to secure
research funds for themselves. Therefore, the incorporation of manufacturing Kohsetsushi
conceptually fits well with strategies to shift resources from technology extension with localized
spillover to research and inventive activities with geographically broad spillover. Combined with
the argument on agglomerations, it is declining innovation agglomerations that would see the
incorporation of Kohsetsushi beneficial with geographically broader spillover channels developed.

Industrial innovations build on either analytical (science), synthetic (technology), or symbolic (art)
knowledge according to the degree to which tacit knowledge is involved and the significance of
personal interactions in spillover (Asheim et al. 2007, Martin and Moodysson 2011). As industrial
knowledge bases shape sectoral patterns of innovation in terms of technological opportunities,
appropriation conditions, and technology transfer channels, they have significant implications for
the development of regional innovation policies, such as Kohsetsushi. Specifically, innovations in
science-based sectors build on analytical knowledge, which is knowledge generated through
attempts to explore and explain the universal principle of nature (Asheim and Gertler 2005). The
production of analytical knowledge refers to encapsulating natural sciences and mathematics where
key inputs are the review of scientific articles and the application of scientific principles. Knowledge
outputs can be communicated in a universal language, which are the least tacit and the most likely
to be embodied in codified channels, such as patents. Therefore, knowledge outputs in analytical
knowledge-based industries are disseminated through channels with less geographical constraints,
such as licensing. Next, innovations in mechanical engineering build on synthetic knowledge,
which is knowledge generated through attempts to design something that works as a solution to a
practical and more applied problem. Knowledge is created through a heuristic approach (i.e.,
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learning by doing) rather than a deductive process, which makes know-how and craft-based skills,
both contain more tacit knowledge, more important for innovations of this type. Efficient transfer
of tacit knowledge requires face-to-face communications among scientists and engineers, which is
more active in agglomerations (Storper and Venables 2004). Therefore, knowledge outputs in
synthetic knowledge-based industries are disseminated through personal interactions, such as
technical consultation. In line with the industrial knowledge base theory, Fukugawa (2016) finds
that, in regions where SMEs specialize in biotechnology innovations, Kohsetsushi tend to engage
in licensing while, in regions where SMEs specialize in mechanical engineering innovations,
Kohsetsushi tend to engage in technical consultation. Combined with the previous discussion on
agglomeration externalities, this result implies that the incorporation of manufacturing Kohsetsushi
is predicted to be relevant in regions where SMEs’ innovative activities build on analytical
knowledge, and thus fits well with Kohsetsushi strategies to provide high-powered incentives for
research and inventive activities with geographically broader spillover channels developed.

3. Method

3-1. Data

This study employs comprehensive data of technology transfer activities of manufacturing
Kohsetsushi from 2000 to 2021. The Current Status of Kohsetsushi Database is compiled by the
National Institute of Advanced Industrial Science and Technology (from 2000 to 2009) and the
Association of Directors of Manufacturing Kohsetsushi (from 2012 to 2021), respectively,
collecting information of a range of technology transfer activities including testing, use of
equipment, technical consultation, seminars for new technologies and standards, joint research,
funded research, publications, patent application, and licensing. This survey was suspended from
2010 to 2011, and thus information in these periods cannot be incorporated in the dataset. Figure 1
shows the distribution of treatment timings. The treatment pattern is staggered and once the units
are treated they remain treated till the end of the empirical period. As previously noted, the first
local governments to decide on this incorporation were those of Iwate and Tokyo in 2006, and the
most recent was the government of Kanagawa in 2017. As of 2023, 17% of manufacturing
Kohsetsushi headquarters are incorporated under the LIACL.

Figure 1 Proportion of incorporated Kohsetsushi

To represent innovation agglomerations, this study employed comprehensive data of patents,
compiled by the Institute of Intellectual Property Patent Database (IIPPD). The IIPPD collects
information of all patents applied for the Japan Patent Office. The 1IPPD is used to create variables
representing innovation agglomerations and relative technological concentration. Innovation
agglomeration is measured as the number of patents applied in a region. To avoid double counting,
regions in which joint application was made were identified from the first applicant’s address. As
patents represent proprietary technology that fits best with a research strategy of profit-orientated
organizations, this indicator represents long-term changes in private research and development
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activities in each region. To represent dynamic agglomeration externalities, this study employed
location quotient defined as (Xirt/Xit)/(Xrt/Xt) with Xirt denoting the number of patent applications
inaregionr in an international patent classification i, in a period t. See Fukugawa (2019) for details.
Table 1 presents descriptive statistics.

Table 1 Descriptive statistics

Figure 2 shows the timings of incorporation by logged real GDP of the region at the time of
incorporation, which exhibits no correlation between regional economic size and treatment timings.
In contrast, Figure 3 that presents the relationship between the timings of incorporation and long-
term change rate of innovation agglomerations exhibits a significantly negative correlation
(p<0.05). This is measured as the change in the number of patents filed in a region in the last twenty
years. For instance, the change rate of a region r in 2010 is defined as In(patents filed in r from 2001
to 2010)-In(patents filed in r from 1991 to 2000). Therefore, treatment timings correlate with
dynamic, not static, aspects of regional innovation systems. The treatment in the later phase is
associated with decline in innovation agglomerations. As previously discussed, a rapid decline in
innovation agglomerations makes localized spillover less relevant, which should require
Kohsetsushi to develop geographically broader spillover routes. Implications of this finding are
further discussed in the following sections.

Figure 2 Timings of incorporation by logged regional real GDP at the time of incorporation

Figure 3 Timings of incorporation by long-term growth of innovative activities in the region

3-2. Model

The parsimonious form (no covariates) of the conventional two-way fixed-effects (TWFE) model
for outcome, Y, of a group g in a period t is

(1) Ygr=agtfeDy thprteg t

where o denotes group fixed effects, D denotes the binary treatment in g at t, St is the group-specific
treatment effects, and y denotes time fixed effects. The treatment starting period is denoted as t with
(te{2006, 2007, 2008, 2009, 2010, 2012, 2014, 2017}). According to the decomposition theorem
of Goodman-Bacon (2021), ft is weighted average of all possible two-by-two DID estimators.
Specifically, the weights, Wyq, +, are proportional and of the same sign as Dg, +-Dg, -D. ++D. . where
Dy, . is the average treatment of g across periods, D. t is the average treatment at t across groups, and
D, . is the average treatment across groups and periods (de Chaisemartin and D’Haultfoeuille 2022).
The authors argue that Wg,+ may not sum to one under conditions of staggered treatment, which
makes fr biased. More importantly, they argue that some of the weights may be negative, which
makes the sign of Sk opposite to that of the true ATT. This means that Wy, : can be negative when
one has 1+D, <Dy +D. , which cannot happen when Dg, +D._ <1 for every (g, t). In light of this,
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the authors conclude that the concerns of negative weights are real when there are groups that are
treated most of the time, and there are time periods where most groups are treated. As Figure 1
shows, most of the control groups consist of never treated units, which makes the concerns of
negative weights less likely. In fact, as presented in the estimation results, no comparisons are
associated with negative weights. However, if treatment effects are heterogeneous, the TWFE DID
model leads to the biased results, some of which can have the sign opposite to the true ATT (Gardner
2021; Baker et al. 2022). Recent studies developed the models for panel data with staggered
treatment to correct the bias in ATT obtained from the TWFE DID model (Borusyak et al. 2021;
Callaway and Sant’Anna 2021; de Chaisemartin and D’Haultfoeuille 2020; Sun and Abraham
2021). Analyzing the same data using six alternative estimation methods, de Chaisemartin and
D’Haultfoeuille (2022) demonstrate that those models exhibit similar results. This study adopts the
model proposed by Callaway and Sant’ Anna (2021). This model (CS DID hereafter) identifies the
treatment groups by the period they were treated with never treated units given the value of zero.
The never treated units are treated as counterfactual, thereby avoiding contaminated comparisons
between late treated groups and early treated groups. The CS DID model incorporates time-
invariant control variables as the base-period covariates to estimate the propensity score and
outcome regressions. Guided by Adhikari et al. (2023), the results of both parsimonious and full
models are presented in the following sections, the latter of which includes time-varying covariates,
on the assumption that their cross-sectional variations are even greater that within variations. Time-
varying covariates incorporated in the full models are the long-term change rate of innovation
agglomerations defined as Figure 3 and logged budget of Kohsetsushi.

Figure 4 shows pre-event trends of the PhD holder ratio. Most of the incorporated Kohsetsushi
exhibit the similar pre-event trends to never treated groups. Figure 5 shows pre-event trends of the
number of problems consulted per technical staff. Technology Research Institute of Osaka
Prefecture exhibits a different pre-event trend with never treated groups. The ratio started to rise in
2007 before the treatment that took place in 2012, while the pre-event trend before that is similar to
the trend of never treated groups. Osaka Municipal Technical Research Institute which was
incorporated in 2008 also shows an increase in the ratio prior to the incorporation, while the pre-
event trend before that is similar to the trend of never treated groups. These premature treatment
effects may have stemmed from idiosyncratic factors in Osaka: a series of administrative and fiscal
reforms (e.g., integration of municipal and prefectural governments) in progress at that time. Other
incorporated Kohsetsushi exhibit the similar pre-event trends to never treated groups.

Figure 4 Pre-event trends of the PhD holder ratio
Figure 5 Pre-event trends of the number of technological problems consulted per technical staff
Several variables representing technology transfer activities of Kohsetsushi can be bundled together

as one factor representing the tendencies of Kohsetsushi to enhance a similar type of resource.
Factor analysis is performed to extract the latent factors behind observable variables that affect
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several observable variables in the same direction. Based on the scree plot, the number of factors
was assumed to be two. Taking account that the latent factors are not independent, oblique promax
rotation was employed. Figure 6 presents the results of factor loadings. Table 2 shows the results of
factor loadings after rotation of these factors. Two latent factors identified as the horizontal axis
(Factor 1) and the vertical axis (Factor 2) were extracted. Factor 1 positively correlates to variables
related to research and inventive activities, such as PhD holders, patent application, and scientific
articles, while it has no correlation with variables related to technology extension. The quality of
human resources and dissemination of research outcomes are associated with the research capacity.
Therefore, Factor 1 is presumed to represent the tendency of Kohsetsushi to enhance research and
inventive capacity. Factor 2 correlates positively with variables related to providing immediate
solutions to technological problems, such as equipment use, testing material and final products, and
technical consultation, while it has no correlation with variables related to research and inventive
activities. Therefore, Factor 2 is presumed to represent the tendency of Kohsetsushi to diffuse
existing technological knowledge.

Figure 6 Factor loadings
Table 2 Rotated factor loadings (pattern matrix) and unique variances

4. Results

The analysis begins with the comparison of TES between non-incorporated and incorporated
Kohsetsushi. Table 3 shows that the incorporation of Kohsetsushi increased their budget and
employment?, which should have positive effects on all technology transfer activities. In this regard,
technology transfer variables are divided by the number of technical staff to control for Kohsetsushi
size. Therefore, the results indicate that incorporated Kohsetsushi pursued the resource allocation
strategy to simultaneously enhance technology extension (except for equipment use) and research
and inventive activities. Economic implications of this strategy will be further discussed later.

Table 3 also presents the comparison of TES of incorporated Kohsetsushi between before and after
the incorporation. Incorporation facilitated research activities represented as increasing PhD staff
and competitive funds. The former seems to have resulted from both enhanced managerial freedom
that allowed incorporated Kohsetsushi to reinforce human capital in a timely and efficient manner
and overall trend for Kohsetsushi to enhance scientific knowledge base. The latter seems to have
resulted from the fact that it was difficult for Kohsetsushi to access competitive research funds
without a legal entity. Moreover, when Kohsetsushi were simply a division of local governments,
the purpose of their budget was rigorously specified, which may have made it difficult for them to

2 This marks a clear contrast to the incorporation of national universities in 2004 that led to drastic
reduction of block grant and decrease in researchers in full-time equivalent, which is considered to
result in Japan’s rapid decline in scientific research since this institutional change (Toyoda 2019).
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apply for competitive funds. Patent application increased after the incorporation of Kohsetsushi as
they were granted a legal entity and enhanced managerial freedom to spare resources for patenting.
At the same time, incorporation also reinforced technology extension through counseling and
physical assets, which corroborates the previous finding that incorporation had Kohsetsushi pursue
opposite strategies simultaneously. This may have resulted from enhanced incentives for
incorporated Kohsetsushi to monetize these activities and increase their revenue. Moreover, it is
possible that incorporated Kohsetsushi raised prices of physical asset-based services, of which
information is unavailable from the dataset.

Table 3 Comparisons of TES between non-incorporated and incorporated Kohsetsushi and between
before and after the incorporation

Table 4 makes the same comparison as Table 3 using the data of early and late treated groups. The
results show that Kohsetsushi incorporated early enhanced both technology extension and research
while Kohsetsushi incorporated late bolstered research and inventive activities while tapering
technology extension. The differences in treatment effects in terms of technology extension by
treatment timing will be further examined by regression analysis and the sources of heterogeneous
treatment effects will be discussed in the next section.

Table 4 Comparisons of TES between early treated (incorporated in 2006 and 2007) and late treated
(incorporated in 2014 and 2017) groups

Tables 5, 6, and 7 compare estimation results obtained from the TWFE DID and CS DID models,
accompanied by the results of Goodman-Bacon decomposition. Figures 7, 8, and 9 compare the
ATTs, obtained from parsimonious models, by periods before and after treatment. The results of
Goodman-Bacon decomposition show that the concerns over negative weights are not real. As
displayed in Figure 1, this comes from the nature of the sample, most of which are consisted of
never treated units. Nonetheless, in Table 5, there is a critical difference in the estimated ATTSs
between the two models, reflecting the heterogeneity in treatment effects in terms of technology
extension. The treatment effect of the incorporation on technical consultation is significantly
positive for the TWFE DID model while it is statistically insignificant for the CS DID model, which
suggests heterogeneity in treatment effect. Moreover, the results of Goodman-Bacon decomposition
show that the comparison between early and late treated groups where the early treated groups act
as a control group exhibits a negative treatment effect. This means that, even though the weight is
small, contaminated comparison made the ATT estimated by the TWFE DID model differ from
that estimated by the CS DID model, stemming from heterogeneity treatment effect in terms of
technology extension. In fact, Figure 7 shows that early treated group exhibits a positive treatment
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effect while late treated group exhibits a negative treatment effect. Moreover, treatment effects vary
within the early treated group. The units treated in 2006 exhibit largely insignificant ATTs while
those treated in 2007 show significantly negative ATTs from ten years after the treatment.

Meanwhile, Figures 8 and 9 show that both early and late treated groups exhibit dynamic treatment
effects that increase over time. In other words, incorporation enhanced both research and inventive
activities. In fact, Tables 6 and 7 show that both models indicate positive ATTs of incorporation on
the increase in PhD scientists and patent applications. Unlike agricultural Kohsetsushi that exert
division of labor between extension and research activities (Fukugawa, 2019), technical staff of
manufacturing Kohsetsushi undertake both activities. Therefore, it is not possible for them to
enhance extension and research activities simultaneously as it creates a trade-off in resource
allocation.® The results suggest that late treated groups learned from failures of the early treated
groups, which facilitated understanding about the economic consequences of the incentive system
reform, tapering extension while enhancing research and inventive activities. Combined with Figure
3, the results imply that manufacturing Kohsetsushi located in rapidly declining innovation
agglomerations found localized spillover less relevant and shifted their activities from technology
extension to research and inventions.

Table 5 The ATTs obtained from the TWFE DID and CS DID models and the results of Goodman-
Bacon decomposition: problems consulted per technical staff

Table 6 The ATTs obtained from the TWFE DID and CS DID models and the results of Goodman-
Bacon decomposition: a ratio of PhD holders to technical staff

Table 7 The ATTs obtained from the TWFE DID and CS DID models and the results of Goodman-
Bacon decomposition: patents filed per technical staff

% Technology extension and research are complementary to some degree. For instance, obtaining
PhD enables technical staff to offer clients solutions based on basic principles and scientific
approaches. Moreover, understanding local technological needs helps technical staff come up with
valuable inventions that are ready for the commercialization by local firms. However, as noted
above, manufacturing Kohsetsushi do not adopt the division of labor between research and
technology extension, which makes it inevitable for them to experience the point at which the
strategy to pursue the two simultaneously starts to deteriorate technology transfer productivity. As
it is not possible from the data to identify the point, this study assumes that the decreasing portion
accounts for the most part of the inverse U-shaped curve.



10/ 40

Figure 7 The ATTs by periods before and after treatment: consultations per technical staff of early
and late treated groups

Figure 8 The ATTs by periods before and after treatment: ratio of technical staff with PhD of early
and late treated groups

Figure 9 The ATTs by periods before and after treatment: patent applications per technical staff of
early and late treated groups

Tables 8 and 9 show the ATTs in terms of factor scores representing research and technology
extension, respectively, obtained from the TWFE DID and CS DID models and the results of
Goodman-Bacon decomposition. The results corroborate the findings from Tables 5, 6, and 7 that,
for the TWFE DID model, the coefficients of the incorporation dummy were significantly positive
for both research and inventive activities and technology extension. Moreover, for the CS DID
model, the incorporation of Kohsetsushi enhanced their research and inventive activities, while it
did not have a significantly positive impact on technology extension. In fact, Figure 10 shows that
both groups increased research and inventive activities. Meanwhile, Figure 11 shows that the late
treated group decreased technology extension activities while the early treated groups enhanced
them.

Table 8 The ATTs obtained from the TWFE DID and CS DID models and the results of Goodman-
Bacon decomposition: Factor score representing research and inventive activities

Table 9 The ATTs obtained from the TWFE DID and CS DID models and the results of Goodman-
Bacon decomposition: Factor score representing technology extension

Figure 10 The ATTs by periods before and after treatment: Factor score representing research and
invention of early and late treated groups

Figure 11 The ATTs by periods before and after treatment: Factor score representing technology
extension of early and late treated groups
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5. Discussion

Estimation results obtained from two DID models revealed different treatment effects in terms of
technology extension by treatment timing. This section discusses why the ATTs of the
incorporation of Kohsetsushi demonstrate heterogeneity only for technology diffusion while they
are consistent for knowledge creation.

Agglomeration facilitates scale economies in technology transfer as it makes it easy for Kohsetsushi
to identify clients and channels of technology transfer and types of technology to be transferred,
with many potential clients locating nearby. This makes localized spillover channels active and
efficient, which suggests that strategies of Kohsetsushi are affected by changes in innovation
agglomerations. In this regard, Japan experienced rapid changes in innovation agglomerations since
the secular stagnation in this century. Table 10 presents the long-term changes in innovation
agglomerations measured by the number of patents filed in a region between the late 20" century
(1980-1999) and the early 21% century (2000-2019). Figure 12 displays more detail data on which
Table 10 builds. These data show that it is Kanagawa that demonstrated the greatest decline in
innovative activities in this century. It shows the greatest decline in most technological fields
including biotechnology, electronics, precision instruments, and mechanical engineering. In fact,
Belderbos et al. (2013) show that high-tech multinational companies in Kanagawa shifted
production to Asia, which decreased knowledge spillover onto local suppliers and drastically
slowed down regional total factor productivity in the manufacturing sector from 1997 to 2007. This
made the negative exit effect of plants with research and development greatest in Kanagawa. It is
reasonable for Kohsetsushi located in declining agglomerations to shift their efforts from
technology extension to research activities. Those Kohsetsushi should emphasize more on
technology transfer channels with geographically broader spillover than on those with local impacts,
such as consultation and seminars for local SMEs. It is, therefore, reasonable for research-based
Kohsetsushi to expand their financial base to other innovation system constituencies, such as
national funding agencies and private foundations, as shown in Table 3.

Table 10 Regions with the largest and smallest change rates of the number of patent applications by
technology

Figure 12 The long-term change in innovation agglomerations: growth rate of patent application
from 1980-1999 to 2000-2019

Table 11 presents the most growing and declining innovation agglomerations in terms of location
quotients. The higher value represents the higher level of technological concentration. For instance,
Ishikawa recorded the fastest rate of concentration in biotechnology innovation from the late 20"
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century (0.872) to the early 21% century (1.444). The location quotient’s being the value of one
means that concentration level of the region (Xirt/Xit) is just the same as that of the country (Xrt/Xt).
Thus, the result indicates that Ishikawa was relatively less concentrated in biotechnology innovation
in the late 20" century while the concentration rapidly progressed throughout the early 21% century.
The most notable example of rising innovation agglomerations is Ibaraki. Innovative activities in
Ibaraki used to be concentrated in mechanical engineering in the late 20" century as much as the
country-level benchmark (1.053), but the concentration intensified at the fastest rate in the early 21
century, reaching to the level of 1.554. Moreover, as Table 10 shows, the size of mechanical
engineering agglomeration also grew the fastest (more than 200%) in this period in Ibaraki. As
previously discussed, mechanical engineering innovations build on synthetic knowledge which
contains more tacit knowledge, and thus require a higher level of face-to-face communication for
spillover to become active (Fukugawa 2016). Therefore, regions like Ibaraki face increasing needs
for technology extension with localized spillover. The incorporation of manufacturing Kohsetsushi
should backfire when implemented in such regions. This suggests that local governments should
recognize that the benefit of incorporating Kohsetsushi hinges on characteristics of regional
innovation systems that are changing.

Table 11 Regions with the largest and smallest change rates of the innovation location quotient by
technology

Figure 13 summarizes the factors affecting heterogeneous treatment effects in terms of technology
extension. The treatment timings and treatment effects in terms of technology extension correlate
because the late treated groups were exposed to rapid decline in innovation agglomeration that
makes localized spillover less relevant and encourages Kohsetsushi to enhance research and
inventive activities with geographically broad spillover. Meanwhile, there are some emerging
innovation agglomerations, which makes it relevant for Kohsetsushi to enhance technology
extension with localized spillover. Another reason for the correlation between treatment timings
and treatment effects is that late treated groups learned from experiences of the early treated groups.
As previously noted, the assessment committee of incorporated Kohsetsushi tends to place a higher
value on technology extension than research and inventive activities. This practice presumably
stems from preconceived ideas held by board members that any Kohsetsushi should enhance
technology extension with localized spillover. However, from the incentive perspective, the
incorporation of Kohsetsushi is well suited for strategies to enhance research and inventive activities
with geographically broad spillover. In light of these notions, the results suggest the possibility that
the third-party panels also learned from experiences of previously incorporated Kohsetsushi in that
they gained better understanding about the nature of the incorporation of Kohsetsushi as an
incentive system reform and allowed (even encouraged) inclined resource allocation to research
and inventive activities, rather than promoting them to engage in technology extension. Learning
capacity and changing nature of agglomeration externalities combined generated heterogeneity in
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treatment effects, which made the results of the CS DID models in terms of technology extension
statistically insignificant.

Figure 13 Sources of heterogeneous treatment effects in terms of technology extension

6. Conclusion

This study compared the ATT of incorporating Kohsetsushi estimated by the TWFE DID and CS
DID models. Different groups exhibited distinct (opposite signed) treatment effects of incorporating
Kohsetsushi, which was observed only in the analysis of technology extension. The sources of
heterogeneity in treatment effects in terms of technology extension was discussed from the
perspective of changing structures of innovation agglomerations. The late treated groups were
facing a rapid decline in innovation agglomerations, making localized spillover channels, such as
technical consultation, less relevant. It was reasonable for the late treated groups to enhance research
and inventive activities, of which range of spillover is geographically broader, while tapering
technology extension. Meanwhile, the early treated groups seem to have lacked understanding
about economic consequences of the incorporation as an incentive system reform, forcing them to
adopt an impossible resource allocation strategy: they simultaneously enhanced both technology
extension and research activities. In this regard, followers can learn from success and failure of
leaders. The late treated groups seem to have learned from experiences of the early treated groups,
which suggests that unobserved organizational learning capacity may be another source of
heterogeneous treatment effects. Different local governments should have distinct levels of self-
confidence, which should make the results of benefit-cost calculations regarding the effects of the
incorporation of Kohsetsushi different across the treated groups. Lastly, technology extension with
localized spillover remains important in rising innovation agglomerations based on synthetic
knowledge. Incorporating manufacturing Kohsetsushi in such regions should generate unintended
consequences. It is necessary for local governments to recognize the actual benefit of incorporating
Kohsetsushi in regional innovation systems that are changing.
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Figure 1 Proportion of incorporated Kohsetsushi
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Figure 2 Timings of incorporation by logged regional real GDP at the time of incorporation

19

18.5

18

17.5

17

16

15.5

15

14.5

14
2004

Timings of incorporation by logged real regional GDP

* tokyo
¢ osaka pref
¢ osaka city + pokkaido
* yamaguchi * kyoto city
* iwate * aomori
* tottori
2006 2008 2010 2012 2014 2016

kanagawa

2018



18 /40

Figure 3 Timings of incorporation by long-term growth of innovative activities in the region
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Figure 4 Pre-event trends of the PhD holder ratio
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Figure 5 Pre-event trends of the number of technological problems consulted per technical staff
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Figure 6 Factor loadings
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Figure 7 The ATTs by periods before and after treatment: consultations per technical staff of early and late treated

groups
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Figure 8 The ATTs by periods before and after treatment: ratio of technical staff with PhD of early and late treated

groups
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Figure 9 The ATTs by periods before and after treatment: patent applications per technical staff of early and late treated

groups
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Figure 10 The ATTs by periods before and after treatment: Factor score representing research and invention of early and

late treated groups
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Figure 11 The ATTs by periods before and after treatment: Factor score representing technology extension of early and
late treated groups
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Figure 12 The long-term change in innovation agglomerations: growth rate of patent application from 1980-1999 to 2000-2019

Change in innovation agglomerations: growth rate of patent application from 1980-1999 to 2000-
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Notes
Computed from the 11PPD applicant file.

To avoid double counting, information of the first applicants was used.
Vertical axis represents a change rate defined as change in patent application from 1980-1999 to 2000-2019 / patent application from 1980-1999. The value of -0.5 represents a decrease
by 50%.
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Figure 13 Sources of heterogeneous treatment effects in terms of technology extension
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Table 1 Descriptive statistics

Variable N Mean SD. Min  Max
Ln(budget) 1812 12915 1123 8749 16132
Innovation agglomeration growth rate 2,259 275 534 -1.268 1.872
Problems consulted per technical staff 1774 117527 113112 0 8225
Ratio of PhD holders to technical staff 1,635 245 176 0 .862
Patent applications per technical staff 1,319 .099 .109 0 1714
Incorporation dummy 2,250 .058 235 0 1
Location quotients of biotechnology 2259  1.657 1095 208 7.194
Location quotients of chemicals 2,259 831 494 169 4.848
Location quotients of electronics 2,259 613 .369 044 2318
Location quotients of instruments 2,259 753 328 089 3436
Location quotients of mechanical engineering 2,259 1300 467 362 3274
Location quotients of others 2259 1849 941 309 7.08
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Table 2 Rotated factor loadings (pattern matrix) and unique variances

Variable Factorl Factor2 Factor3 Factor4 Uniqueness
Testing -0.0417 0.2545 0.0347 0.4253 0.7064
Equipment use -0.0451 0.6161 0.0060 -0.1543 0.6296
Technical consultation 0.0592 0.6816 -0.0235 0.1916 0.4552
PhD 0.5745 0.0206 -0.0283 -0.0398 0.6830
Paper 0.5919 0.0053 -0.0051 0.0310 0.6496
Funded research 0.0490 -0.0516 0.3842 0.0803 0.8183
Patent application 0.3676 0.0359 0.2967 -0.0493 0.6680
Note

N=734.

Variables are divided by the number of technical staff to control for size.
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Table 3 Comparisons of TES between non-incorporated and incorporated Kohsetsushi and between before and after the incorporation

non-
incorporated
N
Revenue from testing 1,048
Revenue from equipment use 1,063
Consultation 1522
PhD scientists 1,392
Papers 1,264
Revenue from contract research 953
Revenue from joint research 407
Patent application 1,106
Licensing income 685
Competitive funds 498
Budget 1,562
Staff 1579

mean
517.98
306.66
114.73
0.24
0.17
34245
7458
0.09
27.05
379
546,505
45.53

incorporated

N
181
181
245
247
240
177

88
220
147

98
257
256

mean
592.71
300.78
131.78
0.30
0.23
47441
12952
0.15
38.08
1115
1,641,156
103.69

Pre-
incorporation
N
67
66
124
133
126
63
7
106
37
7
137
136

mean
590.24
129.14
87.05
0.20
024
397.75
49.77
0.13
32.80
269
1,179,649
88.36

Post-
incorporation
N
114
115
121
114
114
114
81
114
110
91
120
120

mean
594.17
399.29
177.62
042
0.22
516.78
136.41
0.16
39.86
1180
2,168,044
121.07

Note

Variables other than budget and staff are divided by the number of technical staff to control for size.
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Table 4 Comparisons of TES between early treated (incorporated in 2006 and 2007) and late treated (incorporated in 2014 and 2017) groups

Early treated: pre-

incorporation

N
Revenue from testing 7
Revenue from equipment use 7
Consultation 19
PhD scientists 18
Papers 19
Revenue from contract research 7
Revenue from joint research 0
Patent application 15
Licensing income 1
Competitive funds 0
Budget 19
Staff 19

mean
349.0
130.0
138.9
0.14
0.18
76.9

008
023

1748248
126.7

Early treated: post-
incorporation
N
41
41
41
41
40
41
28
40
40
24
40
41

mean
685.5
614.8
2328
0.39
0.15
5904
1284
0.13
6.42
4137
3,588,509
161.1

Late treated: pre-
incorporation
N
19
19
27
27
25
19
7
23
13
7
27
27

mean
14191
1495
1338
0.19
0.13
506.8
49.7
0.05
8.73
268.7
1,511,370
105.2

Late treated: post-
incorporation
N
13
13
13
12
13
13
13
13
13
13
13
13

mean
12059
106.9
93.7
0.35
031
188.9
251.3
0.18
2643
3275.8
2,381,370
150.6

Note

Variables other than budget and staff are divided by the number of technical staff to control for size.
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Table 5 The ATTs obtained from the TWFE DID and CS DID models and the results of Goodman-Bacon decomposition: problems consulted per technical staff

TWFEDID
Incorporation dummy
Ln(budget)

Innovation agglomeration growth rate

Goodman-Bacon decomposition
Timing_groups

Never_v_timing

CSDID

Incorporation dummy

Parsimonious

Coef.

36.794***

Beta

-16.489

34.141

Parsimonious

Coef.

20.993

N=1772
SE

8.354

Total weight
048

951

N=1744
SE.

25919

Full
T Coef.
440 37.877***
2508

12.360**

Timing_groups

Never_v_timing

Within

Full

Z Coef.
081 13.838

N=1742

SE.

8.693

4.648

6.254

Beta

-23.622

36.073

-184.602

N=1,692

SE

25.726

4.36
054

1.98

Total weight
049
852

097

054

Level of statistical significance: *** 1%, ** 5%, * 10%.
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Table 6 The ATTs obtained from the TWFE DID and CS DID models and the results of Goodman-Bacon decomposition: a ratio of PhD holders to technical staff

TWFEDID
Incorporation dummy
Ln(budget)

Innovation agglomeration growth rate

Goodman-Bacon decomposition
Timing_groups

Never_v_timing

CSDID

Incorporation dummy

Parsimonious

Coef.

0.086***

Beta

043

091

Parsimonious

Coef.

0.068***

1,632
SE

0.010

Total weight
043

956

1,615
SE.

0.022

9.03

3.12

Full 1,605
Coef. SE
0.092*** 0.010
-0.008 0.005
-0.016** 0.007
Beta

Timing_groups .040

Never_v_timing 095
Within 203
Full 1,565
Coef. SE
0.068*** 0.026

943
-1.56

-2.28

Total weight
044
.898

.057

2.59

Level of statistical significance: *** 1%, ** 5%, * 10%.
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Table 7 The ATTs obtained from the TWFE DID and CS DID models and the results of Goodman-Bacon decomposition: patents filed per technical staff

TWFEDID
Incorporation dummy
Ln(budget)

Innovation agglomeration growth rate

Goodman-Bacon decomposition
Timing_groups

Never_v_timing

CSDID

Incorporation dummy

Parsimonious

Coef.

0.073***

Beta

057

.069

Parsimonious

Coef.

0.073*

N=1,306
SE

0.014

Total weight
047

952

N=1,266
SE.

0.040

Full
T Coef.
540 0.063***
0.009

0.035%**

Timing_groups

Never_v_timing

Within

Full
Z Coef.
183 0.070*

N=1,287

SE.

0.014

0.008

0011

Beta

001

057

-075

N=1,223

SE

0.040

453
1.03

3.18

Total weight
054
872

072

177

Level of statistical significance: *** 1%, ** 5%, * 10%.
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Table 8 The ATTs obtained from the TWFE DID and CS DID models and the results of Goodman-Bacon decomposition: Factor score representing research and inventive activities

TWFEDID

Incorporation dummy

Ln(budget)

Innovation agglomeration growth rate
Goodman-Bacon decomposition
Timing_groups

Always_v_timing

Never_v_timing

CSDID

Incorporation dummy

Parsimonious

Coef.

0.674***

Beta

767

076

682

Parsimonious

Coef.

0.531**

N=810
SE

0.083

Total weight
056
013

929

N=769
SE.

0221

Full
T Coef.
8.16 0.649***
0.004
0.118

Timing_groups
Always v_timing
Never_v_timing

Always_v_never

Within
Full
z Coef.
241 0.511**

N=803

SE

0.085

0.050

0.073

Beta

735

029

.686

-13.080

285

N=749

SE

0.198

T
7.65
0.09
161

Total weight
055
014
891
.0002

038

2.59

Level of statistical significance: *** 1%, ** 5%, * 10%.
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Table 9 The ATTs obtained from the TWFE DID and CS DID models and the results of Goodman-Bacon decomposition: Factor score representing technology extension

TWFEDID

Incorporation dummy

Ln(budget)

Innovation agglomeration growth rate
Goodman-Bacon decomposition
Timing_groups

Always_v_timing

Never_v_timing

CSDID

Incorporation dummy

Parsimonious

Coef.

0.139**

Beta

105

- 784

105

Parsimonious

Coef.

0.102

N=810
SE

0.060

Total weight
056
013

929

N=769
SE.

0.077

Full
T Coef.
231 0.152**
-0.072**
0.029

Timing_groups
Always v_timing
Never_v_timing

Always_v_never

Within

Full

z Coef.
133 0.071

N=803

SE

0.062

0.036

0.053

Beta

154

-.806

124

-14.063

234

N=749

SE

0.079

T
246
-2.01
054

Total weight
055
014
891
.0002

038

0.90

Level of statistical significance: *** 1%, ** 5%, * 10%
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Table 10 Regions with the largest and smallest change rates of the number of patent applications by technology

Region Total: 1980-1999  Total: 2000-2019  Change rate

Biotechnology Shiga 401 1,129 1815
Shizuoka 4,698 3,872 -0.176
Chemicals Akita 128 464 2.625
Hyogo 40,440 21921 -0.458
Electronics Aomori 58 592 9.207
Kumamoto 2,102 749 -0.644
Precision Ibaraki 1354 5,500 3.062
Kanagawa 122,813 52,137 -0.575
Mechanical engineering  lbaraki 3,514 10,925 2.109
Kanagawa 140,725 67,089 -0.523
Others Aichi 22,986 93,455 3.066
Yamagata 2,335 1,215 -0.480
Notes

Computed from the IIPPD. See Fukugawa (2016) for the method to match the International Patent Classification (IPC) with six technological fields.
To avoid double counting, regions in which joint application was made were identified from the first applicant’s address.

Kanagawa ranks the second from the bottom in biotechnology and electronics.
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Table 11 Regions with the largest and smallest change rates of the innovation location quotient by technology

Region Average: 1980-1999  Average: 2000-2019  Change rate

Biotechnology Ishikawa 0.872 1444 0.655
Mie 3.103 0.931 -0.700
Chemicals Kumamoto 0.509 1.057 1.074
Mie 0.985 0.502 -0.490
Electronics Hiroshima 0.131 0525 3.016
Kumamoto 0.805 0.415 -0.485
Precision Ehime 0.425 1.357 2192
Gunma 0.619 0.327 -0.472
Mechanical engineering Ibaraki 1.053 1554 0475
Tokushima 1.119 0.622 -0.444
Others Aichi 0.983 2.242 1.281
Tokushima 1.795 0.785 -0.562

Notes

Computed from the 1IPPD.

See Fukugawa (2019) for location quotient.
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