
DP
RIETI Discussion Paper Series 23-E-041

Evaluating the Robustness of Off-Policy Evaluation

SAITO, Yuta
Cornell University

UDAGAWA, Takuma
Sony Group Corporation

KIYOHARA, Haruka
Tokyo Institute of Technology

MOGI, Kazuki
Stanford University

NARITA, Yusuke
RIETI

TATENO, Kei
Sony Group Corporation

The Research Institute of Economy, Trade and Industry
https://www.rieti.go.jp/en/



Evaluating the Robustness of Off-Policy Evaluation

Yuta Saito1*, Takuma Udagawa2∗, Haruka Kiyohara3†,
Kazuki Mogi4†, Yusuke Narita5, Kei Tateno2

1Cornell University, 2Sony Group Corporation, 3Tokyo Institute of Technology, 
4Stanford University, 5Yale University

Abstract

Off-policy Evaluation (OPE), or offline evaluation in general,
evaluates the performance of hypothetical policies leveraging
only offline log data. It is particularly useful in applications
where the online interaction involves high stakes and expen-
sive setting such as precision medicine and recommender sys-
tems. Since many OPE estimators have been proposed and
some of them have hyperparameters to be tuned, there is an
emerging challenge for practitioners to select and tune OPE
estimators for their specific application. Unfortunately, iden-
tifying a reliable estimator from results reported in research
papers is often difficult because the current experimental pro-
cedure evaluates and compares the estimators’ performance
on a narrow set of hyperparameters and evaluation policies.
Therefore, it is difficult to know which estimator is safe and
reliable to use. In this work, we develop Interpretable Eval-
uation for Offline Evaluation (IEOE), an experimental pro-
cedure to evaluate OPE estimators’ robustness to changes in
hyperparameters and/or evaluation policies in an interpretable
manner. Then, using the IEOE procedure, we perform exten-
sive evaluation of a wide variety of existing estimators on
Open Bandit Dataset, a large-scale public real-world dataset
for OPE. We demonstrate that our procedure can evaluate the
estimators’ robustness to the hyperparamter choice, helping
us avoid using unsafe estimators. Finally, we apply IEOE to
real-world e-commerce platform data and demonstrate how
to use our protocol in practice.

1 Introduction
Interactive bandit and reinforcement learning algorithms
have been used to optimize decision making in many real-
life scenarios such as precision medicine, recommender sys-
tems, advertising, etc. We often use these algorithms to max-
imize the expected reward, but they also produce log data
valuable for evaluating and redesigning future decision mak-
ing. For example, the logs of a news recommender system
record which news article was presented and whether the
user read it, giving the decision maker a chance to make its
recommendation more relevant. Exploiting log data is, how-
ever, more difficult than conventional supervised machine
learning. This is because the result is only observed for the
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action chosen by the algorithm but not for all the other ac-
tions the system could have taken. The logs are also biased,
as the logs overrepresent the actions favored by the algo-
rithm used to collect the data. Online experiment or A/B
test is a potential solution to this issue. It compares the per-
formance of counterfactual algorithms in an online environ-
ment, enabling unbiased evaluation and comparison. How-
ever, A/B testing counterfactual algorithms is often difficult,
since deploying a new policy to a real environment is time-
consuming and may damage user satisfaction (Gilotte et al.
2018; Saito 2020).

This motivates us to study Off-policy Evaluation (OPE),
which aims to estimate the performance of an evaluation pol-
icy using only log data collected by a behavior policy. Such
an evaluation allows us to compare the performance of can-
didate policies safely and helps us decide which policy to de-
ploy in the field. This alternative offline evaluation approach
thus has the potential to overcome the above issues with the
online A/B test approach.

With growing interest in OPE, the research community
has produced a number of estimators, including Direct
Method (DM) (Beygelzimer and Langford 2009), Inverse
Probability Weighting (IPW) (Precup 2000; Strehl et al.
2010), Self-Normalized IPW (SNIPW) (Swaminathan and
Joachims 2015), Doubly Robust (DR) (Dudı́k et al. 2014),
Switch-DR (Wang, Agarwal, and Dudık 2017), and Doubly
Robust with Optimistic Shrinkage (DRos) (Su et al. 2020).

One emerging challenge with this trend is that there
is a need for practitioners to select and tune appropriate
hyperparameters for OPE estimators for their specific appli-
cation (Su, Srinath, and Krishnamurthy 2020; Voloshin et al.
2019). For example, DM first estimates the expected reward
function using an arbitrary machine learning method, then
uses its estimate for OPE. Therefore, one has to identify
a good machine learning method to estimate the expected
reward before the offline evaluation phase. Identifying the
appropriate machine learning method for DM is difficult,
because its accuracy cannot be easily quantified from
bandit data (Jiang and Li 2016). Sophisticated estimators
such as Switch-DR (Wang, Agarwal, and Dudık 2017) and
DRos (Su et al. 2020) show improved offline evaluation
performance in some experiments. However, these estima-
tors have a larger number of hyperparameters to be tuned
compared to the baseline estimators. A difficulty here is



Figure 1: An example output of the proposed evaluation pro-
cedure for offline evaluation

that the estimation accuracy of OPE estimators is highly
sensitive to the choice of hyperparameters, as implied in
empirical studies (Voloshin et al. 2019; Saito et al. 2020).
When we rely on OPE in real-world applications, it is
desirable to use an estimator that is robust to the choice of
hyperparameters and achieves accurate evaluations without
requiring significant hyperparameter tuning. Moreover, we
want the estimators to be robust to other possible configu-
ration changes such as evaluation policies. An estimator of
this type is preferable, because tuning hyperparameters of
OPE estimators with only logged bandit data is challenging
in nature, and we often apply an estimator to several
different policies to compare the performance of candidate
policies offline. The aim of this paper is thus to enable a
safer OPE practice by developing a procedure to evaluate
the estimators’ robustness.

Current dominant evaluation procedures. The current
evaluation procedure used in OPE research is not suitable
for evaluating the estimators’ robustness. Almost all OPE
papers evaluate the estimator’s performance for a single
given set of hyperparameters and an arbitrary evaluation
policy (Saito et al. 2020; Dudı́k et al. 2014; Wang, Agarwal,
and Dudık 2017; Su et al. 2019, 2020; Narita, Yasui, and
Yata 2019; Vlassis et al. 2019; Liu et al. 2019; Farajtabar,
Chow, and Ghavamzadeh 2018; Kato, Yasui, and Uehara
2020). Even though it is common to iterate trials with differ-
ent random seeds to provide an estimate of the performance,
this procedure cannot evaluate the estimators’ robustness
to hyperparameter choices or the changes in evaluation
policies, which is critical in real-world scenarios. The esti-
mator’s performance derived from this common procedure
does not properly account for the uncertainty in offline
evaluation performance, as the reported performance metric
is a single random variable drawn from the distribution over
the estimator’s performance. Consequently, choosing an
appropriate OPE estimator is difficult, as their robustness
to hyperparameter choices or the changes in evaluation
policies are not quantified in existing experiments.

Contributions. Motivated towards promoting a reliable

use of OPE in practice, we develop an interpretable and scal-
able evaluation procedure for OPE estimators that quantifies
their robustness to the choice of hyperparameters and possi-
ble changes in evaluation policies. Our evaluation procedure
compares several OPE estimators as depicted in Figure 1.
This figure compares the offline evaluation performance of
IPW and DM by illustrating their accuracy distributions as
we vary their hyperparameters, evaluation policies, and ran-
dom seeds. The x-axis is the squared error in offline evalu-
ation; a lower value indicates that an estimator is more ac-
curate. The figure is visually interpretable, and in this case,
we are confident that IPW is better, having lower squared
errors with high probability, being robust to the changes in
configurations, and being more accurate even in the worst
case. In addition to developing the evaluation procedure, we
have implemented open-source Python software, pyIEOE 1,
so that researchers can easily implement our procedure in
their experiments, and practitioners can identify the best es-
timator for their specific environment.

Using our procedure and software, we evaluate a
wide variety of existing OPE estimators on Open Bandit
Dataset (Saito et al. 2020) (Section 5) and several classifi-
cation datasets (Appendix A). Through these extensive ex-
periments, we demonstrate that IEOE can provide informa-
tive results, in particular the estimators’ robustness to the hy-
perparameter settings and evaluation policy changes, which
could not be obtained using typical experimental procedure
in OPE research.

Finally, as a proof of concept, we use our procedure to se-
lect the best estimator for the offline evaluation of coupon
treatment policies on a real-world e-commerce platform.
The platform uses OPE to improve its coupon optimiza-
tion policy safely without implementing A/B tests. However,
the platform’s data scientists do not know which OPE esti-
mator is appropriate for their setting. We apply our proce-
dure to provide an appropriate estimator choice for the plat-
form. This real-world application demonstrates how to use
our procedure to reduce uncertainty and risk that we face in
real-world offline evaluation.

Our contributions are summarized as follows.

• We develop an experimental procedure called IEOE that
is useful for identifying robust estimators and avoid the
use of estimators sensitive to configuration changes.

• We have implemented pyIEOE , open-source Python
software, that facilitates the use of our experimental pro-
cedure both in research and in practice.

• We conduct comprehensive benchmark experiments on
public datasets and demonstrate that IEOE is useful for
identifying estimators sensitive to configuration changes,
and thus can help avoid potential failures in OPE.

• We apply IEOE to a real-world OPE application and
demonstrate how this procedure helps us safely conduct
OPE in practice.

1https://github.com/sony/pyIEOE



2 Off-Policy Evaluation
2.1 Setup
We consider a general contextual bandit setting. Let r ∈
[0, rmax] denote a reward or outcome variable (e.g., whether
a coupon assignment results in an increase in revenue) and
a ∈ A be a discrete action. We let x ∈ X be a context vector
(e.g., the user’s demographic profile) that the decision maker
observes when picking an action. Rewards and contexts are
sampled from unknown probability distributions p(r | x, a)
and p(x), respectively. We call a function π : X → ∆(A) a
policy. It maps each context x ∈ X into a distribution over
actions, where π(a | x) is the probability of taking action a
given context vector x.

Let D := {(xi, ai, ri)}ni=1 be a historical logged bandit
feedback with n observations. ai is a discrete variable indi-
cating which action in A is chosen for individual i. ri and
xi denote the reward and the context observed for individ-
ual i. We assume that a logged bandit feedback dataset is
generated by a behavior policy πb as follows:

{(xi, ai, ri)}ni=1 ∼
n∏

i=1

p(xi)πb(ai | xi)p(ri | xi, ai),

where each context-action-reward triplet is sampled
independently from the identical product distribution.
Then, for a function f(x, a, r), we use En[f ] :=
n−1

∑
(xi,ai,ri)∈D f(xi, ai, ri) to denote its empirical ex-

pectation over n observations in D. We also use q(x, a) :=
Er∼p(r|x,a)[r | x, a] to denote the mean reward function for
a given context and action.

In OPE, we are interested in using historical logged bandit
data to estimate the following policy value of a given evalu-
ation policy πe which might be different from πb:

V (πe) := E(x,a,r)∼p(x)πe(a|x)p(r|x,a)[r].

Estimating V (πe) before deploying πe in an online environ-
ment is useful in practice, because πe may perform poorly.
Additionally, this makes it possible to select an evaluation
policy that maximizes the policy value by comparing their
estimated performances without incurring additional imple-
mentation cost.

2.2 Existing OPE Estimators
Given the policy value as the estimand, the goal of re-
searchers is to propose an accurate estimator. OPE estimator
V̂ estimates the policy value of an arbitrary evaluation pol-
icy as V (πe) ≈ V̂ (πe;D, θ), whereD is an available logged
bandit feedback dataset, and θ is a set of pre-defined hyper-
parameters of V̂ .

Below, we summarize the definitions and properties of
several existing OPE estimators. We also summarize their
built-in hyperparameters in Table 1.

Direct Method (DM) DM (Beygelzimer and Langford
2009) first trains a supervised machine learning method,
such as ridge regression, to estimate the mean reward func-
tion q. DM then estimates the policy value as

V̂DM(πe;D, q̂) := En[Ea∼πe(a|x)[q̂(xi, a)]],

where q̂(x, a) is the estimated mean reward function. If
q̂(x, a) is a good approximation to the mean reward func-
tion, this estimator accurately estimates the policy value of
the evaluation policy. If q̂(x, a) fails to approximate the
mean reward function well, however, the final estimator
tends to fail in OPE.

Inverse Probability Weighting (IPW) To alleviate the
issue with DM, researchers often use IPW (Precup 2000;
Strehl et al. 2010). IPW re-weights the rewards by the ratio
of the evaluation policy to the behavior policy, as

V̂IPW(πe;D) := En[ρ(xi, ai)ri],

where ρ(x, a) := πe(a | x)/πb(a | x) is called the im-
portance weight. When the behavior policy is known, IPW
is unbiased and consistent for the policy value. However, it
can have high variance, especially when the evaluation pol-
icy deviates significantly from the behavior policy. To reduce
the variance of IPW, the following weight clipping is often
applied.

V̂IPWps(πe;D) := En[min{ρ(xi, ai), λ}ri],

where λ ≥ 0 is a clipping hyperparamter. A lower value of λ
greatly reduces the variance while introducing a large bias.
Following Su et al. (Su et al. 2020), we call IPW with weight
clipping as IPW with Pessimistic Shrinkage (IPWps). When
λ =∞, IPWps is identical to IPW.

Doubly Robust (DR) DR (Dudı́k et al. 2014) combines
DM and IPW as follows.

V̂DR(πe;D, q̂)
:= En[Ea∼πe(a|x)[q̂(xi, a)] + ρ(xi, ai)(ri − q̂(xi, ai))].

DR uses the estimated mean reward function as a control
variate to decrease the variance of IPW. It is also doubly
robust in that it is consistent to the policy value if either the
importance weight or the mean reward estimator is accurate.
The weight clipping can also be applied to DR as follows.

V̂DRps(πe;D, q̂)
:= En[Ea∼πe(a|x)[q̂(xi, a)]

+ min{ρ(xi, ai), λ}(ri − q̂(xi, ai))],

where λ ≥ 0 is a clipping hyperparamter. DR with weight
clipping is called DR with Pessimistic Shrinkage (DRps).
When λ =∞, DRps is identical to DR.

Self-Normalized Estimators SNIPW (Swaminathan and
Joachims 2015) is an approach to address the variance issue
of IPW. It estimates the policy value by dividing the sum of
weighted rewards by the sum of importance weights as:

V̂SNIPW(πe;D) :=
En[ρ(xi, ai)ri]

En[ρ(xi, ai)]
.

SNIPW is more stable than IPW, because the policy value
estimated by SNIPW is bounded in the support of rewards,
and its conditional variance given action and context is
bounded by the conditional variance of the rewards (Kallus
and Uehara 2019). IPW does not have these properties. We



Table 1: Hyperparameters of the OPE estimators

OPE Estimators Hyperparameters

Direct Method (DM) q̂, K
Inverse Probability Weighting with Pessimistic Shrinkage (IPWps) (Su et al. 2020; Strehl et al. 2010) λ, (π̂b)

Self-Normalized Inverse Probability Weighting (SNIPW) (Swaminathan and Joachims 2015) (π̂b)
Doubly Robust with Pessimistic Shrinkage (DRps) (Dudı́k et al. 2014; Su et al. 2020) q̂, K, λ, (π̂b)

Self-Normalized Doubly Robust (SNDR) q̂, K, (π̂b)
Switch Doubly Robust (Switch-DR) (Wang, Agarwal, and Dudık 2017) q̂, K, τ , (π̂b)

Doubly Robust with Optimistic Shrinkage (DRos) (Su et al. 2020) q̂, K, λ, (π̂b)

Note: q̂ is an estimator for the mean reward function constructed by an arbitrary machine learning method. K is the number of folds in the
cross-fitting procedure. π̂b is an estimated behavior policy. This is unnecessary when we know the true behavior policy, and thus it is in parentheses.
τ and λ are non-negative hyperparameters for defining the corresponding estimators.

can define Self-Normalized Doubly Robust (SNDR) in a
similar manner as follows.

V̂SNDR(πe;D, q̂)
:= En[Ea∼πe(a|x)[q̂(xi, a)]

+
ρ(xi, ai)

En[ρ(xi, ai)]
(ri − q̂(xi, ai))].

Switch Estimator DR can still be subject to the variance
issue, particularly when the importance weights are large
due to low overlap between behavior and evaluation poli-
cies. Switch-DR (Wang, Agarwal, and Dudık 2017) aims to
further reduce the variance by using DM where the impor-
tance weight is large:

V̂SwitchDR(πe;D, q̂, τ)
:= En[Ea∼πe(a|x)[q̂(xi, a)]

+ ρ(xi, ai)I{ρ(xi, ai) ≤ τ}(ri − q̂(xi, ai))],

where I{·} is the indicator function and τ ≥ 0 is a hyper-
parameter. Switch-DR interpolates between DM and DR.
When τ = 0, it is identical to DM, while τ → ∞ yields
DR.

Doubly Robust with Optimistic Shrinkage (DRos) Su
et al. (Su et al. 2020) proposes DRos based on a new weight
function ρ̂ : X × A → R+ that directly minimizes sharp
bounds on the mean-squared-error (MSE) of the resulting
estimator. DRos is defined as

V̂DRos(πe;D, q̂, λ)
:= En[Ea∼πe(a|x)[q̂(xi, a)] + ρ̂(xi, ai;λ)(ri − q̂(xi, ai))],

where λ ≥ 0 is a hyperparameter and ρ̂ is defined as
ρ̂(x, a;λ) := λ

ρ2(x,a)+λρ(x, a). When λ = 0, ρ̂(x, a;λ) = 0

leading to DM. On the other hand, as λ → ∞, ρ̂(x, a;λ) =
ρ(x, a) leading to DR.

Cross-Fitting Procedure. To obtain a reward estimator,
q̂, we sometimes use cross-fitting to avoid the substantial
bias that might arise due to overfitting (Narita, Yasui, and
Yata 2020). The cross-fitting procedure constructs a model-
dependent estimator such as DM and DR as follows:

1. Take a K-fold random partition (Dk)
K
k=1 of size n of

logged bandit feedback dataset D such that the size of
each fold is nk = n/K. Also, for each k = 1, 2, . . .K,
we define Dc

k := D\Dk.
2. For each k = 1, 2, . . .K, construct reward estimators
{q̂k}Kk=1 using the subset of data Dc

k.

3. Given {q̂k}Kk=1 and model-dependent estimator V̂ , esti-
mate the policy value by K−1

∑K
k=1 V̂ (πe;Dk, q̂k).

Hyperparameter Tuning Procedure. As Table 1 summa-
rizes, most OPE estimators have hyperparameters such as λ,
τ , K, and q̂ that should appropriately be set. Su et al. (Su
et al. 2020) proposes to select a set of hyperparameters based
on the following criterion.

θ̂ ∈ argmin
θ∈Θ

BiasUB(θ;D)2 + Vn(θ;D), (1)

where Vn(θ;D) is the sample variance in OPE, and
BiasUB(θ;D) is the upper bound of the bias estimated us-
ingD. There are several ways to derive the bias upper bound
as stated in Su et al. (Su et al. 2020). One way is the direct
bias estimation:

BiasUB(θ;D)
:= |En[(ρ̂ (xi, ai; θ)− ρ (xi, ai)) (ri − q̂ (xi, ai))]|

+

√
2E [ρ(x, a)2] log(2/δ)

n
+

2ρmax log(2/δ)

3n

where δ ∈ (0, 1] is the confidence delta to derive the high
probability upper bound, and ρmax := maxx,a ρ(x, a) is the
maximum importance weight. ρ̂(xi, ai; θ) is the importance
weight modified by a hyperparameter. For example, for IP-
Wps and DRps, ρ̂(xi, ai;λ) = min{ρ(xi, ai), λ}, and for
Switch-DR, ρ̂(xi, ai; τ) = ρ(xi, ai)I{ρ(xi, ai) ≤ τ}.

3 Evaluating Offline Evaluation
So far, we have seen that the OPE community has developed
a variety of OPE estimators. What every OPE research pa-
per should do in their experiments is to compare the perfor-
mance (estimation accuracy) of the existing estimators and
report the results. A typical and dominant method to do so is



to estimate the following mean-squared-error (MSE) as the
estimator’s performance metric:

MSE(V̂ ;πe, θ) := ED

[(
V (πe)− V̂ (πe;D, θ)

)2
]
,

where V (πe) is the policy value and V̂ is an estimator to be
evaluated. MSE measures the squared distance between the
policy value and its estimated value; a lower value means
a more accurate OPE by V̂ . Researchers often calculate the
MSE of each estimator several times with different random
seeds and report its mean.

The issue with this procedure is that most of the estima-
tors have some hyperparameters that should be chosen prop-
erly before the estimation process. Moreover, the estimation
performance can vary when evaluating different evaluation
policies (especially in finite sample cases). However, the
current dominant procedure for evaluating OPE estimators
uses only one set of hyperparameters and an arbitrary eval-
uation policy for each estimator, and then discusses the de-
rived results (Wang, Agarwal, and Dudık 2017; Farajtabar,
Chow, and Ghavamzadeh 2018; Su et al. 2019; Agarwal
et al. 2017; Vlassis et al. 2019).2 This type of simplified ex-
perimental procedure does not accurately capture the uncer-
tainty in the performance of OPE estimators. Specifically,
it cannot evaluate the robustness to hyperparameter choices
and evaluation policy settings, as the reported score is for a
single arbitrary set of hyperparameters and for a single eval-
uation policy.

What is often critical in offline evaluation practices is
to identify an estimator that performs well for a variety of
evaluation policies without problem-specific hyperparame-
ter tuning. An estimator robust to the changes in such con-
figurations is usable reliably in uncertain real-life scenarios.
In contrast, an estimator which performs well only on a nar-
row set of hyperparameters and evaluation policies entails a
higher risk of failure in its particular application. Therefore,
we want to avoid using such sensitive estimators as these
estimators are more likely to fail. In the next section, we
describe an experimental procedure that can evaluate the es-
timators’ robustness to experimental configurations, leading
to informative estimator comparisons in OPE research and a
reliable estimator selection in practice.

4 Interpretable Evaluation
for Offline Evaluation

Here, we outline our experimental protocol, Interpretable
Evaluation for Offline Evaluation (IEOE). As we have dis-
cussed, the expected value of performance (e.g., MSE) alone
is insufficient to properly evaluate the real-world applicabil-
ity of an estimator, as it discards information about its ro-
bustness to hyperparameter choices and changes in evalua-
tion policies. We can conduct a more informative experiment
by estimating the cumulative distribution function (CDF) of

2This is why we use MSE(V̂ ;πe, θ) to denote MSE so as to
highlight that it depends on the estimator’s hyperparameters θ and
an evaluation policy πe.

an estimator’s performance, as done in some studies on re-
inforcement learning (Engstrom et al. 2020; Jordan et al.
2020; Jordan, Cohen, and Thomas 2018). CDF is the func-
tion, FZ : R → [0, 1], where Z is a random variable rep-
resenting the performance metric of an estimator (e.g., the
squared error).3 FZ(z) maps a performance metric z to the
probability that the estimator achieves a performance better
or equal to that score, i.e., FZ(z) := P(Z ≤ z).

When we have size m of realizations of Z, i.e., Z :=
{z1, . . . , zm}, we can estimate the CDF by

F̂Z(z) :=
1

m

m∑
i=1

I{zi ≤ z}, (2)

Using the CDF for evaluating OPE estimators allows re-
searchers to compare different estimators with respect to
their robustness to the varying configurations. Specifically,
we can use the CDF to evaluate OPE estimators by exam-
ining the CDF of the estimators’ performance visually or
computing some summary scores of the CDF as the es-
timators’ performance metric. For example, we can score
an estimator by the area under the CDF curve (AU-CDF):
AU-CDF(zmax) :=

∫ zmax

0
FZ(z)dz. Another possible sum-

mary score is conditional value-at-risk (CVaR) which com-
putes the expected value of a random variable above a given
probability α: CVaRα(Z) := E[Z | Z ≥ F−1

Z (α)], where
F−1
Z (α) := argminz{z | FZ(z) ≥ α} is the inverse of the

CDF. When using CVaR, the estimators are evaluated based
on the average performance of the bottom 100 × (1 − α)
percent of trials. For example, CVaR0.7(Z) is the average
performance of the worst 30% of trials. In addition, we can
use standard deviation (Std), E[(Z − E[Z])2]1/2, and some
other moments such as the skewness of F̂ (z) as summary
scores.

IEOE with Synthetic or Classification Data In research
papers, it is common to use synthetic or classification data to
evaluate OPE estimators (Dudı́k et al. 2014; Wang, Agarwal,
and Dudık 2017; Su et al. 2020; Kallus and Uehara 2019;
Kallus, Saito, and Uehara 2021). We first present how to ap-
ply the IEOE procedure to synthetic or classification data
in Algorithm 1. To evaluate the estimation performance of
V̂ , we need to specify a candidate set of hyperparameters
Θ, a set of evaluation policies Πe, a hyperparameter sam-
pling function ϕ, and a set of random seeds S. Then, for
every seed s ∈ S, the algorithm samples a set of hyper-
parameters θ ∈ Θ based on sampler ϕ. What kind of ϕ
we use can change depending on the purpose of the eval-
uation of OPE. For example, we can use a hyperparameter
tuning method for OPE estimators such as the method de-
scribed in Section 2.2 as ϕ, assuming practitioners use it in
real-world applications. When we cannot implement such
a hyperparameter tuning method for OPE due to its imple-
mentation cost or risk of overfitting, we can be conservative
and use the uniform distribution as ϕ in the evaluation of
OPE. Next, the IEOE algorithm samples an evaluation pol-
icy πe ∈ Πe from the discrete uniform distribution. Then,

3In the following, without loss of generality, we assume that a
lower value of Z means more accurate OPE.



Algorithm 1: Interpretable Evaluation for Offline Evaluation (with Classification Data)

logged bandit feedback D, an estimator to be evaluated V̂ , a candidate set of hyperparame-
ters Θ, a set of evaluation policies Πe, a hyperparameter sampler ϕ, a set of random seeds
Sempirical CDF of the squared error (F̂Z) Z ← ∅ {initialize set of results} for s ∈ S do

Output:1:2:3: θ ← ϕ(Θ; s) {sample a set of hyperparameters}
4: πe ← Unif(Πe; s) {sample an evaluation policy uniformly}
5: D∗ ← Bootstrap(D; s) {sample logged bandit data with replacement}
6: z′ ← SE(V̂ ;D∗, πe, θ) {calculate the squared error of V̂ }
7: Z ← Z ∪ {z′}
8: end for
9: Estimate FZ using Z (by Eq. 2)

Algorithm 2: Interpretable Evaluation for Offline Evaluation (with Real-World Data)

Input: logged bandit feedback datasets {Dj}ℓj=1, an estimator to be evaluated V̂ , a candidate set of hyperparam-
eters Θ, a set of evaluation policies Πe = {πj}ℓj=1, a hyperparameter sampler ϕ, a set of random seeds S

Output: empirical CDF of the squared error (F̂Z)
1: Z ← ∅ (initialize set of results)
2: for s ∈ S do
3: θ ← ϕ(Θ; s) {sample a set of hyperparameters based on a given sampler}
4: πj ← Unif(Πe; s) {sample an evaluation policy uniformly}
5: Dte = Dj and Dev =

⋃ℓ
k=1;k ̸=j Dj {define evaluation and test sets}

6: D∗
ev ← Bootstrap(Dev; s) {sample data from the evaluation set with replacement}

7: Von(πj ;Dte) = En[ri] {calculate an on-policy estimate of the policy value with the test set}

8: z′ ←
(
Von(πj ;Dte)− V̂ (πj ; θ,D∗

ev)
)2

{calculate the squared error of the estimator}
9: Z ← Z ∪ {z′}

10: end for
11: Estimate FZ using Z (by Eq. 2)

it replicates the data generating process using the bootstrap
sampling from D. A bootstrapped logged bandit feedback
dataset is defined as D∗ := {(x∗

i , a
∗
i , r

∗
i )}ni=1 where each

tuple (x∗
i , a

∗
i , r

∗
i ) is sampled independently from D with re-

placement. Finally, for sampled tuple (πe,D∗, θ), it com-
putes a performance metric (e.g., the squared error). After
applying Algorithm 1 to several estimators and obtaining the
empirical CDF of their evaluation performances, we can vi-
sualize them or compute some summary scores to evaluate
and compare the estimators’ robustness.

IEOE with Real-World Data It is also possible to apply
IEOE to real-world logged bandit data. Algorithm 2 presents
IEOE that can be used in real-world applications. To eval-
uate the performance of V̂ with real-world data, we need
to prepare several logged bandit feedback datasets {Dj}ℓj=1
where each dataset Dj is collected by a policy πj . Then,
for every seed s ∈ S , the algorithm samples a set of hy-
perparameters θ ∈ Θ based on a sampler ϕ. Next, the al-
gorithm samples an evaluation policy πj ∈ Πe from the
discrete uniform distribution. Then, the evaluation and test
sets are defined as Dte = Dj and Dev =

⋃ℓ
k=1;k ̸=j Dj

where the evaluation set is used in OPE and the test set is
used to calculate the ground-truth performance of πj . Then,
the algorithm replicates the environment using the bootstrap

sampling from Dev. A bootstrapped logged bandit feedback
dataset is defined as D∗

ev := {(x∗
i , a

∗
i , r

∗
i )}ni=1 where each

tuple (x∗
i , a

∗
i , r

∗
i ) is sampled independently from Dev with

replacement. Finally, for a sampled tuple (πe,D∗, θ), it com-
putes the squared error as follows.

z =
(
Von(πj ;Dte)− V̂ (πj ; θ,D∗

ev)
)2

,

where Von(πj ;Dte) = En[ri] is the on-policy estimate of
the policy value of πj estimated with the test set.

Following Algorithm 2, researchers can benchmark the
robustness of OPE estimators using public real-world data.
In addition, practitioners can avoid using unstable estimators
by applying Algorithm 2 to their own bandit data.

5 Experiments with Open Bandit Dataset
In this section, we use IEOE and evaluate the robustness of
a wide variety of OPE estimators on Open Bandit Dataset
(OBD)4. We run the experiments using our pyIEOE soft-
ware. By using it, anyone can replicate the results easily.5

4https://research.zozo.com/data.html
5The code to replicate the results is available at:

https://github.com/sony/pyIEOE/tree/master/benchmark. We
also provide detailed description of the software in Appendix B.



Table 2: Hyperparameter spaces for OPE estimators

OPE Estimators Hyperparameter Spaces

DM q̂ ∈ {LR/RR,RF,LightGBM},K ∈ {1, 2, . . . , 5}
IPWps λ ∈ {1, 5, 10, 50, . . . , 105∞}, (π̂b ∈ {LR,RF,LightGBM})
SNIPW (π̂b ∈ {LR,RF,LightGBM})
DRps q̂ ∈ {LR/RR,RF,LightGBM}, K ∈ {1, 2, . . . , 5}, λ ∈ {1, 5, 10, 50, . . . , 105∞}, (π̂b ∈ {LR,RF,LightGBM})
SNDR q̂ ∈ {LR/RR,RF,LightGBM}, K ∈ {1, 2, . . . , 5}, (π̂b ∈ {LR,RF,LightGBM})

Switch-DR q̂ ∈ {LR/RR,RF,LightGBM}, K ∈ {1, 2, . . . , 5}, τ ∈ {1, 5, 10, 50, . . . , 105∞}, (π̂b ∈ {LR,RF,LightGBM})
DRos q̂ ∈ {LR/RR,RF,LightGBM}, K ∈ {1, 2, . . . , 5}, λ ∈ {1, 5, 10, 50, . . . , 105∞}, (π̂b ∈ {LR,RF,LightGBM})

Note: LR/RR means that LogisticRegression (LR) is used when Y is binary and RidgeRigression (RR) is used otherwise. RF stands for
RandomForest. π̂b is an estimated behavior policy. This is unnecessary when we know the true behavior policy. We estimate the behavior policy only
in the experiments with classification data in Appendix A. Therefore, πb is in parentheses. K = 1 means that we do not use cross-fitting and train q̂
on the whole Dev.

Table 3: Hyperparameter spaces for reward estimator q̂ (and behavior policy estimator π̂b)

Machine Learning Models Hyperparameter Spaces

LogisticRegression (binary outcome) C ∈ [10−3, 103]

RidgeRegression (continuous outcome) α ∈ [10−2, 102]

RandomForest max depth ∈ {2, 3, . . . , 10}, min samples split ∈ {5, 6, . . . , 20}
LightGBM learning rate ∈ [10−4, 10−1], max depth ∈ {2, 3, . . . , 10}, min samples leaf ∈ {5, 6, . . . , 20}

Note: We follow the scikit-learn package as to the names of the hyperparameters As default, we use max iter = 10, 000 for LogisticRegression,
n estimators = 100 for RandomForest, and max iter = 100 for LightGBM.

5.1 Setup
OBD is a set of logged bandit feedback datasets collected
on a large-scale fashion e-commerce platform provided by
Saito et al. (Saito et al. 2020). There are three campaigns,
”ALL”, ”Men”, and ”Women”. We use size 30,000 and
300,000 of randomly sub-sampled data from the ”ALL”
campaign. The dataset contains user context as feature vec-
tor x ∈ X , fashion item recommendation as action a ∈ A,
and click indicator as reward r ∈ {0, 1}. The dimensions of
the feature vector x is 20, and the number of actions is 80.

The dataset consists of subsets of data collected by
two different policies, the uniform random policy and the
Bernoulli Thompson Sampling policy (Thompson 1933).
We let DA denote the dataset collected by uniform ran-
dom policy πA and DB denote that collected by Bernoulli
Thompson Sampling policy πB . We apply Algorithm 2 to
obtain a set of SEs as the performance metric of the estima-
tors.

5.2 Estimators and Hyperparameters
We use our protocol and evaluate DM, IPWps, SNIPW,
DRps, SNDR, Switch-DR, and DRos in an interpretable
manner.

In the experiment, we use the true behavior policy con-
tained in the dataset to derive importance weights. In this
setting, SNIPW is hyperparameter-free, while the other esti-
mators need to be tested for robustness to the choice of the
pre-defined hyperparameters and changes in evaluation poli-
cies. In addition, we use the hyperparameter tuning method
described in Section 2.2 to tune estimator-specific hyper-
parameters such as λ and τ . Then, we use Randomized-
SearchCV implemented in scikit-learn with n iter = 5 to

tune hyperparameters of reward estimator q̂. Tables 2 and 3
describe hyperparameter spaces Θ for each estimator. Fi-
nally, we set S = {0, 1, . . . , 499}.

5.3 Results
Figure 2 visually compares the CDF of the estimators’
squared error. Table 4 reports AU-CDF, CVaR0.7, and Std
as summary scores.

When the dataset size is small (n = 30, 000), we see that
the typical way of reporting only the mean of the squared
error cannot tell which estimator is accurate or robust. How-
ever, some other summary scores show that DM has more
robust and stable estimation performance than other estima-
tors, having lower CVaR0.7 and Std. Moreover, Figure 2 pro-
vides more detailed information about the estimators’ per-
formance. Specifically, DM performs better in the worst case
while the other estimators show better performance in the re-
gion where squared error is lower than 0.2. Thus, when we
are conservative and prioritize the worst case performance,
DM is the most appropriate choice. Otherwise, other esti-
mators might be a better choice. We cannot obtain this con-
clusion by comparing only the mean (typical metric) of the
squared error.

When the dataset size is large (n = 300, 000), we confirm
that IPWps and SNIPW are more accurate than other model-
based estimators. In particular, Figure 2 shows that IPWps
performs better than other estimators in all region, meaning
that we should use it whether we prioritize the best or the
worst case performance.

Overall, the results indicate that an appropriate estimator
can drastically change depending on the situation such as
the data size. Therefore, we argue that identifying a reason-
able estimator before conducting OPE is essential in prac-
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Figure 2: Comparison of the CDF of OPE estimators’ squared error in Open Bandit Dataset

Table 4: Summary scores of the OPE estimators on Open Bandit Dataset with different sample size

n = 30, 000 n = 300, 000

OPE Estimators Mean (typical metric) AU-CDF CVaR0.7 Std Mean (typical metric) AU-CDF CVaR0.7 Std

DM 1.00∗ 1.000∗ 1.00∗ 1.00∗ 10.77† 0.186† 7.45† 6.94†

IPWps 1.02♢ 0.994♢ 1.19♢ 1.31♢ 1.00∗ 1.000∗ 1.00∗ 1.00∗

SNIPW 1.02♢ 0.994♢ 1.20 1.33 1.58♢ 0.917♢ 1.57♢ 1.71♢

DRps 1.04† 0.989 1.27† 1.44 2.48 0.887 2.67 5.02
SNDR 1.02♢ 0.995 1.27† 1.44 3.27 0.827 3.50 6.01

Switch-DR 1.02♢ 0.994♢ 1.27† 1.45† 3.28 0.825 3.50 6.00
DRos 1.02♢ 0.994♢ 1.27† 1.45† 3.28 0.825 3.50 6.00

Note: Larger value is better for AU-CDF and lower value is better for Mean, CVaR, and Std. Note that we normalize the scores by dividing them by
the best score among all estimators. We use zmax = 1.0× 10−5 for n = 30, 000 and zmax = 1.0× 10−6 for n = 300, 000 to calculate AU-CDF.
The red∗ and green♢ fonts represent the best and second-best estimators, respectively. The blue† fonts represent the worst estimator.

tice. Moreover, we demonstrate that the IEOE procedure can
provide more informative insight as to the estimators’ per-
formance compared to the typical metric.

6 Real-World Application
In this section, we apply the IEOE procedure to a real-world
application.

6.1 Setup
To show how to use IEOE in a real-world application,
we conducted a data collection experiment on a real e-
commerce platform in September 2020. The platform wants
to use OPE to improve the performance of its coupon opti-
mization policy safely without conducting A/B tests. How-
ever, it does not know which estimator is appropriate for its
specific application and environment. Therefore, we apply
the IEOE procedure with the aim of providing a suitable es-
timator choice for the platform.

During the data collection experiment, we constructed
DA,DB , andDC by randomly assigning three different poli-
cies (πA, πB , and πC) to users on the platform. In this appli-
cation, x is a user’s context vector, a is a coupon assignment

variable (where there are four different types of coupons,
i.e., |A| = 4), and r is either a user’s content consumption
indicator (binary outcome) or the revenue from each user ob-
served within the 7-day period after the coupon assignment
(continuous outcome). The total number of users considered
in the experiment was 39,687, and each ofDA,DB , andDC

has approximately one third of the users.
Note that, in this application, there is a risk of overfitting

due to the intensive hyperparameter tuning of OPE estima-
tors, as the size of the logged bandit feedback data is not
large. Moreover, the data scientists want to use an OPE esti-
mator to evaluate the performance of several candidate poli-
cies. Therefore, we aim to find an estimator that performs
stably for a wide range of evaluation policies with fewer hy-
perparameters.

6.2 Performance Metric
To apply our evaluation procedure, we need to define a per-
formance metric (in step 8 of Algorithm 2). We can do this
by using our real-world data. We first pick one of the three
policies as evaluation policy πe and regard the others as be-
havior policies. When we choose πA as the evaluation pol-
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Figure 3: Comparison of the CDF of OPE estimators’ squared error in the real-world application

Table 5: Summary scores of the OPE estimators in the real-world application

Binary Outcome Continuous Outcome

OPE Estimators Mean (typical metric) AU-CDF CVaR0.7 Std Mean (typical metric) AU-CDF CVaR0.7 Std

DM 8.70 0.946 10.92 35.94† 1.29 1.000∗ 1.47 2.19
IPWps 29.45† 0.648† 31.96† 29.84♢ 19.00† 0.572† 19.84† 14.67†

SNIPW 1.00∗ 1.000∗ 1.00∗ 1.00∗ 1.00∗ 0.974♢ 1.00∗ 1.00∗

DRps 8.16 0.953♢ 10.27 34.54 1.44 0.957 1.60 2.11
SNDR 7.45♢ 0.942 9.35♢ 32.19 1.21 0.935 1.22♢ 1.17♢

Switch-DR 8.16 0.953♢ 10.27 34.54 1.48 0.919 1.57 1.68
DRos 8.16 0.953♢ 10.27 34.54 1.43 0.968 1.60 2.21

Note: Binary Outcome is the results when the outcome is each user’s content consumption indicator. Continuous Outcome is the results when the
outcome is the revenue from each user observed within the 7-day period after the coupon assignment. Larger value is better for AU-CDF and lower
value is better for Mean, CVaR, and Std. Note that we normalize the scores by dividing them by the best score among all estimators. We use
zmax = 1.0× 10−4 for the binary outcome and zmax = 1.0× 102 for the continuous outcome to calculate AU-CDF. The red∗ and green♢ fonts
represent the best and second-best estimators, respectively. The blue† fonts represent the worst estimator.

icy, we define Dev = DB ∪ DC and Dte = DA. Then, by
applying Algorithm 2, we obtain a set of SEs to evaluate the
robustness and real-world applicability of the estimators.

6.3 Estimators and Hyperparameters

We use the IEOE protocol to evaluate the robustness of
DM, IPWps, SNIPW, DRps, SNDR, Switch-DR, and DRos.
Then, we utilize the experimental results to help the data sci-
entists of the platform choose an appropriate estimator.

During the data collection experiment, we logged the true
action choice probabilities of the three policies, and thus
SNIPW is hyperparameter-free. We use the hyperparame-
ter spaces defined in Tables 2 and 3 for our real-world ap-
plication. In addition, we use the hyperparameter tuning
method described in Section 2.2 to tune estimator-specific
hyperparameters such as λ and τ . Then, we use the uniform
distribution as ϕ to sample hyperparameters of reward re-
gression model q̂. Finally, we set S = {0, 1, . . . , 999} and
Πe = {πA, πB , πC}.

6.4 Results
We applied Algorithm 2 to the above estimators for the bi-
nary and continuous outcome data, respectively.

Figure 3 compares the CDF of the estimators’ squared er-
ror for each outcome. First, it is obvious that SNIPW is the
best estimator for the binary outcome case, achieving the
best accuracy in almost all regions. We can also argue that
SNIPW is preferable for the continuous outcome case, be-
cause it reveals the most accurate estimation in the worst
case and is hyperparameter-free, although it underperforms
DM in some cases. On the other hand, IPWps performs
poorly for both outcomes, because our dataset is not large
and some behavior policies are near deterministic, making
IPWps an unstable estimator. Moreover, Switch-DR fails to
accurately evaluate the performance of the evaluation poli-
cies. Thus, it is unsafe to use these estimators in our appli-
cation, even though we tune their hyperparameters (λ or τ ).

We additionally confirm the above observations in a quan-
titative manner. For both binary and continuous outcomes,
we compute AU-CDF, CVaR0.7, and Std of the squared er-
ror for each OPE estimator. We report these summary scores
in Table 5, and the results demonstrate that SNIPW clearly



outperforms other estimators in almost all situations. In par-
ticular, SNIPW is the best with respect to CVaR0.7 and Std
for both binary and continuous outcomes, showing that this
estimator is the most stable estimator in our environment.
Moreover, SNIPW is hyperparameter-free, and overfitting
is less likely to occur compared to other estimators having
some hyperparameters to be tuned. Through this evaluation
of OPE estimators, we concluded that the e-commerce plat-
form should use SNIPW for its offline evaluation. After
comprehensive accuracy and stability verification, the plat-
form is now using SNIPW to improve its coupon optimiza-
tion policy safely.

7 Conclusion and Future Work
In this paper, we argued that the current dominant evaluation
procedure for OPE cannot evaluate the robustness of the esti-
mators’ performance. Instead, the IEOE procedure can pro-
vide an interpretable way to evaluate how robust each esti-
mator is to the choice of hyperparameters or changes in eval-
uation policies. We have also developed open-source soft-
ware to streamline our interpretable evaluation procedure.
It enables rapid benchmarking and validation of OPE es-
timators so that practitioners can spend more time on real
decision making problems, and OPE researchers can focus
more on tackling advanced technical questions. We perform
an extensive evaluation of a wide variety of OPE estimators
and demonstrated that our experiments are more informa-
tive than a typical procedure, showing which estimators are
more sensitive to configuration changes. Finally, we applied
our procedure to a real-world application and demonstrated
its practical usage.

Although our procedure is useful to evaluate the robust-
ness of estimators, we need to prepare at least two logged
bandit feedback datasets collected by different policies to
apply it to real-world applications, as described in Algo-
rithm 2. Thus, it would be beneficial to construct a procedure
to enable the evaluation of OPE estimators with only logged
bandit data collected by a single policy.
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Table 6: Classification datasets used in the benchmark experiment

Datasets #Samples #Actions #Dimensions

OptDigits 5,620 10 64
PenDigits 10,992 10 16
SatImage 6,435 6 36

Note: #Samples is the size of the dataset. #Actions is the total number of actions (or classes). #Dimensions is the number of dimensions of the
context (or feature) vector.

Table 7: Behavior and evaluation policies used in the benchmark experiment

Behavior and Evaluation Policies Base Machine Learning Classifier (πdet) Alpha (α)

behavior policy LogisticRegression 0.9
evaluation policy 1 LogisticRegression 0.8
evaluation policy 2 LogisticRegression 0.2
evaluation policy 3 RandomForest 0.8
evaluation policy 4 RandomForest 0.2
evaluation policy 5 None (uniform random) 0.0

Note: For LogisticRegression, we use C = 100,max iter = 10000. For RandomForest, we use n estimators = 100,
min samples split = 5,max depth = 10. We also set random state = 12345 for both classifiers. The names of the hyperparameters correspond to the
ones specified by the scikit-learn package.

A Benchmark Experiments on Classification Datasets
Here, we conduct experiments on three classification datasets, OptDigits, PenDigits, and SatImage provided at the UCI reposi-
tory (Dua and Graff 2017). Table 6 shows some statistics of the datasets used in the benchmark experiment.

A.1 Setup
Following previous studies (Farajtabar, Chow, and Ghavamzadeh 2018; Dudı́k et al. 2014; Wang, Agarwal, and Dudık 2017;
Kallus, Saito, and Uehara 2021), we transform classification data to contextual bandit feedback data. In a classification dataset
{(xi, ai)}ni=1, we have feature vector xi ∈ X and ground-truth label ai ∈ A. Here, we regard a machine learning classifier
πdet : X → ∆(A) as a deterministic policy that chooses class label ai ∈ A as an action from feature vector xi. We then define
reward variable ri := I{π(xi) = ai}. Since the original classifier is deterministic, we make it stochastic by combining πdet and
the uniform random policy πu as:

π(a | x) = α · I{πdet(x) = a}+ (1− α) · πu(a),

where α ∈ [0, 1] is an additional experimental setting.
To apply IEOE to classification data, we first randomly split each dataset into train Dtr and test Dte := {(xi, ai)}n

′

i=1 sets.
Then, we train a classifier on Dtr, and use it to construct a behavior policy πb and a class of evaluation policies Πe. By running
behavior policy πb on Dte, we transform Dte to logged bandit feedback data Dev := {(xi, a

b
i , ri = I{abi = ai})}n

′

i=1, where
abi ∼ πb is the action sampled by the behavior policy. Then, by applying the following procedure, we compute the squared error
(SE) of V̂ for each iteration in Algorithm 1:

1. Estimate the policy value V̂ (πe;D∗, θ) for tuple (πe,D∗, θ) sampled in the algorithm.
2. Estimate V (πe) using the fully observed rewards in Dte, i.e., V (πe;Dte) := En′ [Eae∼πe(a|xi)[I{ae = ai}]].

3. Compare the off-policy estimate V̂ (πe;D∗, θ) with its ground-truth V (πe;Dte) using SE as a performance metric of V̂ , i.e.,
SE(V̂ ;D∗, πe, θ) := (V̂ (πe;D∗, θ)− V (πe;Dte))

2.

A.2 Estimators and Hyperparameters
We use IEOE to evaluate the robustness of DM, IPWps, SNIPW, DRps, SNDR, Switch-DR, and DRos.

Here, we run the experiments under two different settings. First, we test the case where the true behavior policy πb is available.
Next, we investigate the OPE estimators with estimated behavior policy π̂b, where we assume that the true behavior policy is
unknown. In this case, we additionally test the OPE estimators for robustness to the choice of machine learning method to
obtain π̂b.



Table 8: Summary scores of the OPE estimators (true behavior policy)

OptDigits PenDigits SatImage

OPE Estimators AU-CDF CVaR0.7 Std AU-CDF CVaR0.7 Std AU-CDF CVaR0.7 Std

DM 0.000† 2215.37† 1631.15† 0.000† 2609.92† 1674.67† 0.266† 323.81† 184.39†

IPWps 1.000∗ 1.00∗ 1.00∗ 1.000∗ 1.00∗ 1.00∗ 1.000∗ 1.00∗ 1.00∗

SNIPW 0.907♢ 2.51♢ 3.15♢ 0.843♢ 3.16♢ 2.18♢ 0.966♢ 1.56♢ 1.16♢

DRps 0.249 127.61 139.99 0.358 45.49 33.59 0.686 7.99 4.78
SNDR 0.374 96.91 125.92 0.480 27.47 26.15 0.833 4.71 3.17

Switch-DR 0.287 126.21 139.12 0.347 45.46 33.52 0.686 7.99 4.78
DRos 0.287 126.21 139.12 0.347 45.46 33.52 0.686 7.99 4.78

Note: Larger value is better for AU-CDF and lower value is better for CVaR and Std. Note that we normalize the summary scores by dividing them
by the best score among all estimators. We use zmax = 1.0× 10−3 for OptDigits and Pendigits and zmax = 5.0× 10−3 for SatImage to calculate
AU-CDF. The red∗ and green♢ fonts represent the best and second-best estimators, respectively. The blue† fonts represent the worst estimator.

Table 9: Summary scores of the OPE estimators (estimated behavior policy)

OptDigits PenDigits SatImage

OPE Estimators AU-CDF CVaR0.7 Std AU-CDF CVaR0.7 Std AU-CDF CVaR0.7 Std

DM 0.390 14.18 9.89 0.454 7.84 5.86 0.911♢ 1.62♢ 1.20♢

IPWps 1.000∗ 1.00∗ 1.00∗ 1.000∗ 1.00∗ 1.00∗ 1.000∗ 1.00∗ 1.00∗

SNIPW 0.460 9.06♢ 7.05 0.538 7.22 5.23 0.778 3.23 2.52
DRps 0.262† 71.18† 141.25† 0.332† 1527.07† 2498.85† 0.657† 5.27× 107

†
1.25× 108

†

SNDR 0.525♢ 7.57 6.07♢ 0.700♢ 4.28♢ 3.79♢ 0.904 2.40 2.52
Switch-DR 0.262† 71.18† 141.25† 0.332† 1527.07† 2498.85† 0.657† 5.27× 107

†
1.25× 108

†

DRos 0.262† 71.18† 141.25† 0.332† 1527.07† 2498.85† 0.657† 5.27× 107
†

1.25× 108
†

Note: Larger value is better for AU-CDF and lower value is better for CVaR and Std. Note that we normalize the scores by dividing them by the best
score among all estimators. We use zmax = 0.1 for OptDigits and Pendigits and zmax = 0.5 for SatImage to calculate AU-CDF. The red∗ and
green♢ fonts represent the best and second-best estimators, respectively. The blue† fonts represent the worst estimator.

Tables 2 and 3 (in the main text) describe hyperparameter spaces Θ for each estimator. We use RandomizedSearchCV
implemented in scikit-learn with n iter = 5 to tune hyperparameters of reward estimator q̂ and behavior policy estimator π̂b.
We additionally use CalibratedClassifierCV implemented in scikit-learn with cv = 2 when estimating the behavior policy, as
calibrating the behavior policy estimator matters in OPE (Raghu et al. 2018). Then, we use the hyperparameter tuning method
described in Section 2.2 to tune estimator-specific hyperparameters such as λ and τ . Table 7 describes how we construct the
true behavior policy and five different evaluation policies in Πe. Finally, we set S = {0, 1, . . . , 499}.

A.3 Results
Figures 4 and 5 visually compare the CDF of the estimators’ squared error for each dataset in true and estimated behavior policy
settings. We also confirm the observations in a quantitative manner by computing AU-CDF, CVaR0.7, and Std of the squared
error of each OPE estimator. We report these summary scores in Tables 8 and 9.

First, in the setting where the true behavior policy is available, it is obvious that IPWps is the best estimator and achieves the
most accurate estimation in almost all regions (see Figure 4). SNIPW also performs comparably better than other estimators.
In contrast, model-dependent estimators, especially DM, perform poorly compared to the typical estimators such as IPWps and
SNIPW. We observe here that these model-dependent estimators perform worse, when the reward estimator q̂ has a serious
bias issue. On the other hand, we do not have to care about the specification of q̂ when we use IPWps or SNIPW. Therefore,
our experimental procedure poses a possibility that simple estimators with fewer hyperparameters tend to perform well and be
robust for a wide variety of settings when the true behavior policy is recorded.

In the setting where the behavior policy needs to be estimated, we observe similar trends. First, Figure 5 and Table 9 show
that IPWps achieves the most accurate estimation even when it uses the estimated behavior policy. Second, estimators based on
DR such as DRps, Switch-DR, and DRos show considerably large squared errors when the behavior policy is estimated. This
is because DR is vulnerable to the overfitting of π̂b. DR produces large squared errors when π̂b overfits the data and outputs
extreme estimations (we observe that the minimum estimated action choice probability is 10−7). With these extreme estimated
action choice probabilities, the importance weights used in these estimators also become large, amplifying the estimation error
of reward estimator q̂. This leads to serious overestimation of the policy value of πe, even though the cut-off hyperparameters



(λ and τ ) are properly tuned.
We suggest that future OPE research use the IEOE procedure to test the stability and robustness of OPE estimators as we

have demonstrated. This additional experimental effort will produce substantial information about the estimators’ usability in
practice.
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Figure 4: Comparison of the CDF of OPE estimators’ squared error (true behavior policy)
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Figure 5: Comparison of the CDF of OPE estimators’ squared error (estimated behavior policy)



B Software Implementation
In addition to developing the evaluation procedure, we have implemented open-source Python software, pyIEOE , to streamline
the evaluation of OPE with our experimental protocol. This package is built with the intention of being used with OpenBan-
ditPipeline (obp).6

Below, we show the essential codes to conduct an interpretable evaluation of various OPE estimators with our software so
that one can grasp the usage of the software easily. Primarily, only four lines of code are sufficient to complete our IEOE
procedure in Algorithms 1 and 2 except for some preparations.

# import InterpretableOPEEvaluator
>>> from pyieoe.evaluator import InterpretableOPEEvaluator

# initialize InterpretableOPEEvaluator class
>>> evaluator = InterpretableOPEEvaluator(

random_states=np.arange(1000),
bandit_feedbacks=[bandit_feedback],
evaluation_policies=[

(ground_truth_a, action_dist_a),
(ground_truth_b, action_dist_b),
..,

],
ope_estimators=[

DoublyRobustWithShrinkage(), # DRos
SelfNormalizedDoublyRobust(), # SNDR
..,

],
regression_models=[

LogisticRegression,
RandomForest,
..,

],
regression_model_hyperparams={

LogisticRegression: lr_hp,
RandomForest: rf_hp,
..,

},
ope_estimator_hyperparams={

DoublyRobustWithShrinkage.estimator_name: dros_param,
SelfNormalizedDoublyRobust.estimator_name: sndr_param,
..,

}
)

# estimate policy values
>>> policy_value = evaluator.estimate_policy_value()

# visualize CDF of squared errors of each OPE estimator
>>> evaluator.visualize_cdf_aggregate() # plot CDF curves

Code Snippet 1: Essential Codes for Interpretable OPE Evaluation

In the following subsections, we explain the procedure including preparations in detail, by showing an example of conducting
an interpetable evaluation of OPE estimators on a synthetic bandit dataset.

B.1 Preparing Dataset and Evaluation Policies
Before using pyIEOE, we first need to prepare logged bandit feedback data and a set of evaluation policies. Here, each evaluation
policy consists of its action distribution and ground-truth policy value. We can conduct this preparation by using the dataset
module of obp.

In addition to synthetic dataset, users can utilize multi-class classification data, public real-world data (such as Open Bandit

6https://github.com/st-tech/zr-obp



# import necessary package from obp
>>> from obp.dataset import (

SyntheticBanditDataset,
logistic_reward_function,
linear_behavior_policy

)
# initialize SyntheticBanditDataset class
>>> dataset = SyntheticBanditDataset(

n_actions=10,
dim_context=5,
reward_type="binary", # "binary" or "continuous"
reward_function=logistic_reward_function,
behavior_policy_function=linear_behavior_policy,
random_state=12345,

)
# obtain synthetic logged bandit feedback data
>>> bandit_feedback = dataset.obtain_batch_bandit_feedback(n_rounds=10000)
# prepare action distribution and ground truth policy value for each evaluation policy
>>> action_dist_a = #...
>>> ground_truth_a = #...
>>> action_dist_b = #...
>>> ground_truth_b = #...

Code Snippet 2: Preparing Dataset and Evaluation Policies

Dataset (Saito et al. 2020)), and their own real-world data to evaluate the robustness of OPE estimators by following prepro-
cessing procedure of obp. Users are also free to define a set of evaluation policies by themselves.



B.2 Defining Hyperparameter Spaces
After preparing the synthetic data and a set of evaluation policies, we now define hyperparameter spaces of OPE estimators.
Users of the software can define hyperparameter spaces of OPE estimators by themselves as follows.

# define hyperparameter spaces for ope estimators
>>> lambda_ = {

"lower": 1e-3,
"upper": 1e2,
"log": True,
"type": float

}
>>> K = {

"lower": 1,
"upper": 5,
"log": False,
"type": int

}
>>> dros_param = {"lambda_": lambda_, "K": K}
>>> sndr_param = {"K": K}
# define hyperparameter spaces for regression models
>>> C = {

"lower": 1e-3,
"upper": 1e2,
"log": True,
"type": float

}
>>> n_estimators = {

"lower": 20,
"upper": 200,
"log": True,
"type": int

}
>>> lr_hp = {"C": C}
>>> rf_hp = {"n_estimators": n_estimators}

Code Snippet 3: Defining Hyperparameter Spaces



B.3 Interpretable OPE Evaluation
Finally, we evaluate OPE estimators in an interpretable manner. Our software provides an easy procedure to conduct this
evaluation of OPE workflow.

# import InterpretableOPEEvaluator
>>> from pyieoe.evaluator import InterpretableOPEEvaluator
# import other necessary packages
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.ensemble import RandomForestClassifier as RandomForest
>>> from obp.ope import DoublyRobustWithShrinkage, SelfNormalizedDoublyRobust

# initialize InterpretableOPEEvaluator class
# define OPE estimators to evaluate
>>> evaluator = InterpretableOPEEvaluator(

random_states=np.arange(1000),
bandit_feedbacks=[bandit_feedback],
evaluation_policies=[

(ground_truth_a, action_dist_a),
(ground_truth_b, action_dist_b)

],
ope_estimators=[

DoublyRobustWithShrinkage(),
SelfNormalizedDoublyRobust(),

],
regression_models=[

LogisticRegression,
RandomForest,

],
regression_model_hyperparams={

LogisticRegression: lr_hp,
RandomForest: rf_hp,

},
ope_estimator_hyperparams={

DoublyRobustWithShrinkage.estimator_name: dros_param,
SelfNormalizedDoublyRobust.estimator_name: sndr_param

}
)

# estimate policy values
>>> policy_value = evaluator.estimate_policy_value()
# compute squared errors
se = evaluator.calculate_squared_error()
# compare OPE estimators in an interpretable manner by visualizing CDF of squared errors
>>> evaluator.visualize_cdf_aggregate() # plot CDF curves

# quantitative analysis by AU-CDF and CVaR
>>> au_cdf = evaluator.calculate_au_cdf_score(threshold=0.004)
>>> print(au_cdf)
{"dr-os": 0.000183.., "sndr": 0.000257..}
>>> cvar = evaluator.calculate_cvar_score(alpha=70)
>>> print(cvar)
{"dr-os": 0.000456.., "sndr": 0.000194..}

Code Snippet 4: Interpretable OPE Evaluation

Users can intuitively evaluate the robustness of the estimators by comparing the CDF of the squared error. The quantitative
comparison is also possible by calculating some summary scores such as AU-CDF and CVaR. In this case, it is easy to figure
out that SNDR is more reliable than DRos.
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