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1 Introduction
In bandit and reinforcement learning, off-policy (batch) pol-
icy evaluation attempts to estimate the performance of some
counterfactual policy given data from a different logging
policy. Off-policy evaluation (OPE) is essential when de-
ploying a new policy might be costly or risky, such as in ed-
ucation, medicine, consumer marketing, and robotics. OPE
relates to other fields that study counterfactual/causal rea-
soning, such as statistics and economics.

Most existing OPE studies focus on full support log-
ging policies, which take all actions with positive probabil-
ity in any context, such as stochastic bandit (e.g. ε-greedy
and Thompson Sampling) and random A/B testing. How-
ever, real-world decision-making often uses deficient sup-
port logging policies, including deterministic bandit (e.g.
Upper Confidence Bound) as well as deterministic decision-
making based on predictions obtained from supervised and
unsupervised learning. An example in the latter group is a
policy that greedily chooses the action with the largest pre-
dicted reward. OPE is difficult with a deficient support log-
ging policy, since its log data contain no information about
the reward from actions never chosen by the logging policy.
There appears to be no established OPE estimator for defi-
cient support logging policies (Sachdeva, Su, and Joachims
2020).

We provide a solution to this problem. Our proposed OPE
estimator is applicable not only to full support logging poli-
cies but also to deficient support ones. We also allow for hy-
brid stochastic and deterministic logging policies, i.e., log-
ging policies that choose actions stochastically for some in-
dividuals and deterministically for other individuals.

Method. Our OPE estimator is based on a modification of
the Propensity Score (Rosenbaum and Rubin 1983), which
we dub the “Approximate Propensity Score” (APS). APS of
action (arm) a at context (covariate) value x is the average
probability that the logging policy chooses action a over
a shrinking neighborhood around x in the context space.
If two actions have nonzero APS at x, the logging policy
chooses both actions locally around x. This enables us to
estimate the difference in the mean reward between the two
actions by exploiting the local subsample around x. When
the logging policy is deterministic, the subsample consists
of individuals near the decision boundary between the two
actions. We then use the estimated reward differences to con-

struct an estimator for the performance of any given coun-
terfactual policy.

As the main theoretical result, we prove that our proposed
OPE estimator is consistent. That is, the estimator converges
in probability to the true performance of a counterfactual
policy as the sample size increases, under the assumption
that the mean reward differences are constant over the con-
text space (Theorem 7). This result holds whether the log-
ging policy is of full support or deficient support. The proof
exploits results from differential geometry and geometric
measure theory, which have not been applied in machine
learning research as far as we know.

Simulation Experiments. We validate our method with
two simulation experiments. The first considers a mix of full
support and deficient support policies as the logging policy.
Actions are randomly chosen for a small A/B test segment of
the population and are chosen by a deterministic supervised
learning algorithm for the rest of the population. For the task
of evaluating counterfactual policies, our method produces
smaller mean squared errors than a baseline estimator that
only uses the A/B test subsample. The second experiment
considers a situation in which we have a batch of data gen-
erated by a deterministic bandit algorithm. We find that our
estimator outperforms a regression-based estimator in terms
of mean squared errors.

Real-World Application. We empirically apply our
method to evaluate and optimize coupon targeting policies.
Our application is based on proprietary data provided by
Mercari Inc., a major e-commerce company running online
C2C marketplaces in Japan and the US. This company uses
a deterministic policy based on uplift modeling to decide
whether they offer a promotional coupon to each target cus-
tomer. We use the data produced by their policy and our
method to evaluate a counterfactual policy that offers the
coupon to more customers. Our method predicts that the
counterfactual policy would increase revenue more than the
cost of coupon offers, suggesting that redesigning the cur-
rent policy is profitable.

Related Work. Widely-used OPE methods include in-
verse probability weighting (IPW) (Precup 2000; Strehl
et al. 2010), self-normalized IPW (Swaminathan and
Joachims 2015), Doubly Robust (Dudı́k et al. 2014), and
more advanced variants (Wager and Athey 2018; Farajtabar,
Chow, and Ghavamzadeh 2018; Su et al. 2020). These meth-
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ods are based on importance sampling (IS) and require that
the logging policy is of full support, i.e., assigns a positive
probability to every action potentially chosen by the counter-
factual policy. This restriction makes them hard to use when
the logging policy is of deficient support.

There are two existing approaches to deficient support
logging policies. 1 The first approach considers a logging
policy that varies over time or across individuals (Strehl
et al. 2010). Viewing the sequence of varying logging poli-
cies as a single full support logging policy, it is possible to
apply IS-based OPE methods. Unlike this approach, our ap-
proach is usable even when the logging policy is fixed.

The second approach, called the Direct Method or Re-
gression Estimator, predicts the mean reward conditional
on the action and context by supervised learning and uses
the prediction to estimate the performance of a counterfac-
tual policy (Beygelzimer and Langford 2009; Dudı́k et al.
2014). Similar regression-based methods are proposed for
reinforcement learning settings (Duan, Jia, and Wang 2020).
This approach is sensitive to the accuracy of the mean re-
ward prediction. It may have a large bias if the regression
model is not correctly specified. This issue is particularly
severe when the logging policy is of deficient support, since
each action is observed only in a limited area of the con-
text space. Our approach instead predicts the mean reward
differences between actions by exploiting local subsamples
near the decision boundaries without specifying the regres-
sion model. This idea relates to regression discontinuity de-
signs in the social sciences (Lee and Lemieux 2010).

It is worth noting that our approach is applicable to off-
policy selection, in which the researcher is to design a de-
cision rule to select a policy given a finite set of policies
(Kuzborskij et al. 2021). Since our method can estimate the
expected reward of the policies, we can first estimate the
rewards of the policies, and then choose the one with the
highest expected reward.

2 Framework
A := {1, ...,m} is a set of actions that the decision maker
can choose from. Let Rp-valued random variable X denote
the context that the decision maker observes when pick-
ing an action. Let X denote the support of X . To sim-
plify the exposition, we assume that X is continuously
distributed. Let a tuple of m R-valued random variables
(Y (1), . . . , Y (m)) denote potential rewards; Y (a) denotes
a potential reward that is observed when action a is cho-
sen. (Y (1), . . . , Y (m), X) follows distribution P , which is
unknown to the decision maker.

A policy chooses an action given a context. Let ML :
Rp → ∆(A) represent the logging policy, where ML(a|x)
is the probability of taking action a for individuals with
context x. We assume that the analyst knows the logging
policy and is able to simulate it. That is, the analyst is
able to compute the probability ML(a|x) for each action
a ∈ A given any context x ∈ Rp. Suppose we have log

1Sachdeva et al. (2020) also proposes another approach in
which they restrict the policy space.

data {(Yi, Xi, Ai)}ni=1 generated as follows. For each in-
dividual i, (1) (Yi(1), . . . , Yi(m), Xi) is i.i.d. drawn from
P ; 2 (2) Given Xi, the action Ai is randomly chosen based
on the probability ML(·|Xi); (3) We observe the reward
Yi := Yi(Ai). Note that only one of Yi(1), . . . , Yi(m) is
observed for individual i and recorded as Yi in the log data.
The joint distribution of (Y,X,A) is determined once ML
and P are given.

Prediction Target. We are interested in estimating the
expected reward from any given counterfactual policy π :
Rp → ∆(A), which chooses a distribution of actions given
individual context:

V (π) ≡ E

[∑
a∈A

Y (a)π(a|X)

]
.

3 Learning with Infinite Data
We first consider the identification problem, which asks
whether it is possible to learn V (π) if we had an infinite
amount of data. Formally, we say that V (π) is identified if it
is uniquely determined by the joint distribution of (Y,X,A).
A key step toward answering the identification question is
what we call the Approximate Propensity Score (APS). To
define it, for a ∈ A and x ∈ X , let:

pML
δ (a|x) ≡

∫
B(x,δ)

ML(a|x∗)dx∗∫
B(x,δ)

dx∗
,

where B(x, δ) = {x∗ ∈ Rp : ‖x − x∗‖ < δ} is the δ-ball
around x ∈ X . Here, ‖ · ‖ denotes the Euclidean distance on
Rp. To make common δ for all dimensions reasonable, we
normalize Xij to have mean zero and variance one for each
j = 1, ..., p. We assume that ML is a Lebesgue measurable
function so that the integrals exist. We then define APS pML

as follows: for a ∈ A and x ∈ X ,

pML(a|x) ≡ lim
δ→0

pML
δ (a|x).

Figure 1 illustrates APS. Here X ∈ R2, A = {1, 2, 3},
and the support of X is divided into four sets depending
on the value of ML as in panel (a). Panel (b) shows the
corresponding APS. For the interior points of each of the
four sets, APS is equal to ML. On the border of any two
sets, APS is the average of the ML values in the two sets.

Our identification analysis uses the following assumption.
Assumption 1 (Local Mean Continuity). For any a ∈ A, the
conditional expectation function E[Y (a)|X] is continuous
at each x ∈ X such that pML(a|x) > 0 and ML(a|x) = 0.
ML(a|x) = 0 means that action a is never taken for

individuals with context x. If APS of a at x is nonzero
(pML(a|x) > 0), however, there exists a point close to x
that has a positive probability of receiving action a, which
enables us to observe the reward from the action near x. For
any such point x, Assumption 1 ensures that the points close
to x have similar conditional means of the potential reward
Y (a). Thus, the conditional mean reward from action a at x

2This assumption is valid when we have a batch of log data
generated by a fixed policy.



(a)

(b)

Figure 1: Example of the Approximate Propensity Score
Notes: This figure shows an example of logging policy ML (panel
(a)) and corresponding APS pML (panel (b)). The shaded region
in panel (b) indicates the subpopulation for which pML(1|x) > 0
and pML(2|x) > 0. As discussed in Section 4, our method uses
the subsample in the shaded region to estimate the conditional
mean difference E[Y (2)|X]− E[Y (1)|X].

is identified. On the other hand, whenML(a|x) > 0, action-
context pair (a, x) is observed, allowing us to identify the
mean reward without any assumptions. Assumption 1 there-
fore does not impose continuity at such points. The lemma
below summarizes the above argument. For a set A ⊂ Rp,
let int(A) denote the interior of A.

Lemma 2 (Identification of Conditional Means). If Assump-
tion 1 holds, then for each a ∈ A, E[Y (a)|X = x] is iden-
tified for every x ∈ int(X ) such that pML(a|x) > 0.

We use Lemma 2 to analyse identification of V (π). Sup-
pose first that π(a|x) > 0 =⇒ pML(a|x) > 0, that is, the
counterfactual policy π only chooses actions with nonzero
APS. Lemma 2 implies that the conditional mean reward is
identified at every (a, x) pair that could be realized under the
policy π. As a result, the expected reward V (π) is identified
for any such policy. However, if there exists (a, x) such that
π(a|x) > 0 but pML(a|x) = 0, we cannot identify V (π)
without additional assumptions. To be able to identify V (π)
for any policy π, we assume that the difference in the con-
ditional mean reward function E[Y (a)|X] between any two
actions is constant over x ∈ X .

Assumption 3 (Constant Conditional Mean Differences).

There exists a function β : A × A → R such that
E[Y (a)|X]− E[Y (a′)|X] = β(a, a′).

Appendix B includes discussion about what would hap-
pen if we drop Assumption 3 and a potential way of relaxing
this. We also impose the following condition on APS.
Assumption 4 (Existence of Nonzero APS). For every a ∈
{2, ...,m}, there exists a sequence {a1, ..., aL} with a1 = 1
and aL = a for which the following condition holds: for
every l ∈ {1, ..., L − 1}, there exists x ∈ int(X ) such that
pML(al|x) > 0 and pML(al+1|x) > 0.

Assumption 4 states that there exists a path from a base-
line action (a1 = 1) to any other action (aL = a) for
which APS of any two consecutive actions (al and al+1)
is positive at some x. For example, suppose that m = 3,
pML(1|x1) > 0, pML(2|x1) > 0, pML(2|x2) > 0 and
pML(3|x2) > 0 for some x1, x2 ∈ X as in Figure 1 (b).
In this case, the sequence {1, 2} satisfies the condition in
Assumption 4 for a = 2, and the sequence {1, 2, 3} satisfies
the condition for a = 3. By Lemma 2, the four conditional
means E[Y (1)|X = x1], E[Y (2)|X = x1], E[Y (2)|X =
x2] and E[Y (3)|X = x2] are identified. Hence, the two
differences E[Y (1)|X = x1] − E[Y (2)|X = x1] and
E[Y (2)|X = x2] − E[Y (3)|X = x2] are identified. Un-
der Assumption 3, the two differences do not depend on
x. As a result, E[Y (1)|X = x] − E[Y (2)|X = x] and
E[Y (2)|X = x] − E[Y (3)|X = x] are identified for ev-
ery x ∈ X . Noting that E[Y (a)|X = x] is identified for at
least one a ∈ A for every x ∈ X , we can use the differences
to identify E[Y (a)|X = x] for every (a, x) pair, even for
those not observed in data. Thus, V (π) is identified for any
policy π.
Proposition 5 (Identification of V (π)). Under Assumptions
1–4, V (π) is identified for any policy π.

4 Learning with Finite Data
OPE Estimator. Suppose that we observe a sample
{(Yi, Xi, Ai)}ni=1 of size n. We propose an OPE estimator
based on the following expression of our prediction target
V (π): under Assumption 3,

V (π) = V (ML)+E

[
m∑
a=2

β(a, 1)
(
π(a|X)−ML(a|X)

)]
.

(1)
Appendix G derives this expression. Since V (ML) is the
value from the logging policy ML, V (ML) can be esti-
mated by the sample mean of Yi. Our identification analysis
suggests a way of conducting OPE on any policy π: (1) es-
timate β(a, a′) for each (a, a′) pair such that pML(a|x) > 0
and pML(a′|x) > 0 for some x; (2) use the estimates to re-
cover β(a, 1) for every a ∈ {2, ...m} and plug them into the
sample analogue of the above expression. For simplicity, we
consider a setup in which pML(a|x) > 0 and pML(1|x) > 0
for some x for every a so that we can directly estimate
β(a, 1) in step (1) above.

To estimate β(a, 1), we use the subsample I(a; δn) ≡ {i :
Ai ∈ {1, a}, qML

δn
(a|Xi) ∈ (0, 1)}, where qML

δn
(a|Xi) ≡

pMLδn (a|Xi)
pMLδn (a|Xi)+pMLδn (1|Xi)

, and δn is a given bandwidth. The



bandwidth shrinks towards zero as the sample size n in-
creases.3 qML

δn
(a|Xi) can be viewed as APS of action a

within the subsample for which either action 1 or a is as-
signed. The subsample I(a; δn) contains all observations i
such that both actions 1 and a can be chosen by the logging
policy locally around Xi. For example, in Figure 1 (b), the
shaded region corresponds to the subsample I(2; δn). This
covers not only the subsample subject to full randomization
(for which ML(1|x) = ML(2|x) = ML(3|x) = 1/3)
but also the local subsample near the deterministic decision
boundary AB between actions 1 and 2.

We propose minimizing the sum of squared errors on the
subsample I(a; δn):

(α̂a, β̂a, γ̂a) (2)

= argmin
(αa,βa,γa)

∑
i∈I(a;δn)

(
Yi − αa − βa1{Ai = a} − γaqML

δn (a|Xi)
)2
,

where 1{·} is the indicator function. β̂a is our estimator of
β(a, 1). We include qML

δn
(a|Xi) as an explanatory variable

to adjust for imbalance in the context distribution between
actions 1 and a, as is done with the standard propensity score
(Angrist and Pischke 2008; Hull 2018). We then define our
OPE estimator as:

V̂ (π) =
1

n

n∑
i=1

(
Yi +

m∑
a=2

β̂a
(
π(a|Xi)−ML(a|Xi)

))
.

(3)
It is worth noting that our method does not require the

model selection.
For estimating β(a, 1), the above method uses APS

pML
δn

(a|Xi), which may be difficult to compute analytically
if ML is complex. In such a case, we propose approxi-
mating it by brute force simulation. We draw a value of x
from the uniform distribution on B(Xi, δn) a number of
times, compute ML(a|x) for each draw, and take the av-
erage of ML(a|x) over the draws.4 We then use it instead
of pML

δn
(a|Xi) to compute qML

δn
(a|Xi), and then compute

β̂(a, 1) and V̂ (π) as in (2) and (3).
Consistency. We show that V̂ (π) is a consistent estima-

tor of V (π), that is, V̂ (π) converges in probability to V (π)
as n → ∞. Our consistency result uses the following as-
sumptions for the subsample assigned to one of the actions
a and 1, for every a ∈ {2, ...,m}. Let Xa,1 ≡ {x ∈ X :

ML(a|x) > 0 or ML(1|x) > 0}, M̃L(a|x) ≡ Pr(Ai =

a|Ai ∈ {1, a}, Xi = x) = ML(a|x)
ML(a|x)+ML(1|x) , X aa,1 ≡ {x ∈

3For the bandwidth δn, we suggest considering several different
values and check if the estimates are robust to bandwidth changes.
It is hard to pick δn in a data-driven way to minimize the mean
squared error, since it would require nonparametric estimation of
functions on the high-dimensional context space.

4The approximation error of the simulated APS relative to true
pML
δn (a|Xi) has a 1/

√
S rate of convergence, where S is the num-

ber of simulation draws. This rate does not depend on the dimen-
sion ofXi, so the simulation error can be made negligible by using
a large number of simulation draws even when Xi is high dimen-
sional.

X : M̃L(a|x) = 1}, and X 1
a,1 ≡ {x ∈ X : M̃L(a|x) = 0}.

In other words, Xa,1 is the set of context values for which
action 1 or a can be taken, M̃L(a|x) is the probability of
choosing action a conditional on Ai ∈ {1, a} and Xi = x,
and X aa,1 and X 1

a,1 are the set of context values for which the
conditional probability is 1 and 0, respectively.
Assumption 6. The following holds for all a ∈ {2, ...,m}.
(a) (Existence of Subsample) Pr(Ai ∈ {1, a}) > 0.
(b) (Almost Everywhere Continuity of ML) ML(a|·) and

ML(1|·) are continuous almost everywhere on Xa,1
with respect to the Lebesgue measure.

(c) (Measure Zero Boundaries of X aa,1 and X 1
a,1). For a′ ∈

{1, a}, Lp(X a′a,1) = Lp(int(X a′a,1)), where Lp is the
Lebesgue measure on Rp.

(d) (Finite Moments) E[Y 2
i ] <∞.

(e) (Nonzero Conditional Variance) If
Pr(M̃L(a|Xi) ∈ (0, 1)|Ai ∈ {1, a}) > 0, then
Var(M̃L(a|Xi)|M̃L(a|Xi) ∈ (0, 1), Ai ∈ {1, a}) >
0.

If Pr(M̃L(a|Xi) ∈ (0, 1)|Ai ∈ {1, a}) = 0, then the fol-
lowing conditions (f)–(i) additionally hold.
(f) (DeterministicML) For all x ∈ Rp, eitherML(a|x) =

1 or ML(a|x) = 0.
(g) (C2 Boundary of Ω∗a) There exists a partition
{Ω∗a,1, ...,Ω∗a,K} of Ω∗a = {x ∈ Rp : ML(a|x) = 1}
(the set of the context values for which the probability
of choosing action a is one) such that

(1) dist(Ω∗a,k,Ω
∗
a,l) > 0 for any k, l ∈ {1, ...,K} such

that k 6= l. Here dist(S, T ) = infx∈S,y∈T ‖x− y‖ is
the distance between two sets S and T ⊂ Rp;

(2) Ω∗a,k is nonempty, bounded, open, connected and
twice continuously differentiable for each k ∈
{1, ...,K}. 5

(h) (Regularity of Deterministic ML)
(1) Hp−1(∂Ω∗a) < ∞,

∫
∂Ω∗a∩∂Xa,1

dHp−1(x) = 0, and∫
∂Ω∗a∩Xa,1

fX(x)dHp−1(x) > 0, where ∂S denotes
the boundary of a set S ⊂ Rp, fX is the probability
density function of Xi, and Hk is the k-dimensional
Hausdorff measure on Rp. 6

(2) There exists δ > 0 such that ML(a|x) = 1 or
ML(1|x) = 1 for almost every x ∈ N(Xa,1, δ) ∩
N(∂Ω∗a, δ), where N(S, δ) = {x ∈ Rp : ‖x− y‖ <
δ for some y ∈ S} for a set S ⊂ Rp and δ > 0.

(i) (Conditional Moments and Density near ∂Ω∗a) There
exists δ > 0 such that

(1) E[Yi(a)|Xi], E[Yi(1)|Xi], and fX are continuous
and bounded on N(∂Ω∗a, δ);

(2) E[Yi(a)2|Xi] and E[Yi(1)2|Xi] are bounded on
N(∂Ω∗a, δ).

Here we only discuss a few key assumptions. Appendix C
provides discussion about other assumptions. Note first that
Assumption 6 (b) allows the function ML to be discontinu-
ous on a set of points with the Lebesgue measure zero. For
example, ML is allowed to be a step function.

5See the Appendix A for definition.
6See the Appendix A for definition.



When ML is deterministic, ∂Ω∗a corresponds to the deci-
sion boundary for action a in the context space. Assump-
tion 6 (g) imposes differentiability of the boundary. The
condition is satisfied if, for example, Ω∗a = {x ∈ Rp :
f(x) ≥ 0} for some twice continuously differentiable func-
tion f : Rp → R such that the gradient ∇f(x) is nonzero
for all x ∈ Rp with f(x) = 0. Furthermore, Assumption
6 (h) (1) assumes that ∂Ω∗a is (p − 1) dimensional and has
nonzero density.

Theorem 7 (Consistency of V̂ (π)). Suppose that Assump-
tions 3 and 6 hold, δn → 0, and nδn →∞ as n→∞. Then
V̂ (π) converges in probability to V (π) for every policy π.

Our consistency result requires that δn goes to zero slower
than n−1. This ensures that, when ML is deterministic, we
have sufficiently many observations in the δn-neighborhood
of the boundary of Ω∗a. Importantly, the rate condition does
not depend on the dimension of Xi. This is because we use
all the observations in the δn-neighborhood of the bound-
ary, and the number of those observations is of order nδn
regardless of the dimension of Xi if the boundary is (p− 1)
dimensional. Our estimator is therefore expected to perform
well even if Xi is high dimensional.

Our result holds under the assumption of constant condi-
tional mean reward differences. If this assumption does not
hold for a deterministic logging policy, β̂a is a consistent
estimator of the mean reward difference for the subpopula-
tion on the decision boundary between actions a and 1 (see
Appendix G). Therefore, our estimator may still perform
well when we are interested in a counterfactual policy that
marginally changes the logging policy’s decision boundary.

5 Simulations
Experiment 1: Mix of A/B Test and Deterministic
Logging Policy
Consider a tech company that conducts an A/B test using a
small segment of the population. The company applies a de-
terministic logging policy to the rest of the population. We
generate a random sample {(Yi, Xi, Ai)}ni=1 of size n =
50,000 as follows. There are 5 actions (m = 5) and 100
context variables (p = 100), with Xi ∼ N(0,Σ). Yi(a) is
generated as Yi(a) = 0.75

∑100
k=1X

2
kiα0,k + 0.25ui + εi(a),

where α0 = (α0,1, ..., α0,100) ∈ R100, ui ∼ N(0, 1),
and εi(a) ∼ N(a, 1). The conditional mean difference
E[Yi(a)|Xi] − E[Yi(1)|Xi] is constant over x. The choice
of parameters Σ and α0 is explained in Appendix D. To
generate Ai, let qk0.99 be the 99th percentile of the kth con-
text variable Xki. Let τML

pred(x, a) be a prediction of the re-
ward from action a given context value x obtained by su-
pervised learning from a past, independent training sample
D̃ = {(Ỹi, X̃i, Ãi)}ñi=1 of size ñ = 10,000 (see Appendix D
for how we constructed D̃ and τML

pred). Ai is then generated
based on the logging policy:

ML(a|x) =

1/5 if x1 ≥ q10.99
1{a = argmax

a′∈{1,...,5}
τML
pred(x, a

′)} if x1 < q10.99.

The first case corresponds to the A/B test segment while the
second case to the deterministic policy segment. Finally, Yi

is generated as Yi = Yi(Ai).
We simulate 1,000 hypothetical samples from the above

data-generating process. For each simulation, we use the
simulated sample to estimate the value of a counterfactual
policy π, another mix of an A/B test and a deterministic pol-
icy. With another reward prediction function τπpred,

π(a|x) =

1/5 if x2 ≥ q2
0.99

1{a = argmax
a′∈{1,...,5}

τπpred(x, a
′)} if x2 < q2

0.99.

Alternative Methods. We compare our method with two
alternative estimators. The first uses the A/B test segment
(for whichML(a|Xi) = 1/5) while the second uses the full
sample. The methods first compute the simple mean differ-
ences in reward Yi between actions a ∈ {2, ..., 5} and 1, and
then plugs them into β̂a of Eq. (3). Both our method and
the alternative estimator with the A/B test segment produce
consistent estimators of the prediction target V (π). How-
ever, the alternative uses only the A/B test segment while our
method additionally uses the local subsample near the deci-
sion boundary of the deterministic policy as we discussed in
Section 4.

Result. The first panel of Table 1 presents the bias, stan-
dard deviation (S.D.) and root mean squared error (RMSE)
of our proposed estimators with several choices of δ and
two alternative estimators. The alternative estimator using
the full sample has a larger bias than the other two, since
it does not control for the difference in the context distribu-
tion between actions. Our proposed estimator outperforms
the alternative estimator using the A/B test sample in terms
of RMSE. This suggests that exploiting both of the A/B test
segment and the local subsample near the deterministic de-
cision boundary can lead to better performance than using
only the A/B test segment.

Experiment 2: Upper Confidence Bound Logging
Policy
In the second experiment, both the logging policy and the
counterfactual policy are deterministic. The rest of the setup
is the same as that in the first experiment. We first use the in-
dependent training sample D̃ to train an Upper Confidence
Bound bandit algorithm. The logging policy ML is given
by ML(a|x) = 1

{
a = arg maxa′∈{1,...,5} UCB(x, a′)

}
,

where UCB(x, a) is an upper confidence bound of
E[Yi(a)|Xi = x]. See Appendix D for training details. We
do not update the policy while generating {(Yi, Xi, Ai)}ni=1
in the simulation. The sample is a batch of log data.

For the counterfactual policy π, we use D̃ to train a model
f(x, a) that predicts the reward given the context and ac-
tion, using sklearn’s RandomForestRegressor with 500 trees
and otherwise default parameters. The counterfactual pol-
icy tries to maximize the expected reward V (π) by choos-
ing the action with the largest predicted reward: π(a|x) =
1
{
a = arg maxa′∈{1,...,5} f(x, a′)

}
.

Alternative Method. We compare our method with an
alternative estimator using the Direct Method. This first
fits a linear model Yi = α +

∑5
a=2 βa1 {Ai = a} +



Table 1: Simulation results: bias, S.D., and RMSE of estimators of V (π)

Our Proposed Method with APS Controls Method with Mean Differences Direct
δ = 0.1 δ = 0.5 δ = 1 δ = 2.5 A/B Test Sample Full Sample Method

(1) (2) (3) (4) (5) (6) (7)
Experiment 1: Mix of A/B Test and Deterministic Logging Policy

Bias −.060 −.057 −.057 −.060 −.061 −.075 —

S.D. .099 .098 .096 .096 .101 .103 —

RMSE .115 .113 .112 .113 .118 .128 —

Avg.N 1862 6362 12502 33122 500 50000 —

Experiment 2: Upper Confidence Bound Logging Policy

Bias .048 .047 .046 .047 — — .342

S.D. .033 .030 .029 .029 — — .012

RMSE .058 .056 .055 .055 — — .342

Avg.N 3397 17344 31107 47601 — — 50000
Notes: This table shows the bias, the standard deviation (S.D.), and the root mean squared error (RMSE) of the estimators of the reward from
the counterfactual policy V (π) in the two simulation experiments. We use 1, 000 simulations of a size 50, 000 sample to compute these
statistics. Columns (1)–(4) report estimates from our method with several choices of δ. Each APS is computed by averaging 100 simulation
draws of the ML value. In columns (5)–(6), we estimate the mean reward differences β(a, 1) by the sample mean differences in the A/B test
segment and the full sample, respectively. In column (7), we estimate β(a, 1) by fitting a linear model that predicts the reward from the
context and action. The bottom row of each panel shows the average number of observations with nonzero APS for every action (Columns
(1)–(4)), that with nonzero ML for every action (Column (5)), or the total sample size (Columns (6)–(7)).

∑100
k=1Xkiγk + ei, then makes the reward prediction from

action a for individual i by µ̂i(a) = Yi+ (β̂a− β̂Ai), and fi-
nally computes V̂ (π) = 1

n

∑n
i=1

∑5
a=1 µ̂i(a)π(a|Xi). The

linear model used by this method correctly imposes the con-
stant conditional mean differences but misspecifies the func-
tional form with respect to Xi.

Result. The second panel of Table 1 shows the result.
The alternative using the Direct Method is significantly bi-
ased due to model misspecification. Our proposed estimator
seems to effectively use the local subsample near the de-
cision boundary and has smaller bias and RMSE than the
alternative.

6 Real-World Application
Setup. We apply our method to empirically evaluate a
coupon targeting policy of an online platform. This appli-
cation uses proprietary data provided by Mercari, Inc.. This
company conducts the following promotional campaign.
They target customers who signed up for Mercari 4 days ago
but have not made a purchase yet. The company uses a log-
ging policy based on an uplift model to determine whether
they offer a promotional coupon to each target customer. If
customers receive the coupon and make a purchase, they get
900 points (equivalent to 8.34 USD) that they can use for
future purchases. We observe data (Yi, Xi, Ai) for each tar-
get user i from this campaign, where action Ai ∈ {0, 1}
is whether the logging policy recommended offering the
coupon to the customer (Ai = 1) or not (Ai = 0), Xi is the
vector of more than 200 input features for the uplift model,
and Yi is an outcome such as the customer’s spending after
this coupon offer.

The company’s logging policy works as follows. They
first use data from a past A/B test and XGBoost to train a
model of the conditional average effect of the coupon on
purchases (they use library pylift for implementation). Let
τ(x) be the predicted coupon effect for those whose feature
value is Xi = x. The logging policy then recommends of-
fering a coupon to customer i if the predicted effect is in the
top 80% of the distribution of predicted effects. That is, the
logging policy ML is given by ML(1|x) = 1{τ(x) ≥ c},
where c is the 20th quantile of the distribution of τ(Xi).

Effects of Policy Recommendation. We first apply our
method to the logged data generated by the above pol-
icy to estimate the effect of the policy recommendation Ai
(β(1, 0) = E[Yi(1) − Yi(0)]) on the following three out-
comes: (1) the purchase value (how much the customer
spent), (2) the number of transactions, and (3) point us-
age (how many points the customer used). All outcomes are
sums over 18 days after the coupon offer decision. We com-
pute APS with δ ∈ {0.4, 0.8, 1.2, 2.0, 3.0}.7

Columns (1)–(5) in the first three rows of Table 2 report
the estimated effects of the policy recommendation Ai. We
normalize the estimates by dividing the original numbers by
the sample outcome means for confidentiality reasons. The
results show that the effects of the policy recommendation
Ai on the purchase value, the number of transactions, and
point usage are 35–92%, 43–74%, and 37–71% of their sam-
ple means, respectively. These positive effects mark a sharp

7Unlike the theoretical framework, the feature vector Xi con-
sists of discrete and continuous variables. We compute APS by fix-
ing the value of the discrete part and computing by simulation the
APS integral with respect to the continuous part. See Appendix E
for details.



Table 2: Off-policy evaluation using policy’s generated data

Our Proposed Method with APS Controls Mean
δ = 0.4 δ = 0.8 δ = 1.2 δ = 2.0 δ = 3.0 Differences

(1) (2) (3) (4) (5) (6)

Effect on Purchase Value 0.35 0.82 0.92 0.54 0.72 −0.17
(0.59) (0.39) (0.30) (0.28) (0.21) (0.11)

Effect on # of Transactions 0.43 0.47 0.66 0.49 0.74 −0.07
(0.50) (0.34) (0.28) (0.25) (0.19) (0.10)

Effect on Point Usage 0.37 0.71 0.57 0.47 0.64 0.68
(0.42) (0.29) (0.26) (0.22) (0.17) (0.04)

Coupon Cost Effectiveness Measure 79.57 96.35 134 93.51 92.07 —
(130) (48.97) (61.97) (49.33) (28.45)

N 2758 4688 6016 8085 9602 89486
Notes: The first three rows of this table report estimated effects of the policy recommendation Ai on purchase behavior. Columns (1)–(5)
report estimates from our method with several choices of δ used to compute APS. Column (6) reports the outcome mean differences between
those with Ai = 1 and Ai = 0. Each APS is computed by averaging 100 simulation draws of the logging policy’s binary decision. All
numbers in the first three rows are normalized by dividing the original estimates by the sample outcome means. The fourth row reports our
measure of coupon cost effectiveness, which predicts how much the purchase value would increase in USD if we increased the cost of the
campaign by 1 USD. Heteroskedasticity-robust standard errors are reported in parentheses. The last row reports the number of observations
with nonzero APS for every action (Columns (1)–(5)) or the total sample size (Column (6)).

contrast with Column (6), which reports the simple differ-
ences in the outcome means between those with Ai = 1
and those with Ai = 0. The simple mean differences on
the purchase value and the number of transactions are nega-
tive. These negative estimates suggest that the logging pol-
icy tends to recommend a coupon to the customers who have
a low propensity to make purchases. Our proposed method
corrects for this negative selection bias by controlling for
APS.

Evaluation of Counterfactual Policies.
The company needs to compensate for the discount that

customers get by using points. Thus, adopting a new pol-
icy would be profitable only when the increase in revenue is
sufficiently large compared to that in point usage. The com-
pany charges sellers 10% of every payment from the buyer,
which means the revenue increases by 10% of the increase
in purchase value. Hence, the policy change is beneficial if
the ratio of the increases in the average purchase value and
point usage is larger than 10.

Suppose we change our policy from ML to a counter-
factual one π. Let Y 1

i and Y 2
i denote the purchase value

and point usage respectively. Under the constant conditional
effect assumption, i.e., E[Y 1

i (1) − Y 1
i (0)|Xi] =: β and

E[Y 2
i (1) − Y 2

i (0)|Xi] =: γ, the ratio can be obtained as
follows:

E[
∑
a∈A Y

1
i (a)π(a|Xi)]− E[

∑
a∈A Y

1
i (a)ML(a|Xi)]

E[
∑
a∈A Y

2
i (a)π(a|Xi)]− E[

∑
a∈A Y

2
i (a)ML(a|Xi)]

=
βE[π(1|Xi)−ML(1|Xi)]

γE[π(1|Xi)−ML(1|Xi)]
=
β

γ
.

Row 4 in Table 2 reports the estimates of the ratio β/γ.
The estimates are larger than 10 for all δ’s. This result sug-
gests that it would be profitable to expand the campaign.

7 Conclusion
We develop an OPE method for a class of logging policies
including deficient support ones. Our method is based on
the newly developed “Approximate Propensity Score.” We
prove that our estimator is consistent and demonstrate its
practical performance through simulations and a real-world
application. Promising directions for future work include de-
veloping a data-driven procedure to optimize the bandwidth.
Also, the assumption of constant conditional mean reward
differences may not be plausible in some applications. It will
be challenging but interesting to relax this assumption to al-
low for certain types of heterogeneity. Finally, we look for-
ward to applications of our method in a variety of business,
policy, and scientific domains using machine learning.
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A Definitions
Definition A.1 (Twice continuously differentiable). We say that a bounded open set S ⊂ Rp is twice continuously differentiable
if for every x ∈ S, there exists a ball B(x, ε) and a one-to-one mapping ψ from B(x, ε) onto an open set D ⊂ Rp such that
ψ and ψ−1 are twice continuously differentiable, ψ(B(x, ε) ∩ S) ⊂ {(x1, ..., xp) ∈ Rp : xp > 0} and ψ(B(x, ε) ∩ ∂S) ⊂
{(x1, ..., xp) ∈ Rp : xp = 0}, where ∂S is the boundary of S.
Definition A.2 (k-dimensional Hausdorff measure). The k-dimensional Hausdorff measure on Rp is defined as follows. Let
Σ be the Lebesgue σ-algebra on Rp (the set of all Lebesgue measurable sets on Rp). For S ∈ Σ and δ > 0, let Hkδ (S) =
inf{

∑∞
j=1 d(Ej)

k : S ⊂ ∪∞j=1Ej , d(Ej) < δ,Ej ⊂ Rp for all j}, where d(E) = sup{‖x−y‖ : x, y ∈ E}. The k-dimensional
Hausdorff measure of A on Rp isHk(S) = limδ→0Hkδ (S).

B Discussion about Assumption 3
Here we discuss (1) what would happen if we drop Assumption 3 and (2) a potential way of relaxing this.

1. As explained in the last paragraph of Section 4, without this assumption, β̂a is a consistent estimator of the mean reward
difference for the subpopulation on the decision boundary between actions a and 1. The estimates may still allow us to
derive a meaningful policy implication. For example, let us focus on the binary-action case, i.e., := {0, 1}. (Our application
in Section 6 falls into this category; Ai = 1 means giving a coupon to user i.) Although we cannot estimate the conditional
average effect E[Y (1) − Y (0)|X = x] for each possible vector of the user characteristics x ∈ X , we can still estimate the
local average effect. Suppose that the logging policy ML is a threshold policy such that ML(1 | x) = 1 iff τ(x) ≥ c for
some score function τ and threshold c. (This is the case in our application. We also assume τ(X) is continuous.) Then, we
can estimate the effect of coupon distribution for users near the decision boundary, i.e., Π := E[Y (1)− Y (0) | τ(X) = c].
By giving an extra coupon to a customer whose score is slightly below the threshold c, the firm can increase its profit by Π.

2. One way to relax this assumption is to consider a partition of X and assume that the conditional mean difference between
any two actions is constant within each cell in the partition. This allows the conditional mean differences to vary across cells.
If for each (a, a′) pair, each cell contains x such that pML(a|x) > 0 and pML(a′|x) > 0, we can consistently estimate the
conditional mean differences and the expected reward from any policy. How to find such a partition is an interesting future
topic.

C Comprehensive Discussion about Assumption 6
Assumption 6 (a)–(e) are a set of conditions we require for proving consistency of β̂a when M̃L(1|x) > 0 and M̃L(a|x) > 0
for some x ∈ X . Assumption 6 (b) allows the function ML to be discontinuous on a set of points with the Lebesgue measure
zero. For example,ML is allowed to be a discontinuous step function as long as it is continuous almost everywhere. Assumption
6 (c) holds if the Lebesgue measures of the boundaries of X aa,1 and X 1

a,1 are zero.
Assumption 6 (e) rules out potential multicollinearity. If the support of M̃L(a|Xi) contains only one value in (0, 1),

qML
δn

(a|Xi) is asymptotically constant and equal to M̃L(a|Xi) conditional on qML
δn

(a|Xi) ∈ (0, 1), resulting in multicollinear-
ity between qML

δn
(a|Xi) and the intercept. Although dropping the intercept from the linear regression (2) solves this issue,

Assumption 6 (e) allows us to only consider the regression with a intercept for the purpose of simplyfing the presentation.
Assumption 6 (f)–(i) are a set of additional conditions we require for proving consistency of β̂a when M̃L(a|x) is either 0 or

1. In particular, we assume by Part (f) that the original logging policy ML is deterministic and the context space is partitioned
into m groups based on the action that the logging policy chooses. ∂Ω∗a then corresponds to the decision boundary for action a.
In this case, the subsample for which qML

δn
(a|Xi) ∈ (0, 1) is contained by the δn-neighborhood of ∂Ω∗a.

Assumption 6 (g) imposes the differentiability of Ω∗a. The conditions are satisfied if, for example, Ω∗a = {x ∈ Rp : f(x) ≥ 0}
for some twice continuously differentiable function f : Rp → R such that the gradient ∇f(x) is nonzero for all x ∈ Rp with
f(x) = 0. In general, the differentiability of Ω∗a may not hold. For example, if tree-based algorithms are used to partition the
context space, the decision boundary ∂Ω∗a is not differentiable. However, Assumption 6 (g) approximately holds in that Ω∗a is
arbitrarily well approximated by a set that satisfies the differentiability condition.

Part (1) of Assumption 6 (h) says that ∂Ω∗a is (p− 1) dimensional and has nonzero density. Part (2) requires that the logging
policy chooses either action 1 or a near the boundary of Ω∗a even if the context value is not in the subsample Xa,1 as long as it
is in the neighborhood of Xa,1.

Lastly, Assumption 6 (i) imposes continuity and boundedness on the conditional moments of rewards and the probability
density near the boundary of Ω∗a.

D Simulation Experiments: Details and Additional Results
Implementation Details
Parameter Choice. For the variance-covariance matrix Σ of Xi, we first create a 100 × 100 symmetric matrix V such that
the diagonal elements are one, Vij is nonzero and equal to Vji for (i, j) ∈ {2, 3, 4, 5, 6} × {35, 66, 78}, and everything else is



zero. We draw values from Unif(−0.5, 0.5) independently for the nonzero off-diagonal elements of V . We then create matrix
Σ = V × V , which is positive semidefinite.

For α0 and αa, we first draw α̃0,j , j = 51, . . . , 100 from Unif(−100, 100) independently across j, and draw α̃a,j , j =

1, . . . , 100 from Unif(−150, 200) independently across j and actions a. We then set α̃0,j = 1
5

∑5
a=1 ãa,j for j = 1, . . . , 50 and

calculate α0 and αa by normalizing α̃0 and α̃a such that Var(
∑100
k=1Xkiα0,k) = Var(

∑100
k=1Xkiαa,k) = 1 for all actions a.

Independent Training Sample D̃. Before simulating 1,000 hypothetical samples, we construct an independent sample
D̃ = {(Ỹi, X̃i, Ãi)}ñi=1 of size ñ = 10,000. The distribution of (Ỹi, X̃i, Ãi) is the same as that of (Yi, Xi, Ai) except that
(1) Ỹi(a) is generated by Ỹi(a) =

∑100
k=1X

2
ki(0.75α0,k + 0.5αa,k) + 0.25ui + 0.5εi(a), where εi(a) ∼ N(0, 1) and αa =

(αa,1, ..., αa,100) ∈ R100, and (2) Pr(Ãi = a) = 1/5 for all actions a. This can be viewed as data from a past A/B test
conducted to construct a policy.

Construction of Reward Prediction Functions τML
pred and τπpred. We use D̃ to fit a linear model Ỹi =

∑5
a=1(ba +∑100

k=1 X̃kica,k)1
{
Ãi = a

}
+ ei and compute τML

pred(x, a) = b̂a +
∑100
k=1 x̃k ĉa,k. We repeat this process using a new set of

ñ independent draws of Ãi to construct τπpred. We construct τML
pred and τπpred only once, and use them for all of the 1,000

samples.
Training Upper Confident Bound. We use D̃ to train an Upper Confidence Bound bandit algorithm as follows. Let

D1(x1) ∈ {1, ..., 10} indicate which decile of X1i the individual with X̃1i = x1 belongs to. Define D2(x2) analogously
for X̃2i. Let Q(a, d1, d2) be the sample mean reward for each action a for every decile pair (d1, d2) in the distribution of X̃1i

and X̃2i. We then compute UCB(x, a) = Q(a,D1(x1), D2(x2)) + c
√

log ñ

Ña,D1(x1),D2(x2)
. Here, we set exploration parameter c

to 2. ñ(= 10, 000) is the size of the training sample D̃. Ña,d1,d2 is the number of observations with action a for the decile pair
(d1, d2) in the sample.

Additional Results
We also consider the case in which the conditional mean reward differences are not constant over x: Yi(a) is generated as
Yi(a) =

∑100
k=1X

2
ki(0.75α0,k + αa,k) + 0.25ui, where αa = (αa,1, ..., αa,100) ∈ R100. The rest of the experiment setup is the

same as that in Section 5.
Table D.0.1 reports the result. Our method does not necessarily outperform the alternatives, suggesting a limitation of our

method when the conditional mean reward differences depend on the context.

E Approximate Propensity Score with Discrete Context Variables
In this section, we provide the definition of APS when Xi includes discrete context variables. Suppose that Xi = (Xdi, Xci),
where Xdi ∈ Rpd is a vector of discrete context variables, and Xci ∈ Rpc is a vector of continuous context variables. Let Xd
denote the support of Xdi and be assumed to be finite. We also assume that Xci is continuously distributed conditional on Xdi.

We define APS as follows: for each x = (xd, xc) ∈ X and a ∈ A,

pML
δ (a|x) ≡

∫
B(xc,δ)

ML(a|xd, x∗c)dx∗c∫
B(xc,δ)

dx∗c
,

pML(a|x) ≡ lim
δ→0

pML
δ (a|x),

where B(xc, δ) = {x∗c ∈ Rpc : ‖xc − x∗c‖ ≤ δ} is the δ-ball around xc ∈ Rpc . In other words, we take the average of the
ML(a|xd, x∗c) values when x∗c is uniformly distributed on B(xc, δ) holding xd fixed, and let δ → 0.

F Notations and Lemmas
Basic Notations
For a vector or matrix X , we use X ′ to denote its transpose.

For a scalar-valued differentiable function f : A ⊂ Rn → R, let ∇f : Rn → Rn be a gradient of f : for every x ∈ A,

∇f(x) =

(
∂f(x)

∂x1
, · · · , ∂f(x)

∂xn

)′
.

Also, when the second-order partial derivatives of f exist, let D2f(x) be the Hessian matrix:

D2f(x) =


∂2f(x)
∂x2

1
· · · ∂2f(x)

∂x1∂xn
...

. . .
...

∂2f(x)
∂xn∂x1

· · · ∂2f(x)
∂x2
n





Table D.0.1: Simulation results: non-constant conditional mean reward differences

Our Proposed Method with APS Controls Method with Mean Differences Direct
δ = 0.1 δ = 0.5 δ = 1 δ = 2.5 A/B Test Sample Full Sample Method

(1) (2) (3) (4) (5) (6) (7)
Experiment 1: Mix of A/B Test and Deterministic Policy

Bias −.012 .015 .022 .018 −.026 −.006 —
S.D. .045 .038 .033 .026 .045 .018 —
RMSE .046 .041 .040 .031 .052 .019 —

Avg. N 1806 6009 11627 30136 500 50000 —

Experiment 2: Upper Confidence Bound
Bias −.118 −.119 −.121 −.119 — — −.117

S.D. .027 .012 .009 .006 — — .006
RMSE .121 .120 .121 .119 — — .117

Avg. N 3397 17343 31107 47601 — — 50000
Notes: This table shows the bias, the standard deviation (S.D.), and the root mean squared error (RMSE) of the estimators of the reward from
the counterfactual policy V (π) in the two simulation experiments. We use 1, 000 simulations of a size 50, 000 sample to compute these
statistics. Columns (1)–(4) report estimates from our method with several choices of δ. Each APS is computed by averaging 100 simulation
draws of the ML value. In columns (5)–(6), we estimate the mean reward differences β(a, 1) by the sample mean differences in the A/B test
segment and the full sample, respectively. In column (7), we estimate β(a, 1) by fitting a linear model that predicts the reward from the
context and action. The bottom row of each panel shows the average number of observations with nonzero APS for every action (Columns
(1)–(4)), that with nonzero ML for every action (Column (5)), or the total sample size (Columns (6)–(7)).

for each x ∈ A.
Let f : A ⊂ Rm → Rn be a function such that its first-order partial derivatives exist. For each x ∈ A, let Jf(x) be the

Jacobian matrix of f at x:

Jf(x) =


∂f1(x)
∂x1

· · · ∂f1(x)
∂xm

...
. . .

...
∂fn(x)
∂x1

· · · ∂fn(x)
∂xm

 .
For a positive integer n, let In denote the n× n identity matrix.

Differential Geometry
We provide some concepts and facts from differential geometry of twice continuously differentiable sets, following (Crasta and
Malusa 2007). Let A ⊂ Rp be a twice continuously differentiable set. For each x ∈ ∂A, we denote by νA(x) ∈ Rp the inward
unit normal vector of ∂A at x, that is, the unit vector orthogonal to all vectors in the tangent space of ∂A at x that points toward
the inside of A. For a set A ⊂ Rp, let dsA : Rp → R be the signed distance function of A, defined by

dsA(x) =

{
d(x, ∂A) if x ∈ cl(A)

−d(x, ∂A) if x ∈ Rp \ cl(A),

where d(x,B) = infy∈B ‖y − x‖ for any x ∈ Rp for a set B ⊂ Rp. Note that we can write N(∂A, δ) = {x ∈ Rp : −δ <
dsA(x) < δ} for δ > 0. Lastly, let Π∂A(x) = {y ∈ ∂A : ‖y − x‖ = d(x, ∂A)} be the set of projections of x on ∂A.

Lemma F.1 (Corollary of Theorem 4.16, (Crasta and Malusa 2007)). Let A ⊂ Rp be nonempty, bounded, open, connected
and twice continuously differentiable. Then the function dsA is twice continuously differentiable on N(∂A, µ) for some µ > 0.
In addition, for every x0 ∈ ∂A, Π∂A(x0 + tνA(x0)) = {x0} for every t ∈ (−µ, µ). Furthermore, for every x ∈ N(∂A, µ),
Π∂A(x) is a singleton, ∇dsA(x) = νA(y) and x = y + dsA(x)νA(y) for y ∈ Π∂A(x), and ‖∇dsA(x)‖ = 1.

Proof. We apply results from (Crasta and Malusa 2007). Let K = {x ∈ Rp : ‖x‖ ≤ 1}. K is nonempty, compact, convex
subset of Rp with the origin as an interior point. The polar body of K, defined as K0 = {y ∈ Rp : y · x ≤ 1 for all x ∈ K}, is



K itself. The gauge functions ρK , ρK0 : Rp → [0,∞] of K and K0 are given by

ρK(x) ≡ inf{t ≥ 0 : x ∈ tK} = ‖x‖,
ρK0(x) ≡ inf{t ≥ 0 : x ∈ tK0} = ‖x‖.

Given ρK0
, the Minkowski distance from a set S ⊂ Rp is defined as

δS(x) ≡ inf
y∈S

ρK0(x− y), x ∈ Rp.

Note that we can write

dsA(x) =

{
δ∂A(x) if x ∈ cl(A)

−δ∂A(x) if x ∈ Rp \ cl(A).

It then follows from Theorem 4.16 of (Crasta and Malusa 2007) that dsA is twice continuously differentiable on N(∂A, µ) for
some µ > 0, and for every x0 ∈ ∂A,

∇dsA(x0) =
νA(x0)

ρK(νA(x0))

=
νA(x0)

‖νA(x0)‖
= νA(x0),

where the last equality follows since νA(x0) is a unit vector. It then follows that ‖∇dsA(x0)‖ = ‖νA(x0)‖ = 1 for every
x0 ∈ ∂A. Also, it is obvious that, for every x0 ∈ ∂A, Π∂A(x0) = {x0} and x0 = x0 + dsA(x0)νA(x0), since dsA(x0) = 0.
In addition, as stated in the proof of Theorem 4.16 of (Crasta and Malusa 2007), µ is chosen so that (4.7) in Proposition 4.6 of
(Crasta and Malusa 2007) holds for every x0 ∈ ∂A and every t ∈ (−µ, µ). That is, Π∂A(x0 + t∇ρK(νA(x0))) = {x0} for
every x0 ∈ ∂A and every t ∈ (−µ, µ). Since ∇ρK(νA(x0)) = νA(x0)

‖νA(x0)‖ = νA(x0), Π∂A(x0 + tνA(x0)) = {x0} for every
x0 ∈ ∂A and every t ∈ (−µ, µ).

Furthermore, for every x ∈ N(∂A, µ) \ ∂A, Π∂A(x) is a singleton as shown in the proof of Theorem 4.16 of (Crasta
and Malusa 2007). Let π∂A(x) be the unique element in Π∂A(x). By Lemma 4.3 of (Crasta and Malusa 2007), for every
x ∈ N(∂A, µ) \ ∂A,

∇dsA(x) =
νA(π∂A(x))

ρK(νA(π∂A(x)))

=
νA(π∂A(x))

‖νA(π∂A(x))‖
= νA(π∂A(x)),

where the last equality follows since νA(π∂A(x)) is a unit vector. It then follows that ‖∇dsA(x)‖ = ‖νA(π∂A(x))‖ = 1 for
every x ∈ N(∂A, µ) \ ∂A.

Lastly, note that

δ∂A(x) =

{
dsA(x) if x ∈ N(∂A, µ) ∩ int(A)

−dsA(x) if x ∈ N(∂A, µ) \ cl(A),

and

∇δ∂A(x) =

{
∇dsA(x) if x ∈ N(∂A, µ) ∩ int(A)

−∇dsA(x) if x ∈ N(∂A, µ) \ cl(A),

so δ∂A(x)∇δ∂A(x) = dsA(x)∇dsA(x) = dsA(x)νA(π∂A(x)) for every x ∈ N(∂A, µ) \ ∂A. By Proposition 3.3 (i) of (Crasta
and Malusa 2007), for every x ∈ N(∂A, µ) \ ∂A,

∇ρK(∇δ∂A(x)) =
x− π∂A(x)

δ∂A(x)
,

which implies that

x = π∂A(x) + δ∂A(x)∇ρK(∇δ∂A(x))

= π∂A(x) + δ∂A(x)
∇δ∂A(x)

‖∇δ∂A(x)‖
= π∂A(x) + dsA(x)νA(π∂A(x)).



We say that a set A ⊂ Rn is a m-dimensional C1 submanifold of Rn if for every point x ∈ A, there exist an open neigh-
borhood V ⊂ Rn of x and a one-to-one continuously differentiable function φ from an open set U ⊂ Rm to Rn such that the
Jacobian matrix Jφ(u) is of rank m for all u ∈ U , and φ(U) = V ∩A.
Lemma F.2. Let A ⊂ Rp be nonempty, bounded, open, connected and twice continuously differentiable. Then ∂A is a (p− 1)-
dimensional C1 submanifold of Rp,

Proof. Fix any x∗ ∈ ∂A. By Lemma F.1, ∇dsA(x∗) is nonzero. Without loss of generality, let ∂d
s
A(x∗)
∂xp

6= 0. Let ψ : Rp → Rp

be the function such that ψ(x) = (x1, ..., xp−1, d
s
A(x)). ψ is continuously differentiable, and the Jacobian matrix of ψ at x∗ is

given by

Jψ(x∗) =


∂ψ1

∂x1
(x∗) · · · ∂ψ1

∂xp
(x∗)

...
. . .

...
∂ψp
∂x1

(x∗) · · · ∂ψp
∂xp

(x∗)

 =


0

Ip−1

...
0

∂dsA(x∗)
∂x1

· · · ∂dsA(x∗)
∂xp−1

∂dsA(x∗)
∂xp

 .

Since ∂dsA(x∗)
∂xp

6= 0, the Jacobian matrix is invertible. By the Inverse Function Theorem, there exist an open set V containing
x∗ and an open set W containing ψ(x∗) such that ψ : V → W has an inverse function ψ−1 : W → V that is continuously
differentiable. We make V small enough so that ∂dsA(x)

∂xp
6= 0 for every x ∈ V . The Jacobian matrix of ψ−1 is given by

Jψ−1(y) = Jψ(ψ−1(y))−1 for all y ∈W .
Now note that ψ(x) = (x1, ..., xp−1, 0) for all x ∈ V ∩ ∂A by the definition of dsA. Let U = {(x1, ..., xp−1) ∈ Rp−1 : x ∈

V ∩ ∂A} and φ : U → Rp be a function such that φ(u) = ψ−1((u, 0)) for all u ∈ U . Below we verify that φ is one-to-one and
continously differentiable, that Jφ(u) is of rank p− 1 for all u ∈ U , that φ(U) = V ∩ ∂A, and that U is open.

First, φ is one-to-one, since ψ−1 is one-to-one, and (u, 0) 6= (u′, 0) if u 6= u′. Second, φ is continuously differentiable, since
ψ−1 is so. The Jacobian matrix of φ at u ∈ U is by definition

Jφ(u) =


∂ψ−1

1

∂y1
((u, 0)) · · · ∂ψ−1

1

∂yp−1
((u, 0))

...
. . .

...
∂ψ‘

p−1

∂y1
((u, 0)) · · · ∂ψ−1

p

∂yp−1
((u, 0))

 .

Note that this is the left p × (p − 1) submatrix of Jψ−1((u, 0)). Since Jψ−1((u, 0)) has full rank, Jφ(u) is of rank p − 1.
Moreover,

φ(U) = {ψ−1((u, 0)) : u ∈ U}
= {ψ−1((x1, ..., xp−1, 0)) : x ∈ V ∩ ∂A}
= {ψ−1(ψ(x)) : x ∈ V ∩ ∂A}
= V ∩ ∂A.

Lastly, we show that U is open. Pick any ū ∈ U . Then, there exists x̄p ∈ R such that (ū, x̄p) ∈ V ∩∂A. As (ū, x̄p) ∈ V ∩∂A,
dsA((ū, x̄p)) = 0. Since ∂dsA((ū,x̄p))

∂xp
6= 0, it follows by the Implicit Function Theorem that there exist an open set S ⊂ Rp−1

containing ū and a continuously differentiable function g : S → R such that g(ū) = x̄p and dsA(u, g(u)) = 0 for all u ∈ S.
Since g is continuous, (ū, g(ū)) ∈ V and V is open, there exists an open set S′ ⊂ S containing ū such that (u, g(u)) ∈ V for
all u ∈ S′. By the definition of dsA, dsA(x) = 0 if and only if x ∈ ∂A. Therefore, if u ∈ S′, (u, g(u)) must be contained by
∂A, for otherwise dsA(u, g(u)) 6= 0, which is a contradiction. Thus, (u, g(u)) ∈ V ∩ ∂A and hence u ∈ U for all u ∈ S′. This
implies that S′ is an open subset of U containing ū, which proves that U is open.

Geometric Measure Theory
We provide some concepts and facts from geometric measure theory, following (Krantz and Parks 2008). Recall that for a
function f : A ⊂ Rm → Rn and a point x ∈ A at which f is differentiable, Jf(x) denotes the Jacobian matrix of f at x.
Lemma F.3 (Coarea Formula, Lemma 5.1.4 and Corollary 5.2.6 of (Krantz and Parks 2008)). If f : Rm → Rn is a Lipschitz
function and m ≥ n, then ∫

A

g(x)Jnf(x)dLm(x) =

∫
Rn

∫
{x′∈A:f(x′)=y}

g(x)dHm−n(x)dLn(y)

for every Lebesgue measurable subset A of Rm and every Lm-measurable function g : A → R, where for each x ∈ Rm at
which f is differentiable,

Jnf(x) =
√

det((Jf(x))(Jf(x))′).



Let A be an m-dimensional C1 submanifold of Rn. Let x ∈ A and let φ : U ⊂ Rm → Rn be as in the definition of
m-dimensional C1 submanifold. We denote by TA(x) the tangent space of A at x, {Jφ(u)v : v ∈ Rm}, where u = φ−1(x).
Lemma F.4 (Area Formula, Lemma 5.3.5 and Theorem 5.3.7 of (Krantz and Parks 2008)). Suppose m ≤ ν and f : Rn → Rν
is Lipschitz. If A is an m-dimensional C1 submanifold of Rn, then∫

A

g(x)JAmf(x)dHm(x) =

∫
Rν

∑
x∈A:f(x)=y

g(x)dHm(y)

for everyHm-measurable function g : A→ R, where for each x ∈ Rn at which f is differentiable,

JAmf(x) =
Hm({Jf(x)y : y ∈ P})

Hm(P )

for an arbitrary m-dimensional parallelepiped P contained in TA(x).
Let A ⊂ Rp. For each x ∈ Rp at which dsA is differentiable and for each λ ∈ R, let ψA(x, λ) = x+ λ∇dsA(x).

Lemma F.5. Let Ω ⊂ Rp, and suppose that there exists a partition {Ω1, ...,ΩM} of Ω such that
(i) dist(Ωm,Ωm′) > 0 for any m,m′ ∈ {1, ...,M} such that m 6= m′;

(ii) Ωm is nonempty, bounded, open, connected and twice continuously differentiable for each m ∈ {1, ...,M}.
Then there exists µ > 0 such that dsΩ is twice continuously differentiable on N(∂Ω, µ) and that∫

N(∂Ω,δ)

g(x)dx =

∫ δ

−δ

∫
∂Ω

g(u+ λνΩ(u))J∂Ω
p−1ψΩ(u, λ)dHp−1(u)dλ

for every δ ∈ (0, µ) and every function g : Rp → R that is integrable on N(∂Ω, δ), where for each fixed λ ∈ (−µ, µ),
J∂Ω
p−1ψΩ(·, λ) is calculated by applying the operation J∂Ω

p−1 to the function ψΩ(·, λ). Futhermore, J∂Ω
p−1ψΩ(x, ·) is continuously

differentiable in λ and J∂Ω
p−1ψΩ(x, 0) = 1 for every x ∈ ∂Ω, and J∂Ω

p−1ψΩ(·, ·) and
∂J∂Ω
p−1ψΩ(·,·)
∂λ are bounded on ∂Ω× (−µ, µ).

Proof. Let µ̄ = 1
2 minm,m′∈{1,...,M},m 6=m′ dist(Ω∗m,Ωm′) so that {N(∂Ωm, µ̄)}Mm=1 is a partition of N(∂Ω, µ̄). Note that for

every m ∈ {1, ...,M}, dsΩ(x) = dsΩm(x) for every x ∈ N(∂Ωm, µ̄). By Lemma F.1, for every m ∈ {1, ...,M}, there exists
µ̄m > 0 such that dsΩm is twice continuously differentiable on N(∂Ωm, µ̄m). Letting µ ∈ (0,min{µ̄, µ̄1, ..., µ̄M}), we have
that dsΩ is twice continuously differentiable on N(∂Ω, µ). This implies that dsΩ is Lipschitz on N(∂Ω, µ). For every δ ∈ (0, µ)
and every function g : Rp → R that is integrable on N(∂Ω, δ),∫

N(∂Ω,δ)

g(x)dx =

∫
{x′∈Rp:dsΩ(x′)∈(−δ,δ)}

g(x)
√

det(‖∇dsΩ(x)‖)dx

=

∫
{x′∈Rp:dsΩ(x′)∈(−δ,δ)}

g(x)
√

det(∇dsΩ(x)′∇dsΩ(x))dx

=

∫
{x′∈Rp:dsΩ(x′)∈(−δ,δ)}

g(x)
√

det((JdsΩ(x))(JdsΩ(x))′)dx

=

∫
R

∫
{x′∈Rp:dsΩ(x′)∈(−δ,δ),dsΩ(x′)=λ}

g(x)dHp−1(x)dλ

=

∫ δ

−δ

∫
{x′∈Rp:dsΩ(x′)=λ}

g(x)dHp−1(x)dλ, (4)

where the first equality follows since ‖∇dsΩ(x)‖ = 1 for every x ∈ N(∂Ω, δ) by Lemma F.1, the third equality follows from
the definition of the Jacobian matrix, and the fourth equality follows from Lemma F.3.

Let Γ(λ) = {x ∈ Rp : dsΩ(x) = λ} for each λ ∈ (−µ, µ). Since ∇dsΩ is differentiable on N(∂Ω, µ), ψΩ(x, λ) is defined
on N(∂Ω, µ) × R. We show that {ψΩ(x0, λ) : x0 ∈ ∂Ω} ⊂ Γ(λ) for every λ ∈ (−µ, µ). By Lemma F.1, for every x0 ∈ ∂Ω,
ψΩ(x0, λ) = x0 + λνΩ(x0) and

Π∂Ω(ψΩ(x0, λ)) = Π∂Ω(x0 + λνΩ(x0))

= {x0}.
Hence,

d(ψΩ(x0, λ), ∂Ω) = ‖ψΩ(x0, λ)− x0‖
= ‖λνΩ(x0)‖
= |λ|.



Since νΩ(x0) is an inward normal vector, ψΩ(x0, λ) ∈ cl(A) if 0 ≤ λ < µ, and ψΩ(x, λ0) ∈ Rp \ cl(A) if −µ < λ < 0. It
follows that

dsA(ψΩ(x0, λ)) =

{
|λ| if 0 ≤ λ < µ

−|λ| if µ < λ < 0

= λ,

so {ψΩ(x0, λ) : x0 ∈ ∂Ω} ⊂ Γ(λ). It also holds that Γ(λ) ⊂ {ψΩ(x0, λ) : x0 ∈ ∂Ω}, since by Lemma F.1, for every x ∈ Γ(λ),

ψΩ(π∂Ω(x), λ) = π∂Ω(x) + λ∇dsΩ(π∂Ω(x))

= π∂Ω(x) + dsΩ(x)νΩ(π∂Ω(x))

= x,

where π∂Ω(x) is the unique element in Π∂Ω(x). Thus, {ψΩ(x0, λ) : x0 ∈ ∂Ω} = Γ(λ).
Now note that {∂Ωm}Mm=1 is a partition of ∂Ω, since dist(Ωm,Ωm′) > 0 for any m,m′ ∈ {1, ...,M} such that m 6=

m′. By Lemma F.2, ∂Ωm is a (p − 1)-dimensional C1 submanifold of Rp for every m ∈ {1, ...,M}, and hence ∂Ω is a
(p − 1)-dimensional C1 submanifold of Rp. Furthermore, since ∇dsΩ is continuously differentiable on N(∂Ω, µ), ψΩ(·, λ) is
continuously differentiable on N(∂Ω, µ), which implies that ψΩ(·, λ) is Lipschitz on N(∂Ω, µ) for every λ ∈ R. Applying
Lemma F.4, we have that for every λ ∈ (−µ, µ),∫

∂Ω

g(u+ λνΩ(u))J∂Ω
p−1ψΩ(u, λ)dHp−1(u) =

∫
∂Ω

g(ψΩ(u, λ))J∂Ω
p−1ψΩ(u, λ)dHp−1(u)

=

∫
Rp

∑
u∈∂Ω:ψΩ(u,λ)=x

g(ψΩ(u, λ))dHp−1(x). (5)

If x /∈ {ψΩ(u, λ) : u ∈ ∂Ω}, {u ∈ ∂Ω : ψΩ(u, λ) = x} = ∅. If x ∈ {ψΩ(u, λ) : u ∈ ∂Ω}, there exists u ∈ ∂Ω such that
x = ψΩ(u, λ). Since Π∂Ω(x) = Π∂Ω(u+ λ∇dsΩ(u)) = Π∂Ω(u+ λνΩ(u)) = {u} by Lemma F.1, such u is unique, and hence
{u ∈ ∂Ω : ψΩ(u, λ) = x} is a singleton. It follow that∫

Rp

∑
u∈∂Ω:ψΩ(u,λ)=x

g(ψΩ(u, λ))dHp−1(x) =

∫
{ψΩ(u,λ):u∈∂Ω}

g(x)dHp−1(x)

=

∫
Γ(λ)

g(x)dHp−1(x), (6)

where the last equality holds since {ψΩ(u, λ) : u ∈ ∂Ω} = Γ(λ). Combining (4), (5) and (6), we obtain∫
N(∂Ω,δ)

g(x)dx =

∫ δ

−δ

∫
∂Ω

g(u+ λνΩ(u))J∂Ω
p−1ψΩ(u, λ)dHp−1(u)dλ.

We next show that J∂Ω
p−1ψΩ(x, ·) is continuously differentiable in λ and J∂Ω

p−1ψΩ(x, 0) = 1 for every x ∈ ∂Ω. Fix an x ∈ ∂Ω,
and let VΩ(x) be an arbitrary p × (p − 1) matrix whose columns v1(x), ..., vp−1(x) ∈ Rp form an orthonormal basis of
T∂Ω(x). Let P (x) ⊂ T∂Ω(x) be a parallelepiped determined by v1(x), ..., vp−1(x), that is, let P (x) = {

∑p−1
k=1 ckvk(x) : 0 ≤

ck ≤ 1 for k = 1, ..., p− 1}. Since v1(x), ..., vp−1(x) are linearly independent, P (x) is a (p − 1)-dimensional parallelepiped.
It follows that for each fixed λ ∈ R,

{JψΩ(x, λ)y : y ∈ P (x)} = {JψΩ(x, λ)

p−1∑
k=1

ckvk(x) : 0 ≤ ck ≤ 1 for k = 1, ..., p− 1}

= {
p−1∑
k=1

ckJψΩ(x, λ)vk(x) : 0 ≤ ck ≤ 1 for k = 1, ..., p− 1}

= {
p−1∑
k=1

ckwk(x, λ) : 0 ≤ ck ≤ 1 for k = 1, ..., p− 1},

where wk(x, λ) = JψΩ(x, λ)vk(x) for k = 1, ..., p − 1. Since JψΩ(x, λ)vk(x) is the k-th column of JψΩ(x, λ)VΩ(x),
{JψΩ(x, λ)y : y ∈ P (x)} is the parallelepiped determined by the columns of JψΩ(x, λ)VΩ(x). By Proposition 5.1.2 of



(Krantz and Parks 2008), we have that

J∂Ω
p−1ψΩ(x, λ) =

Hp−1({
∑p−1
k=1 ckwk(x, λ) : 0 ≤ ck ≤ 1 for k = 1, ..., p− 1})

Hp−1(P (x))

=

√
det((JψΩ(x, λ)VΩ(x))′(JψΩ(x, λ)VΩ(x)))√

det(VΩ(x)′VΩ(x))

=

√
det((VΩ(x) + λD2dsΩ(x)VΩ(x))′(VΩ(x) + λD2dsΩ(x)VΩ(x)))√

det(Ip−1)

=
√

det(VΩ(x)′VΩ(x) + 2VΩ(x)′λD2dsΩ(x)VΩ(x) + VΩ(x)′(λD2dsΩ(x))2VΩ(x))

=
√

det(Ip−1 + λVΩ(x)′(2D2dsΩ(x) + λ(D2dsΩ(x))2)VΩ(x)))

=
√

det(Ip + λVΩ(x)VΩ(x)′(2D2dsΩ(x) + λ(D2dsΩ(x))2)),

where we use the fact that VΩ(x)′VΩ(x) = Ip−1 and the fact that det(Im +AB) = det(In +BA) for an m× n matrix A and
an n ×m matrix B (the Weinstein-Aronszajn identity). For every x ∈ ∂Ω, J∂Ω

p−1ψΩ(x, ·) is continuously differentiable in λ,
and J∂Ω

p−1ψΩ(x, 0) =
√

det(Ip) = 1.

Lastly, we show that J∂Ω
p−1ψΩ(·, ·) and

∂J∂Ω
p−1ψΩ(·,·)
∂λ are bounded on ∂Ω × (−µ, µ). Let f, h : ∂Ω × Rp×(p−1) → Rp×p be

functions such that

f(x,A) = 2AA′D2dsΩ(x),

h(x,A) = AA′(D2dsΩ(x))2.

Also, let k : ∂Ω× R× Rp×(p−1) → R be a function such that

k(x, λ,A) =
√

det(Ip + λf(x,A) + λ2h(x,A)).

Observe that

J∂Ω
p−1ψΩ(x, λ) = k(x, λ, VΩ(x))

and that

∂J∂Ω
p−1ψΩ(x, λ)

∂λ

=
∂k(x, λ,A)

∂λ

∣∣∣∣
A=VΩ(x)

=
1

2k(x, λ,A)

∑
i,j

∂det(Ip + λf(x,A) + λ2h(x,A))

∂bij
(fij(x,A) + 2λhij(x,A))

∣∣∣∣∣∣
A=VΩ(x)

,

where ∂det(B)
∂bij

denotes the partial derivative of the function det : Rp×p → R with respect to the (i, j) entry of B.

Note that k(·, ·, ·) and ∂k(·,·,·)
∂λ are continuous on ∂Ω× R× Rp×(p−1) (except at the points for which k(x, λ,A) = 0), since

det is infinitely differentiable, and f and h are continuous on ∂Ω×Rp×(p−1). Let S = {(x, λ,A) ∈ ∂Ω× [−µ, µ]×Rp×(p−1) :

‖aj‖ = 1 for k = 1, ..., p− 1}, where aj denotes the jth column of A. Since k(·, ·, ·) and ∂k(·,·,·)
∂λ are continuous and S

is closed and bounded, k̄ = max(x,λ,A)∈S |k(x, λ,A)| and k̄′ = max(x,λ,A)∈S |∂k(x,λ,A)
∂λ | exist. Since (x, λ, VΩ(x)) ∈ S for

every (x, λ) ∈ ∂Ω×(−µ, µ), it follows that |J∂Ω
p−1ψΩ(x, λ)| ≤ k̄ and |∂J

∂Ω
p−1ψΩ(x,λ)

∂λ | ≤ k̄′ for every (x, λ) ∈ ∂Ω×(−µ, µ).

Other Lemmas
Lemma F.6. Fix any a ∈ {2, ...,m}. Let {Vi}∞i=1 be i.i.d. random variables such that E[V 2

i ] < ∞. If Assumption 6 (b) – (d)
hold, then for l ≥ 0 and m = 0, 1,

E[Viq
ML
δ (a|Xi)

l1{qML
δ (a|Xi) ∈ (0, 1)}m1{Ai ∈ {1, a}}]

→ E[ViM̃L(a|Xi)
l1{M̃L(a|Xi) ∈ (0, 1)}1{Ai ∈ {1, a}}]



as δ → 0. Moreover, if, in addition, δn → 0 as n→∞, then for l ≥ 0,

1

n

n∑
i=1

Viq
ML
δn (a|Xi)

l1{qML
δn (a|Xi) ∈ (0, 1)}1{Ai ∈ {1, a}}

p−→ E[ViM̃L(a|Xi)
l1{M̃L(a|Xi) ∈ (0, 1)}1{Ai ∈ {1, a}}]

as n→∞.

Proof. Note that

E[
1

n

n∑
i=1

Viq
ML
δn (a|Xi)

l1{qML
δn (a|Xi) ∈ (0, 1)}1{Ai ∈ {1, a}}]

= E[Viq
ML
δn (a|Xi)

l1{qML
δn (a|Xi) ∈ (0, 1)}1{Ai ∈ {1, a}}].

We show that

E[Viq
ML
δ (a|Xi)

l1{qML
δ (a|Xi) ∈ (0, 1)}m1{Ai ∈ {1, a}}]

→ E[ViM̃L(a|Xi)
l1{M̃L(a|Xi) ∈ (0, 1)}m1{Ai ∈ {1, a}}]

for l ≥ 0 and m = 0, 1 as δ → 0, and that

Var(
1

n

n∑
i=1

Viq
ML
δn (a|Xi)

l1{qML
δn (a|Xi) ∈ (0, 1)}1{Ai ∈ {1, a}})→ 0

for l ≥ 0 as n→∞. For the first part, we have

E[Viq
ML
δ (a|Xi)

l1{qML
δ (a|Xi) ∈ (0, 1)}m1{Ai ∈ {1, a}}]

= E[E[Vi|Xi, Ai]q
ML
δ (a|Xi)

l1{qML
δ (a|Xi) ∈ (0, 1)}m1{Ai ∈ {1, a}}]

= E[
∑

a′∈{1,a}

E[Vi|Xi, Ai = a′]qML
δ (a|Xi)

l1{qML
δ (a|Xi) ∈ (0, 1)}mML(a′|Xi)]

=

∫
Xa,1

g(x)qML
δ (a|x)l1{qML

δ (a|x) ∈ (0, 1)}mfX(x)dx,

where g(x) =
∑
a′∈{1,a}E[Vi|Xi = x,Ai = a′]ML(a′|x).

Suppose ML(a|·) and ML(1|·) are continuous at x and M̃L(a|x) ∈ (0, 1). Then, with change of variables u = x∗−x
δ , for

a′ ∈ {1, a},

pML
δ (a′|x) =

∫
B(x,δ)

ML(a′|x∗)dx∗∫
B(x,δ)

dx∗

=
δp
∫
B(0,1)

ML(a′|x+ δu)du

δp
∫
B(0,1)

du

→

∫
B(0,1)

ML(a′|x)du

δp
∫
B(0,1)

du
= ML(a′|x)

as δ → 0, where the convergence follows from the Dominated Convergence Theorem. It follows that limδ→0 q
ML
δ (a|x) =

ML(a|x)
ML(a|x)+ML(1|x) = M̃L(a|x) ∈ (0, 1), and hence qML

δ (a|x) ∈ (0, 1) for sufficiently small δ > 0. Therefore, 1{qML
δ (a|x) ∈

(0, 1)} → 1 = 1{M̃L(a|x) ∈ (0, 1)} as δ → 0.
Suppose x ∈ int(X aa,1) ∪ int(X 1

a,1). Then B(x, δ) ⊂ X aa,1 or B(x, δ) ⊂ X 1
a,1 for sufficiently small δ > 0 by the fact that

int(X aa,1) and int(X 1
a,1) are open. Note that if M̃L(a|x′) = 1, then M̃L(1|x′) = 0. Hence if B(x, δ) ⊂ X aa,1, pML

δ (1|x) = 0

so qML
δ (a|x) = 1. Likewise, if B(x, δ) ⊂ X 1

a,1, pML
δ (a|x) = 0 so qML

δ (a|x) = 0. It follows that 1{qML
δ (a|x) ∈ (0, 1)} →

0 = 1{M̃L(a|x) ∈ (0, 1)} as δ → 0.
Since ML(a|·) and ML(1|·) are continuous at x for almost every x ∈ Xa,1 by Assumption 6 (b), and either M̃L(a|x) ∈

(0, 1) or x ∈ int(X aa,1) ∪ int(X 1
a,1) for almost every x ∈ Xa,1 by Assumption 6 (c), the above results imply that



limδ→0 q
ML
δ (a|x) = M̃L(a|x) and limδ→0 1{qML

δ (a|x) ∈ (0, 1)} = 1{M̃L(a|x) ∈ (0, 1)} for almost every x ∈ Xa,1.
By the Dominated Convergence Theorem,

E[Viq
ML
δ (a|Xi)

l1{qML
δ (a|Xi) ∈ (0, 1)}m1{Ai ∈ {1, a}}]

→
∫
Xa,1

g(x)M̃L(a|x)l1{M̃L(a|x) ∈ (0, 1)}mfX(x)dx

= E[ViM̃L(a|Xi)
l1{M̃L(a|Xi) ∈ (0, 1)}m1{Ai ∈ {1, a}}]

as δ → 0. As for variance,

Var(
1

n

n∑
i=1

Viq
ML
δn (a|Xi)

l1{qML
δn (a|Xi) ∈ (0, 1)}1{Ai ∈ {1, a}})

≤ 1

n
E[V 2

i q
ML
δn (a|Xi)

2l(1{qML
δn (a|Xi) ∈ (0, 1)}1{Ai ∈ {1, a}})2]

≤ 1

n
E[V 2

i ]

→ 0

as n→∞.

G Proofs
Derivation of Equation (1)

V (π) = V (ML) + E[
∑
a∈A

E[Y (a)|X](π(a|X)−ML(a|X))]

= V (ML) + E[
∑
a∈A

(E[Y (a)|X]− E[Y (1)|X])(π(a|X)−ML(a|X))]

+ E[E[Y (1)|X]
∑
a∈A

(π(a|X)−ML(a|X))]

= V (ML) + E[
∑
a∈A

β(a, 1)(π(a|X)−ML(a|X))]

= V (ML) + E[

m∑
a=2

β(a, 1)(π(a|X)−ML(a|X))],

where we use Assumption 3 and the fact that
∑
a∈A(π(a|X)−ML(a|X)) = 0 for the third equality.

Proof of Lemma 2
Suppose that Assumption 1 holds. Pick a ∈ A and x ∈ int(X ) such that pML(a|x) > 0. If ML(a|x) > 0, E[Y |X =
x,A = a] = E[Y (a)|X = x], since A is independent of Y (a) conditional on X . E[Y (a)|X = x] is thus identi-
fied. Suppose ML(a|x) = 0. Since x ∈ int(X ), B(x, δ) ⊂ X for any sufficiently small δ > 0. Moreover, since
pML(a|x) = limδ→0 p

ML
δ (a|x) > 0, pML

δ (a|x) > 0 for any sufficiently small δ > 0. This implies that we can find a
point xδ ∈ B(x, δ)(⊂ X ) such that ML(a|xδ) > 0 for any sufficiently small δ > 0, for otherwise pML

δ (a|x) = 0. Noting that
xδ → x as δ → 0,

lim
δ→0

E[Y |X = xδ, A = a] = lim
δ→0

E[Y (a)|X = xδ]

= E[Y (a)|X = x],

where the first equality follows from conditional independence and the second from Assumption 1.

Proof of Proposition 5
We show that E[Y (a)|X = x] is identified for every (a, x) pair. Since E[Y (a)|X = x] is identified for at least one a ∈ A
for every x ∈ X , and E[Y (a′)|X = x] = E[Y (a)|X = x] + β(a′, a) by Assumption 3, it suffices to show that β(a′, a)
is identified for every (a′, a) pair. This is equivalent to proving that β(a, 1) is identified for every a ∈ {2, ...,m}, since
β(a′, a) = β(a′, 1)− β(a, 1).



Take any a ∈ {2, ...,m} and let {a1, ..., aL} be the sequence that satisfies the condition in Assumption 4. Under Assumption
1, Lemma 2 implies that for every l ∈ {1, ..., L − 1}, E[Y (al+1)|X = x] and E[Y (al)|X = x] are identified for some
x ∈ int(X ). This implies that β(al+1, al) is identified for every l ∈ {1, ..., L− 1} under Assumption 3. Since

β(a, 1) = β(aL, aL−1) + β(aL−1, aL−2) + · · ·+ β(a2, a1),

β(a, 1) is also identified.

Proof of Theorem 7
Fix any a ∈ {2, ...,m} and consider the regression from the subsample assigned to either action a or 1 throughout the proof.
For notational simplicity, we omit the argument a from M̃L(a|x) and qML

δ (a|x) and denote them by M̃L(x) and qML
δ (x). Let

Zi = (1, 1{Ai = a}, qML
δn

(Xi))
′, and Ii = 1{qML

δn
(Xi) ∈ (0, 1)}. Let

β̂ =

α̂aβ̂a
γ̂a

 = (

n∑
i=1

ZiZ
′
iIi1{Ai ∈ {1, a}})−1

n∑
i=1

ZiYiIi1{Ai ∈ {1, a}}.

Below, we prove that β̂a converges in probability to β(a, 1). The theorem then immediately follows. Also, the proof of Step
G.0.0.4 shows that if Assumption 3 does not hold for a deterministic logging policy, β̂a converges in probability to∫

∂Ω∗∩Xa,1 E[Yi(a)− Yi(1)|Xi = x]fX(x)dHp−1(x)∫
∂Ω∗∩Xa,1 fX(x)dHp−1(x)

,

which is the mean reward difference for the subpopulation on the decision boundary between a and 1.
We provide proofs separately for the two cases, the case in which Pr(M̃L(Xi) ∈ (0, 1)) > 0 and the case in which

Pr(M̃L(Xi) ∈ (0, 1)) = 0.

Consistency of β̂a When Pr(M̃L(Xi) ∈ (0, 1)|Ai ∈ {1, a}) > 0 Let Z̃i = (1, 1{Ai = a}, M̃L(Xi))
′ and IML

i =

1{M̃L(Xi) ∈ (0, 1)}. By Lemma F.6,

β̂ = (

n∑
i=1

ZiZ
′
iIi1{Ai ∈ {1, a}})−1

n∑
i=1

ZiYiIi1{Ai ∈ {1, a}}

p−→ (E[Z̃iZ̃
′
iI
ML
i 1{Ai ∈ {1, a}}])−1E[Z̃iYiI

ML
i 1{Ai ∈ {1, a}}]

= (E[Z̃iZ̃
′
iI
ML
i |Ai ∈ {1, a}])−1E[Z̃iYiI

ML
i |Ai ∈ {1, a}]

provided that E[Z̃iZ̃
′
iI
ML
i |Ai ∈ {1, a}] is invertible. After a few lines of algebra, we have

det(E[Z̃iZ̃
′
iI
ML
i |Ai ∈ {1, a}])

= Pr(IML
i = 1|Ai ∈ {1, a})2Var(M̃L(Xi)|IML

i = 1, Ai ∈ {1, a})

× E[M̃L(Xi)(1− M̃L(Xi))I
ML
i |Ai ∈ {1, a}]

= Pr(IML
i = 1|Ai ∈ {1, a})2Var(M̃L(Xi)|IML

i = 1, Ai ∈ {1, a})

× E[M̃L(Xi)(1− M̃L(Xi))|Ai ∈ {1, a}].

Therefore, E[Z̃iZ̃
′
iI
ML
i |Ai ∈ {1, a}] is invertible, since Pr(IML

i = 1|Ai ∈ {1, a}) > 0, and Var(M̃L(Xi)|IML
i = 1, Ai ∈

{1, a}) > 0 under Assumption 6 (e).
Another few lines of algebra gives

(E[Z̃iZ̃
′
iI
ML
i |Ai ∈ {1, a}])−1 =

1

E[M̃L(Xi)(1− M̃L(Xi))|Ai ∈ {1, a}]

[∗ ∗ ∗
0 1 −1
∗ ∗ ∗

]
.

Observe that
E[1{Ai = a}Yi(a)|Xi, Ai ∈ {1, a}] = E[1{Ai = a}|Xi, Ai ∈ {1, a}]E[Yi(a)|Xi]

=
Pr(Ai = a|Xi)

Pr(Ai ∈ {1, a}|Xi)
E[Yi(a)|Xi]

=
ML(a|Xi)

ML(a|Xi) +ML(1|Xi)
E[Yi(a)|Xi]

= M̃L(Xi)E[Yi(a)|Xi],



where the first equality follows from the assumption that Ai is independent of Yi(·) conditional on Xi. Likewise,

E[1{Ai = 1}Yi(1)|Xi, Ai ∈ {1, a}] = (1− M̃L(Xi))E[Yi(1)|Xi].

Therefore,

β̂a
p−→ E[1{Ai = a}YiIML

i |Ai ∈ {1, a}]− E[M̃L(Xi)YiI
ML
i |Ai ∈ {1, a}]

E[M̃L(Xi)(1− M̃L(Xi))|Ai ∈ {1, a}]

=
E[1{Ai = a}Yi(a)IML

i − M̃L(Xi)(1{Ai = a}Yi(a) + 1{Ai = 1}Yi(1))IML
i |Ai ∈ {1, a}]

E[M̃L(Xi)(1− M̃L(Xi))|Ai ∈ {1, a}]

=
E[M̃L(Xi)E[Yi(a)|Xi]I

ML
i − M̃L(Xi)(M̃L(Xi)E[Yi(a)|Xi]|Ai ∈ {1, a}]

E[M̃L(Xi)(1− M̃L(Xi)|Ai ∈ {1, a}]

+
E[(1− M̃L(Xi))E[Yi(1)|Xi])I

ML
i |Ai ∈ {1, a}]

E[M̃L(Xi)(1− M̃L(Xi)|Ai ∈ {1, a}]

=
E[M̃L(Xi)(1− M̃L(Xi))E[Yi(a)− Yi(1)|Xi]I

ML
i |Ai ∈ {1, a}]

E[M̃L(Xi)(1− M̃L(Xi)|Ai ∈ {1, a}]
= β(a, 1).

Consistency of β̂a When Pr(M̃L(Xi) ∈ (0, 1)|Ai ∈ {1, a}) = 0 For notational simplicity, we omit subscript a from Ω∗a
and denote it by Ω∗. We use the notation and results provided in Appendix F. By Lemma F.5, under Assumption 6 (g), there
exists µ > 0 such that dsΩ∗ is twice continuously differentiable on N(∂Ω∗, µ) and that∫

N(∂Ω∗,δ)

g(x)dx =

∫ δ

−δ

∫
∂Ω∗

g(u+ λνΩ∗(u))J∂Ω∗

p−1ψΩ∗(u, λ)dHp−1(u)dλ

for every δ ∈ (0, µ) and every function g : Rp → R that is integrable on N(∂Ω∗, δ).
Our proof proceeds in five steps.

Step G.0.0.1. For every (u, v) ∈ ∂Ω∗ ∩N(Xa,1, δ̄)× (−1, 1), limδ→0 q
ML
δ (u+ δvνΩ∗(u)) = k(v), where

k(v) =

{
1− 1

2I(1−v2)(
p+1

2 , 1
2 ) for v ∈ [0, 1)

1
2I(1−v2)(

p+1
2 , 1

2 ) for v ∈ (−1, 0).

Here Ix(α, β) is the regularized incomplete beta function (the cumulative distribution function of the beta distribution with
shape parameters α and β).

Proof. By Assumption 6 (h) (2), there exists δ̄ ∈ (0, µ2 ) such that ML(a|x) = 1 or ML(1|x) = 1 for almost every x ∈
N(Xa,1, 3δ̄) ∩ N(∂Ω∗, 3δ̄). It follows that for (u, v, δ) ∈ ∂Ω∗ ∩ N(Xa,1, δ̄) × (−1, 1) × (0, δ̄), pML

δ (a|u + δvνΩ∗(u)) +
pML
δ (1|u+ δvνΩ∗(u)) = 1 so that qML

δ (u+ δvνΩ∗(u)) = pML
δ (a|u+ δvνΩ∗(u)).

For (u, v, δ) ∈ ∂Ω∗ ∩N(Xa,1, δ̄)× (−1, 1)× (0, δ̄),

pML
δ (a|u+ δvνΩ∗(u))

=

∫
B(0,1)

ML(a|u+ δvνΩ∗(u) + δw)dw∫
B(0,1)

dw

=

∫
B(0,1)

1{u+ δvνΩ∗(u) + δw ∈ Ω∗}dw
Volp

=

∫
B(0,1)

1{dsΩ∗(u+ δ(vνΩ∗(u) + w)) ≥ 0)}dw
Volp

=

∫
B(0,1)

1{dsΩ∗(u) +∇dsΩ∗(yd(u, δ, v, w))′δ(vνΩ∗(u) + w) ≥ 0}dw
Volp

=

∫
B(0,1)

1{νΩ∗(yd(u, δ, v, w)) · δ(vνΩ∗(u) + w) ≥ 0}dw
Volp

=

∫
B(0,1)

1{νΩ∗(yd(u, δ, v, w)) · (vνΩ∗(u) + w) ≥ 0}dw
Volp

,



where Volp denotes the volume of the p-dimensional unit ball, the fourth equality follows by the mean value theorem with
yd(u, δ, v, w) on the line segment connecting u with u + δ(vνΩ∗(u) + w), and the second last follows since dsΩ∗(u) = 0 for
u ∈ ∂Ω∗ and ∇dsΩ∗(x) = νΩ∗(x) for x ∈ N(∂Ω∗, µ). Since limδ→0 yd(u, δ, v, w) = u and νΩ∗ is continuous,

lim
δ→0

νΩ∗(yd(u, δ, v, w)) · (vνΩ∗(u) + w) = νΩ∗(u) · (vνΩ∗(u) + w) = v + νΩ∗(u) · w.

Therefore,

lim
δ→0

1{νΩ∗(yd(u, δ, v, w)) · (vνΩ∗(u) + w) ≥ 0} =

{
1 if v + νΩ∗(u) · w > 0,

0 if v + νΩ∗(u) · w < 0.

By the Dominated Convergence Theorem,

lim
δ→0

pML
δ (a|u+ δvνΩ∗(u)) =

∫
B(0,1)

1{v + νΩ∗(u) · w > 0}dw
Volp

.

Note that the set {w ∈ B(0, 1) : v + ν(u) · w > 0} is a region of the p-dimensional unit ball cut off by the plane {w ∈ Rp :
v + ν(u) · w = 0}. The distance from the center of the unit ball to the plane is |v|. Using the formula for the volume of a
hyperspherical cap (see e.g. (Li 2011)), we have∫

B(0,1)

1{v + ν(u) · w > 0}dw =

{
Volp − 1

2VolpI(2(1−v)−(1−v)2)(
p+1

2 , 1
2 ) for v ∈ [0, 1)

1
2VolpI(2(1+v)−(1+v)2)(

p+1
2 , 1

2 ) for v ∈ (−1, 0).

Therefore, limδ→0 p
ML
δ (a|u+ δvνΩ∗(u)) = k(v).

Step G.0.0.2. For every (u, v, δ) ∈ ∂Ω∗ ∩N(Xa,1, δ̄)× (−1, 1)× (0, δ̄), qML
δ (u+ δvνΩ∗(u)) ∈ (0, 1).

Proof. Fix (u, v, δ) ∈ ∂Ω∗ ∩ N(Xa,1, δ̄) × (−1, 1) × (0, δ̄). As discussed in G.0.0.1, qML
δ (u + δvνΩ∗(u)) = pML

δ (a|u +
δvνΩ∗(u)). Suppose v = 0. By Step G.0.0.1, pML(a|u) = limδ′→0 p

ML
δ′ (a|u) = k(0) = 1

2 . This implies that there exists
δ′ ∈ (0, δ) such that pML

δ′ (a|u) ∈ (0, 1). It then follows that 0 < Lp(B(u, δ′) ∩ Ω∗) ≤ Lp(B(x, δ) ∩ Ω∗) and that 0 <

Lp(B(x, δ′) \ Ω∗) ≤ Lp(B(x, δ) \ Ω∗). Therefore, pML
δ (a|u) = Lp(B(u,δ)∩Ω∗)

Lp(B(u,δ)) ∈ (0, 1).
Suppose v 6= 0 and let ε ∈ (0, δ(1 − |v|)). Note that B(u, ε) ⊂ B(u + δvνΩ∗(u), δ), since for any x ∈ B(u, ε),

‖u + δvνΩ∗(u) − x‖ ≤ ‖δvνΩ∗(u)‖ + ‖u − x‖ ≤ δ|v| + ε < δ. Since pML(a|u) = 1
2 , there exists ε′ ∈ (0, ε) such that

pML
ε′ (a|u) ∈ (0, 1). It then follows that 0 < Lp(B(u, ε′) ∩ Ω∗) ≤ Lp(B(u, ε) ∩ Ω∗) ≤ Lp(B(u + δvνΩ∗(u), δ) ∩ Ω∗) and

that 0 < Lp(B(x, ε′) \ Ω∗) ≤ Lp(B(x, ε) \ Ω∗) ≤ Lp(B(u + δvνΩ∗(u), δ) \ Ω∗). Therefore, pML
δ (a|u + δvνΩ∗(u)) =

Lp(B(u+δvνΩ∗ (u),δ)∩Ω∗)
Lp(B(u+δvνΩ∗ (u),δ)) ∈ (0, 1).

Step G.0.0.3. Let g : Rp → R be a function that is bounded on N(∂Ω∗, δ′) ∩ N(Xa,1, δ′) for some δ′ > 0. Then, for l ≥ 0,
there exist δ̃ > 0 and constant C > 0 such that

|δ−1E[qML
δ (Xi)

lg(Xi)1{qML
δ (Xi) ∈ (0, 1)}1{Ai ∈ {1, a}}]| ≤ C

for every δ ∈ (0, δ̃). If g is continuous on N(∂Ω∗, δ′) ∩N(Xa,1, δ′) for some δ′ > 0, then

δ−1E[qML
δ (Xi)

lg(Xi)1{qML
δ (Xi) ∈ (0, 1)}1{Ai ∈ {1, a}}]

=

∫ 1

−1

k(v)ldv

∫
∂Ω∗∩Xa,1

g(x)fX(x)dHp−1(x) + o(1),

δ−1E[1{Ai = a}qML
δ (Xi)

lg(Xi)1{qML
δ (Xi) ∈ (0, 1)}]

=

∫ 1

0

k(v)ldv

∫
∂Ω∗∩Xa,1

g(x)fX(x)dHp−1(x) + o(1)

for l ≥ 0.

Proof. Let δ̄ be given in Step G.0.0.1. Under Assumption 6 (i), there exists δ̃ ∈ (0, δ̄) such that fX is bounded and continuous
on N(∂Ω∗, 2δ̃) ∩N(Xa,1, 2δ̃). Let δ̃ ∈ (0, δ̄) be such that both g and fX are bounded on N(∂Ω∗, 2δ̃) ∩N(Xa,1, 2δ̃) and such
that ML(a|x) = 1 or ML(1|x) = 1 for almost every x ∈ N(Xa,1, δ̃) ∩N(∂Ω∗, δ̃). Such δ̃ exists under Assumption 6 (h) (2)
and (i).

We first show that qML
δ (x) ∈ {0, 1} for every x ∈ Xa,1 \ N(∂Ω∗, δ) for every δ ∈ (0, δ̃). Pick x ∈ Xa,1 \ N(∂Ω∗, δ)

and δ ∈ (0, δ̃). Since B(x, δ) ∩ ∂Ω∗ = ∅, either B(x, δ) ⊂ int(Ω∗) or B(x, δ) ⊂ int(Rp \ Ω∗). If B(x, δ) ⊂ int(Ω∗),



qML
δ (x) = 1. If B(x, δ) ⊂ int(Rp \ Ω∗), qML

δ (x) = 0, since ML(a|x′) = 0 for all x′ ∈ Rp \ Ω∗ by Assumption 6
(f). Therefore, {x ∈ Xa,1 : qML

δ (x) ∈ (0, 1)} ⊂ N(∂Ω∗, δ) for every δ ∈ (0, δ̃). This implies that ML(a|x′) = 1 or
ML(1|x′) = 1 for almost every x′ ∈ {x ∈ Xa,1 : qML

δ (x) ∈ (0, 1)}, since ML(a|x) = 1 or ML(1|x) = 1 for almost every
x ∈ N(Xa,1, δ̃) ∩N(∂Ω∗, δ̃).

Using this result and Lemma F.5, for δ ∈ (0, δ̃),

δ−1E[qML
δ (Xi)

lg(Xi)1{qML
δ (Xi) ∈ (0, 1)}1{Ai ∈ {1, a}}]

= δ−1E[qML
δ (Xi)

lg(Xi)1{qML
δ (Xi) ∈ (0, 1)}(ML(a|Xi) +ML(1|Xi))1{Xi ∈ Xa,1}]

= δ−1E[qML
δ (Xi)

lg(Xi)1{qML
δ (Xi) ∈ (0, 1)}1{Xi ∈ Xa,1}]

= δ−1

∫
qML
δ (x)lg(x)1{qML

δ (x) ∈ (0, 1)}fX(x)1{x ∈ Xa,1}dx

= δ−1

∫
N(∂Ω∗,δ)

qML
δ (x)lg(x)1{qML

δ (x) ∈ (0, 1)}fX(x)1{x ∈ Xa,1}dx

= δ−1

∫ δ

−δ

∫
∂Ω∗

qML
δ (u+ λνΩ∗(u))lg(u+ λνΩ∗(u))1{qML

δ (u+ λνΩ∗(u)) ∈ (0, 1)}

× fX(u+ λνΩ∗(u))1{u+ λνΩ∗(u) ∈ Xa,1}J∂Ω∗

p−1ψΩ∗(u, λ)dHp−1(u)dλ.

With change of variables v = λ
δ , we have

δ−1E[qML
δ (Xi)

lg(Xi)1{qML
δ (Xi) ∈ (0, 1)}1{Ai ∈ {1, a}}]

=

∫ 1

−1

∫
∂Ω∗

qML
δ (u+ δvνΩ∗(u))l1{qML

δ (u+ δvνΩ∗(u)) ∈ (0, 1)}1{u+ δvνΩ∗(u) ∈ Xa,1}

× g(u+ δvνΩ∗(u))fX(u+ δvνΩ∗(u))J∂Ω∗

p−1ψΩ∗(u, δv)dHp−1(u)dv.

For every (u, v, δ) ∈ ∂Ω∗ \N(Xa,1, δ̃)× (−1, 1)× (0, δ̃), u+ δvνΩ∗(u) /∈ Xa,1, so

δ−1E[qML
δ (Xi)

lg(Xi)1{qML
δ (Xi) ∈ (0, 1)}1{Ai ∈ {1, a}}]

=

∫ 1

−1

∫
∂Ω∗∩N(Xa,1,δ̃)

qML
δ (u+ δvνΩ∗(u))l1{qML

δ (u+ δvνΩ∗(u)) ∈ (0, 1)}

× 1{u+ δvνΩ∗(u) ∈ Xa,1}g(u+ δvνΩ∗(u))fX(u+ δvνΩ∗(u))J∂Ω∗

p−1ψΩ∗(u, δv)dHp−1(u)dv

=

∫ 1

−1

∫
∂Ω∗∩N(Xa,1,δ̃)

qML
δ (u+ δvνΩ∗(u))l1{u+ δvνΩ∗(u) ∈ Xa,1}

× g(u+ δvνΩ∗(u))fX(u+ δvνΩ∗(u))J∂Ω∗

p−1ψΩ∗(u, δv)dHp−1(u)dv

where the second equality follows from Step G.0.0.2. By Lemma F.5, J∂Ω∗

p−1ψΩ∗(·, ·) is bounded on ∂Ω∗× (−δ̃, δ̃). Since g and
fX are also bounded, for some constant C > 0,

|δ−1E[qML
δ (Xi)

lg(Xi)1{qML
δ (Xi) ∈ (0, 1)}1{Ai ∈ {1, a}}]|

≤ C
∫ 1

−1

∫
∂Ω∗∩N(Xa,1,δ̃)

dHp−1(u)dv,

which is finite by Assumption 6 (h) (1).



Now suppose that g and fX are continuous on N(∂Ω∗, 2δ̃) ∩N(Xa,1, 2δ̃). We can write

δ−1E[qML
δ (Xi)

lg(Xi)1{qML
δ (Xi) ∈ (0, 1)}1{Ai ∈ {1, a}}]

=

∫ 1

−1

∫
∂Ω∗∩int(Xa,1)

qML
δ (u+ δvνΩ∗(u))l1{u+ δvνΩ∗(u) ∈ Xa,1}

× g(u+ δvνΩ∗(u))fX(u+ δvνΩ∗(u))J∂Ω∗

p−1ψΩ∗(u, δv)dHp−1(u)dv

+

∫ 1

−1

∫
∂Ω∗∩∂Xa,1

qML
δ (u+ δvνΩ∗(u))l1{u+ δvνΩ∗(u) ∈ Xa,1}

× g(u+ δvνΩ∗(u))fX(u+ δvνΩ∗(u))J∂Ω∗

p−1ψΩ∗(u, δv)dHp−1(u)dv

+

∫ 1

−1

∫
∂Ω∗∩(N(Xa,1,δ̃)\cl(Xa,1))

qML
δ (u+ δvνΩ∗(u))l1{u+ δvνΩ∗(u) ∈ Xa,1}

× g(u+ δvνΩ∗(u))fX(u+ δvνΩ∗(u))J∂Ω∗

p−1ψΩ∗(u, δv)dHp−1(u)dv.

The second term is zero by Assumption 6 (h) (1). Observe that u + δvνΩ∗(u) ∈ Xa,1 for any sufficiently small δ > 0 if
u ∈ int(Xa,1) and that u + δvνΩ∗(u) /∈ Xa,1 for any sufficiently small δ > 0 if u /∈ cl(Xa,1). Therefore, by the Dominated
Convergence Theorem,

δ−1E[qML
δ (Xi)

lg(Xi)1{qML
δ (Xi) ∈ (0, 1)}1{Ai ∈ {1, a}}]

→
∫ 1

−1

∫
∂Ω∗∩int(Xa,1)

k(v)lg(u)fX(u)J∂Ω∗

p−1ψΩ∗(u, 0)dHp−1(u)dv

=

∫ 1

−1

k(v)ldv

∫
∂Ω∗∩Xa,1

g(u)fX(u)dHp−1(u),

where we use the fact from Lemma F.5 that J∂Ω∗

p−1ψΩ∗(u, λ) is continuous in λ and J∂Ω∗

p−1ψΩ∗(u, 0) = 1.
Now note that ML(a|x) = 1 for every x ∈ Ω∗ and ML(a|x) = 0 for almost every x ∈ N(Xa,1, 2δ̃) \ Ω∗. Also, for every

(u, v, δ) ∈ ∂Ω∗ ∩N(Xa,1, δ̃) × (−1, 1) × (0, δ̃), u + δvνΩ∗(u) ∈ Ω∗ if v ∈ (0, 1) and u + δvνΩ∗(u) ∈ N(Xa,1, 2δ̃) \ Ω∗ if
v ∈ (−1, 0]. Therefore,

δ−1E[1{Ai = a}qML
δ (Xi)

lg(Xi)1{qML
δ (Xi) ∈ (0, 1)}]

= δ−1E[ML(a|Xi)q
ML
δ (Xi)

lg(Xi)1{qML
δ (Xi) ∈ (0, 1)}1{Xi ∈ Xa,1}]

=

∫ 1

−1

∫
∂Ω∗∩N(Xa,1,δ̃)

ML(a|u+ δvνΩ∗(u))qML
δ (u+ δvνΩ∗(u))l1{u+ δvνΩ∗(u) ∈ Xa,1}

× g(u+ δvνΩ∗(u))fX(u+ δvνΩ∗(u))J∂Ω∗

p−1ψΩ∗(u, δv)dHp−1(u)dv

=

∫ 1

0

∫
∂Ω∗∩N(Xa,1,δ̃)

qML
δ (u+ δvνΩ∗(u))l1{u+ δvνΩ∗(u) ∈ Xa,1}

× g(u+ δvνΩ∗(u))fX(u+ δvνΩ∗(u))J∂Ω∗

p−1ψΩ∗(u, δv)dHp−1(u)dv

→
∫ 1

0

k(v)ldv

∫
∂Ω∗∩Xa,1

g(u)fX(u)dHp−1(u).

Step G.0.0.4. Let
SZ = lim

δ→0
δ−1E[ZiZ

′
i1{qML

δ (Xi) ∈ (0, 1)}1{Ai ∈ {1, a}}]

and
SY = lim

δ→0
δ−1E[ZiYi1{qML

δ (Xi) ∈ (0, 1)}1{Ai ∈ {1, a}}].

Then the second element of S−1
Z SY is∫

∂Ω∗∩Xa,1 E[Yi(a)− Yi(1)|Xi = x]fX(x)dHp−1(x)∫
∂Ω∗∩Xa,1 fX(x)dHp−1(x)

.

Under Assumption 3, this is equal to β(a, 1).



Proof. Note that

E[ZiYi1{qML
δ (Xi) ∈ (0, 1)}1{Ai ∈ {1, a}}]

= E[Zi(1{Ai = a}Yi(a) + 1{Ai = 1}Yi(1))1{qML
δ (Xi) ∈ (0, 1)}]

= E[Zi(E[1{Ai = a}|Xi]E[Yi(a)|Xi] + E[1{Ai = 1}|Xi]E[Yi(1)|Xi])1{qML
δ (Xi) ∈ (0, 1)}]

= E[Zi(1{Ai = a}E[Yi(a)|Xi] + 1{Ai = 1}E[Yi(1)|Xi])1{qML
δ (Xi) ∈ (0, 1)}],

where the second equality holds since Ai is independent of Yi(·) conditional on Xi. By Step G.0.0.3,

SZ =f̄X

 2 1
∫ 1

−1
k(v)dv

1 1
∫ 1

0
k(v)dv∫ 1

−1
k(v)dv

∫ 1

0
k(v)dv

∫ 1

−1
k(v)2dv

 ,
where f̄X =

∫
∂Ω∗∩Xa,1 fX(x)dHp−1(x), and

SY =


∫
∂Ω∗∩Xa,1 E[Yi(a) + Yi(1)|Xi = x]fX(x)dHp−1(x)∫

∂Ω∗∩Xa,1 E[Yi(a)|Xi = x]fX(x)dHp−1(x)∫
∂Ω∗∩Xa,1(

∫ 1

0
k(v)dvE[Yi(a)|Xi = x] +

∫ 0

−1
k(v)dvE[Yi(1)|Xi = x])fX(x)dHp−1(x)

 .
After a few lines of algebra, we have

det(SZ) =f̄−1
X (

∫ 0

−1

(k(v)−
∫ 0

−1

k(s)ds)2dv +

∫ 1

0

(k(v)−
∫ 1

0

k(s)ds)2dv),

which is nonzero under Assumption 6 (h) (1). After another few lines of algebra, we obtain that the second element of S−1
Z SY

is ∫
∂Ω∗∩Xa,1 E[Yi(a)− Yi(1)|Xi = x]fX(x)dHp−1(x)∫

∂Ω∗∩Xa,1 fX(x)dHp−1(x)
= β(a, 1).

Note that if Assumption 3 does not hold, the left-hand side still represents the mean reward difference for the subpopulation on
the boundary ∂Ω∗ ∩ Xa,1.

Step G.0.0.5. If nδn →∞ as n→∞, then β̂a
p−→ β(a, 1).

Proof. It suffices to verify that the variance of each element of 1
nδn

∑n
i=1 ZiZ

′
iIi1{Ai ∈ {1, a}} and 1

nδn

∑n
i=1 ZiY Ii1{Ai ∈

{1, a}} is o(1). Here, we only verify that Var( 1
nδn

∑n
i=1 q

ML
δn

(Xi)YiIi1{Ai ∈ {1, a}}) = o(1). Note that

E[Y 2
i 1{Ai ∈ {1, a}}|Xi] = E[1{Ai = a}Yi(a)2 + 1{Ai = 1}Yi(1)2|Xi]

≤ E[Yi(a)2 + Yi(1)2|Xi]E[1{Ai ∈ {1, a}}|Xi].

Under Assumption 6 (i), there exists δ′ > 0 such that E[Yi(a)2 + Yi(1)2|Xi] is bounded on N(∂Ω∗, δ′). We have

Var(
1

nδn

n∑
i=1

qML
δn (Xi)YiIi1{Ai ∈ {1, a}})

≤ 1

nδn
δ−1
n E[qML

δn (Xi)
2Y 2
i Ii1{Ai ∈ {1, a}}]

=
1

nδn
δ−1
n E[qML

δn (Xi)
2E[Yi(a)2 + Yi(1)2|Xi]Ii1{Ai ∈ {1, a}}]

≤ 1

nδn
C

for some C > 0, where the last inequality follows from Step G.0.0.3. The conclusion follows since nδn →∞.
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