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Abstract 

This paper proposes a three-stage efficient GMM estimation algorithm for estimating firm-
level production functions given spatial dependence across firms due to supplier/customer 
relationships, sharing of input markets, or knowledge spillover. The procedure builds on 
Ackerberg, Caves and Frazer (2015) and Wooldridge (2009), but in addition, allows the 
productivity process to depend on the lagged output levels and lagged input usages of 
related firms, and potential spatially correlated productivity shocks across firms, where the 
set of related firms can differ across the three dimensions of spatial dependence. We 
establish the asymptotic properties of the proposed estimator, and conduct Monte Carlo 
simulations to validate these properties. The estimator is consistent under DGPs with or 
without spatial dependence, and with strong/weak or positive/negative spatial dependence. 
In contrast, the conventional estimators lead to biased estimates of the production function 
parameters when the underlying DGPs have spatial dependence structure, and the 
magnitudes of the bias increase with the strength of spatial dependence in the underlying 
DGPs. We apply the proposed estimation algorithm to a Japanese firm-to-firm dataset for 
the period 2009–2018. We find significant and positive spatial coefficients in the Japanese 
firm-level productivity process via all three channels proposed above. 
Keywords: productivity estimation, spatial dependence, buyer-seller network, factor market 

pooling, knowledge spillover 
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1 Introduction

Firm-level productivity (production function) estimation is critical to both positive and

normative research, in inferring the characteristics of firm-level production activities and

identifying the effect of policy/exogenous shocks (Olley and Pakes, 1996; Levinsohn and

Petrin, 2003; Ackerberg, Caves and Frazer, 2015; Wooldridge, 2009). Equally important, a

large literature has documented/analyzed how firms interact with each other via the input-

output linkages, factor markets, and knowledge spillovers (e.g., Ellison, Glaeser and Kerr,

2010; Helsley and Strange, 2014, 1990; Diamond and Simon, 1990; Helsley and Strange,

2002; Jaffe, Trajtenberg and Henderson, 1993; Audretsch and Belitski, 2020; Matray, 2021).

This paper contributes to the literature by proposing methodologies for estimating firm-

level productivity (production function), simultaneously taking into account potential spatial

interactions across firms. In particular, a firm’s productivity is allowed to depend on related

firms’ lagged outputs (e.g., via local input-output linkages), on related firms’ lagged labor

inputs (e.g., via sharing local labor pools), and on related firms’ current productivity shocks

(e.g., via knowledge spillovers with the boundary defined by the geographical area and/or

by the network of suppliers-customers).

We develop a three-stage efficient GMM estimation algorithm, and show by theory the

asymptotic properties of the proposed estimator and by Monte Carlo simulations the finite

sample performance of the estimator. The procedure provides the estimates of the produc-

tion function parameters (the labor and capital elasticities in value-added), the degree of

autoregressive correlation in the productivity process, and the spatial parameters (charac-

terizing the dependence of productivity on related firms’ lagged outputs and lagged inputs

respectively, and the strength of spatial error correlation of the productivity shocks). The

Monte Carlo simulations demonstrate that the proposed estimator yields point estimates

that are consistent for the true parameters both in the absence and in the presence of spa-

tial effects. In other words, it returns statistically insignificant coefficient estimates of the

spatial dependence parameters, when the underlying DGPs are free of such structures, and

consistent estimates of the spatial dependence parameters when the underlying DGPs are

characterized with such structures (via the lagged output, the lagged labor input, or the

productivity shock channel). This finding holds for DGPs with strong or weak spatial de-

pendence, and DGPs with positive or negative spatial dependence. The proposed estimation

algorithm also generates standard error estimates of the parameters that are consistent with

the Monte Carlo simulated standard deviations, and with a convergence rate (when the

sample size changes) in line with the theory. In contrast, the conventional productivity esti-

mators (which ignore potential spatial interactions across firms) lead to biased estimates of
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the production function parameters when the underlying DGPs exhibit spatial dependence

structure (and thus, for which the conventional estimator is misspecified). The conventional

estimates are upward (downward) biased when the underlying DGPs have positive (negative)

spatial dependence structure, and the extents of the bias worsen when the underlying DGPs’

spatial dependence strengthens.

We apply the developed methodology and estimation algorithm to the Japanese BSJBSA-

TSR linked dataset for the period 2009–2018. The dataset combines the firm-level financial

statement information from the Basic Survey of Japanese Business Structure and Activi-

ties (BSJBSA), and the firm-to-firm buyer-supplier relationship from Tokyo Shoko Research

(TSR). The estimation sample covers 12,525 firms per year (both publicly listed and unlisted

firms in Japan of medium/large sizes, across 267 commuting zones, and 14 industries), and

in particular, provides information on each firm’s most important domestic suppliers and

customers (up to 24 connections, respectively). We find significant and positive spatial co-

efficients in the Japanese firm-level productivity process via all three proposed channels. In

particular, a 1% increase in the average sales of a firm’s customers/suppliers in the previous

period in the same commuting zone helps improve the firm’s current productivity by 0.005%.

A larger local labor market also enhances a firm’s productivity: specifically, a 1% increase

in the average labor inputs in the previous period by firms located in the same commuting

zone raises a firm’s current productivity by 0.05%. There is also evidence of contemporary

knowledge spillovers among firms located in the same commuting zone (with a positive and

significant spatial error correlation coefficient of 0.38) and/or with buyer-supplier relation-

ships. In sum, the proposed estimator suggests that spatial interactions across firms play

a significant role in determining the Japanese firm-level productivity both statistically and

economically.

The prior literatures on estimating firm-level production functions typically ignore po-

tential spatial dependence across firms. The firm-level production functions are often taken

to be independent and estimated, before the estimated productivities are used to analyze

potential linkages across firms. For example, Javorcik (2004) and Keller and Yeaple (2009)

examine how foreign direct investments affect the productivity of domestic Lithuanian and

US manufacturing firms, respectively; Alfaro-Ureña et al. (2021) study how domestic Costa

Rican firms’ productivities change when firms start to supply to MNC. The recent work by

Iyoha (2022) highlights the need to estimate firm productivities in a modified framework

taking into account the presence of productivity spillovers. Her work, however, models the

interdependence across firms “in reduced form” in terms of their productivities, and not

directly in terms of outputs, inputs, or the productivity shocks of related firms. This leads

to a rather difficult setup for estimations, and for establishing the asymptotic properties
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(and variance-covariance) of the estimator. Her framework, albeit with a dynamic-spatial

structure for productivities, has relied heavily on static-spatial estimation techniques.

In this paper, we propose methodologies that model productivity dependence across firms

structurally where the spatial effects operate via potentially lagged outputs, lagged inputs,

and current productivity shocks of related firms, motivated by the mechanisms highlighted

by the literatures. We draw on the approaches proposed in the productivity estimation liter-

ature (e.g., Wooldridge, 2009; Ackerberg, Caves and Frazer, 2015), and the spatial economet-

rics literature (e.g., Kelejian and Prucha, 1998, 1999; Kapoor, Kelejian and Prucha, 2007;

Lee and Yu, 2014; Elhorst, 2014). The resulting three-stage efficient GMM estimator has

standard asymptotic properties, with variance-covariance estimators that take into account

the spatial interactions across firms in each of the three dimensions proposed. The sets of

instruments suitable for each stage are also straightforward extensions of those suggested

by each of these two individual literatures. As discussed above, our proposed estimator is

shown to be consistent under DGPs with or without spatial dependence. In contrast, the

conventional estimators are biased when the true DGPs are indeed characterized by spatial

dependence. These findings imply that analyzing spatial interactions across firms based on

the productivities estimated by the conventional estimators will lead to biased inferences.

Instead, the proposed estimator in this paper offers a framework to simultaneously estimate

firm production functions and spatial interactions across firms in one unified setup.

The rest of the paper is organized as follows. We set up the model in Section 2. In

Section 3, we develop the estimation algorithms and establish the asymptotic properties

of the proposed estimator. Section 4 introduces the Japanese firm-level and firm-to-firm

datasets. Section 5 conducts Monte Carlo simulations to evaluate the performance of the

proposed estimator in comparison with the conventional estimator. In Section 6, we apply

the proposed methodology empirically to the Japanese dataset, and Section 7 concludes.

2 Model

Consider the following production function, where a firm’s value-added depends on its pri-

mary factor inputs and productivity, while its productivity depends on its lagged productiv-

ity, and related firms’ lagged outputs and input choices. In addition, the innovations to the

productivity of related firms are allowed to be spatially correlated. The set of related firms

that a firm’s productivity depends upon can be defined by supplier-customer relationship, by

ownership structure, by physical location, by industry of sales, or by combinations of them,

and can differ across the three channels of spatial dependence, as the context of the study
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may deem appropriate. In particular, define:

vait = α0 + αllit + αkkit + ωit + ξit, (1)

ωit = f(ωi,t−1) + λ
∑

j∈N y
i,t−1

w
y
ij,t−1yj,t−1 +

∑
j∈NΩ

i,t−1

wΩij,t−1Ωj,t−1βΩ̄ + xi,t−1βx + uit, (2)

uit = µ
∑
j∈Nu

it

wuij,tujt + vit, (3)

i, j = 1, 2, 3, ..., N and t = 2, 3, ..., T.

where vait, yit, lit, kit and ωit denote the log of: value-added, gross output, labor input,

capital stock at the beginning of period, and productivity, respectively, of firm i in period

t, with ξit denoting the value-added shock to firm i in period t. A firm’s productivity ωit is

assumed to be dependent on its lagged productivity ωi,t−1 via an unknown function f(·) as in
Olley and Pakes (1996), Levinsohn and Petrin (2003), Ackerberg, Caves and Frazer (2015),

and Wooldridge (2009). One might also consider a firm’s current productivity to depend on

the lagged characteristics xi,t−1 of the firm (such as its lagged exporting status and R&D

expenditure) à la De Loecker (2013), Doraszelski and Jaumandreu (2013), and Braguinsky,

Ohyama, Okazaki and Syverson (2015).

We generalize the setup of the literature and allow spatial dependence across firms in

their productivities. In particular, a firm i’s current productivity could depend on the

lagged output yj,t−1 of its related firms j in the set N y
i,t−1, and the lagged inputs Ωj,t−1 ≡

{lj,t−1, kj,t−1,mj,t−1} of a possibly different set NΩ
i,t−1 of related firms, where mj,t−1 denotes

the log of: 1×M vector of intermediate inputs of firm j in period t− 1. Furthermore, the

innovation uit to the productivity of firm i in period t is allowed to be spatially correlated

with those of related firms in the set N u
it contemporarily. The weight assigned to each of the

related firms in the set N y
i,t−1 is specified by w

y
ij,t−1, and correspondingly those for firms in

NΩ
i,t−1 and N u

it are specified by wΩij,t−1 and wuij,t, respectively.

2.1 Assumptions

We adopt standard assumptions similar to those in the productivity estimation literature, but

extend them to accommodate the setup with spatial dependence across firms in productivity

as introduced in Equations (1)–(3).

Assumption 1. E(ξit|lit, kit,mit) = 0.

Assumption 2. E(ξit|ljt, kjt,mjt, lj,t−1, kj,t−1,mj,t−1, . . . , lj1, kj1,mj1) = 0.

Assumption 3. E(uit|kit, lj,t−1, kj,t−1,mj,t−1,xj,t−1, . . . , lj1, kj1,mj1,xj1) = 0.
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Assumption 4. The residuals, ξit, are assumed to be i.i.d. across both i and t, and have

finite fourth moments:

ξit
iid∼ (0, σ2

ξ ), E|ξ4+ηit | < ∞, for some η > 0.

Assumption 5. The productivity innovations, uit, are spatially correlated as specified in

Equation (3), with residual vit assumed to be i.i.d. across both i and t, and have finite fourth

moments:

vit
iid∼ (0, σ2

v), E|v4+ηit | < ∞, for some η > 0.

Assumption 6. The residuals, ξit and vit, are uncorrelated.

Assumption 7. (IN − µWu
t ) are non-singular for t = 1, 2, . . . , T , with µ ∈ ( 1

λmin,t
, 1
λmax,t

),

where IN is the identity matrix of size N , Wu
t ≡ {wuij,t}, and λmin,t and λmax,t are the smallest

and largest eigenvalues of Wu
t .

Assumption 8. The row and column sums of the matrices, Wy
t−1,W

Ω
t−1,W

u
t and (IN −

µWu
t ) are uniformly bounded in absolute value for t = 2, 3, . . . , T , as N approaches infinity,

where Wy
t−1 ≡ {wyij,t−1} and WΩ

t−1 ≡ {wΩij,t−1}.

Assumption 9. The regressor matrices {Ωt, yt−1,Ωt−1,xt−1} have full column rank, and

the elements are uniformly bounded in absolute value for t = 2, 3, . . . , T .

Assumption 1 is the standard assumption made in the literature for firm-level productivity

estimations. Assumption 2 requires that the residuals ξit in the value-added equation (1)

are conditionally mean independent of current and past input usages of the firm itself, and

also those of the other firms. This is not as stringent an assumption as it might appear,

because the productivity term ωit in Equation (1) has absorbed potential spatial dependence

across firms to the extent modelled by Equation (2). Assumption 3 basically states that

the innovation uit to productivity is conditionally mean independent of the state variable

(capital), as well as the past input choices and characteristics of all the other firms. Together,

the first three assumptions will help identify the set of moment conditions and instruments for

estimating the parameters in Equations (1) and (2). Assumptions 4–6 are made to develop

the variance-covariance estimator of the parameters. In particular, the finite fourth moment

condition for vit is required for the estimation of the spatial parameter µ in Equation (3).

Assumptions 7–9 are adopted from Kelejian and Prucha (1999), Kapoor, Kelejian and Prucha

(2007), and Elhorst (2014) to ensure that the spatial parameter estimates exist. Note that

we will construct the connectivity matrices such that they are row-normalized (with zeros

in the diagonal by construction). They will hence satisfy Assumption 8.
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3 Estimation Algorithms

In this section, we propose a three-stage estimation procedure based on Generalized Method

of Moments (GMM) to obtain consistent estimates of the parameters in Equations (1)–(3).

3.1 Moment Conditions

Given Assumptions 1–5, the following moment conditions hold with respect to the error

terms in Equation (1) and Equation (2):

E(ξt|lt, kt,mt,Ωt−1) = 0, (4)

E(ξt + ut|kt,Ωt−1,W
y
t−1yt−1,W

Ω
t−1Ωt−1,xt−1) = 0, (5)

where ξt ≡ (ξ1t, ..., ξNt)
′ and ut ≡ (u1t, ..., uNt)

′ denote the N × 1 vector of the residual terms from

Equation (1) and Equation (2), respectively, across firms in period t; lt ≡ (l1t, ..., lNt)
′ denotes the

N × 1 vector of labor inputs across firms in period t; kt and mt are similarly defined; Ωt−1 ≡
[lt−1 kt−1mt−1]; yt−1 ≡ (y1,t−1, ..., yN,t−1)

′ denotes the N × 1 vector of gross outputs across firms

in period t− 1; xt−1 is similarly defined. The matrices Wy
t−1 ≡ {wyij,t−1} and WΩ

t−1 ≡ {wΩij,t−1} are

N × N connectivity matrices in period t − 1 that specify the dependence of firm i’s productivity

in period t on related firms j’s lagged outputs and lagged inputs, respectively. Note that the

conditional mean is defined element (firm) wise in each period t.

Furthermore, by Kelejian and Prucha (1999) and Kapoor, Kelejian and Prucha (2007), the

following three moment conditions hold with respect to the error term in Equation (3):

E


1
N v

′
tvt

1
N vt

′Wu
t
′Wu

t vt
1
N v

′
tW

u
t vt

 =

 σ2v
σ2
v
N tr(Wu

t
′Wu

t )

0

 . (6)

where vt ≡ (v1t, ..., vNt)
′ denotes the N × 1 vector of the residual term from Equation (3) across

firms in period t.

3.2 Estimation Strategy

3.2.1 Stage 1

Following the productivity estimation literature (e.g., Levinsohn and Petrin, 2003; Wooldridge,

2009), the productivity ωit is assumed to be observable to the firm (or managers of the firm),

but not to the econometrician. However, since a firm would in theory choose the optimal level of

intermediate input mit to maximize profits, given its initial capital stock kit, labor force lit, and

realized productivity level ωit, the econometrician could invert the relationship to infer a firm’s
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productivity given its initial capital stock and observed input choices:

ωit = g(lit, kit,mit), (7)

where g(·, ·, ·) is some unknown general function in the observed input levels. Equation (7), together

with Equation (1), imply the following reduced-form value-added function:

vat = α0ιN + αllt + αkkt + ωt + ξt

= α0ιN + αllt + αkkt + g(lt, kt,mt) + ξt

≡ h(lt, kt,mt) + ξt, (8)

where vat ≡ (va1t, ..., vaNt)
′ denotes the N × 1 vector of value-added across firms in period t;

and ιN is a N × 1 vector of one’s. The shorthand g(lt, kt,mt) is a N × 1 column vector with

g(lit, kit,mit) as its i-th entry; similarly, h(lt, kt,mt) is a N×1 column vector with h(lit, kit,mit) as

its i-th entry, where h(lit, kit,mit) ≡ α0+αllit+αkkit+ g(lit, kit,mit). As in Ackerberg, Caves and

Frazer (2015) and Wooldridge (2009), one could approximate h(·, ·, ·) in Equation (8) by a n-degree

polynomial that contain at least lit, kit and mit. For example, in the case where mit contains

only one type of intermediate input and is hence a scalar, h(lit, kit,mit) can be approximated by∑
p,q,r (l

p
itk

q
itm

r
it) δp,q,r, with nonnegative integers p, q and r such that p+ q + r ≤ n. That is:

h(lit, kit,mit) = α0 + c(lit, kit,mit)δ, (9)

where c(lit, kit,mit) is a 1×Q vector of functions in (lit, kit,mit) and δ a Q×1 vector of parameters.

For example, for a 2nd-order polynomial h function (n = 2), c(lit, kit,mit) = [lit, kit,mit, l
2
it, litkit,

litmit, k
2
it, kitmit,m

2
it].

Given the moment condition (4), Equation (8) given Equation (9) can be estimated using the

following set of instrument variables (IVs) for period t:

Zt,I = (ιN , lt, kt,mt,Ωt−1). (10)

Note that since g(·, ·, ·) is allowed to be a general function (including linearity in the arguments as

a special case), the slope coefficients (αl, αk) on the inputs are not identified from Equation (8), as

highlighted by Ackerberg, Caves and Frazer (2015). However, it enables an estimate ĥ(lit, kit,mit)

of h(lit, kit,mit). In turn, the slope coefficients of the production function can be identified in a

later stage, along with the other parameters, as laid out in the next section.

The set of IVs listed in (10)—and in the moment condition (4)—includes the input variables

only up to one lag, and hence corresponds to weaker conditions than stated in Assumption 2. One

could potentially enlarge the set and include longer lags of the input variables in the conditioning

set, given Assumption 2
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3.2.2 Stage 2

Next, given the productivity process’s dynamic and spatial dependence structure specified in Equa-

tion (2), and Equation (7), we can also write the value-added function in the following alternative

reduced form:

vat = α0ιN + αllt + αkkt + ωt + ξt

= α0ιN + αllt + αkkt + f[g(lt−1, kt−1,mt−1)]

+λWy
t−1yt−1 +WΩ

t−1Ωt−1βΩ̄ + xt−1βx + ut + ξt, (11)

where the shorthand f[g(lt−1, kt−1,mt−1)] is a N × 1 column vector with f [g(li,t−1, ki,t−1,mi,t−1)]

as its i-th entry. Recall that the matrices Wy
t−1 ≡ {wyij,t−1} and WΩ

t−1 ≡ {wΩij,t−1} are N × N

connectivity matrices in period t−1 that specify the dependence of firm i’s productivity in period t

on related firms j’s lagged outputs and lagged inputs, respectively. In deriving Equation (11), we

have used Equation (2) to replace ωt and Equation (7) to replace ωi,t−1 in the f(·) function such

that f(ωi,t−1) = f [g(li,t−1, ki,t−1,mi,t−1)]. As suggested by Wooldridge (2009), one could use a

G-th degree polynomial to approximate f(·) such that:

f(ν) = ρ1ν + ρ2ν
2 + . . .+ ρGν

G. (12)

Given the moment condition in (5), Equation (11) can be estimated using the following set of

IVs for period t:

Zt,II = (ιN , kt,Ωt−1,W
y
t−1yt−1,W

Ω
t−1Ωt−1,xt−1), (13)

with up to one lag of the variables (or a longer past history of the variables). Additional spatio-

temporal lags of explanatory variables, such as (Wy
t−1)

2yt−1, (Wy
t−1)

3yt−1, (WΩ
t−1)

2Ωt−1 and

(WΩ
t−1)

3Ωt−1, may also be added to the set of IVs to help identify the spatial coefficients.

While Ackerberg, Caves and Frazer (2015) propose to estimate Equations (8) and (11)—

without the spatial structure—sequentially, by plugging in estimates from Equation (8) into Equa-

tion (11), we adopt the approach proposed by Wooldridge (2009) and estimate them jointly,

as it leads to more efficient estimators. In particular, denote the parameters of the system by

θ = (α0, δ
′, αl, αk, λ,β

′
Ω̄
,β′

x, ρ1, ..., ρG)
′. The residuals from Equations (8) and (11) given the pa-

rameters are, respectively:

rt,I(θ) = vat − α0ιN − ctδ, (14)

rt,II(θ) = vat − α0ιN − αllt − αkkt − f[ct−1δ − αllt−1 − αkkt−1]

−λWy
t−1yt−1 −WΩ

t−1Ωt−1βΩ̄ − xt−1βx, (15)

where recall that g(li,t−1, ki,t−1,mi,t−1) = h(li,t−1, ki,t−1,mi,t−1)−α0−αlli,t−1−αkki,t−1 = c(li,t−1,

ki,t−1,mi,t−1)δ − αlli,t−1 − αkki,t−1, given Equations (8) and (9). The shorthand ct is a N × Q
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matrix with c(lit, kit,mit) as its i-th row entry. The moment conditions in (4) and (5) imply that:

E[Z ′
it rit(θ)] ≡ E

[ (
Z ′
it,I 0

0 Z ′
it,II

) (
rit,I(θ)

rit,II(θ)

) ]
= 0, (16)

where Zit,I , Zit,II , rit,I(θ), and rit,II(θ) are the i-th row entry of Zt,I , Zt,II , rt,I(θ), and rt,II(θ),
respectively.

3.2.3 Stage 3

We estimate the spatial error structure in Equation (3) based on the GMM approach of Kelejian

and Prucha (1999) and Kapoor, Kelejian and Prucha (2007). Specifically, given the parameter

estimates θ̂ from the previous stages, we impute estimates of the productivity innovation term, ût,

by taking the difference between (15) and (14), since the residuals from the second stage is ξ̂t + ut

and the residuals from the first stage is ξ̂t:

ût ≡ ctδ̂ − α̂llt − α̂kkt

−f[ct−1δ̂ − α̂llt−1 − α̂kkt−1]

−λ̂Wy
t−1yt−1 −WΩ

t−1Ωt−1β̂Ω̄ − xt−1β̂x, (17)

and use the moment conditions in (6) to estimate µ and σ2v jointly by GMM. Note that if we define

ut ≡ Wu
t ut, vt ≡ Wu

t vt, and ut = (Wu
t )

2ut, it follows that vt = ut − µut and vt = ut − µut. By

replacing vt in the moment condition (6) with ut − µut rewrites the three moment conditions in

terms of ut and µut. This simplifies the computation greatly by avoiding taking the inverse of the

N ×N matrix (IN − µWt
u) to compute vt = (IN − µWu

t )
−1ut (Kelejian and Prucha, 1999), which

is particular meaningful as our data have a large N . By replacing vt in (6) with ut and µut, we can

follow similar steps as in Kelejian and Prucha (1999) and Kapoor, Kelejian and Prucha (2007) to

derive Equation (18) below:

γt = Γt

 µ

µ2

σ2v

 , (18)

where

γt =
1

N

 E(u′tut)

E(u′tut)

E(u′tut)

 , (19)

Γt =
1

N


2E(u′tut) −E(u′tut) N

2E(u
′
tut) −E(u

′
tut) tr(Wu

t
′Wu

t )

E(u′tut + u′tut) −E(u′tut) 0

 . (20)

11



Use the estimates of the productivity innovation term from Equation (17), ût, to construct the

sample counterparts of the γt vector and the Γt matrix:1

ςt ≡ 1

N

 ût
′ût

ût
′Wu

t
′Wu

t ût

ût
′Wu

t ût

 , (21)

𭟋𭟋𭟋t ≡ 1

N

 2ût
′Wu

t ût −ût′Wu
t
′Wu

t ût N

2ût
′Wu

t
′Wu

t
′Wu

t ût −ût′Wu
t
′Wu

t
′Wu

tW
u
t ût tr(Wu

t
′Wu

t )

û′tW
u
tW

u
t ût + û′tW

u
t
′Wu

t ût −û′tWu
t
′Wu

tW
u
t ût 0

 , (22)

and form the sample counterpart of the condition in Equation (18):

ςt = 𭟋𭟋𭟋t

 µ

µ2

σ2v

+ ϵt, (23)

where ϵt is a 3× 1 vector of residuals. We can then estimate µ and σ2v by the transformed moment

condition E(ϵt) = 0. Specifically,

ϵt(µ, σ
2
v) =

1

N

 ût
′(IN − 2µWu

t + µ2Wu
t
′Wu

t )ût − σ2vN

ût
′Wu

t
′(IN − 2µWu

t + µ2Wu
t
′Wu

t )W
u
t ût − σ2vtr(W

u
t
′Wu

t )

ût
′ (IN − µ(Wu

t +Wu
t
′) + µ2Wu

t
′Wu

t

)
Wu

t ût

 . (24)

The algorithm above provides a set of estimates consistent for θ, µ and σ2v . We can improve the

efficiency of the estimators by deriving the weighting matrix for the GMM estimator, and repeat

the procedure until the parameter estimates converge. Section 3.3 characterizes the algorithm to

obtain the efficient GMM estimator.

3.3 Efficient GMM Estimator

This section itemizes the steps to implement the proposed estimation strategy and obtain the

efficient GMM estimator of θ and ψ ≡ {µ, σ2v}.

1. Minimize the objective function:
[

1
N(T−1)

∑N
i=1

∑T
t=2Z ′

itrit(θ)
]′
Wθ

[
1

N(T−1)

∑N
i=1

∑T
t=2Z ′

itrit(θ)
]

with respect to θ by setting Wθ = IM to obtain the one-step estimator θ̂ of θ, where Wθ

of dimension M×M refers to the weighting matrix for the moment conditions used in the

estimation of θ, and M is the combined number of moment conditions (instruments) from

Stage 1 and Stage 2.

1The derivations are provided in Section A.1 of the Theoretical Appendix.
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2. Given the one-step estimate of θ, obtain the residuals {ût}Tt=2 by Equation (17). This in turn

can be used to obtain an estimator of µ and σ2v based on Equations (23) and (24):

argmin
µ,σ2

v

1

T

ςt −𭟋𭟋𭟋t

 µ

µ2

σ2




′

Wψ
1

T

ςt −𭟋𭟋𭟋t

 µ

µ2

σ2


 , (25)

by setting Wψ = I3 to obtain the one-step estimator of µ and σ2v , where Wψ of dimension

3× 3 refers to the weighting matrix for the moment conditions used in the estimation of ψ,

and there are three moment conditions in this case.

3. Derive a variance-covariance estimator V̂θ of the moment conditions used in the estimation

of θ, Vθ = Var

(
1√

N(T−1)

∑N
i=1

∑T
t=2 Z

′
itrit

)
, noting that:2

Vθ =
1

N(T − 1)

N∑
i=1

T∑
t=2

N∑
j=1

T∑
s=2

E[(Z ′
itrit)(Z

′
jsrjs)

′]

=
1

N(T − 1)

N∑
i=1

T∑
t=2

(
Z ′
it,IZit,IE(ξ2it) Z ′

it,IZit,IIE(ξ2it)

Z ′
it,IIZit,IE(ξ2it) Z ′

it,IIZit,IIE(ξ2it)

)

+
1

N(T − 1)

T∑
t=2

Z ′
t

(
0N×N 0N×N

0N×N σ2v [(IN − µWu
t )

−1(IN − µWu
t )

−1′])

)
Zt, (26)

by replacing the residuals ξt with the sample counterpart ξ̂t, and the parameters (µ and σ2v)

with their estimates obtained from Steps 1–2 above.

4. Repeat Step 1, but update the weighting matrix by Wθ = V̂
−1

θ .

5. To obtain an estimate of the variance-covariance matrix for the moment conditions used in the

estimation of ψ, we extend the framework of Kapoor, Kelejian and Prucha (2007) to allow for

non-normal errors and time-varying connectivity matrices.3 The variance-covariance matrix

for the moment conditions in Equation (6) is given by:

Vψ =

 Vψ,11 Vψ,12 0

Vψ,21 Vψ,22 Vψ,23

0 Vψ,32 Vψ,33

 , (27)

2The derivations of Vθ are provided in Section A.2 of the Theoretical Appendix.
3The derivations of Vψ are provided in Section A.3 of the Theoretical Appendix.
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where

Vψ,11 = σ4v [κv + 2];

Vψ,12 =
σ4v

N(T − 1)
[κv + 2]tr(Wu′Wu);

Vψ,21 = Vψ,12;

Vψ,22 =
σ4v

N(T − 1)
[κv diagv(Wu′Wu)′diagv(Wu′Wu);

+ tr(Wu′Wu(Wu′Wu +WuWu′))];

Vψ,23 =
σ4v

N(T − 1)
tr((Wu′Wu)(Wu +Wu′));

Vψ,32 = 2
σ4v

N(T − 1)
tr((WuWu′Wu);

Vψ,33 =
σ4v

N(T − 1)
tr(Wu(Wu +Wu′));

κv is the finite excess kurtosis of vit, and Wu is a N(T −1)×N(T −1) block-diagonal matrix

with Wu
2 ,W

u
3 , . . . ,W

u
T on the diagonal; the operator ‘diagv’ takes the diagonal elements of

a matrix and converts them to a column vector.

The excess kurtosis κv can be estimated using the following formula given the estimates of µ

and σ2v :

κ̂v =

∑N
i=1

∑T
t=2(v̂it −

1
N(T−1)

∑N
i=1

∑T
t=2 v̂it)

4

N(T − 1)σ̂4v
− 3, (28)

where v̂it is the i-th element of v̂t = (IN − µ̂Wu
t )ût and σ̂

4
v = (σ̂2v)

2.

6. Repeat Step 2, this time setting Wψ = V̂
−1

ψ .

7. Repeat Steps 3–6 until convergence in the estimates: V̂θ, V̂ψ, θ̂, µ̂ and σ̂2v .

8. Obtain a variance-covariance matrix estimator of the parameters θ based on the asymptotic

property established for the efficient GMM estimator (Lee and Yu, 2014):

√
N(θ̂ − θ) ∼ N (0,plimN→∞

1

T − 1
Σθ), (29)

where Σθ = (Z ′
∆V

−1
θ Z∆)

−1 and Z∆ = E
[
d
dθ′Z

′
itrit(θ)

]
. The sample counterpart is corre-

spondingly:

Ẑ∆ =
1

N(T − 1)

N∑
i=1

T∑
t=2

[
d

dθ′
Z ′
itrit(θ)

]
.

By the Slutsky theorem, we have Σ̂θ ≡ (Ẑ
′
∆V̂

−1

θ Ẑ∆)
−1 p→ (Z ′

∆V
−1
θ Z∆)

−1 ≡ Σθ.
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9. Similarly, the variance-covariance matrix Σψ (in the original scale) for the parameters ψ can

be estimated by:

Σ̂ψ =
1

N(T − 1)
(Ĝ′

∆V̂
−1

ψ Ĝ∆)
−1, (30)

where

(31)

Ĝ∆ =
1

(T − 1)

T∑
t=2

dϵt(ψ̂)

dψ′ (32)

=
1

N(T − 1)

T∑
t=2

 2ût
′(µ̂Wu

t
′ − IN )W

u
t ût −N

2ût
′Wu

t
′(µ̂Wu

t
′ − IN )W

u
tW

u
t ût −tr(Wu

t
′Wu

t )

ût
′(2µ̂Wu

t
′Wu

t − (Wu
t +Wu

t
′))Wu

t ût 0

 .

4 Data

Our dataset is constructed by combining two Japanese datasets. The first dataset is the Basic Sur-

vey of Japanese Business Structure and Activities (BSJBSA), provided by the Ministry of Economy,

Trade and Industry (METI), Japan. The data include a firm-level annual survey of detailed busi-

ness information, such as sales, employment, capital stock, industry classification (Japan Standard

Industry Classification, JSIC) and intermediate purchases. The data cover both manufacturing and

non-manufacturing firms that have: (1) more than 50 employees, and (2) capital stocks of more

than 30 million yens (approximately 350 thousand USD in 2012).

The second dataset contains information on firm-to-firm relationship provided by Tokyo Shoko

Research (TSR), a major credit reporting company in Japan. It provides a firm’s most important

domestic suppliers and customers (up to 24 connections in each direction) and covers both publicly

listed and unlisted firms in Japan with all sizes and industries. Because these two datasets do

not use the same firm identification codes, we match them on the basis of firm name, address,

phone number, and postal code. Using the BSJBSA as the denominator (since it provides the

required firm-level variables for productivity estimations), the percentage of firms in BSJBSA that

are matched with its counterpart in TSR is very high, typically at 93%–94%, across years during

the sample period 2009–2018. Table 1 provides the detailed firm counts.

We supplement the BSJBSA-TSR linked dataset with the JIP database 2021 provided by the

Research Institute of Economy, Trade and Industry (RIETI), and with the information on com-

muting zones (CZs) constructed by Adachi, Fukai, Kawaguchi and Saito (2021). We impute the

industry-level price deflators based on the JIP database. In particular, it contains the nominal

and real values of outputs, intermediate inputs, investment, and value added for the 100 industries

classified by the JIP database. We construct the deflators by the ratios of the nominal and real

values for each of these variables, and merge them with the BSJBSA data (based on concordance

between the BSJBSA JSIC industries and the JIP industries, provided in the JIP database). There
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are in total 433 JSIC 3-digit industries. A JIP industry is matched on average with 4.8 JSIC 3-digit

industries. These deflators are then used to convert the BSJBSA corresponding variables into real

terms. We also impute the average work hours per person in a year in an industry based on the

JIP database and merge the variable with the BSJBSA data (using again the concordance between

the JIP and JSIC industries).

The information on CZs is used as one criterion below in defining connectivity matrices across

firms. Adachi, Fukai, Kawaguchi and Saito (2021) construct the CZ information for Japan using

the hierarchical agglomerative clustering (HAC) method of Tolbert and Killian (1987) and Tolbert

and Sizer (1996) for constructing the US CZs. By Adachi et al. (2021), there are 267 CZs in

2010 and 265 in 2015 in Japan. We use the 2010 CZ definition, and merge the CZ information

with the BSJBSA observations based on the prefecture and city names of a firm’s address, and

examine/adjust manually if necessary.

The variables at the firm-year level used for the production function estimation is constructed

in the following manners. The number of workers is constructed as the sum of regular workers and

part-time workers (excluding temporary workers) in headquarter, head office, branch office, and

assignee company (available from the BSJBSA). The labor hour is constructed as the number of

workers (from the BSJBSA), times the average work hours per person in each industry (from the JIP

database). The real physical capital stock is constructed by the perpetual inventory method with

2007 as the base year, using the initial real physical capital value in 2007 and the real investment in

physical capital in each year from the BSJBSA, together with the depreciation rates at the industry

level from the JIP database. The real intermediate inputs are constructed by the sum of the cost of

goods sold, and general and administrative expenses, minus wages, rental costs, depreciation, and

taxes reported in the BSJBSA, deflated by the input deflator (constructed using the JIP database

as documented above). The real revenue is measured by sales, deflated by the output deflator

imputed from the JIP database. The real value added is constructed by the difference between the

real sales and the real intermediate inputs, following Wakasugi et al. (2008).

4.1 Summary Statistics

Table 2(a) provides the summary statistics of the key variables for the BSJBSA-TSR linked sample

in year 2015 (based on the denominator of BSJBSA firms, not all of which have corresponding

entries in TSR). The effective number of observations differs from Table 1 due to potentially missing

observations on the variable of interest.

A few remarks are in order. First, the average firms tend to be large (e.g., having 459 workers,

and 5.1 billion JPY physical capital, roughly equivalent to 40 million USD). This is due to the

fact that the BSJBSA only covers medium and large firms. Second, the average firms report 6.8

customers and 6.7 suppliers, suggesting that the TSR’s limit of reporting the top suppliers and

customers up to 24 connections in each direction is not practically binding for most of the firms.

Figures 1(a)–3(a) illustrate the number of firms, their average size in terms of employment, and
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their average number of customers and suppliers for each 1-digit JSIC rev12 industry. Figure 1(a)

indicates that most of the firms in the sample are in the manufacturing, wholesale & retail trade,

and information & communications industries. Among them, those in the service industries tend

to be large in terms of employment (e.g., accommodation and food & beverage services, electricity,

gas, heat supply & water, and finance & insurance) (Figure 2(a)). In terms of connectedness with

other firms, those in the construction, manufacturing, and mining & quarrying industries tend

to have a larger number of customers and suppliers, while those in the service industries tend to

have a smaller number of business customers but just as many suppliers as in other industries

(Figure 3(a)).

Figures 4(a)–6(a) show a large heterogeneity across prefectures in terms of the number of firms,

their average size, and their average number of customers and suppliers. Most of the firms in the

sample are located in economically large prefectures, such as Tokyo, Osaka, Aichi, Kanagawa, and

Hyogo (Figure 4(a)). Firms in these large prefectures tend also to be large in terms of employment

(Figure 5(a)) and connected with a larger number of both customers and suppliers (Figure 6(a)).

The potential spatial dependence across firms through the supply chain and the input markets

can be more local than the prefecture level. Bernard, Moxnes and Saito (2019) show that the

median distance of any customer-supplier pair in the TSR data is 30 km and thus smaller than

the typical size of prefectures. Thus, the following figures further provide the characterization at

the commuting zone level. Figure 7(a) shows the number of CZs within each prefecture in 2015.

Prefectures with large areas (e.g., Hokkaido and Nagano) tend to have many CZs, while those with

small areas and economic sizes (e.g., Kagawa and Fukui) tend to have few CZs. Figures 8(a)–10(a)

show the counterparts of Figures 4(a)–6(a) at the commuting-zone level. The commuting zone with

the largest number of firms (8993) is CZ89 that covers the busiest areas around Tokyo (parts of

Tokyo, Kanagawa, Chiba, and Saitama). Economically large CZs also tend to have larger firms

and more connected firms. For example, the same CZ89 ranks top 5th in terms of average firm’s

employment size (643.99), and top 24th in terms of average firm’s customer connections (7.44). Note

also that the average firm size is much more dispersed at the right tail when we zoom in at the

commuting-zone level (Figure 9(a)) compared to that at the prefecture level (Figure 5(a)). Similarly,

the distributions of supplier/customer connections are much more dispersed at the commuting-

zone level (Figure 10(a)) than at the prefecture level (Figure 6(a)), suggesting a large degree of

heterogeneity across CZs within prefectures.

4.2 Definition of Connectivity Matrices

To model the spatial-temporal lag dependence in outputs, we define the output connectivity matrix

Wy
t−1 based on the set of a firm’s customers and/or suppliers located in the same commuting zone.

The ij-th element of Wy
t−1 takes on the value one if both firms i and j are located in the same

commuting zone, and in addition, firm j is a customer or supplier of firm i, in period t − 1. This

is in line with the research conducted by Ellison, Glaeser and Kerr (2010). They find that the
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geographical proximity of firms and the input-output linkages across firms play an important role

in productivity spillovers.

Next, for productivity dependence across firms through the input markets, we restrict our focus

to the labor market channel, and define input connectivity matrix WΩ
t−1 such that the ij-th element

of WΩ
t−1 takes on the value one if firms i and j are located in the same commuting zone in period

t− 1. Firms located in the same commuting zone are more likely to tap into the same labor pool,

considering the potential labor mobility frictions across zones. Multiple theories have been proposed

about the benefits associated with a large labor pool. When firms in the same location employ more

workers, the potential pool of labor in the location increases. This facilitates better worker-firm

matches (e.g., Helsley and Strange, 1990); allows risk sharing and worker turnover across firms (e.g.,

Diamond and Simon, 1990; Krugman, 1991); and induces stronger incentives for workers to invest

in human capital knowing that they do not face ex post appropriation (Rotemberg and Saloner,

2000). As a result, conditional on the amount of labor input hired by a firm, the quality of labor

input (and hence firm productivity) is likely higher when the total labor employed in the same

location in the past period is larger. Relatedly, Greenstone, Hornbeck and Moretti (2010) find that

estimated spillover effects resulting from the opening of Million Dollar Plants are larger for other

plants that share labor pools and similar technologies with the new plant.

To model the spatial diffusion of the productivity shock ut, we consider three variants of the

connectivity matrix Wu
t , depending on whether two firms are located in the same commuting zone,

whether they have supplier/customer relationships, or both. In particular, the ij-th element of

Wu
t takes on the value one: (i) if both firms i and j are located in the same commuting zone

in period t, (ii) if both firms i and j are located in the same commuting zone, and firm j is a

customer or supplier of firm i, in period t, and (iii) if firm j is a customer or supplier of firm

i in period t, respectively. Supporting evidence of the criteria used above includes the work by

Audretsch and Belitski (2020) and Matray (2021). The latter shows that local innovation spillovers

decline rapidly with distance. In the second variant, the spillover is further restricted specifically

to firms in supplier-customer relationships. An unexpected productivity shock experienced by a

firm may trickle down to its buyers via the provision of higher quality inputs, allowing its buyers

to scale up their productivities. Alternatively, the technology innovation or discovery may occur

simultaneously to the network of firms belong to the same supply or value chain. The third variant

instead focuses on the supply chain as the conduit of innovation spillovers, but disregards the

potential distance between the buyers/sellers. Note that the second variant is a relatively sparse

matrix compared to the other two variants.

The connectivity matrices defined above are then row-normalized, such that each row has a row

sum equal to one (and zero if all elements in a row are zeros).
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5 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to assess the consistency and efficiency of the

estimator we proposed in Section 3 (which allows for spatial dependence in productivity), and com-

pare it with the conventional estimators (that assume no such spatial dependence). We consider

five data generating processes (DGPs). The first DGP (DGP1) is favorable to the conventional

estimator and assumes that the productivity ωt follows an AR(1) process. The remaining DGPs

consider spatial dependence of various mechanisms and strengths across firms. The second DGP

(DGP2) assumes the productivity ωt to depend on own lagged productivity and the lagged out-

puts/inputs of connected firms as specified in Equation (2). The third DGP (DGP3) further allows

the productivity shock ut to be spatially correlated as specified in Equation (3). The fourth DGP

(DGP4) is the same as DGP3 but assumes stronger spatial dependence in the lagged output/inputs

of connected firms. The fifth DGP (DGP5) is the same as DGP3 but assumes instead negative

spatial dependence in the lagged output/inputs of connected firms.

We generate the simulation data based on the empirical sample statistics of the Japanese

BSJBSA-TSR linked dataset. Appendix B provides detailed documentations of the simulation

setups, which we summarize below. We follow Ackerberg, Caves and Frazer (2015) and adopt a

Leontief production function such that:

V Ait = min {eα0Lαl
it K

αk
it e

ωit , eαmMit}eξit ,

which implies Equation (1). In turn, gross output is linear in value-added. In particular, we

set eαm = 1 in simulating the gross output. The firm-level productivity is simulated based on

Equations (2)–(3), with variations in the parameter values across the DGPs studied.

The firm-level input variables (labor and capital inputs) and the firm-to-firm connectivity ma-

trices are simulated based on the firm-level statistics and the supplier-customer network statistics

of the BSJBSA-TSR linked dataset. For example, based on the BSJBSA-TSR linked dataset, we

tabulate the distribution of firms that supply to one, two, three, . . ., and up to 24 other firms; and

respectively, the distribution of firms that purchase from one, two, three, . . ., and up to 24 other

firms. We use these distribution statistics across years to simulate time-varying supplier-customer

networks, which takes into account network addition, attrition, and persistency observed in the

data.

Given the model structure, we assume that the error terms (ξit, vit) are normally distributed

with mean zeros and standard deviations of σξ = 0.3 and σv = 0.7. We simulate a balanced panel of

500, 750 or 1000 firms for 10 or 19 time periods. For each DGP, 1000 simulated samples are drawn

and estimated. We report the mean (Mean) and the standard deviation (SD) of the parameter

point estimates across the 1000 Monte Carlo simulations, together with the estimated standard

errors (SE) derived from the variance-covariance matrices of the estimators. The exact parameter

values used in the DGPs are listed in the first row of Tables 3–7. The parameter values that are
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common across DGPs are: α0 = 0, αl = 0.6, αk = 0.4; ρ1 = 0.5 and ρ2 = . . . = ρG = 0. To

simplify the Monte Carlo exercises, we drop xi,t−1 (a firm’s lagged exporting status and/or R&D

expenditure) from consideration in the simulation. In DGP2, the strength of spillovers in terms of

lagged outputs and lagged labor inputs of related firms is set at: λ = βl = 0.01. DGP4 considers

stronger spillovers such that λ = βl = 0.1, while DGP5 considers negative spillovers such that

λ = βl = −0.1. In DGP3–DGP5, with spatial error dependence, we set µ = 0.25.

Given the simulated sample, we use theWooldridge (2009) GMM estimator (henceforthWGMM)

to represent the conventional estimators (that assume no spatial dependence in productivity across

firms). The Wooldridge (2009) procedure estimates the production function parameters in one step,

in contrast with the two-step procedures proposed by LP and ACF. For our proposed estimator

(SGMM), we use the instruments indicated in Equations (10) and (13) in estimations. In partic-

ular, the current and first lag of labor, capital and material inputs are used as the instruments

for the first-stage equation (8), with a degree-1 h function in labor, capital and material inputs

(à la Ackerberg, Caves and Frazer, 2015). For the second-stage equation (11), the current capital

along with the first lag of labor, capital and material inputs, and the lagged-one-period outputs

and labor inputs of related firms (Wy
t−1yt−1, (W

y
t−1)

2yt−1, W
l
t−1lt−1, (W

l
t−1)

2lt−1) are used as

instruments. The connectivity matrices are as defined in Section 4.2. In particular, the connec-

tivity matrix Wu
t specifying the spatial correlation of productivity shocks is defined based on the

customer-supplier relationships across firms. The same set of instruments are used for the WGMM

estimations, but excluding the related firms’ lagged outputs and lagged labor inputs (Wy
t−1yt−1,

(Wy
t−1)

2yt−1, W
l
t−1lt−1, (W

l
t−1)

2lt−1).

5.1 Simulation Results

Table 3 reports the results for DGP1. The conventional estimator (WGMM) performs well as

it should, when the DGP has no spatial dependence across firms in productivity. Importantly,

our proposed estimator (SGMM) performs just as well. The point estimates of both estimators

are close to the true parameter values, and the 95% confidence intervals (CIs) include the true

parameter values for the input coefficients of the production function (αl, αk). While our estimator

has wider confidence intervals than the conventional estimator for the input coefficients, it returns

mean estimates of the spatial coefficients (λ, βl, µ) nearly identical to zeros, consistent with the true

parameter values of the underlying DGP. Both estimators obtain estimates for the autoregressive

parameter (ρ1) that are close to the true parameter value, even when the duration of the panel

is relatively short. Both the conventional estimator and our proposed estimator yield standard

error estimates (SE) that are close to their Monte Carlo standard deviations (SD). The SEs also

reduce as the sample size increases at a rate consistent with the asymptotic properties laid out in

Section 3.3.

Table 4 reports the findings for the second set of simulations based on DGP2. When spatial

dependence in productivity across firms via lagged outputs and lagged labor inputs are indeed
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present, the conventional estimator leads to biased estimates of the input coefficients. In partic-

ular, its mean estimates for αl across variations in N and T are higher than the true parameter

value. The bias does not shrink with a larger sample size, suggesting the inconsistency of the

conventional estimator when spatial dependence is present in the underlying DGP. In contrast, our

proposed SGMM estimator yields estimates that are close to the true parameter values for both

input elasticities (αl, αk) and the spatial coefficients (λ, βl), with 95% CIs that well cover the

true parameter values. Finally, our proposed SGMM estimator reports statistically insignificant

estimates of µ, consistent with the underlying DGP where no spatial correlation in the error terms

(i.e., the productivity shocks ut) is present.

In DGP3, the data generating process for the productivity term further allows for spatial

error correlation across related firms. Table 5 shows that the conventional estimator of the labor

coefficient of the production function remains to be upward biased, while our proposed estimator

yields consistent estimates that are close to the true parameter values for all the coefficients of

interest. In particular, we note that the SGMM estimator returns estimates of the spatial error

coefficient (µ) that are close to its true parameter value when it is indeed non-zero.

Table 6 reports the simulation results for DGP4. With larger spatial coefficients (λ = βl = 0.1,

instead of 0.01), the conventional estimator of all coefficients (αl, αk, ρ1) are upward biased, and

the extents of bias are substantial (by around 23 percentage points for αl, 4-8 percentage points

for αk, and 5-13 percentage points for ρ1). Furthermore, the standard errors (SE) obtained by

the conventional estimator deviate significantly from the Monte Carlo standard deviations (SD).

In contrast, our proposed SGMM estimator continues to yield consistent estimates for the true

parameters, with estimates of the standard errors (SE) very close to the Monte Carlo standard

deviations (SD).

Table 7 indicates that if the underlying DGP has larger, negative, spatial coefficients (λ =

βl = −0.1, instead of 0.01), the conventional estimator of the input coefficients (αl, αk) are instead

downward biased, and the extents of bias continues to be substantial (by around 21 percentage

points for αl, 3-4 percentage points for αk). The standard errors (SE) obtained by the conventional

estimator also deviate significantly from the Monte Carlo standard deviations (SD) for these two

input coefficients. In contrast, our proposed SGMM estimator yields consistent estimates for the

true parameters, with estimates of the standard errors (SE) very close to the Monte Carlo standard

deviations (SD). In particular, it is able to capture the negative signs of the two spatial coefficients

(λ = βl = −0.1) and their magnitudes.

In sum, across all the DGPs, we find that the proposed SGMM estimator yields point estimates

that are consistent for the true parameters both in the absence and in the presence of spatial effects.

By the SGMM estimator, the standard error estimates (SE) of the parameters are also very close

to the Monte Carlo standard deviations (SD). As the sample size N(T − 1) doubles (either due to

doubling of N or T − 1), both the standard error estimates (SE) and the Monte Carlo standard

deviations (SD) shrink at a rate close to 1/
√
2, consistent with a convergence rate of 1/

√
N(T − 1).
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6 Empirical Analysis

6.1 Estimation Sample

We apply the methodology and estimation algorithms proposed in Section 3 to the Japanese dataset

introduced in Section 4. Given the BSJBSA-TSR linked data, we further restrict the sample

to a balanced panel of firms with observations on the set of variables required for productivity

estimations. In particular, the sample is based on firms that were surveyed for 10 consecutive

years from 2009 to 2018.4 Second, the sample of firms used for analysis also need to have non-

missing values for log of labor hours (used to measure lit), log of real capital stock (kit), log of

real intermediate inputs (mit), log of real revenues (yit), and log of real value added (vait), during

the entire sample period 2009–2018. Recall that the real capital stock is calculated based on the

perpetual inventory method with the real capital stock in 2007 as the initial value. Observations

on real capital stock for a firm could be missing, for example, if the firm was not observed in 2007.

The resulting sample is a balanced panel of 12,525 firms for the period 2009–2018. Given the

balanced panel of firms, the set of a firm’s customers/suppliers identified via the TSR entries is

effectively restricted to those whose firm-level data also exist in BSJBSA. In particular, firm j is

regarded effectively as a customer/supplier of firm i in the estimation if firm i reports firm j as a

customer or supplier, and if firm j exists in the BSJBSA dataset (with consecutive observations on

output and inputs, as required for the estimation of Equation (2)).

Table 2(b) provides the summary statistics for the estimation sample. Relative to the raw

sample reported in Table 2(a), the firms in the estimation sample tends to be larger in terms of

both inputs and output, and have more customers and suppliers. This is expected, as larger firms

are more likely to be surveyed consecutively throughout the years and have positive inputs/output.

Although larger firms tend to have more customers/suppliers, the orders of magnitude in the

number of connections on average do not differ substantially between the raw and estimation

samples. Despite the much smaller set of firms covered, the estimation sample accounts for 60.45%

of aggregate real value added and 56.90% of real gross output of the raw sample in 2015 (and a

majority of the other economic activities in terms of employment, labor hours, real capital stock,

and real spending on intermediate inputs).

Figures 1(b)–10(b) repeat the characterization as in Figures 1(a)–10(a), and show that the

estimation sample has similar patterns as documented for the raw sample. Notably, four industries

are not present in the estimation sample: construction, mining & quarrying, agriculture & forestry,

and fisheries (so firms in these industries tend not to be large enough to be consecutively surveyed

by BSJBSA). Focusing on the remaining industries, the rank across industries is almost identical

in terms of the number of firms: manufacturing, wholesale & retail trade, and information &

communications remain to be the top three industries with the largest numbers of firms (Figure 1).

4This excludes, for example, firms whose number of employees fell under 50 at some point during the
sample period.
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The set of prefectures with the largest numbers of firms is also similar to that previously documented

(Figure 4). Basically, firms in the estimation sample tend to be larger in terms of employment size

(Figures 2, 5, and 9), and are slightly more connected in terms of customers/suppliers (Figures 3,

6, and 10), in comparison with the raw sample.

6.2 Estimation Results

We estimate the model proposed in Equations (1)–(3) based on the estimation methodology laid

out in Section 3 and the connectivity matrices defined in Section 4.2. In short, we define the

output connectivity matrix Wy
t−1 based on the set of a firm’s customers/suppliers located in the

same commuting zone. The ij-th element of Wy
t−1 takes on the value one if both firms i and j are

located in the same commuting zone, and in addition, firm j is a customer or supplier of firm i,

in period t − 1. Second, we define input connectivity matrix WΩ
t−1 such that the ij-th element of

WΩ
t−1 takes on the value one if both firms i and j are located in the same commuting zone in period

t − 1. The input variable being analyzed corresponds to the lagged labor inputs of the connected

firms defined by WΩ
t−1. Third, we consider three variants of the spatial error connectivity matrix

Wu
t and define it such that the ij-th element of Wu

t takes on the value one: (i) if both firms i and

j are located in the same commuting zone in period t, (ii) if both firms i and j are located in the

same commuting zone, and firm j is a customer or supplier of firm i, in period t, and (iii) if firm

j is a customer or supplier of firm i in period t, respectively. The connectivity matrices are then

row-normalized, such that each row has a row sum equal to one (and zero if all elements in a row

are zeros).

Table 8 reports the estimation results. Column 1 (based on the first definition of Wu
t ) indi-

cates that all three spatial coefficients are significant and positive. A 1% increase in the sales of

customers/suppliers in the same commuting zone in the previous period helps improve a firm’s

current productivity by 0.005%. A larger local labor market also enhances a firm’s productivity:

specifically, a 1% increase in the employment of firms located in the same commuting zone in the

previous period raises a firm’s current productivity by 0.05%. Finally, there is evidence of con-

temporary knowledge spillovers across firms located in the same commuting zone: the productivity

innovations uit are spatially correlated with a positive and significant slope coefficient of 0.38. The

other production function parameters are also precisely estimated and fall within the typical range.

Column 1 reports a labor value-added share of 0.79, a capital value-added share of 0.06, and a

partial AR(1) coefficient of 0.964 for the productivity process.

The estimates for key parameters of interest remain similar if we adopt alternative definitions of

spatial error connectivity matrices Wu
t , as reported in Column 2 and Column 3. The key difference

is the strength of contemporary spatial correlation in the productivity shocks uit. They tend to

be quantitatively smaller by an order of magnitude if Wu
t is defined in a more restricted manner,

relative to the findings in Column 1 based on common commuting zone alone.

To compare the spatial GMM findings with those if one ignores the spatial dependence in pro-
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ductivity across firms, Column 4 reports the estimates based on conventional estimators (restricting

the spatial coefficients to be zeros but otherwise adopting the same GMM approach). We find that

the labor value-added share tends to be downward biased (0.55), the capital value-added share

upward biased (0.15), and the AR(1) coefficient upward biased (0.979), in comparison with the

spatial GMM estimates reported above.

7 Conclusion

In this paper, we develop a framework to simultaneously estimate firm production functions and

spatial interactions across firms in one unified setup. We propose a three-stage efficient GMM

estimation algorithm, and show by theory the asymptotic properties of the proposed estimator

and by Monte Carlo simulations the finite sample performance of the estimator. The Monte Carlo

simulations demonstrate that the proposed estimator is consistent under DGPs with or without

spatial dependence across firms. In contrast, the conventional estimators are biased when the true

DGPs are indeed characterized by spatial dependence. By applying the developed methodology

and estimation algorithm to the Japanese BSJBSA-TSR linked dataset for the period 2009–2018,

we find that spatial interactions across firms play a significant role in determining the Japanese

firm-level productivity both statistically and economically.

The paper can be extended in several directions in future research. First, the connectivity

matrices in our setup are allowed to differ across different mechanisms of spatial interactions.

One can potentially hypothesize alternative candidates for the connectivity matrices and conduct

specification tests that select the specification that best fits the model. This will also provide

insights into the nature of spatial interactions across firms and tests for competing hypotheses.

Second, the current framework allows for time-varying connectivity matrices. This is useful, as

we can use the framework to analyze how shocks (such as high-speed rails and earthquakes) affect

the connectivity matrices across firms, and in turn, the firm-level performance measures (such as

productivity, and production technology). Third, the current framework could also be used to

analyze the centrality of firms in the sense that a firm is more central if by increasing connectivity

(links) to this firm, the average productivity of all firms is improved by more than if by increasing

connectivity (links) to another firm. This is useful for policy design that aims to target subsidies

at the critical links of a firm network structure for the greater benefits of the economy.
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A Theoretical Appendix

A.1 Deriving the Moment Condition in Stage 3

Replacing vt = ut − µWu
t ut in Equation (6) yields:

1

N
E

 (ut − µWu
t ut)

′(ut − µWu
t ut)

(ut − µWu
t ut)W

u
t
′Wu

t (ut − µWu
t ut)

(ut − µWu
t ut)

′Wu
t (ut − µWu

t ut)

 =
1

N
E

 (ut − µut)
′(ut − µut)

(ut − µut)
′Wu

t
′Wu

t (ut − µut)

(ut − µut)
′Wu

t (ut − µut)
′



=
1

N
E

 (u′tut − 2µut
′ut + µ2u′tut)

(u′tut − 2µu
′
tut + µ2u

′
tut)

u′tut − µ(u′tut + u
′
tut) + µ2u

′
tut

 .
Furthermore, Equation (6) implies:

1

N
E

 (u′tut − 2µut
′ut + µ2u′tut)

(u′tut − 2µu
′
tut + µ2u

′
tut)

u′tut − µ(u′tut + u
′
tut) + µ2u

′
tut

 =

 σ2v
σ2
v
N tr(Wu

t
′Wu

t )

0

 . (33)

Rearranging terms, we have:

1

N
E

 u′tut

u′tut

u′tut

 =
1

N

 2µut
′ut − µ2u′tut + σ2v

2µu
′
tut − µ2u

′
tut +

σ2
v
N tr(Wu

t
′Wu

t )

µ(u′tut − u
′
tut)− µ2u

′
tut



=
1

N

 2ut
′ut −u′tut 1

2u
′
tut −u′tut 1

N tr(Wu
t
′Wu

t )

(u′tut − u
′
tut) −u′tut 0


 µ

µ2

σ2v

 , (34)

which yields the following relationship:

γt = Γt

 µ

µ2

σ2v

 .
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A.2 Deriving the Variance-Covariance Matrix for the Moment

Conditions in Stages 1 and 2

Using the definition of the variance-covariance matrix of the moment conditions in the first and

second stages, we have:

Vθ = Var

(
1√

N(T − 1)

N∑
i=1

T∑
t=2

Z ′
itrit

)

=
1

N(T − 1)

N∑
i=1

T∑
t=2

N∑
j=1

T∑
s=2

E[(Z ′
itrit)(Z

′
jsrjs)

′]

=
1

N(T − 1)

N∑
i=1

T∑
t=2

N∑
j=1

T∑
s=2

Z ′
itE[ritr

′
js]Zjs

=
1

N(T − 1)

N∑
i=1

T∑
t=2

N∑
j=1

T∑
s=2

Z ′
itE

[(
ξit

ξit + uit

)
(ξjs ξjs + ujs)

′

]
Zjs

=
1

N(T − 1)

N∑
i=1

T∑
t=2

N∑
j=1

T∑
s=2

Z ′
itE

(
ξitξjs ξit(ξjs + ujs)

(ξit + uit)ξjs (ξit + uit)(ξjs + ujs)

)
Zjs. (35)

To derive E

(
ξitξjs ξit(ξjs + ujs)

(ξit + uit)ξjs (ξit + uit)(ξjs + ujs)

)
, consider the following 4 cases:

1. i = j, t = s

E

(
ξitξjs ξit(ξjs + ujs)
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)
= E

(
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)
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E
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)
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(
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3. i ̸= j, t = s

E

(
ξitξjs ξit(ξjs + ujs)

(ξit + uit)ξjs (ξit + uit)(ξjs + ujs)
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)
=

(
0 0
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)
.

To estimate E(u2it), note that uit can be obtained by taking the product of the i-th row of

(IN − µWu
t )

−1 and vt, since ut = (IN − µWu
t )

−1vt. Then, we have:
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where [X]i refers to the i-th row of matrix X and E(vtv
′
t) = σ2vIN . Similarly, E(uitujt) is given by:
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Substituting all the terms back into Vθ, we obtain:
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where M1 and M2 are the number of moment conditions (instruments) used in the first and second

stages respectively (such that M1 +M2 = M), and Zt,II =


Z1t,II

Z2t,II

...
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 is a N ×M2 matrix.

We can estimate Vθ by its sample counterpart:
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where ξ̂it, µ̂ and σ̂2v are obtained from Steps 1–2 in Section 3.3.
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A.3 Deriving the Variance-Covariance Matrix for the Moment

Conditions in Stage 3

In this section, we derive the variance-covariance matrix for the moment conditions used in Stage 3.

Let A and B be n×n non-stochastic matrices. For a n× 1 random vector e with mean 0, variance

σ2e and finite excess kurtosis κe:

cov(e′Ae, e′Be) = σ4eκea
′b+ σ4etr(A(B′ +B)), (36)

where a = diagv(A) and b = diagv(B). The operator ‘diagv’ takes the diagonal elements of a

matrix and converts them to a column vector.

Define v = [v′2, v
′
3, . . . , v

′
T ] to be a N(T − 1) × 1 vector, and v = Wuv. Let κv be the finite

excess kurtosis of v. The following computes each cell of the variance-covariance matrix of the

moment conditions in Equation (6):
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v′v,

1

N(T − 1)
v′v

)
= N(T − 1)

σ4v
(N(T − 1))2

[κvι
′
N(T−1)ιN(T−1) + tr(IN(T−1)(I

′
N(T−1) + IN(T−1)))]

= σ4v [κv + 2],

Vψ,12 = N(T − 1)cov

(
1

N(T − 1)
v′v,

1

N(T − 1)
v′v

)
= N(T − 1)cov

(
1

N(T − 1)
v′v,

1

N(T − 1)
v′Wu′Wuv

)
=

σ4v
N(T − 1)

[κvtr(W
u′Wu) + tr(IN(T−1)(W

u′Wu +WuWu′))]

=
σ4v

N(T − 1)
[κv + 2]tr(Wu′Wu),

Vψ,13 = N(T − 1)cov

(
1

N(T − 1)
v′v,

1

N(T − 1)
v′v

)
= N(T − 1)cov

(
1

N(T − 1)
v′v,

1

N(T − 1)
v′Wu′v

)
=

σ4v
N(T − 1)

[κvtr(W
u) + tr(Wu)]

= 0,
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Vψ,22 = N(T − 1)cov

(
1

N(T − 1)
v′v,

1

N(T − 1)
v′v

)
= N(T − 1)cov

(
1

N(T − 1)
v′Wu′Wuv,

1

N(T − 1)
v′Wu′Wuv

)
=

σ4v
N(T − 1)

[κv diagv(Wu′Wu)′ diagv(Wu′Wu)) + tr((Wu′Wu)(Wu′Wu +WuWu′))],

Vψ,23 = N(T − 1)cov

(
1

N(T − 1)
v′v,

1

N(T − 1)
v′v

)
= N(T − 1)cov

(
1

N(T − 1)
v′Wu′Wuv,

1

N(T − 1)
v′Wuv

)
=

σ4v
N(T − 1)

[κv diagv(Wu′Wu)′ diagv(Wu) + tr((Wu′Wu)(Wu +Wu′))]

=
σ4v

N(T − 1)
tr((Wu′Wu)(Wu +Wu′)),

Vψ,32 = N(T − 1)cov

(
1

N(T − 1)
v′v,

1

N(T − 1)
v′v

)
= N(T − 1)cov

(
1

N(T − 1)
v′Wuv,

1

N(T − 1)
v′Wu′Wuv

)
=

σ4v
N(T − 1)

[κv diagv(Wu)′ diagv(Wu′Wu) + tr(Wu(Wu′Wu +Wu′Wu))]

= 2
σ4v

N(T − 1)
tr(WuWu′Wu),

Vψ,33 = N(T − 1)cov

(
1

N(T − 1)
v′v,

1

N(T − 1)
v′v

)
= N(T − 1)cov

(
1

N(T − 1)
v′Wuv,

1

N(T − 1)
v′Wuv

)
=

σ4v
N(T − 1)

[κv diagv(Wu)′ diagv(Wu) + tr(Wu(Wu +Wu′))]

=
σ4v

N(T − 1)
tr(Wu(Wu +Wu′)).
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B Simulation Appendix

B.1 Simulation of Connectivity Matrices

The BSJBSA-TSR linked dataset provides the distribution of the number of customers (and respec-

tively suppliers) that a firm has, up to 24 customers (and suppliers). We assign a time-invariant

random number for each firm, ri, which is uniformly distributed in [0, 1], for i ∈ {1, 2, . . . , N}. For
the initial period, we use a weakly monotonic mapping function, qnumt (·), to map the firm random

number ri ∈ [0, 1] to the number of customers, given the empirical distribution. In other words,

qnumt (ri) = numit, where q
num
t (·) is the inverse of the empirical distribution function of the number

of customers in period t. Given the number of customers assigned to each firm in the initial period,

we randomly draw its customers from the pool of firms. Subsequently, given the mapping from the

firm random number to the number of customers that firm i has at time t, qnumt (ri) = numit, we

randomly drop firms from the set of customers that a firm initially has in the previous period if

numit < numi,t−1 ∗ persistency t−1, where persistency t−1 is the fraction of firm-to-firm relation-

ships in period t − 1 that survive in period t as observed in the data. Alternatively, we add firms

(randomly drawn from the pool of unrelated firms) to the set of customers that a firm has in the

previous period after attrition (the identity of the connections dropped being randomly drawn from

the pool of existing customers of a firm) if numit > numi,t−1 ∗ persistency t−1. The number of

suppliers that a firm has across time is simulated in similar manner.

To generate the connectivity matrix based on common commuting zone, we target the average

density of connections per firm. In particular, start with the scenario of N = 500. Given data on

the distribution of firms across commuting zones, we use the inverse of the empirical distribution

function of commuting zones, qczt (·), to map each firm ri ∈ [0, 1] to commuting zone in each period,

such that qczt (ri) = czit. We then generate the connectivity matrix based on common commuting

zone. The ij-th element of the matrix is set equal to 1, if firms i and j are located in the same

commuting zone in period t and 0 otherwise. We compute the average density of connections per

firm, that is, the proportion of simulated connections per firm on average relative to the maximum

number of possible connections across the 500 firms in period t. Denote the simulated proportion of

connections per firm on average as dt. As we vary the size N to the case of N = 750 or N = 1000,

we target the same dt. Specifically, we generate random numbers rij,t ∈ [0, 1] from a uniform

distribution for each firm-pair and time period. If rij,t > 1 − dt, then the ij-th element of the

connectivity matrix is set equal to 1, and 0 otherwise.

B.2 Simulation of Input and Output Variables

Based on the BSJBSA-TSR linked dataset, we obtain the mean and standard deviation of labor

input (and respectively, capital) across firms in each year from 2009 to 2018. We then simulate the

usage of labor input (and respectively, capital) for each firm, by drawing randomly from Normal
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distributions that have the same mean and standard deviation as empirically observed specific to

each input variable and year.

For the Monte Carlo simulations, we adopt a Leontief production function as in Ackerberg,

Caves and Frazer (2015) such that:

V Ait = min {eα0Lαl
it K

αk
it e

ωit , eαmMit}eξit , (37)

which gives rise to the following relationship between material inputs and productivity after taking

logs:

αm +mit = α0 + αllit + αkkit + ωit. (38)

Setting eαm = 1 as in ACF, we have: mit = α0 + αllit + αkkit + ωit. The logged output,

yit = lnYit, is then derived using the sum of value-added and material inputs: yit = ln(V Ait+Mit).

B.3 Simulation Procedure

Given simulated data on {lit}i=N,t=Ti=1,t=1 , {kit}i=N,t=Ti=1,t=1 , {Wy
t }
T−1
t=1 , {W

l
t}T−1
t=1 and {Wu

t }Tt=1 and the

parameter values for {α0, αl, αk, λ, βl, ρ1, µ, σξ, σv}, the data used for the simulations are generated

as follows:

1. Set ωi,t−1 = 0, for t = 1.

2. Generate vai,t−1 based on the simulated li,t−1 and ki,t−1, the parameter values for {α0, αl, αk},
the productivity ωi,t−1, and the random draw of ξi,t−1 from a Normal distribution with mean

0 and variance σ2ξ .

3. Set mi,t−1 according to Equation (38) and derive yi,t−1 = ln(V Ai,t−1 +Mi,t−1).

4. Generate ωit based on Equations (2)–(3), given yi,t−1, simulated data on {Wy
t }
T−1
t=1 , {W

l
t}T−1
t=1

and {Wu
t }Tt=1, the parameter values for {λ, βl, ρ1, µ}, and the random draw of vit from a

Normal distribution with mean 0 and variance σ2v .

5. Iterate Steps 2–4 for t = 1, 2, . . . , T to generate simulated data on {vait}i=N,t=Ti=1,t=1 , {mit}i=N,t=Ti=1,t=1 ,

{yit}i=N,t=Ti=1,t=1 , and {ωit}i=N,t=Ti=1,t=1 .

35



Table 1: BSJBSA and TSR Matching Percentage

Sample 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

# firms in BSJBSA 29096 29570 30647 30584 30217 30180 30231 30151 29530 29780
# TSR firms matched 26947 27559 28486 28557 28237 28263 28196 28448 27715 27978

Percentage 92.61 93.20 92.95 93.37 93.45 93.65 93.27 94.35 93.85 93.95

Notes: This table reports the percentage of firms in BSJBSA that are matched with its counterpart in TSR. The BSJBSA set of firms
is used as the denominator, since it provides the required firm-level variables for productivity estimations.

Table 2: Summary Statistics (for 2015 cross section)

(a) BSJBSA-TSR Linked Sample
Observations Mean Std Min Max

Labor headcounts 29044 458.93 1826.51 0 130725
Labor hours 29044 794921.01 3111792 0 206818495
Real capital 28861 5149.71 53513.25 0 4275886
Real spending on intermediate inputs 29044 14004.56 106970.4 0 7086646
Real revenue 29044 21954.38 137121.6 0.93 1.06+07
Real valued added 29044 3128.06 16631.27 -208309.8 1411724
Number of customers 27788 6.77 5,54 0 24
Number of suppliers 27788 6.73 4.75 0 24
Number of customers existing in BSJBSA 27788 4.09 3.95 0 23
Number of suppliers existing in BSJBSA 27788 3.73 3.17 0 22

(b) Estimation Sample
Observations Mean Std Min Max

Labor headcounts 12525 540.40 2040.51 3 81740
Labor hours 12525 948590.6 3602148 5621.48 162990234
Real capital 12525 5789.81 36734.81 0.13 1849815
Real spending on intermediate inputs 12525 23700.94 162126.7 12.36 9208361
Real revenue 12525 27879.81 177634.3 123.84 1.06+07
Real valued added 12525 4178.87 20506.37 0.48 1411722
Number of customers 12414 7.24 5.74 0 24
Number of suppliers 12414 7.35 4.92 0 24
Number of customers existing in BSJBSA 12414 4.50 4.15 0 23
Number of suppliers existing in BSJBSA 12414 4.24 3.36 0 22

Notes: Refer to Section 4 for the measurement of the variables. The revenue, value added, capital, and intermediate inputs are in
million Japanese yens. The number of customers / suppliers is identified by the BSJBSA firm’s corresponding entries in TSR, which
provides the list of a firm’s top 24 customers / suppliers. The number of customers / suppliers existing in BSJBSA refers to the subset
of a firm’s top 24 customers / suppliers listed in TSR that also have firm-level information in BSJBSA.
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Table 3: DGP1 – No Spatial Dependence in Productivity

Estimator N T-1 Stat.
αl αk λ βl ρ1 µ σ2

v

0.6 0.4 0 0 0.5 0 0.49

WGMM

500 9
Mean 0.6004 0.3997 - - 0.4993 - -
SD (0.0070) (0.0102) - - (0.0139) - -
SE (0.0071) (0.0105) - - (0.0140) - -

500 18
Mean 0.6001 0.4000 - - 0.4995 - -
SD (0.0050) (0.0073) - - (0.0095) - -
SE (0.0050) (0.0075) - - (0.0095) - -

750 9
Mean 0.6004 0.3992 - - 0.4996 - -
SD (0.0059) (0.0085) - - (0.0119) - -
SE (0.0058) (0.0087) - - (0.0114) - -

750 18
Mean 0.6001 0.3998 - - 0.4998 - -
SD (0.0041) (0.0059) - - (0.0077) - -
SE (0.0041) (0.0061) - - (0.0077) - -

1000 9
Mean 0.6001 0.4001 - - 0.4996 - -
SD (0.0050) (0.0073) - - (0.0097) - -
SE (0.0049) (0.0073) - - (0.0099) - -

1000 18
Mean 0.5999 0.4001 - - 0.4998 - -
SD (0.0040) (0.0051) - - (0.0069) - -
SE (0.0040) (0.0053) - - (0.0067) - -

SGMM

500 9
Mean 0.6001 0.3997 0.0000 0.0001 0.4991 -0.0010 0.4885
SD (0.0211) (0.0105) (0.0022) (0.0109) (0.0139) (0.0360) (0.0118)
SE (0.0213) (0.0110) (0.0022) (0.0110) (0.0140) (0.0353) (0.0103)

500 18
Mean 0.6013 0.4001 0.0001 -0.0001 0.4994 -0.0008 0.4895
SD (0.0157) (0.0075) (0.0016) (0.0079) (0.0095) (0.0243) (0.0083)
SE (0.0152) (0.0077) (0.0016) (0.0078) (0.0095) (0.0254) (0.0072)

750 9
Mean 0.6003 0.3993 0.0001 0.0000 0.4995 -0.0011 0.4899
SD (0.0169) (0.0090) (0.0020) (0.0088) (0.0119) (0.0283) (0.0097)
SE (0.0172) (0.0090) (0.0019) (0.0087) (0.0115) (0.0284) (0.0084)

750 18
Mean 0.6000 0.3997 0.0001 0.0000 0.4998 -0.0005 0.4898
SD (0.0118) (0.0061) (0.0014) (0.0060) (0.0077) (0.0213) (0.0067)
SE (0.0122) (0.0063) (0.0013) (0.0062) (0.0089) (0.0207) (0.0059)

1000 9
Mean 0.6002 0.4001 -0.0001 0.0000 0.4995 0.0005 0.4894
SD (0.0143) (0.0076) (0.0017) (0.0073) (0.0097) (0.0240) (0.0084)
SE (0.0142) (0.0077) (0.0018) (0.0073) (0.0099) (0.0242) (0.0073)

1000 18
Mean 0.5997 0.4000 0.0000 0.0001 0.4997 -0.0002 0.4899
SD (0.0097) (0.0053) (0.0012) (0.0050) (0.0069) (0.0173) (0.0059)
SE (0.0099) (0.0055) (0.0012) (0.0051) (0.0067) (0.0177) (0.0051)

Notes: For each DGP, 1000 simulated samples are drawn and estimated. We report the mean (Mean) and the standard deviation
(SD) of the parameter point estimates across the 1000 Monte Carlo simulations, together with the estimated standard errors
(SE) derived from the variance-covariance matrices of the estimators. The exact parameter values used in the DGPs are listed
in the first row of the table.
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Table 4: DGP2 – Spatial Dependence in Productivity via Lagged Outputs and Lagged Labor
Inputs of Related Firms

Estimator N T-1 Stat.
αl αk λ βl ρ1 µ σ2

v

0.6 0.4 0.01 0.01 0.5 0 0.49

WGMM

500 9
Mean 0.6233 0.4045 - - 0.5014 - -
SD (0.0070) (0.0103) - - (0.0137) - -
SE (0.0071) (0.0106) - - (0.0138) - -

500 18
Mean 0.6232 0.4047 - - 0.5022 - -
SD (0.0050) (0.0073) - - (0.0095) - -
SE (0.0050) (0.0075) - - (0.0094) - -

750 9
Mean 0.6230 0.4026 - - 0.5011 - -
SD (0.0059) (0.0085) - - (0.0118) - -
SE (0.0059) (0.0088) - - (0.0113) - -

750 18
Mean 0.6231 0.4027 - - 0.5016 - -
SD (0.0041) (0.0059) - - (0.0078) - -
SE (0.0041) (0.0061) - - (0.0077) - -

1000 9
Mean 0.6219 0.4033 - - 0.5003 - -
SD (0.0050) (0.0074) - - (0.0098) - -
SE (0.0049) (0.0073) - - (0.0098) - -

1000 18
Mean 0.6221 0.4029 - - 0.5011 - -
SD (0.0035) (0.0051) - - (0.0069) - -
SE (0.0035) (0.0053) - - (0.0067) - -

SGMM

500 9
Mean 0.6003 0.3996 0.0100 0.0101 0.4990 -0.0012 0.4886
SD (0.0209) (0.0106) (0.0021) (0.0108) (0.0137) (0.0359) (0.0117)
SE (0.0213) (0.0110) (0.0022) (0.0110) (0.0138) (0.0353) (0.0103)

500 18
Mean 0.6015 0.4001 0.0100 0.0092 0.4994 -0.0008 0.4896
SD (0.0156) (0.0075) (0.0015) (0.0079) (0.0093) (0.0242) (0.0083)
SE (0.0152) (0.0077) (0.0015) (0.0078) (0.0094) (0.0254) (0.0072)

750 9
Mean 0.6004 0.3992 0.0101 0.0100 0.4995 -0.0009 0.4899
SD (0.0169) (0.0089) (0.0019) (0.0088) (0.0117) (0.0282) (0.0098)
SE (0.0172) (0.0090) (0.0019) (0.0087) (0.0113) (0.0284) (0.0084)

750 18
Mean 0.6001 0.3998 0.0101 0.0100 0.4998 -0.0005 0.4898
SD (0.0118) (0.0061) (0.0014) (0.0060) (0.0077) (0.0213) (0.0067)
SE (0.0122) (0.0063) (0.0013) (0.0062) (0.0077) (0.0207) (0.0059)

1000 9
Mean 0.6002 0.4001 0.0099 0.0100 0.4995 0.0004 0.4893
SD (0.0143) (0.0077) (0.0017) (0.0073) (0.0097) (0.0240) (0.0084)
SE (0.0142) (0.0077) (0.0018) (0.0073) (0.0098) (0.0242) (0.0073)

1000 18
Mean 0.5997 0.4000 0.0100 0.0101 0.4998 -0.0002 0.4898
SD (0.0097) (0.0054) (0.0012) (0.0050) (0.0068) (0.0173) (0.0059)
SE (0.0100) (0.0055) (0.0012) (0.0051) (0.0067) (0.0177) (0.0051)

Notes: For each DGP, 1000 simulated samples are drawn and estimated. We report the mean (Mean) and the standard deviation
(SD) of the parameter point estimates across the 1000 Monte Carlo simulations, together with the estimated standard errors
(SE) derived from the variance-covariance matrices of the estimators. The exact parameter values used in the DGPs are listed
in the first row of the table.
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Table 5: DGP3 – Spatial Dependence in Productivity via Lagged Outputs and Lagged Labor
Inputs of Related Firms, and via Productivity Shocks

Estimator N T-1 Stat.
αl αk λ βl ρ1 µ σ2

v

0.6 0.4 0.01 0.01 0.5 0.25 0.49

WGMM

500 9
Mean 0.6233 0.4045 - - 0.5012 - -
SD (0.0071) (0.0104) - - (0.0139) - -
SE (0.0071) (0.0106) - - (0.0138) - -

500 18
Mean 0.6232 0.4047 - - 0.5022 - -
SD (0.0050) (0.0074) - - (0.0095) - -
SE (0.0050) (0.0076) - - (0.0094) - -

750 9
Mean 0.6230 0.4026 - - 0.5011 - -
SD (0.0060) (0.0086) - - (0.0120) - -
SE (0.0059) (0.0088) - - (0.0113) - -

750 18
Mean 0.6185 0.4013 - - 0.5054 - -
SD (0.0054) (0.0035) - - (0.0099) - -
SE (0.0057) (0.0037) - - (0.0094) - -

1000 19
Mean 0.6219 0.4033 - - 0.5003 - -
SD (0.0051) (0.0074) - - (0.0099) - -
SE (0.0050) (0.0074) - - (0.0098) - -

1000 18
Mean 0.6221 0.4030 - - 0.5011 - -
SD (0.0036) (0.0052) - - (0.0070) - -
SE (0.0036) (0.0053) - - (0.0067) - -

SGMM

500 9
Mean 0.6004 0.3996 0.0100 0.0100 0.4988 0.2483 0.4885
SD (0.0213) (0.0107) (0.0021) (0.0110) (0.0139) (0.0359) (0.0117)
SE (0.0215) (0.0110) (0.0022) (0.0111) (0.0140) (0.0353) (0.0103)

500 18
Mean 0.6015 0.4001 0.0101 0.0093 0.4993 0.2489 0.4896
SD (0.0158) (0.0075) (0.0015) (0.0079) (0.0094) (0.0240) (0.0082)
SE (0.0153) (0.0077) (0.0015) (0.0078) (0.0095) (0.0254) (0.0072)

750 9
Mean 0.6003 0.3992 0.0101 0.0100 0.4994 0.2486 0.4899
SD (0.0170) (0.0090) (0.0019) (0.0088) (0.0119) (0.0282) (0.0098)
SE (0.0172) (0.0090) (0.0019) (0.0088) (0.0115) (0.0284) (0.0084)

750 18
Mean 0.6000 0.3997 0.0101 0.0100 0.4997 0.2493 0.4898
SD (0.0118) (0.0062) (0.0014) (0.0060) (0.0077) (0.0213) (0.0066)
SE (0.0122) (0.0063) (0.0013) (0.0062) (0.0078) (0.0207) (0.0059)

1000 9
Mean 0.6002 0.4001 0.0099 0.0101 0.4994 0.2501 0.4894
SD (0.0143) (0.0077) (0.0017) (0.0074) (0.0099) (0.0240) (0.0083)
SE (0.0143) (0.0077) (0.0018) (0.0074) (0.0099) (0.0242) (0.0074)

1000 18
Mean 0.5997 0.4000 0.0100 0.0102 0.4998 0.2498 0.4899
SD (0.0098) (0.0054) (0.0012) (0.0050) (0.0070) (0.0173) (0.0058)
SE (0.0100) (0.0055) (0.0012) (0.0051) (0.0067) (0.0177) (0.0051)

Notes: For each DGP, 1000 simulated samples are drawn and estimated. We report the mean (Mean) and the standard deviation
(SD) of the parameter point estimates across the 1000 Monte Carlo simulations, together with the estimated standard errors
(SE) derived from the variance-covariance matrices of the estimators. The exact parameter values used in the DGPs are listed
in the first row of the table.
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Table 6: DGP4 – Stronger Spatial Dependence in Productivity via Lagged Outputs and
Lagged Labor Inputs of Related Firms, and via Productivity Shocks

Estimator N T Var
αl αk λ βl ρ1 µ σ2

v

0.6 0.4 0.1 0.1 0.5 0.25 0.49

WGMM

500 9
Mean 0.8358 0.4801 - - 0.5938 - -
SD (0.0077) (0.0124) - - (0.0079) - -
SE (0.0101) (0.0172) - - (0.0093) - -

500 18
Mean 0.8277 0.4949 - - 0.6280 - -
SD (0.0055) (0.0089) - - (0.0062) - -
SE (0.0076) (0.0130) - - (0.0069) - -

750 9
Mean 0.8337 0.4492 - - 0.5688 - -
SD (0.0063) (0.0096) - - (0.0072) - -
SE (0.0080) (0.0132) - - (0.0080) - -

750 18
Mean 0.8329 0.4513 - - 0.5945 - -
SD (0.0045) (0.0070) - - (0.0054) - -
SE (0.0058) (0.0098) - - (0.0059) - -

1000 9
Mean 0.8247 0.4408 - - 0.5457 - -
SD (0.0053) (0.0083) - - (0.0066) - -
SE (0.0064) (0.0105) - - (0.0071) - -

1000 18
Mean 0.8232 0.4478 - - 0.5772 - -
SD (0.0038) (0.0061) - - (0.0051) - -
SE (0.0048) (0.0080) - - (0.0053) - -

SGMM

500 9
Mean 0.6002 0.3996 0.1000 0.1002 0.4993 0.2480 0.4885
SD (0.0212) (0.0108) (0.0018) (0.0110) (0.0074) (0.0360) (0.0108)
SE (0.0214) (0.0110) (0.0018) (0.0111) (0.0078) (0.0352) (0.0103)

500 18
Mean 0.6015 0.4001 0.1000 0.0993 0.4998 0.2488 0.4896
SD (0.0157) (0.0075) (0.0013) (0.0080) (0.0058) (0.0242) (0.0077)
SE (0.0153) (0.0077) (0.0013) (0.0079) (0.0057) (0.0254) (0.0072)

750 9
Mean 0.6004 0.3992 0.1001 0.1000 0.5001 0.2484 0.4899
SD (0.0170) (0.0090) (0.0016) (0.0088) (0.0067) (0.0282) (0.0091)
SE (0.0172) (0.0090) (0.0016) (0.0088) (0.0067) (0.0283) (0.0084)

750 18
Mean 0.6000 0.3998 0.1001 0.1001 0.4998 0.2492 0.4898
SD (0.0118) (0.0061) (0.0011) (0.0061) (0.0048) (0.0213) (0.0062)
SE (0.0122) (0.0063) (0.0011) (0.0063) (0.0048) (0.0207) (0.0059)

1000 9
Mean 0.6002 0.4001 0.1000 0.1001 0.4996 0.2500 0.4896
SD (0.0144) (0.0077) (0.0014) (0.0074) (0.0060) (0.0240) (0.0079)
SE (0.0143) (0.0077) (0.0015) (0.0074) (0.0060) (0.0242) (0.0073)

1000 18
Mean 0.5997 0.4000 0.1000 0.1001 0.5001 0.2496 0.4899
SD (0.0097) (0.0054) (0.0010) (0.0051) (0.0043) (0.0173) (0.0056)
SE (0.0100) (0.0055) (0.0010) (0.0052) (0.0043) (0.0177) (0.0051)

Notes: For each DGP, 1000 simulated samples are drawn and estimated. We report the mean (Mean) and the standard deviation
(SD) of the parameter point estimates across the 1000 Monte Carlo simulations, together with the estimated standard errors
(SE) derived from the variance-covariance matrices of the estimators. The exact parameter values used in the DGPs are listed
in the first row of the table.
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Table 7: DGP5 – Negative Spatial Dependence in Productivity via Lagged Outputs and
Lagged Labor Inputs of Related Firms, and via Productivity Shocks

Estimator N T Var
αl αk λ βl ρ1 µ σ2

v

0.6 0.4 -0.1 -0.1 0.5 0.25 0.49

WGMM

500 9
Mean 0.3802 0.3566 - - 0.5133 - -
SD (0.0072) (0.0107) - - (0.0096) - -
SE (0.0083) (0.0131) - - (0.0097) - -

500 18
Mean 0.3819 0.3553 - - 0.5324 - -
SD (0.0051) (0.0076) - - (0.0074) - -
SE (0.0059) (0.0095) - - (0.0077) - -

750 9
Mean 0.3820 0.3710 - - 0.5032 - -
SD (0.0061) (0.0091) - - (0.0084) - -
SE (0.0067) (0.0105) - - (0.0081) - -

750 18
Mean 0.3816 0.3713 - - 0.5204 - -
SD (0.0043) (0.0064) - - (0.0061) - -
SE (0.0048) (0.0075) - - (0.0062) - -

1000 9
Mean 0.3877 0.3738 - - 0.4956 - -
SD (0.0052) (0.0079) - - (0.0070) - -
SE (0.0055) (0.0086) - - (0.0071) - -

1000 18
Mean 0.3872 0.3727 - - 0.5124 - -
SD (0.0037) (0.0057) - - (0.0057) - -
SE (0.0040) (0.0063) - - (0.0054) - -

SGMM

500 9
Mean 0.6003 0.3996 -0.1000 -0.0999 0.5001 0.2479 0.4886
SD (0.0212) (0.0108) (0.0027) (0.0110) (0.0087) (0.0360) (0.0110)
SE (0.0214) (0.0110) (0.0028) (0.0111) (0.0089) (0.0352) (0.0103)

500 18
Mean 0.6014 0.4001 -0.0999 -0.1008 0.4996 0.2488 0.4894
SD (0.0157) (0.0075) (0.0021) (0.0080) (0.0069) (0.0242) (0.0079)
SE (0.0153) (0.0077) (0.0021) (0.0079) (0.0068) (0.0254) (0.0072)

750 9
Mean 0.6004 0.3992 -0.0999 -0.1001 0.4994 0.2485 0.4898
SD (0.0170) (0.0089) (0.0025) (0.0088) (0.0077) (0.0282) (0.0092)
SE (0.0172) (0.0090) (0.0024) (0.0088) (0.0075) (0.0283) (0.0084)

750 18
Mean 0.6000 0.3998 -0.0999 -0.0999 0.5000 0.2492 0.4898
SD (0.0118) (0.0062) (0.0018) (0.0060) (0.0055) (0.0213) (0.0064)
SE (0.0122) (0.0063) (0.0018) (0.0063) (0.0056) (0.0207) (0.0059)

1000 9
Mean 0.6002 0.4001 -0.1001 -0.1000 0.5001 0.2500 0.4895
SD (0.0143) (0.0077) (0.0022) (0.0074) (0.0064) (0.0240) (0.0081)
SE (0.0142) (0.0077) (0.0022) (0.0074) (0.0066) (0.0241) (0.0073)

1000 18
Mean 0.5997 0.4000 -0.1000 -0.0999 0.4997 0.2497 0.4899
SD (0.0097) (0.0054) (0.0016) (0.0051) (0.0051) (0.0173) (0.0056)
SE (0.0100) (0.0055) (0.0016) (0.0052) (0.0050) (0.0177) (0.0051)

Notes: For each DGP, 1000 simulated samples are drawn and estimated. We report the mean (Mean) and the standard deviation
(SD) of the parameter point estimates across the 1000 Monte Carlo simulations, together with the estimated standard errors
(SE) derived from the variance-covariance matrices of the estimators. The exact parameter values used in the DGPs are listed
in the first row of the table.
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Table 8: Production Function Estimations (Japanese Firms 2009–2018)

SGMM WGMM
(1) (2) (3) (4)

Wy
t−1 buyer-seller*CZ buyer-seller*CZ buyer-seller*CZ

WΩ
t−1 CZ CZ CZ

Wu
t CZ buyer-seller*CZ buyer-seller

α0 -23.4378 -24.5051 -23.9971 -0.5286
(1.2315) (1.2957) (1.2233) (1.9240)

αl 0.7922 0.7945 0.7651 0.5472
(0.0320) (0.0337) (0.0322) (0.1408)

αk 0.0632 0.0616 0.0718 0.1480
(0.0132) (0.0135) (0.0131) (0.0384)

ρ1 0.9644 0.9663 0.9650 0.9789
(0.0026) (0.0026) (0.0025) (0.0112)

λ 0.0047 0.0044 0.0042
(0.0005) (0.0005) (0.0005)

β 0.0537 0.0536 0.0553
(0.0036) (0.0036) (0.0036)

µ 0.3833 0.0184 0.0353
(0.0196) (0.0036) (0.0035)

σ2
v 0.0343 0.0357 0.0346

(0.0026) (0.0027) (0.0027)

no. of observations 125,250 125,250 125,250 125,250
no. of firms 12,525 12,525 12,525 12,525

Notes: This table reports the estimations of Equations (1)–(3) based on the estimation methodology laid
out in Section 3 and the connectivity matrices defined in Section 4.2. The function h(lit, kit,mit) in Equa-
tion (9) is approximated by a second-order polynomial function: lpitk

q
itm

r
it for p + q + r ≤ 2, with non-

negative integers p, q and r. The slope coefficient estimates δ are omitted from the table above. The
function f(ν) in Equation (12) is assumed to be of first order as in the conventional estimator. The
list of instruments used for SGMM is: Zt,I = (ιN , lt, kt,mt, lt−1, kt−1,mt−1, lt−2, kt−2,mt−2) and Zt,II =

(ιN , kt, lt−1, kt−1,mt−1, lt−2, kt−2,mt−2,W
y
t−1yt−1,W

l
t−1lt−1, (W

y
t−1)

2yt−1, (W
l
t−1)

2lt−1). The list of instruments

used for WGMM is the same as those for SGMM, but excluding the related firms’ outputs and labor inputs (Wy
t−1yt−1,

(Wy
t−1)

2yt−1, W
l
t−1lt−1, (W

l
t−1)

2lt−1). We iterate the efficient GMM estimation procedure until the set of parameter
estimates converges.
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Figure 1: Number of firms in each industry in 2015
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Figure 2: Average firm’s employment in each industry in 2015
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Figure 3: Average number of connections in each industry in 2015
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Figure 4: Number of firms in each prefecture in 2015
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Figure 5: Average firm’s employment in each prefecture in 2015
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Figure 6: Average number of connections in each prefecture in 2015
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Figure 7: Number of commuting zones in each prefecture in 2015
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Figure 8: Number of firms in each commuting zone in 2015
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Figure 9: Average firm’s employment in each commuting zone in 2015
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Figure 10: Average number of connections in each commuting zone in 2015
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