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Abstract 
Vehicular emissions, being a major global health concern, have gathered worldwide 
attention and necessitated extensive research to gain deeper insights. The aim of this study 
was to estimate the effects of road traffic flow on the local ambient concentrations of 
nitrogen oxides (NOx), carbon monoxide (CO), non-methane hydrocarbons (NMHC), 
and fine particulate matter (PM2.5) in Japan. We constructed an hourly panel dataset of 
nationwide samples of air pollution monitoring stations from 2010–2015. By estimating 
a dynamic panel model with station-hour panel data, short-run pollution-road traffic 
elasticities of 0.04–0.05 for NOx, CO, and NMHC, and long-run elasticities of 0.09–0.17 
were observed; however, no significant evidence was found for PM2.5. We used these 
estimates to understand the potential effects of reducing road traffic flow to meet the 
World Health Organization’s new air quality guidelines. 
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1. Introduction 

Due to the adverse health effects of vehicular air pollution, major cities around the world 

have introduced various policies to reduce road traffic flows. London, Milan, San Diego, 

and Stockholm have introduced road-pricing schemes. Some cities have also employed 

regulatory approaches, such as driving restrictions: the Hoy No Circula in Mexico City, 

the odd-even/one-day-per-week program in Beijing, the Pico y Place in Quito, and low-

emission zones in European cities and Tokyo. 

 

Empirical evidence has revealed that these policies are effective in reducing road traffic 

flow; however, their pollution-reducing effects remain ambiguous. For example, Gibson 

and Carnovale (2015) analyzed Milan’s road pricing policy, called “Area C”, finding that 

it reduced entries of relevant vehicles into the priced area and also the ambient carbon 

monoxide (CO) concentration in the area. However, no effect was observed on fine 

particulate matter (PM2.5). Green et al. (2020) examined the London Congestion Charge 

Zone, finding that it reduced the annual vehicle miles driven by covered vehicles and 

ambient concentrations of CO and PM2.5 in the priced area. However, they found that 

nitrogen dioxide (NO2) levels in the priced areas increased after the introduction of the 

policy, likely because of substitution effects, given the exemptions available for many 

diesel vehicles. 

 

This study aimed to estimate the effects of road traffic flow on air quality in Japan. To 

this end, we constructed an hourly panel dataset for nationwide sampling of air pollution 

monitoring stations from 2010–2015. Specifically, we collected hourly data from air 

pollution monitoring stations for the ambient concentrations of four pollutants designated 

under the vehicle emission standards of Japan: nitrogen oxides (NOx), CO, nonmethane 

hydrocarbons (NMHC), and PM2.5. We also collected hourly road traffic flow counts as 
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measured at the census points set from the 2015 Road Traffic Census and utilized data on 

weather conditions from the meteorological stations. 

 

We estimated a dynamic panel model to obtain the short- and long-run elasticities of 

pollution concentration with respect to traffic flows for each of the four vehicular 

pollutants. We found that the short-run elasticities are 0.04–0.05 for NOx, CO, and 

NMHC, and long-run elasticities obtained by utilizing the 24 hours of data for each traffic 

point are 0.09–0.17. No significant evidence of pollution-road traffic links was found for 

PM2.5. We confirmed that our estimates for NOx and PM2.5 are robust to various 

estimators, specifications, and samples. We also investigated heterogeneous pollution-

road traffic links by space, hour-of-day, and vehicle type. 

 

This study contributes to the literature estimating the effects of road traffic flows on 

ambient air pollution (Levy et al., 2003; Aldrin and Haff, 2005; Coria et al., 2015; Rossi 

et al., 2020; Munjal et al., 2022).1 First, our analyses covered a nationwide sample of air 

pollution monitoring stations, allowing us to exploit the substantial variations in air-road 

traffic flows and pollution levels. Previous studies focused on single towns, municipalities, 

or counties. We used data from the 2015 Road Traffic Census, which covers 

approximately 65,000 census points across the country. 

 

Second, our approach allowed us to identify traffic census points in close proximity to 

each pollution monitoring station (an average of 6 m). Aldrin and Haff (2005), Coria et 

al. (2015), and Rossi et al. (2020) used traffic count data from the traffic monitoring 

station nearest to each fixed pollution monitoring station. However, distant traffic-

 
1 See Appendix A for details. The appendix does not cover studies that use alternative measures 
of road traffic flows such as vehicle-kilometers traveled (Kim and Guldmann, 2011). 
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monitoring stations have been used in some cases. For example, in a study by Rossi et al. 

(2020), the distances of the two pollution monitoring stations in the sample from the 

corresponding road traffic monitoring stations were 570 m and 1.2 km respectively. 

 

The third contribution of this study is the importance of temporal dynamics in estimating 

the effects of road traffic flow on pollution concentrations. It is well known that emissions 

may take time to reach pollution concentrations. It also takes time for air pollutants to be 

reabsorbed or transformed by the environment due to lags and constraints in their 

assimilative capacity (Perman et al, 2011). This means that past ambient pollution levels 

are highly likely to matter for the current level; these are not pure “flow” pollutants. 

However, no prior research has accounted for lagged pollution concentration. 

 

In 2021, World Health Organization (WHO) introduced new air-quality guidelines (WHO, 

2021). The short-term limit values were set at 25 μg/m3 for NO2, 4 mg/m3 for CO, and 15 

μg/m3 for PM2.5 in terms of the 99th percentile values of 24-h averages in a given year. As 

of 2019, approximately 86% of Japan’s air monitoring stations were noncompliant with 

NO2, 17% with CO, and 100% with PM2.5. Based on our estimates, we explored whether 

reducing road traffic flow could make a sizeable contribution to achieving the WHO’s 

new air quality goals, given the composition of the current vehicle fleet. 

 

The remainder of this paper is organized as follows: Section 2 describes the construction 

and characteristics of the station-hour panel datasets. Section 3 presents the dynamic 

panel model and additional specifications. Section 4 presents the estimation results and 

explores their robustness. Section 5 presents the application of the results and discusses 

their policy implications. Section 6 provides a conclusion that summarizes the main 

findings of the study and potentially identifies areas for further research. 
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2. Data 

We used the hourly road traffic flow data from the 2015 PAREA-Traffic dataset of the 

Japan Asia Group. These came in the form of a shapefile for the 2015 Road Traffic Census 

made available by the Ministry of Land, Infrastructure, Transport, and Tourism. The 

dataset covers approximately 65,000 census points across Japan and provides hourly 

traffic flow data past specific points during each hour on specific census days. Road traffic 

flows are available for both standard vehicles (passenger vehicles and light trucks) and 

heavy vehicles (buses, heavy trucks, and special vehicles, such as ambulances, fire 

engines, and garbage trucks). Motorcycles and bicycles were excluded. 

 

A notable feature of the study context is that the road traffic census points were each set 

up for only one day at each location from December 7, 2010, to December 18, 2015. 

Appendix B displays the distributions of the road traffic census points by year, month, 

and hour. This shows that the majority of the census points were set from October to 

November 2015. It can also be seen that some census points did not record road traffic 

flows outside 7 am–6 pm. 

 

We obtained hourly air pollution data for 2010–2015 from the Environmental Statistics 

Database of the National Institute for Environmental Studies. Specifically, we collected 

ambient concentrations of NOx, CO, NMHC, and PM2.5, which were measured at each 

pollution monitoring station. For additional analyses, we collected air concentration data 

for nitrogen dioxide (NO2), suspended particulate matter (SPM), sulfur dioxide (SO2), 

and oxidants (Ox). Information on whether air pollution monitoring stations are located 

in residential or roadside areas was also available. Air concentration was measured as the 

average across all minutes in an hour. 
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Hourly meteorological data for 2010–2015 were obtained from the Japan Meteorological 

Agency. We collected data on the temperature, precipitation, atmospheric pressure, 

humidity, wind speed, and wind direction measured at each meteorological station. Other 

than precipitation, these were all average hourly measurements. 

 

Our station-hour panel dataset was constructed by matching each pollution monitoring 

station with the nearest road traffic census point and a meteorological station. Each 

pollution monitoring station was matched with a single traffic census point and a 

meteorological station. The average distance from each pollution monitoring station to 

the nearest roadside traffic census point was 6 m (0.2 m at minimum and 72 m at 

maximum). This was possible because of the granularity of the census points in the 2015 

Road Traffic Census. 

 

We obtained data for a maximum of 24 h at each road traffic census point. However, given 

that we estimate a dynamic panel model where a lagged dependent variable is included, 

the 12–1 am hour is excluded from the estimations. This leaves a maximum of 23 h per 

panel unit. 

 

Table 1 shows the summary statistics for the hourly air pollution concentrations, road 

traffic flow (in log), and meteorological variables for the station-hour panel dataset. The 

final two columns show the maximum coverage of each variable in terms of the number 

of air pollution monitoring stations and the average length of hours per station in the 

dataset. We observed that meteorological variables had fewer missing observations. The 

number of available pollution monitoring stations ranged around 197 for CO to 1,111 for 

SPM because some pollutants were not covered by the pollution monitoring stations. The 
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average number of hours of road traffic flow was 15. This is because road traffic flows 

were not recorded outside 7 am–6 pm at some traffic census points (see Appendix B). 

 

In summary, our station-hour panel dataset is characterized by the following features: (i) 

each panel unit is only in the sample for a maximum of one day during 2010–2015, (ii) 

the hours in the sample are between 2 am and 12 pm (in terms of their end point), (iii) the 

sample is highly concentrated in October and November of 2015, (iv) the panel is 

unbalanced, (v) the coverage substantially differs among air pollutants, and (vi) the 

dataset includes both residential and roadside pollution monitoring stations in both rural 

and urban municipalities.
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Figure 1 displays the temporal variations in the four vehicular air pollutants and road 

traffic flow during the day. The blue dotted line shows the log of the average road traffic 

flow per hour. The black line represents the log-averaged hourly ambient concentration 

of each air pollutant. The road traffic flow exhibited two peaks: one at 7 am and the other 

at 7 pm. Whether air pollution peaks occur during peak hours of road traffic flow depends 

on the pollutants. The hourly ambient concentrations of NOx, CO, and NMHC appear to 

Table 1: Summary statistics for estimation sample 
  Mean S.D. Min Max Obs. Stations Hours 
A. Air pollution concentration  
  NOx, ppb 20.48 22.62 0 292 24,410 1,077 22.7 
  CO, ppm 3.62 2.08 0 17 4,466 197 22.7 
  NMHC, 10ppbC 14.05 12.51 0 472 7,371 330 22.3 
  PM2.5, μg/m3 12.45 9.60 0 135 14,348 653 22.0 
  NO2, ppb 13.75 11.07 0 110 24,410 1,077 22.7 
  SPM, μg/m3 16.19 12.07 0 125 25,106 1,111 22.6 
  SO2, ppb 1.75 2.02 0 34 14,590 645 22.6 
  Ox, ppb 25.56 15.08 0 96 17,076 754 22.6 
B. Road traffic flows  
  ln standard vehicles 6.45 1.05 0.69 9.01 18,580 1,231 15.1 
  ln heavy vehicles 4.30 1.38 0 8.01 18,407 1,227 15.0 
  ln total 6.62 1.02 0.69 9.16 18,580 1,231 15.1 
C. Meteorological variables  
  Temperature, ℃ 16.31 4.57 ‒1.4 34.7 28,236 1,231 22.9 
  Precipitation, mm 0.11 0.79 0 38.0 28,223 1,231 22.9 
  Pressure, hPa 1,012 11 952 1,035 27,781 1,212 22.9 
  Humidity, % 67 17 18 100 27,777 1,212 22.9 
  Wind speed, m/s 2.9 1.9 0 13.9 28,188 1,230 22.9 
  Wind direction dummies        
    NNE 0.12 0.33 0 1 28,313 1,234 22.9 
    NE 0.08 0.26 0 1 28,313 1,234 22.9 
    ENE 0.09 0.28 0 1 28,313 1,234 22.9 
    E 0.04 0.21 0 1 28,313 1,234 22.9 
    ESE 0.03 0.18 0 1 28,313 1,234 22.9 
    SE 0.03 0.18 0 1 28,313 1,234 22.9 
    SSE 0.04 0.19 0 1 28,313 1,234 22.9 
    S 0.04 0.19 0 1 28,313 1,234 22.9 
    SSW 0.03 0.17 0 1 28,313 1,234 22.9 
    SW 0.04 0.20 0 1 28,313 1,234 22.9 
    WSW 0.03 0.18 0 1 28,313 1,234 22.9 
    W 0.04 0.21 0 1 28,313 1,234 22.9 
    WNW 0.07 0.25 0 1 28,313 1,234 22.9 
    NW 0.09 0.28 0 1 28,313 1,234 22.9 
    NNW 0.10 0.30 0 1 28,313 1,234 22.9 
    N 0.12 0.33 0 1 28,313 1,234 22.9 
Notes: The table presents summary statistics for hourly air pollution concentrations, road traffic flow, and 
meteorological variables in our station-hour panel dataset. Standard vehicles include passenger vehicles 
and light trucks. Heavy vehicles include buses, heavy trucks, and special vehicles. N, E, S, and W stand 
for North, East, South, and West. S.D. = standard deviation. Obs. = Observations. Stations refers to 
pollution monitoring stations. Hours is the average number of hours per pollution monitoring station. 
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be associated with hourly road traffic flows. In contrast, such an association cannot be 

observed for PM2.5; hourly ambient concentrations of PM2.5 peak at 3 pm when roads are 

less congested during the daytime.2 

 
Figure 1. Temporal variations in road traffic flow and vehicular air pollution 

Notes: These graphs show the temporal variations in the natural logarithm of the average hourly road traffic 
flow (blue dotted line, right axis) and the natural logarithm of the average hourly ambient concentrations 
of the four vehicular air pollutants (black line, left axis). NOx, nitrogen oxide; CO, carbon monoxide; 
NMHC, non-methane hydrocarbons; PM2.5, fine particulate matter. 
 

There are many factors to consider when estimating pollution-road traffic links. First, 

meteorological conditions must be considered because vehicular air pollutants are not 

uniformly mixed (Perman et al., 2011).3 Second, pollution concentrations are likely to 

be functions of both current and lagged emissions (Perman et al, 2011). Therefore, it is 

important to consider the dynamic nature of pollution. Finally, Figure 1 may mask 

 
2 Appendix C shows temporal variations in road traffic flow and ambient concentrations for NO2, 
SPM, SO2, and Ox. The NO2 levels appear to be correlated with hourly road traffic flows, while 
SPM, SO2, and OX do not. 
3 See Appendix D for how average meteorological variables tend to fluctuate across the day. For 
example, there tend to be higher wind speeds in the evening hours.  
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heterogeneous pollution-road traffic links by location (e.g., roadside vs. residential). The 

next section explains our empirical approach for addressing these issues. 

 

3. Empirical approach 

3.1. Baseline specification 

Pollution concentrations at any hour are functions of the initial concentration, new 

emissions, and outflows resulting from natural processes. Given the importance of initial 

concentration, we estimate the following dynamic panel model: 

 

ln𝑃𝑃𝑚𝑚,ℎ = 𝛼𝛼1ln𝑃𝑃𝑚𝑚,ℎ−1 + 𝛽𝛽1ln𝑇𝑇𝑚𝑚,ℎ + 𝜸𝜸𝑪𝑪𝑚𝑚,ℎ + 𝛿𝛿𝑚𝑚 + 𝜃𝜃ℎ + 𝜀𝜀𝑚𝑚,ℎ                (1) 

 

where m is the air pollution monitoring station and h is the hour. P is the ambient 

concentration of NOx, CO, NMHC, or PM2.5 (in separate regressions). The inclusion of 

the 1-h lagged dependent variable as a regressor makes it an autoregressive model. T is 

road traffic flow around each pollution monitoring station. C is a vector of meteorological 

variables (temperature, precipitation, pressure, humidity, wind speed, and wind 

direction). 𝛿𝛿 is station fixed effects to capture unobserved time-invariant factors such as 

the location of an air pollution monitoring station.4 𝜃𝜃 is hour fixed effects that removes 

the influences of hour-specific events affecting all pollution monitoring stations in the 

same way, such as the ability of the environment to “ventilate” the pollution (Coria et al., 

2015; Huang et al., 2021).5 𝜀𝜀 is an error term. We take the natural logarithm, denoted by 

 
4 Roadside areas are physically more proximate to a key source of emissions, likely leading to 
higher ambient concentrations of vehicular pollutants. In addition, there might be time-persistent 
differences between rural and urban areas. For example, due to the greater intensity of economic 
activities, urban areas might have other activities that lead to pollution while also having larger 
road traffic flows. 
5  Ventilation coefficients tend to be low during mornings and evenings as a result of higher 
humidity and slower wind speeds (Goyal et al., 2006). 
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“ln,” for P and T, as their distributions are heavily skewed and to produce direct estimates 

of the elasticity. 

 

𝛽𝛽1 can be interpreted as the short-run or same-hour pollution-road traffic elasticity: the % 

change in P with respect to a 1% change in T in the same hour. Eq. (1) also enables us to 

obtain a long-run pollution-road traffic flow elasticity using 𝛽𝛽1 (1 − 𝛼𝛼1)⁄  (De Boef and 

Keele, 2008). 6  Careful attention should be paid to the interpretation of the long-run 

elasticity in this study context. Given that we used only a maximum of 23 h of pollution 

concentration data in the estimation sample, this is not likely to be a full long-run effect. 

 

An identification issue arises in that 𝜀𝜀 might be correlated with T. Vehicular emissions 

may co-move with emissions from stationary sources (e.g., power plants and industrial 

combustion) or other mobile sources (e.g., ships and airplanes). If this is the case, 

𝛽𝛽1 could be biased upward. 

 

We adopted the following additional approaches to address this issue: The first was to 

apply a system GMM estimator to Eq. (1) (Arellano and Bover, 1995; Blundell and Bond, 

1998; Roodman, 2009). Second, we included municipality-hour fixed effects to control 

for potential time-varying confounders at the municipal level. The third was to control for 

the hourly SO2 concentration at the monitoring station level as a “proxy” for pollution 

from sources other than road transport. This is motivated by the fact that in 2015, other 

mobile sources accounted for 36% of the total anthropogenic SO2 emissions in Japan, 

power stations contributed 26%, and industrial combustion accounted for 31%, leaving 

 
6 Additional lags of T have effects that are statistically indistinguishable from zero for the four 
air pollutants and so are not included. Results available on request. 
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the contribution of the road transport sector at almost zero (Organization for Economic 

Cooperation and Development OECD, 2023).7 The fourth was to estimate Eq. (1) with 

date-specific hourly fixed effects to control for seasonality and unusual events, such as 

typhoons and earthquakes. 

 

There are two concerns over statistical inference. First, common shocks in the same 

municipality could cause model errors for each pollution monitoring station to be 

correlated within the municipality. Second, model errors for each pollution monitoring 

station may be serially associated. To address these issues, we reported robust standard 

errors clustered by municipality. 8  The number of clusters ranged from 156 to 610, 

depending on the air pollutant. This was sufficient for the reliability of the standard cluster 

adjustment. 

 

3.2. Additional specifications 

To analyze the extent to which pollution-road traffic elasticity differs between residential 

and roadside areas, we estimated the following specification: 

 

ln𝑃𝑃𝑚𝑚,ℎ = 𝛼𝛼1ln𝑃𝑃𝑚𝑚,ℎ−1 + 𝛽𝛽1ln𝑇𝑇𝑚𝑚,ℎ + 𝛽𝛽2(ln𝑇𝑇𝑚𝑚,ℎ × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚) + 𝜸𝜸𝑪𝑪𝑚𝑚,ℎ + 𝛿𝛿𝑚𝑚 + 𝜃𝜃ℎ

+ 𝜀𝜀𝑚𝑚,ℎ      (2)     

 

where Roadside is a dummy that takes the value of one if an air pollution monitoring 

station is located in a roadside area and zero otherwise. The other elements were identical 

to those in Eq. (1). 𝛽𝛽2 > 0  would indicate that the short-run pollution-road traffic 

 
7  Note that SO2 also comes from natural sources such as volcanoes. It can react with other 
pollutants to form acid rain, particulate matter, and ozone (Jain et al., 2016). 
8 We also report results clustering robust standard errors at air pollution monitoring stations in 
Table 5. 
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elasticity is larger for roadside areas than residential areas. Based on the estimates, we 

also calculate the long-run elasticities for residential areas (𝛽𝛽1 (1 − 𝛼𝛼1)⁄ ) and roadside 

areas ((𝛽𝛽1 + 𝛽𝛽2) (1 − 𝛼𝛼1)⁄ ). 

 

Next, we estimated separate pollution-road traffic elasticities for the flows of standard 

and heavy vehicles. To do so, we split road traffic flow (T) into flows of standard vehicles 

(TS) and heavy vehicles (TH). We estimate the following specifications: 

 

ln𝑃𝑃𝑚𝑚,ℎ = 𝛼𝛼1ln𝑃𝑃𝑚𝑚,ℎ−1 + 𝛽𝛽1ln𝑇𝑇𝑇𝑇𝑚𝑚,ℎ + 𝛽𝛽2ln𝑇𝑇𝑇𝑇𝑚𝑚,ℎ + 𝜸𝜸𝑪𝑪𝑚𝑚,ℎ + 𝛿𝛿𝑚𝑚 + 𝜃𝜃ℎ + 𝜀𝜀𝑚𝑚,ℎ  (3)     

 

The long-run pollution-road traffic elasticities can be calculated by (𝛽𝛽1 (1 − 𝛼𝛼1)⁄ ) for 

standard vehicles and by (𝛽𝛽2 (1 − 𝛼𝛼1)⁄ ) for heavy vehicles. 

 

Finally, to examine the time patterns of the same-hour pollution-road traffic elasticity, we 

interact hour-of-day dummies (𝜃𝜃ℎ) for all hours in the sample with the log road traffic 

flow variable (lnT): 

 

ln𝑃𝑃𝑚𝑚,ℎ = 𝛼𝛼1ln𝑃𝑃𝑚𝑚,ℎ−1 + �𝛽𝛽ℎ

24

ℎ=2

�ln𝑇𝑇𝑚𝑚,ℎ × 𝜃𝜃ℎ� + 𝜸𝜸𝑪𝑪𝑚𝑚,ℎ + 𝛿𝛿𝑚𝑚 + 𝜃𝜃ℎ + 𝜀𝜀𝑚𝑚,ℎ        (4) 

 

𝛽𝛽ℎ indicates the same-hour pollution-road traffic elasticity for each of the 23 h. 

 

4. Results 

4.1. Baseline estimates 

Table 2 reports the baseline results for estimating Eq. (1) for each pollutant. All 

estimations control for 1-h lagged dependent variables, meteorological variables, hour 
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fixed effects, and station fixed effects. We do not report the estimation results for wind 

direction dummies to save space. All estimations use the station-hour panel dataset. Data 

coverage varies among pollutants, leading to varying sample sizes that range from 3,052 

to 15,480 observations. 

 
Table 2: Baseline estimates 

Dependent variable: Ln ambient concentration of air pollution 
 NOx CO NMHC PM2.5 
  (1) (2) (3) (4) 
Ln road traffic flow 0.054*** 0.043** 0.040* –0.036 

 (0.016) (0.018) (0.023) (0.029) 
Temperature, ℃ –0.015*** –0.000 –0.011 0.026*** 

 (0.005) (0.006) (0.007) (0.007) 
Precipitation, mm –0.004 –0.002 –0.004 0.005 

 (0.005) (0.003) (0.004) (0.009) 
Pressure, hPa 0.004 0.002 0.000 0.011* 

 (0.004) (0.003) (0.006) (0.006) 
Humidity, % 0.002** 0.001 0.003** 0.003** 

 (0.001) (0.001) (0.001) (0.001) 
Wind speed, m/s –0.031*** –0.025*** –0.029*** –0.017*** 

 (0.003) (0.004) (0.005) (0.005) 
Ln 1-h lagged NOx 0.680***    

 (0.009)    
Ln 1-h lagged CO  0.598***   

  (0.019)   
Ln 1-h lagged NMHC   0.574***  

   (0.020)  
Ln 1-h lagged PM2.5    0.395*** 

    (0.020) 
R2 0.624 0.547 0.453 0.197 
Hour fixed effects Yes Yes Yes Yes 
Station fixed effects Yes Yes Yes Yes 
Wind direction dummies Yes Yes Yes Yes 
Air pollution monitoring stations 1,053 193 323 641 
Municipalities 610 156 247 482 
Observations 15,480 3,052 4,679 8,835 
Long-run pollution-road traffic 
elasticity 0.17*** 0.11** 0.09* –0.06 
Notes: The table shows the results for estimating Eq. (1) for each vehicular pollutant. The R2 is for within 
monitoring station units. All specifications use a station-hour panel dataset. Standard errors are robust to 
heteroscedasticity and clustered by municipality. For the long-run elasticity, standard errors are generated 
using the delta method. 
***, **, and * indicate statistical significance at 1%, 5%, and 10%, respectively. 

 

The first column of Table 2 shows the short-run pollution-road traffic elasticity of NOx 

at 0.05. This was significantly different from zero at the 1% level, with the 95% 
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confidence interval ranging from 0.02–0.09. The coefficient suggests that a 1% increase 

in road traffic flow, on average, leads to a 0.05% increase in the same-hour ambient NOx 

concentration at the local level. The second and third columns report similar short-run 

elasticities for CO and NMHC. By contrast, we find that the estimated short-run elasticity 

for PM2.5, although statistically indistinguishable from zero, is negative in point estimate 

terms (column 4). 

 

Table 2 reports the long-run pollution-road traffic elasticities for each pollutant. These are 

0.17 for NOx, 0.11 for CO, and 0.09 for NMHC. Importantly, these elasticities are larger 

than their short-run counterparts, likely because of lags in the conversion of emissions to 

pollution concentrations. No evidence of significant long-run pollution-road traffic 

elasticity was found for PM2.5. 

 

Small pollution-road traffic elasticities could emanate from the fact that there are multiple 

contributors to emissions. Given that Eq. (1) controls for a lagged dependent variable, the 

elasticity of road traffic flows approximately represents the proportional contribution of 

road vehicle flows to pollutant emissions. For example, as of 2015, road transport 

accounted for 21% of the total anthropogenic NOx emissions in Japan (OECD, 2023). 

The pollution-road traffic elasticities may also be low, given the mitigated theoretical link 

between traffic flows and emissions during traffic jams. Traffic flow numbers may be low 

during traffic congestion (Zhang and Burke, 2020), but emissions are high. Traffic density 

(vehicles per unit road area) is theoretically the most relevant variable; however, traffic 

density data is unavailable. 

 

Appendix E reports the estimation results of Eq. (1) for the other pollutants. We found 
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that road traffic flows were positively associated with NO2 levels and negatively 

associated with SPM levels, consistent with the results for NOx and PM2.5 (Table 2). We 

found no evidence of either short- or long-run pollution-road traffic links for SO2 and Ox. 

 

In addition to the effect of road traffic flow, wind speed was negatively associated with 

the ambient concentrations of all pollutants, likely because faster wind speeds promote 

the dispersion of air pollutants (Aldrin and Haff, 2005; Coria et al., 2015; Rossi et al., 

2020). We also found that humidity was positively associated with the concentrations of 

NOx, NMHC, and PM2.5, which is consistent with the fact that humidity increases the 

retention of harmful or toxic chemicals in the air. The effects of other meteorological 

variables on air quality are either indistinguishable from zero or vary according to the 

pollutant type. 

 

Appendix F reports the estimation results for the static panel model with no lagged 

dependent variables. The pollution-road traffic elasticities for NOx, CO, and NMHC were 

between the short- and long-run elasticities, as reported in Table 2. By not allowing 

dynamic effects, static estimates may represent intermediate elasticity rather than either 

short- or long-run elasticity (Lin and Prince, 2013). 

 

4.2. Heterogeneity 

Table 3 reports results for Eq. (2) to examine the extent to which the pollution-road traffic 

elasticity differs between residential and roadside areas. The first to third columns 

indicate that for NOx, CO, and NMHC, the same-hour elasticities for roadside monitoring 

stations are greater than those for residential monitoring stations. For the case of NOx, 

the point estimates suggest that the short-run elasticity for roadside monitoring stations is 
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64% larger than that for residential monitoring stations. This makes sense, given that it 

takes time for emissions to reach non-roadside areas. We found no significant evidence 

of heterogeneous pollution-road traffic elasticities between roadside and residential 

monitoring stations for PM2.5 (column 4). 

 

Table 3 also reports the heterogeneous long-run pollution-road traffic elasticities for 

residential and roadside stations. For residential stations, the long-run elasticity of NOx 

was 0.17 (significant at the 1% level). It was statistically indistinguishable from zero for 

the other pollutants. For the roadside stations, relatively large long-run elasticities were 

observed for NOx (0.27), CO (0.14), and NMHC (0.18). The effects were similar and 

statistically insignificant for PM2.5. 

 
Table 3: Pollution concentration-road traffic flow elasticity: roadside vs 

residential areas 
Dependent variable: Ln ambient concentration of air pollution 
 NOx CO NMHC PM2.5 
  (1) (2) (3) (4) 
Ln road traffic flow 0.053*** 0.011 0.027 –0.036 

 (0.016) (0.022) (0.022) (0.029) 
Ln road traffic flow × Roadside dummy 0.034** 0.047*** 0.052*** 0.001 

 (0.016) (0.017) (0.017) (0.022) 
R2 0.624 0.548 0.454 0.197 
Hour fixed effects Yes Yes Yes Yes 
Station fixed effects Yes Yes Yes Yes 
Meteorological variables Yes Yes Yes Yes 
1-h lagged dependent variables Yes Yes Yes Yes 
Air pollution monitoring stations 1,053 193 323 641 
Municipalities 610 156 247 482 
Observations 15,480 3,052 4,679 8,835 
Long-run pollution-road traffic elasticity for: 
  Residential stations 0.17*** 0.03 0.06 –0.06 
  Roadside stations 0.27*** 0.14*** 0.18*** –0.06 
Notes: The table shows the results for estimating Eq. (2) for each vehicular pollutant. All meteorological 
variables including wind direction dummies and the 1-h lagged dependent variables listed in Table 2 are 
included in each model. The R2 is for within monitoring station units. All specifications use a station-hour 
panel dataset. Standard errors are robust to heteroscedasticity and clustered by municipality. For the long-
run elasticity, standard errors are generated using the delta method. 
***, **, and * indicate statistical significance at 1%, 5%, and 10%, respectively. 
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Table 4 reports results by vehicle type based on Eq. (3). We found that in the case of NOx 

and NMHC, the pollution-road traffic elasticities are positive and significant for heavy 

vehicles only (columns 1 and 3). In contrast, CO elasticity is positive and significant for 

standard vehicles only (column 2). These results are consistent with the fact that the main 

sources of vehicular NOx and CO emissions are trucks and passenger cars, respectively 

(Ministry of Environment, 2020). No significant evidence of differential pollution-road 

traffic elasticities by vehicle type for PM2.5 was found (column 4). 

 
Table 4: Pollution concentration-road traffic flow elasticity by vehicle type 

Dependent variable: Ln ambient concentration of air pollution 
 NOx CO NMHC PM2.5 
  (1) (2) (3) (4) 
Ln road traffic flow of standard vehicles 0.013 0.037** 0.042 –0.036 

 (0.017) (0.015) (0.027) (0.025) 
Ln road traffic flow of heavy vehicles 0.055*** 0.008 0.027** –0.001 

 (0.012) (0.010) (0.013) (0.016) 
R2 0.626 0.549 0.457 0.198 
Hour fixed effects Yes Yes Yes Yes 
Station fixed effects Yes Yes Yes Yes 
Meteorological variables Yes Yes Yes Yes 
1-h lagged dependent variables Yes Yes Yes Yes 
Air pollution monitoring stations 1,050 193 320 639 
Municipalities 609 156 244 480 
Observations 15,357 3,038 4,613 8,762 
Long-run pollution-road traffic elasticity for: 
  Standard vehicles 0.04 0.09** 0.10 –0.06 
  Heavy vehicles 0.17*** 0.02 0.06** –0.00 
Notes: The table shows the results for estimating Eq. (3) for each vehicular pollutant. All meteorological 
variables including wind direction dummies and the 1-h lagged dependent variables listed in Table 2 are 
included in each model. Standard vehicles include passenger vehicles and light trucks. Heavy vehicles 
include buses, heavy trucks, and special vehicles. The R2 is for within monitoring station units. All 
specifications use a station-hour panel dataset. Standard errors are robust to heteroscedasticity and 
clustered by municipality. For the long-run elasticity, standard errors are generated using the delta 
method. 
***, **, and * indicate statistical significance at 1%, 5%, and 10%, respectively. 

 

Figure 2 displays the time pattern of short-run pollution-road traffic elasticities for each 

vehicular pollutant from the estimates of Eq. (4). For NOx, the same-hour effects of road 

traffic flow on air pollution concentrations were relatively stable over time, with point 

estimates ranging from 0.022 to 0.093 and a mean of 0.051. The largest effects were 
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observed during night-time hours (9–11 pm). For CO and NMHC, the pollution-road 

traffic elasticities were consistently positive and fluctuated over time. For PM2.5, the point 

estimates were negative for all hours except 11 pm. 

 
Figure 2. Pollution concentration-road traffic flow elasticity by hour 

Notes: The figures present the estimation results of Eq. (4) for each vehicular pollutant. All specifications 
use a station-hour panel dataset. The dots represent the point estimates, and the vertical bands represent the 
95% confidence intervals. Standard errors are robust to heteroscedasticity and clustered by municipality. 
Hourly data for 1 am were not included in the estimation sample. 
 

4.3. Robustness 

Table 5 reports results for additional analyses. The panels are based on Eq. (1) but use 

different estimators, specifications, and samples. Panel A adopts the system GMM 

estimator, with regressors in levels instrumented with suitable lags of their own first 

differences. We put every regressor in Eq. (1), except for the hour and station fixed effects, 

into the instrument matrix that takes a collapsed form to limit the number of instruments. 

To account for unobserved time-varying factors, Panel B controls for municipality-hour 
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fixed effects instead of separate hour fixed effects and station fixed effects.9 Panel C adds 

the ambient SO2 concentration to the model.10 Panel D controls for date-specific hour 

fixed effects instead of hour fixed effects to account for seasonality and unusual events. 

Panel E clusters standard errors at the air pollution monitoring station level instead of the 

municipality level in order to account for heterogeneous serial correlation among the air 

pollution monitoring stations. Panel F uses a balanced panel, retaining only the air 

pollution monitoring stations for which 24 h of data are available (although noting that 

the first hour is excluded when the estimation sample is formed). 

 

The first column of Table 5 shows the short- and long-run pollution-road traffic 

elasticities for NOx that are positive and statistically significant at the 10% level or below, 

regardless of the estimator, specification, or sample used. The same-hour and long-run 

elasticities range from 0.02–0.07 and 0.12–0.28 respectively, which encompasses our 

baseline estimates of 0.05 and 0.17 respectively. The second and third columns indicate 

that the pollution-road traffic flow elasticities for CO and NMHC vary somewhat by 

estimator, specification, and sample. 

 

Our baseline estimate suggests no significant positive pollution-road traffic link for PM2.5. 

The fourth column of Table 5 is consistent with this finding. These contrasting results for 

PM2.5 can likely be explained by the fact that there are many sources of particulate 

pollution, including power plants, the industrial sector, construction, and agriculture. 

Some PM2.5 also forms via chemical reactions in the atmosphere and thus may be subject 

 
9  This is possible to do with the “reghdfe” package in Stata. However, the Stata package 
automatically drops all municipalities that have only a single air pollution monitoring station from 
the sample (Correia, 2015), substantially reducing observations in panel B. 
10 The number of observations in panel C substantially decrease given that the number of air 
pollution stations measuring ambient SO2 levels simultaneously is lower. 
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to long lags and/or may occur in a location far from the source due to the effect of winds. 

Levy et al. (2003) and Rossi et al. (2020) also found an absence of short-run pollution–

road traffic flow links for PM2.5. 

 
Table 5: Pollution concentration-road traffic flow elasticities based on different 

estimators, specifications, and samples 
 NOx CO NMHC PM2.5 
  (1) (2) (3) (4) 
A. Adopting system GMM 

Short-run 0.07** 0.05* 0.05 –0.09** 
Long-run 0.28** 0.14* 0.13 –0.18** 
Observations 15,480 3,052 4,679 8,835 

B. Controlling for municipality-hour fixed effects 
Short-run 0.02*** 0.02 –0.00 –0.01 
Long-run 0.16*** 0.17 –0.01 –0.04 
Observations 9,065 772 1,462 3,182 

C. Adding ambient SO2 concentration  
Short-run 0.04* 0.05 0.05 –0.02 
Long-run 0.12* 0.11 0.10 –0.03 
Observations 8,046 953 2,676 4,826 

D. Controlling for date-specific hour fixed effects 
Short-run 0.06*** 0.04* 0.03 0.01 
Long-run 0.19*** 0.10* 0.07 0.01 
Observations 15,480 3,052 4,679 8,835 

E. Clustering standard errors at the air pollution monitoring station level  
Short-run 0.05*** 0.04** 0.04* –0.04 
Long-run 0.17*** 0.11** 0.09 –0.06 
Observations 15,480 3,052 4,679 8,835 

F. Using balanced panel 
Short-run 0.06*** 0.04** 0.04 –0.03 
Long-run 0.22*** 0.11** 0.11 –0.06 
Observations 6,707 1,630 2,037 3,766 

Notes: All panels are based on Eq. (1) with a station-hour panel dataset. Panel A adopts system GMM. 
Panel B controls for municipality-hour fixed effects instead of hour fixed effects and station fixed effects. 
Panel C adds ambient SO2 concentration to the model. Panel D controls for date-specific hour fixed 
effects instead of hour fixed effects. Panel E clusters standard errors at the air pollution monitoring station 
level instead of the municipality level. Panel F uses balanced panel data that keeps air pollution 
monitoring stations with 24-h data only. For the long-run elasticity, standard errors are generated using 
the delta method. 
***, **, and * indicate statistical significance at 1%, 5%, and 10%, respectively. 

 

5. Policy implications 

In 2021, the WHO announced new air quality guidelines (AQG) for key air pollutants. 

The short-term AQG limit values were set at 25 μg/m3 for NO2, 4 mg/m3 for CO, and 15 

μg/m3 for PM2.5 in terms of the 99th percentile value of 24-h averages in a given year, 
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meaning that more than 5 exceedance days per year are regarded as non-compliant.11 

Based on scientific evidence of the harmful effects of PM2.5 on human health at even 

lower concentrations than previously understood, the new PM2.5 limit value was lowered 

by 40% from the 2005 value (25 μg/m3). Short-term limit values for NO2 and CO were 

newly introduced. 

 

Table 6 shows the number of air pollution monitoring stations that were noncompliant 

with the WHO’s new AQG limit values for NO2, CO, and PM2.5 in 2019, for each 

prefecture. 12  For NO2, the number of non-compliant stations was 1,420 nationwide, 

accounting for 86% of the total number of NO2 monitoring stations. Exceedance rates 

vary among prefectures, from 32% in Fukui to 100% in Kanagawa, Shiga, Nara, Kagawa, 

and Ehime. For PM2.5, the exceedance rate was 100% except in Hokkaido. The 

exceedance rates for CO were much lower than those for NO2 and PM2.5 at both prefecture 

and national levels. Overall, the results imply that harmful concentrations of NO2 and 

PM2.5 continue to exist. 

 

Holding the vehicle mix constant, would a reduction in road traffic flows be useful in 

achieving the WHO’s new air quality targets? The answer is that this is unlikely, given 

the small pollution-road traffic flow elasticities that were found. For example, utilizing 

the estimated long-run pollution-road traffic elasticity for NO2 in Appendix E (0.09), we 

calculated the changes in exceedance days for each pollution monitoring station if road 

traffic flows around each pollution monitoring station decreased by half. It was found that 

 
11 The long-term AQG limit values were set at 10 μg/m3 for NO2 and 5 μg/m3 for PM2.5 in terms 
of annual averages in a given year. The WHO did not introduce a long-term AQG limit value for 
CO. 
12 The latest available year of hourly air pollution data was 2020 at the time of writing this paper. 
We avoided using 2020 data to avoid the influence of COVID-19. 
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only 20 pollution monitoring stations (out of 1,420) would switch from non-compliant to 

compliant across the country. 

 

The key policy implication for achieving the WHO’s new air quality goals across Japan 

is that more specific road sector pollution reduction policies are required rather than 

targeting road traffic flows alone. The adoption of clean vehicles, including battery 

electric vehicles (BEV), plug-in hybrid vehicles (PHV), and fuel cell vehicles (FCV), is 

a promising method for improving air quality. Another alternative is to use diesel vehicle 

registration restrictions and low-emission zones. Diesel vehicle restrictions have already 

been adopted by some prefectures to reduce ambient concentrations of NOx and PM2.5 

by keeping polluted diesel trucks and buses away from designated areas.  Nishitateno 

and Burke (2020, 2021, 2022) found that these interventions were effective in improving 

local air quality.  

 

An additional policy implication is that policy packages beyond road transport are likely 

to be needed to achieve the WHO air quality goals. An important reason for the inelastic 

effect sizes obtained in this study is that the road sector is not the only contributor to 

pollution. Indeed, as of 2019, road transport accounted for only approximately 21% of 

the total anthropogenic NOx emissions in Japan (1.2 million tonnes), whereas the 

contributions of other mobile sources, power stations, and industrial combustion were 

25%, 15%, and 32%, respectively (OECD, 2023).  There is substantial scope for energy 

efficiency, electrification, and low-emission fuel switching across non-road sector 

activities.
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Table 6: Air pollution monitoring stations that were not in compliance with the 
WHO’s new air quality guidelines limit values in 2019 

 NO2  CO  PM2.5 
 Non-compliant 

stations 
Share  
(%) 

  Non-compliant 
stations 

Share  
(%) 

  Non-compliant 
stations 

Share  
(%) 

Hokkaido 55 72  1 17  24 96 
Aomori  13 76  0 0  5 100 
Iwate  13 93  0 0  10 100 
Miyagi  30 83  1 25  28 100 
Akita  10 63  0 0  7 100 
Yamagata  9 56  0 0  14 100 
Fukushima  11 48  0 0  11 100 
Ibaraki  36 82  1 14  21 100 
Tochigi  23 85  0 0  14 100 
Gunma  20 91  1 11  11 100 
Saitama  75 94  1 6  66 100 
Chiba  120 98  7 32  59 100 
Tokyo 88 99  3 10  87 100 
Kanagawa  91 100  7 37  68 100 
Niigata  21 84  2 67  17 100 
Toyama  8 53  0 0  13 100 
Ishikawa  9 43  2 33  16 100 
Fukui  6 32  0 0  9 100 
Yamanashi  10 91  0 0  6 100 
Nagano  21 95  1 50  13 100 
Gifu  16 76  0 0  17 100 
Shizuoka  51 88  2 15  36 100 
Aichi  101 99  1 9  56 100 
Mie  26 93  0 0  25 100 
Shiga  14 100  1 25  12 100 
Kyoto 27 87  0 0  29 100 
Osaka 101 99  1 7  56 100 
Hyogo  94 95  6 23  65 100 
Nara  12 100  0 0  9 100 
Wakayama  12 48  0 0  14 100 
Tottori  4 80  2 67  4 100 
Shimane  2 40  0 0  8 100 
Okayama  53 93  1 14  27 100 
Hiroshima  34 94  0 0  25 100 
Yamaguchi  24 86  0 0  20 100 
Tokushima  15 83  0 0  10 100 
Kagawa  19 100  0 0  13 100 
Ehime  13 100  0 0  17 100 
Kochi  4 57  0 0  6 100 
Fukuoka  54 98  2 29  39 100 
Saga  9 60  1 50  12 100 
Nagasaki  12 57  0 0  18 100 
Kumamoto  14 61  0 0  28 100 
Oita  18 69  0 0  17 100 
Miyazaki  11 73  0 0  15 100 
Kagoshima  4 33  1 50  10 100 
Okinawa  7 78   2 100   5 100 
Total 1,420 86   47 17   1,092 100 
Notes: The new WHO air quality guideline levels are 25 μg/m3 for NO2, 4 mg/m3 for CO, and 15 μg/m3 
for PM2.5 in terms of the 99th percentile value of 24-h averages in a given year, meaning that more than 5 
exceedance days per year are regarded as non-compliant. These are short-term levels. 
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6. Conclusion 

The objective of this study was to estimate the effects of road traffic flow on ambient 

concentrations of NOx, CO, NMHC, and PM2.5 in Japan. To this end, we constructed an 

hourly panel dataset for a nationwide sample of air pollution monitoring stations from 

2010–2015. The novelty of our panel data is that road traffic flow near each pollution 

monitoring station was accurately measured by leveraging the granularity of census 

points placed across Japan for the 2015 Road Traffic Census. By estimating a dynamic 

panel model with the newly constructed station-hour panel dataset, we found that the 

short-run pollution-road traffic elasticities are 0.04–0.05 for NOx, CO, and NMHC and 

the long-run elasticities are 0.09–0.17. 

 

Many Japanese citizens are currently exposed to high concentrations of air pollution, 

relative to the WHO’s short-term air quality targets introduced in 2021. The key policy 

implication drawn from this study is that traffic flow reduction policies are likely not 

sufficient to make much progress in achieving WHO’s new targets across the country. 

Instead, a more comprehensive policy package is required. 

 

Electric vehicles are highly promising for pollution reduction.13 However, the Japanese 

market for clean vehicles remains fledging. As of March 2022, the total number of clean 

passenger vehicles registered in Japan was 319,537, accounting for only 1% of all 

passenger vehicles (Next Generation Vehicle Promotion Center, 2023). Li et al. (2017) 

found that a 10% increase in the number of charging stations in the United States 

increased the demand for electric vehicles (BEV+PHV) by 8.4%. Given that the lack of 

 
13 Although they do not eliminate all pollution from road transport, as particulates pollution from 
the road surface is still generated (Timmers and Achten, 2016). 
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charging infrastructure is a key barrier to clean vehicles, further financial support for 

electric charging and hydrogen fueling stations is necessary. Government support often 

plays a significant role in the initial stages of technological adoption. 

 

In contrast to other pollutants, this study found no evidence of pollution-road traffic links 

for PM2.5. Kunugi et al. (2019) undertook ex-ante simulations of how control measures 

on stationary sources would affect PM2.5 concentrations in the Tokyo metropolitan area. 

Research has yet to undertake an ex post assessment of this issue. Examining the links 

between fluctuations in the operation of stationary sources and ambient concentrations of 

PM2.5 and other pollutants is a promising topic for future research. 
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Appendix A. Summary of related studies  

Authors Locations Air pollutants Data Places of road traffic 
flow measurements 

Meteorological 
variables 

Estimation 
methods Pollution-road traffic links 

Levy et al 
(2003) 

USA/Roxbury, 
Massachusetts 

PAH, ultrafine 
PM, PM2.5 

9 air pollution 
monitors/9:30–16:30 
for 12 days during 
July and August in 
2001, 10-min average 

Co-locate with air 
pollution monitors 

Temperature, 
humidity 

Mixed 
effects 
model 

Negative link is found for 
ultrafine PM/No evidence 
is found for PAH and PM2.5 

Aldrin and Haff 
(2005) 

Norway/Oslo PM10, PM2.5, 
NO2, NOx 

4 air pollution 
monitoring stations 
(Manglerud, Loren, 
Furuset, Alnabru)/1 
November 2001-31 
May 2003, hourly 
average 

The same 
municipality for air 
pollution monitoring 
stations in 
Manglerud and 
Loren. The different 
municipality 
(Karihaugen) for 
those in Furuset and 
Alnabru.  

Temperature, wind 
directions and 
speeds, humidity, 
precipitation, snow 
cover, hour of day, 
day number 

Ordinary 
least 
squares 
(OLS) 

Positive links are found for 
all pollutants/The link is 
particularly stronger for 
NOx 

Coria et al 
(2015) 

Sweden/ 
Stockholm 

NO2, PM10 1 air pollution 
monitoring 
station/2002–2010, 
hourly average 

The same county as 
air pollution 
monitoring station 

Wind speed Nonlinear 
least 
squares 

Positive links are found for 
both NO2 and PM10 

Rossi et al 
(2020) 

Italy/Padova NO, NO2, NOx, 
PM10 

2 air pollution 
monitoring stations/8 
March–30 April for 
2017, 2018 and 2020, 
daily average 

570–1170 m away 
from air pollution 
monitoring stations 

Temperature, wind 
directions and 
speeds, 
precipitation, solar 
radiation, number 
of hours with 
thermal inversion 

OLS Positive links are found for 
NO, NO2 and NOx/No 
evidence is found for PM10 

Munjal et al 
(2022) 

India/Gurgaon, 
Faridabad, 
Hapur, SAS 
Nagar 

PM10, PM2.5, 
PM1 

4 toll plazas/5 days 
during September-
December 2020, 
hourly  

Co-locate at the 
same toll plazas 

Wind speed, 
humidity, pressure, 
solar radiation 

OLS Positive links are found for 
all pollutants 

Notes: PAH stands for polycyclic aromatic hydrocarbon. No information on exact distance between air pollution and road traffic monitoring stations are provided in Aldrin and 
Haff (2005) and Coria et al (2015). 
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Appendix B. Distribution of road traffic census points by year, month, and hour 
 

 
Notes: The y-axis of all figures shows the number of road traffic census points.
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Appendix C. Average hourly road traffic flow and other air pollution 

 
Notes: The figure shows the co-movements of the natural logarithm of the average hourly road traffic flow 
(blue dotted line, right axis) and the logarithm of the average hourly ambient concentrations of nitrogen 
dioxide (NO2), suspended particulate matter (SPM), sulfur dioxide (SO2), and oxidants (Ox) (black line, 
left axis). 
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Appendix D. Average diurnal variation in hourly meteorological conditions 

 
Notes: The figure shows the average diurnal variations in the hourly meteorological conditions. The units 
of measurement for each meteorological variable were Celsius for temperature, millimeters for 
precipitation, hectopascals for pressure, percent for humidity, and meters per second for wind speed.
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Appendix E. Pollution concentration-road traffic flow elasticities: other 
pollutants 

Dependent variable: Ln ambient concentration of air pollution 
  NO2 SPM SO2 Ox 
Ln road traffic flow 0.028** –0.041** –0.012 0.000 

 (0.014) (0.019) (0.017) (0.022) 
R2 0.614 0.147 0.473 0.822 
Hour fixed effects Yes Yes Yes Yes 
Station fixed effects Yes Yes Yes Yes 
Meteorological variables Yes Yes Yes Yes 
1-year lagged dependent variables Yes Yes Yes Yes 
Air pollution monitoring stations 1,053 1,084 571 736 
Municipalities 610 616 390 539 
Observations 15,453 15,285 6,981 10,471 
Long-run pollution-road traffic 
elasticities 0.09** –0.06** –0.03 0.00 
Notes: The table shows the results for estimating Eq. (1) for each pollutant. All meteorological 
variables listed in Table 2 (including wind direction dummies) and 1-h lagged dependent variables are 
included in each model. The R2 is for within monitoring station units. All specifications use a station-
hour panel dataset. Standard errors are robust to heteroscedasticity and clustered by municipality. For 
the long-run elasticity, standard errors are generated using the delta method. 
***, **, and * indicate statistical significance at 1%, 5%, and 10%, respectively. 
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Appendix F. Pollution concentration-road traffic flow elasticity: static panel model 
Dependent variable: Ln ambient concentration of air pollution 
 NOx CO NMHC PM2.5 
  (1) (2) (3) (4) 
Ln road traffic flow 0.152*** 0.105*** 0.081* –0.033 

 (0.035) (0.032) (0.045) (0.040) 
R2 0.265 0.292 0.172 0.051 
Hour fixed effects Yes Yes Yes Yes 
Station fixed effects Yes Yes Yes Yes 
Meteorological variables Yes Yes Yes Yes 
1-h lagged dependent variables No No No No 
Air pollution monitoring stations 1,057 193 325 642 
Municipalities 611 156 248 482 
Observations 15,937 3,168 4,834 9,292 
Notes: The table shows the results for estimating Eq. (1) without 1-h lagged dependent variables. All 
meteorological variables (including wind direction dummies) are included in each model. The R2 is 
for within monitoring station units. All specifications use a station-hour panel dataset. Standard errors 
are robust to heteroscedasticity and clustered by municipality. 
***, **, and * indicate statistical significance at 1%, 5%, and 10%, respectively. 
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