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Abstract 

 
In this study, the text information of academic papers published by Japanese authors (about 1.7 million papers) 

and patents filed with the Japan Patent Office (about 12.3 million patents) since 1991 are used for analyzing the 

inter-relationship between science and technology. Specifically, a distributed representation vector using the title 

and abstract of each document is created, then neighboring documents to each are identified using the cosine 

similarity. A time trend and sector specific linkages within science and technology are identified by using the 

count of neighbor patents (papers) for each paper (patent). It is found that the science intensity of inventions (the 

number of neighbor papers for patents) increases over time, particularly for university/PRI patents and university-

industry collaboration patents over the 30 years studied. As for university/PRI patents, the institutional reforms 

for the science sector (government laboratory incorporation in 2001 and national university incorporation in 2004) 

contributed to the interactions between science and technology. In contrast, the technology intensity of science 

(the number of neighbor patents by paper) decreases over time. It is also found that the technology intensity of 

life science papers is rather low, although they have a significant impact on subsequent patents. However, there 

are some scientific fields which are affected by technological developments, so that the state of science and 

innovation interactions is heterogenous across the fields. 
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1. Introduction 

The increasing importance of scientific knowledge in innovation can be observed across 

industries. In the pharmaceutical industry, well known for having a high degree of scientific 

linkage, the importance of science in new drug development processes is increasing due to the 

advancement in genomic science (Pisano, 2006). In the electronic device industry, as the large-

scale integration production process is miniaturized, understanding the characteristics of nanoscale 

materials has become indispensable. Furthermore, a recent advancement in machine learning (AI) 

is achieved through corporate scientists, who make scientific publications and patent inventions, 

simultaneously (Hartmann and Henkel, 2020).  

Hitherto, the impact of science on innovation have been measured by non-patent literature 

(NPL) citations. This impact is explained by the extent of patent citations in the NPL, typically 

research papers (Narin and Norma, 1985; Schmoch, 1997). However, it is found that significant 

portions of the NPL in patent citations are not research papers, such as summary documents of 

other patents and book chapters (Callaert et al., 2012). In this regard, Marx and Fuegi (2020) 

conducted a systematic matching of US and non-US NPL citations with the Microsoft Academic 

Graph as well as the public domain research paper database, and showed that the number of 

research papers cited per patent increases over time. 

While the NPL citations by patents is useful information to determine the degree of innovation’s 

reliance on science, there are some shortcomings regarding the measure of the linkage between 

science and innovation. First, it is well known that papers with a substantial volume of citations get 

more mentions in research papers (Mathew effect; Merton, 1973). Such bias with patent citations 

should be smaller, given that the patent citations are regulated by the patent system, such as 

disclosure obligations of relevant prior arts in US patent law. However, it has been found that 

disproportionally large number of citations are made to some specific patents (Kuhn et al., 2020) 

and the citation patterns could be geographically biased toward more concentration as compared to 

the patterns by textual similarity measures (Feng, 2020). These findings suggest that the NPL 

citations in patent documents suffer from some bias associated with their nature by citing practices 

by patent applicants and examiners.  

Second, NPL citation represents the science used in a patented technology, but it lacks the 

information of how technology impacts science. In other words, it is unable to show the two-way 

relationship between science and innovation. While there exists some information of patents cited 

in research papers, such a scenario is rather rare. Additionally, the nature of citations in scientific 

papers differ from those of patents, where the novelty factor of the invention is the focus. Put 

differently, scientific papers, which fulfill the requirements for scientific knowledge, including 

objectivity and replicability, tend to be used as the citations that form the basis of scientific 

developments. Therefore, the two-way information between papers/patents to the other 
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patents/papers provides inconsistent information of the interlinkage of science and innovation, 

even though such information is available.  

Therefore, this study relies on the textual information of research papers and patents to delineate 

the relationship between science and innovation. Specifically, we used the titles and abstracts from 

research papers and patents published by Japanese authors and inventors between 1991 and 2017 

to determine the content similarity across scientific papers and patents. We grouped the documents 

with high-content similarity and clarified the mutual relationship between research papers and 

patents. 

The content similarity between research papers and patents have been investigated in some 

specific technology fields, such as Magerman et al. (2015), or by using academic inventors, 

involving both research papers and patents (Lissoni et al., 2013; Ikeuchi et al., 2017). However, to 

the best of our knowledge, there is no such work that combines research papers and patents to 

establish the interlinkage of science and innovation across science and technology fields, while a 

large-scale content examination of patent text information has been conducted and evaluated in the 

past (Arts et al., 2018; Younge and Kuhn, 2016). This study fills the aforementioned research gap 

by providing systematic information in connection to science and innovation interlinkage across 

technology and scientific fields based on the document contents in two forms.  

The remainder of this study is organized as follows: Section 2 presents an outline of our 

obtained data as well as a visualization of the overlapping of science and technology over time. In 

Section 3, we use the citation information from research papers and patents to perform an 

evaluation of a similarity index via text mining. In Section 4, we present a relation index of science 

and technology linkage based on the neighbor patent or paper information. Section 5 extends this 

analysis to observe the changes in the mutual interactions in relation to the science and technology 

field. Finally, we conclude our study with some research limitations in Section 6.  

 

2. Data sets and text mining techniques 

2.1. Data sets 

In this study, to comprehensively observe the interlinkage between Japanese science and technology, 

we used the following data sets: 

· Research paper information: Papers included in the Science Citation Index expanded from 

Clarivate’s Web of Science, published between 1991 and 2017, containing at least one Japan-

based author. 

· Patent information: All patents filed to the Japan Patent Office at PATSTAT2020 Spring 

Version (those for which English-translated title and abstract information are available). 

Regarding the number of documents, we used 1,696,338 research papers and 12,330,725 patents, 

forming a total of 14,027,063 documents. 
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Figure 1 shows the changes in the number of documents by publication year (for patents, the 

application year). The number of patents shows a declining trend since 2000, while the number of 

research papers remains stable, with ~100,000 publications per year. 

 

 

Figure 1 : Numbers of papers and patents by application/publication year 

 

2.2. Text mining method and clustering results 

We followed two steps in creating document embedding vectors that represent the content of 

each document. First, we created embeddings for each word and then aggregated them by 

document. Thereafter, we extracted only the nouns that appear in a total of approximately 14 

million titles and abstracts and used FastText (Joulin, 2016; Bojanowki, 2017) to create embedding 

vectors for words other than common and rare words with a dimension of 300. Further, we 

averaged these word vectors to obtain a document embedding vector for each document. Regarding 

the embedding results for the words, we conducted cluster analysis using the K-means method and 

confirmed, by visual checking, that semantically similar words belonged in the same cluster (for 

details, see Motohashi, Koshiba, and Ikeuchi, 2021). 

The embedding results of the words were aggregated for each document. We clustered these 

using the K-means method (classification with 16 clusters) and compressed the results into two 

dimensions using the uniform manifold approximation and projection (UMAP) technique 
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(McInnes et al., 2018). The result is shown in Figure 2. 

 
Figure 2: Visualization of document distribution with clustering results 

 

2.3. Visualizing the relationship between research papers and patents 

Figure 2 shows the results of a technical mapping that combines research papers and patents. 

Figures 3-1, 3-2, and 3-3 distinguish between research papers and patents and show the change 

over time. In these figures, red indicates the location of patents, while blue indicates the location of 

research papers. 

Overall, a large percentage of the research papers were related to life science (cells/genes, 

medicine) and chemistry/materials (chemical compounds, metal ingredients). They were evidently 

distributed across the fields of optics, fluid processing, and video display. However, fields relating 

to mechanics (motion control, structural mechanics, and thermodynamics), electronic devices, and 

image processing are mostly covered by patents. 

Regarding changes over time, differences can be observed particularly between the 1990s and 

2000s. As the number of research papers increases with respect to the total number of documents, 

an expansion of research papers in technical fields can be observed. This trend is particularly 

notable in the fields of chemistry/materials (compounds, metallic materials). It was also evident 

that research papers had been published in fields such as thermodynamics, which was previously 

only covered by patents.  

 



5 
 

 
Figure 3-1: Paper and Patent Mapping (1990s) 

 
Figure 3-2: Paper and Patent Mapping (2000s) 
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Figure 3-3: Paper and Patent Mapping (2010s) 

 

3. Validation of document embedding data 

In this section, we evaluated the document embedding results by using citation pairs (paper–

paper, paper–patent, and patent–patent) and document pairs in the same research project. 

Specifically, the cosine similarity of randomly selected pairs are compared with that of those pairs 

whose contents are similar each other. 

First, the distribution of the cosine similarity of randomly selected 10,000 pairs for the three 

patterns of “paper–paper,” “paper–patent,” and “patent–patent” is presented in Figure 4, where the 

decile values for cosine similarity of each pair are plotted. Looking at the median values (median, 

P50), “paper–paper” has the highest value at 0.73, followed by “patent–patent” (0.70), and finally, 

“paper–patent” (0.69). Additionally, considering the 10th percentile (P10), the respective values are 

~0.6, and it can be seen that cosine similarity between randomly extracted samples is distributed in 

a relatively narrow region (the width between the 10th and 90th percentiles being ~0.2). In a similar 

exercise using patent abstract information in Japanese, the median of randomly extracted cosine 

similarities was ~0.5 (Motohashi, Koshiba, and Ikeuchi, 2019). Therefore, the cosine similarity in 

this study (using an English abstract) is relatively higher than that of Japanese. This may be due to 

the difference in the vocabulary of both languages.  
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Figure 4: Distribution of cosine similarity of random sampled pairs 

 

Further, we compared these distributions (in Figure 4) with those by the document pairs of citing 

and cited relationship, as well as those of the outputs from the same research project. The citation 

pair information is taken from the patent literature and NPL citations of patents (patent–patent, and 

patent–paper pairs) and paper citations in each research paper (paper–paper citation). In addition, 

we take the information of papers and patents with similar contents from the JSPS Kakenhi 

“Report on the Research Results,” where documents (papers and patents) are declared as the 

outputs within an identical funded research project. The cosine similarity between those pairs 

(citing pairs and pairs in an identical project) is supposed to be greater than that of randomly 

selected pairs due to the similarity of document contents. Figures 5-1, 5-2, and 5-3 compare the 

results for the “paper–paper,” “paper–patent,” and “patent–patent” pairs, respectively.  

It is confirmed that the cosine similarity between citation pairs and same-project outcomes is 

higher in all figures. In addition, it is found that the citation pairs and same-project pairs between 

research papers provide information with high homogeneity (0.8 or greater even at the 10th 

percentile). However, for some other pairs, 10th percentile values are under 0.7, which is a value 

lower than the median value for random pairs. Additionally, the distributions for citation pairs and 

same-project pairs are almost the same, except for those between patents. With regard to “patent–

patent” pairs, the variation in same-Kakenhi-project pairs is greater than for citation pairs. Arts et 

al. (2018) has validated the accuracy of content similarities derived from using patent abstract 

information. Therefore, the variation of cosine similarity infers the substantial variance of content 
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similarities among citation pairs of documents (together with those with research outcomes within 

the same project).  

 

 
Figure 5-1 : Comparison of cosine similarity distribution (paper-paper) 

 

 
Figure 5-2: Comparison of cosine similarity distribution (paper-patent) 
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Figure 5-3: Comparison of cosine similarity distribution (patent-patent) 

 

4. Neighbor documents-based indicator of science and technology linkage  

4.1. Identification of neighbor documents in terms of the document contents 

The science and innovation linkage can be detected by the coexistence of research papers and 

patents with similar embedding vectors. To identify such fields, we extracted the neighbor 

documents for each of the 14 million documents (papers or patents). We applied the neighborhood 

graph and tree (NGT) for Indexing High-dimensional Data algorithm, where a certain number of 

neighboring documents can be efficiently searched, out of several documents (Iwasaki, 2011). In 

this study, we extracted 200 neighboring documents based on cosine similarity with each of the 14 

million focal documents.  

The number of the neighbor documents, a global parameter of the NGT algorithm, reflects the 

area of document search in the document content space. The greater number of neighbor 

documents allows for a more comprehensive search of the documents, but it requires more 

computer costs in terms of the process speed and the storage area.  

The distribution of the cosine similarity for the 100th and 200th documents with each of the focal 

documents is presented in the Table 1. It is found that the values of the cosine similarities between 

the 100th and 200th document are almost the same (for example, the median value is 0.899 for the 

100th and 0.893 for the 200th). Our embedding vector has a dimension of 300, and the cosine 

similarity is proportional to the Euclidian distance between a focal document and its neighboring 

one. The number of neighbor documents is proportional to the volume of a hypersphere with a 

dimension of 300, which is the 300th power of the radius from the position of a focal document.  
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Table 1: Distribution of the cosine similarities of neighboring documents 

 

This raises a pertinent question of the result of enlarging the number of neighbor documents to 

1,000 for example. For this we assumed that the cosine similarity of the 200th neighbor is 0.9 and 

the documents are evenly distributed in a 300 dimensional space. Then, the question entails 

determining the extent to which the cosine similarity decreases. First, the cosine similarity is 

converted to the radius (Euclidian distance by 2(1-cos)), to get 0.2.1 Then, the radius of the 

hypersphere with 1,000 documents inside (x) can be derived from the following equation:  

(𝑥𝑥)300

(0.2)300
=

1000
200

 

From the estimated x, the radius of a 1,000 document search can be obtained to be 0.201076, 

which is only 0.53% larger than that of 200 documents (0.2). However, the 200 neighbor results 

lead to 2.8 billion (20*14 million) observations with a tsv file size of about 70GB. In the case of 

1,000 neighbor extractions, the output size becomes five times as above, so that the cost 

performance to increase the size of neighbors is very poor. Therefore, we stick to the size of 200 

neighbors for subsequent analysis.  

The number of neighbor documents also depends on the search objective, that is, the extent of the 

similarity to be required for document search. In this regard, the cosine similarity of 0.9 for the 

200th document corresponds to the proximity in the 60th percentile for “paper–paper,” the 90th 

percentile for “paper–patent,” and the 80th percentile for “patent–patent” based on citation pairs 

(Figure 5-1~5-3 in the previous section). Therefore, by extracting 200 neighbor documents, it 

provides an opportunity to investigate the overlapping paper and patent documents within the 

content similarity comparable to the citing and cited pair ones. 

 
1 Our embedding vector is normalized, as its norm=1. 

100th 200th
1% 0.843 0.834
5% 0.870 0.863

10% 0.881 0.875
25% 0.899 0.893
50% 0.916 0.911
75% 0.932 0.928
90% 0.944 0.941
95% 0.951 0.948
99% 0.961 0.958
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The difference in cosine similarities with the neighboring documents of the 200th document is 

attributable to the difference in distribution density in the technical space where the research papers 

and patents are distributed. Documents with high-cosine similarity with the 200th document 

indicate that research papers and patents are more densely distributed around the 200th document. 

 It is conceivable that the cosine similarity of citation pairs would also be affected by this state 

of technical spatial density. This is because it is highly likely that a document with higher cosine 

similarity is cited among documents that are located in a place with high-technical spatial density. 

In Figure 6, neighboring documents are divided into four groups based on their cosine similarities 

with the 200th document (Groups Q1–Q4, starting with documents with low cosine similarity, i.e., 

sparse technical spatial density), and the distribution of cosine similarities with the citation pairs of 

documents in each group (decile values) are observed. As hypothesized, documents located in a 

dense technical space (e.g., a document in Q4) have a high-cosine similarity with their cited 

documents. Additionally, the effect of spatial density is greater in the groups with sparse density 

(e.g., Q1). 

 

 
Figure 6: Cosine similarity distribution of citation paper by content density 

 

4.2. Counting neighbor papers of patent documents  

Counting the number of papers in 200 neighbor documents by each patent allows us to 

investigate the degree of scientification of inventions. The mean of the number of neighbor patents 

is 5.88 (out of 200 neighbor documents). Its median value is 0, and 7,171,041 patents (58.2% of 

the total number of patents) do not have any paper (paper count=0) in 200 neighbor documents. As 

indicated in Figures 1–3, there are substantial technological fields with no overlap with the 
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distribution of scientific papers.  

Figure 7 shows the mean value of the number of neighbor papers by patent application year, 

together with the cosine similarity in the 200th document (minimum cosine similarity in 200 

neighbor documents). In general, an increasing pattern of the mean paper counts is found, implying 

that the science intensity of invention increases over time. It should be noted that there are more 

neighbor papers published before the patent application as the application year become later. 

Therefore, the increasing pattern of the neighbor paper could be interpreted by the fact that more 

scientific papers existed before patents to be applied in later years than the scientific papers 

published after the patent applications in earlier years. In other words, science influences 

technology more than technology affects science. In addition, the minimum cosine similarity (200th 

document) decreases over time, implying that newer patents are applied in relatively sparse areas 

in the technology space.  

 

 

Figure 7: Number of neighbor papers and cosine similarity in 200th for patents 

 

Figure 8 shows the mean neighbor paper counts by patent applicant type. Here, we distinguished 

the patents by firm only, university or public research institute (PRI) only, and joint application of 

firm and university/PRI. We eliminated all patents by other patterns of applicant compositions, such 

as those involving individual inventors. The increasing pattern of overall paper counts is driven by 

the patents involving university or PRI. It should be noted that the substantial institutional reforms in 

public science sector was introduced in 2001 for the central government laboratories and in 2004 for 

national universities. Both types of entities, which used to belong to the government, became an 

independent agency, and they started applying the patents after these years (Motohashi and 
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Muramatsu, 2012). As the central government laboratories and national university focus more on 

basic science in their research activities, compared to local government laboratories and private 

universities, the mean science index by paper counts increased after years of these new players 

started patenting (2001 for government laboratories and 2004 for national universities).  

Furthermore, it should be noted that the science index by firm’s patents is relatively stable, while 

that of university–industry joint application patents (UI patents) increases over time. The increase in 

the science index of UI patents is found not only in the 2000s but also after the 2010s. The pattern of 

private firms’ retreat from basic science in the US (Arora et al., 2018) is also found in Japan. 

However, private firms substitute their in-house scientific activities by joint research with 

universities and PRIs.  

 

 

Figure 8: Neighbor paper counts by patent applicant type 

 

 Finally, changes in the science index are analyzed by technology field. Figure 9 shows the neighbor 

paper counts by technology field of focal patent in the 1990s and 2010s (classified into the 35 

categories used by WIPO for its annual report; Schmoch, 2008).  

 First, the scientification of inventions has a highly skewed distribution with very high intensity in 

life science fields, such as biotechnology and pharmaceuticals. In addition, the intensity is relatively 

high for micro-structural and nano, fine chemistry, and IT methods/ management. In contrast, the 

mean value of neighbor science paper counts is only less than 10 (5% of the total of 200 documents) 

in most of the technology fields. 
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 Second, the science index in the 2010s is higher than that of the 1990s for most of the technology 

fields. It is important to note that the majority of the neighbor papers for the patents in the 2010s are 

published before their applications and vice versa for the patents in the 1990s. Therefore, a higher 

science index in the 2010s suggests that new inventions are born in the technology fields where 

some scientific understandings have been achieved beforehand. Alternatively, technology generally 

relies on science. This is typically the case for technology fields, where substantial differences in the 

level of science indices in two periods exist, such as pharmaceuticals and nano technology.  

 

 
Figure 9: Mean paper counts by technology field 

 

4.3. Counting neighbor patents of paper documents 

 The interlinkage between science and technology can also be observed by counting neighbor 

patents around each research paper. The mean neighbor patent counts is 23.05 (out of 200 

documents). The median value is 2 and the number of papers without any neighbor patents is 

618,238 (36.4% of all research papers). Again, there are substantial areas for pure science without 

any patent applications nearby.  

 Figure 10 shows the trend of mean neighbor patent counts, together with the cosine similarity with 

the 200th neighbor document (minimum cosine similarity for all neighbor documents). In contrast to 

the science index of patent, the technology index of paper decreases over time. Such an overall trend 
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is the reverse side of the coin of the increasing trend of the science index of patent, that is, 

technology relies on science, but not so much for vice versa.  

 

Figure 10: Number of neighbor patents and cosine similarity in 200th for papers 

 

Figure 11 shows the technology index of paper by author affiliation type, firm only, university/PRI 

only, or joint publication of firm and university/PRI. The technology index decreases for paper by all 

sectors, but such a trend is clearer for papers by private firm authorship. It should be noted that the 

number of papers by private firms decreases over time (4,408 in 2000 v.s. 2,226 in 2017), while the 

number of joint paper with university/PRI increases (5,386 in 2000 v.s. 5,980 in 2017). In the 

process of such structural change, the technology indices of firm only and joint paper with 

university/PRI are converged to a similar level. This can be interpreted as that a firm substitutes in-

house research activities to joint activities with public research organizations.  

For the papers involving university/PRI authors, the technology index is stable in the 2000s due to 

the institutional reforms in national laboratory and university in the early 2000s. It starts declining 

around 2007 after a temporary shock.  
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Figure 11: Neighbor patent counts by paper author affiliation type 

 

 Finally, figure 12 shows the technology intensity in the 1990s and 2010s by the scientific field of 

research paper (based on Web of Science subject code). The scientific fields with high technology 

index in the 1990s, such as energy, chemical engineering, and material science, have relatively 

greater impacts on subsequent inventions, while there are many fields with smaller numbers of 

technology applications. It should be noted that the technology intensities in life sciences, such as 

biochemistry and pharmacology, are relatively small, even though the science index of such 

applications is high. Put differently, the scientific frontier in these fields expands very rapidly, where 

only small part of them can be a basis of subsequent innovations.  
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Figure 12: Mean patent counts by scientific discipline 

 

5. Dynamic analysis of science and technology coevolution 

 In this section, we discuss the dynamics of science and technology evolution over 30 years and how 

the results are interpreted in the foregoing sections.  

 Table 2 shows the changes in the distribution of neighbor documents for patents and research 

papers. COSMIN is the cosine similarity of the 200th neighbor document, and Radius is the Euclidian 

distance converted by 2(1-COSMIN) covering the neighbor search in a 300 dimensional technology 

space. This radius should be adjusted by the number of documents, as the time trend of patent 

applications and research paper publications exists, if such a trend comes from changes in 

application/publication propensity, given the same technological or scientific findings. Radius-adj 

shows the adjusted values in the 2010s by using the following equation.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2010 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1990 ∗ �
# 𝑜𝑜𝑜𝑜 𝑅𝑅𝑜𝑜𝑐𝑐2010

# 𝑜𝑜𝑜𝑜 𝑅𝑅𝑜𝑜𝑐𝑐1990
300
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Table 2. Changes in the distribution of neighbor documents 

 

Regarding the patent, the mean adjusted radius to the 200th neighbor document increases from 

0.1793 to 0.1911, representing an increase of 6.5%. In the case of the original value (0.1918 in the 

2010s), it increases by 7.0%. In contrast, the same measure is relatively stable for research papers 

(0.1645 to 0.1661, 1.0% growth). These findings imply that the technological frontier measured by 

patent expands to more sparse places in the technology space. In other words, the area covered by 

patent applications expands its space. In contrast, the size of the scientific frontier covered by 

research papers is relatively stable. 

Additionally, the science intensity of patents increases on average (from 4.71 neighbor papers in the 

1990s to 7.40 neighbor papers in the 2010s), while the share of patents with no research paper as a 

neighbor document does not change significantly (58.1% in the 1990s and 59.0% in the 2010s). 

Therefore, the direction of expansion of technology space is for both directions, toward the 

technology field covered by research papers and its opposite (Figure 13). As for the distribution of 

research papers, its technology intensity decreases over time (from 25.7 neighbor patents in the 

1990s to 20.2 neighbor patents in the 2010s). Therefore, the technology space covered by papers 

(science) move to the opposite direction to the technology field covered by patents.  

In summary, scientific research activities, mainly conducted by university/PRI, expand the science 

frontier to the left (opposite to the location of patented technologies) in Figure 13. Meanwhile, 

technology evolutions reflected in patents, mainly driven by private firms, occur in both ways, that 

is, to the right (science-based innovation) and to the left (non-science-based innovation). 

Consequently, the science intensity of patents expands from the area of A to the area of A+B+C 

(increase), while the technology intensity of papers shrinks from the area of A+B+C to the area of C 

(decrease).  

COSMIN
(a)

Radius
(b)

# of docs
(c)

Radius-
adj (d)

Patent in 1990's 0.9103 0.1793 6,472,191 0.1793
Patent in 2010's 0.9041 0.1918 2,207,567 0.1911
Paper in 1990's 0.9177 0.1645 420,412 0.1645
Paper in 2010's 0.9170 0.1659 612,618 0.1661
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Figure 13: Changes in the relationship between science and technology 

 

 Finally, we examined the dynamics of technology changes in relationship with science and 

technology interactions by technology or science field. First, we measured the technological 

(scientific) changes in patents (papers) by considering how an individual technology (science) field 

moves from the 1990s to the 2010s. More specifically, we calculated the centroid vector for each 

technology (science) field in the 1990s and 2010s and used the 1 minus cosine similarity of these 

vectors as the degree of technological (scientific) changes of each field. Figure 14 shows the scatter 

graph of this measure and the changes in neighbor papers from the 1990s to the 2010s of 35 

technology fields. 

 

Figure 14 : Change of science intensity and technology space position for patents 
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 Except for “furniture and games” and “digital communication,” the technology fields with growing 

science intensity, such as “pharmaceuticals,” “organic fine chemicals,” “biotechnology,” and “nano-

technology,” show a relatively greater level of dynamics in the contents of patents. Two exceptions 

may be explained by the market change, such as video games and mobile telecommunications 

services, together with technological advancements related to new products. But the other 

technology fields rely heavily on scientific findings. In addition, we cannot find any technology field 

with high science intensity and relatively less dynamics in technological change. Therefore, it leads 

us to say that the science is one of important factors behind technological dynamics.  

 Figure 15 shows the dynamics of science and technology intensity by scientific field. As the 

proportion of neighbor patents to research paper decreases over time in general, the changes in 

neighbor patents become negative from the 1990s to the 2010s for most of the scientific field. 

However, there are some fields without substantial decrease or even some increase in that count, 

such as “health professions,” “nursing,” and “multidisciplinary.” It should be noted that the degree of 

technology position change is relatively higher for these fields. As for the scientific fields 

contributing to science-based innovation (mainly life science fields), the reverse impact (from 

innovation to science) is unclear. However, it should be noted that there are some scientific fields, 

such as “health professions” and “nursing,” where technological change and industry applications 

lead to their dynamics.  

 

 

Figure 15 : Change of technology intensity and technology space position for papers 
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6. Conclusion 

In this study, we analyzed the two-way relationship between science (research papers) and 

technology (patents) using text data from 1.7 million published papers and 12.3 million filed patents 

since 1990. Specifically, we created document embedding vectors using the titles and abstracts for 

each document and used cosine similarity to extract 200 neighboring documents by using the NGT 

algorithm. The relationship between research papers and patents was quantified using the number of 

neighboring patents (research papers) for each research paper (patent). 

 It was found that the scientification of inventions (the number of neighbor papers for patent) 

increased over time, particularly for university/PRI patents and university industry collaboration 

patents over these 30 years. As for university/PRI patents, the institutional reforms for the science 

sector (government laboratory incorporation in 2001 and national university incorporation in 2004) 

affect the interactions between science and technology.  

In contrast, the technology intensity of science (the number of neighbor patents by paper) decreased 

over time. It was also found that the technology intensity of science, having significant impact on 

subsequent innovations, such as life science, was rather low. However, there are some scientific fields 

where related technological developments affect their scientific progress. Therefore, while there is 

substantial heterogeneity by the technology and science field, there is a presence of some two-way 

interaction between science and technology (innovation).  

In Japan, major institutional reforms were conducted in the 2000s, such as national laboratories 

becoming independent administrative agencies in 2001 and national universities becoming national 

university incorporations in 2004. It was evident that such institutional reforms increase the science 

intensity of inventions. However, there is little sign of science being influenced by such institutional 

reforms. After the reforms, central government laboratories and national universities got involved in 

substantial technology commercialization activities, but there is little evidence of their research 

activities being biased toward application orientation instead of basic science.  

This study proposes a new methodology and science/innovation two-way interaction by using 

research paper and patent text information. However, there are some limitations in our research. 

First, we measure scientific findings by research papers, instead of controlling for the heterogeneity 

of their contents. For example, we found that the technology intensity of scientific papers in 

“energy” or “chemical engineering” is high, while that of “mathematics” or “genetics” is low. This 

observation could be interpreted by the type of research papers, an application-oriented paper or a 

basic science one. Here, further investigations are needed based on some conceptual works related to 

the taxonomy of science/technology (e.g., Stokes, 1997).  

Another limitation of our work is the methodology of document embedding. We chose a bag-of-

words approach, where we obtained embeddings for single words and aggregated them by 

document. The most serious problem with this methodology is that the embedding vector for each 
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word is consistent over time. But, is the content of “machine learning” in the early 2000s the same as 

that in the late 2010s, for example? Of course not. In this regard, we need to consider the context of 

the word used in each document. There has been tremendous progress in the methodology of 

contextual word embedding, such as bidirectional encoder representation with transformation 

(BERT). Recently, BERT has been used for patent text analysis, and it has been found to work 

efficiently in distinguishing the difference between similar patents (Li et al., 2017; Lee and Hsiang, 

2020). This is another dimension for future research.  
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