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Abstract 
Understanding the industrial structure of inner and inter prefectures is crucial for policymakers to make economic 

policies according to evidence. To address this issue, using the dataset of financial statements and connections 

for one million firms in Japan collected by Tokyo Shoko Research Inc., we construct a multiplex supply network 

with 47 layers equivalent to prefectures. Applying clustering analysis based on the Jensen-Shannon distance 

between networks and the community detection techniques known as the Infomap method to this multiplex supply 

network, we clarify industrial structural similarities and differences for each prefecture. Finally, we compare the 

results for multiplex supply networks and the well-known facts for each prefecture's Input-Output table to 

evaluate our result's validity and complementarity. Our findings of this study are as follows. First, from 2011 to 

2018, the industrial networks of 47 prefectures can be classified into three structural patterns by a degree of 

urbanization. Second, the hierarchical community structure can be observed using firm-level data. However, this 

hierarchical community structure cannot be seen in the conventional Input-Output table dataset. Therefore, our 

findings suggest a new classification approach for prefectures based on similarities in the industrial structure and 

contribute to a better insight into the geographical characteristics of each region's industrial structure. 
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I. Introduction

Understanding the industrial structure of inner and inter prefectures is crucial
for policymakers to make economic policies based on pieces of evidence. Tra-
ditionally, the industrial structure has been explored based on Input-Output
(IO) tables (Leontief, 1986). Japan has 47 prefectures, and the IO tables for
all prefectures have been available since 1990, with revisions every five years.
Although the national IO tables have hierarchical sectoral classifications, this
classification is not standardized for each prefecture or regional IO table. Fur-
thermore, such classification of firms by industry and geographical region may
be too accumulated.

To address this issue, recent studies have begun to concentrate on analyzing
firm-level networks based on the comprehensive data of supply chain (Fujiwara
and Aoyama, 2010; Atalay et al., 2011; Acemoglu et al., 2012; Luo et al.,
2012). The mesoscopic structure of firm-level supply-chain networks can be
expected to become an alternative approach to characterize not only industrial
structures, including IO tables, but also the nation’s economy. Chakraborty
et al. (2018) have demonstrated that the firm-level supply-chain networks in
Japan have a hierarchical community structure, including overexpressions of
industrial and regional components, and suggested the need to replace the
conventional industrial classification scheme with a new one based on the real
transactions.

In this study, using the dataset of transactions for one million firms in Japan
obtained by Tokyo Shoko Research (TSR) Inc., we constructed the Japanese
economic system of transactions within and between industries and within and
between prefectures as a multiplex supply network with 47 layers equivalent
to prefectures. Additionally, we clarified industrial structural similarities and
connectivity for prefectures by applying clustering analysis and community
detection techniques. Although many studies have used cluster analysis to
assess and classify similarities in industrial structure for prefectural and dis-
trict township-level industry statistics, including IO tables (Irie, 2017; Kondo,
2020), the similarities in inter-industry connections and their mesoscopic struc-
tures have been neglected. To overcome this problem regarding network sci-
ence, we use the methodology to reduce the number of layers to a minimum
while maximizing the di↵erentiability between the multi-layer network and the
equivalent accumulated one by examining the mesoscale structural similarity
of networks, proposed by De Domenico et al. (2015). Moreover, to examine
connectivity between prefectures and industrial sectors, we used the map equa-
tion method (Rosvall and Bergstrom, 2008), known as Infomap, which is one of
the best performing community detection techniques (Lancichinetti and Fortu-
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nato, 2009). We compare the findings from both firm-level data and IO table
data to evaluate the validity and complementarity of our result.

The rest of this study is organized as follows. First, we explain the details
of data in Section II, and the methodology in Section III. Section IV provides
some results and discussion regarding similarity and connectivity between the
industrial structures of the Japanese prefecture. Finally, the conclusion and
research perspective will be presented in Section V.

II. Data

The data for the Japanese supply-chain network are based on a survey con-
ducted by TSR Inc., one of the prominent credit research agencies in Tokyo,
and was supplied to us through the Research Institute of Economy, Trade, and
Industry (RIETI). Additionally, the data are compiled each September from
2011 to 2018. The survey inquires about firms whom the top 24 suppliers and
customers for each, and this form of data collection can expect to avoid in-
cluding data on one-time trades. Although the replies from large firms with
several suppliers and customers become incomplete, these data could be sup-
plemented with data on the other side of the trade. Therefore, we assume in
this study that our data provide a good approximation of the true, complete
picture of the Japanese economy by combining all submissions from both sides
of the trade, which covers approximately one million firms and several million
supplier-customer relationships. Furthermore, we can use the information of
firms, including firm size measured as sales, profit, and the number of employ-
ees, and the classification into industrial sectors and geographical location. For
our study, let us limit our investigation to only two characteristics of each firm:
the industrial sector and the geographical location of headquarters. The in-
dustrial sectors are classified hierarchically into 20 divisions, 99 major groups,
436 minor groups, and more by TSR. To discuss the similarity between the in-
dustrial structures of the Prefecture, we concentrated on the industrial sector
classified as 99 significant groups. Additionally, the geographical location is
converted into a level of 47 prefectures. Because the 99 industry classifications
include unclassifiable categories, we extract only the active firms, which can
be identified as the geographical location and classified as 98 industry classifi-
cations. The numbers of companies and transactions are listed in Table 1.

This study compares the findings from TSR data and the IO table. Al-
though the national IO tables have sectoral classifications of 13, 37, 108, 190,
and 397, this classification is not standardized for each prefecture. To address
this issue, the RIETI project has created and published the inter-prefecture
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IO table on 20111, recently. We adopted this inter-prefecture IO table and
compared the findings with the TSR2011 data. We should note that the 31
sectoral classifications are available because of the combining process.

Figure 1 depicts the fractions of internal and external transactions to the
total number or amounts of transactions for each prefecture. Additionally,
external transactions are distinguished between incoming and outgoing flows.
As depicted in Figure 1 (left), the ratio of the number of transactions between
prefectures in the metropolitan prefectures is comparatively small: particularly,
Tokyo, Saitama, Chiba, and Kanagawa in the Kanto region; and Shiga, Kyoto,
Osaka, Hyogo, and Nara in the Kansai region. However, the ratio of the
number of transactions within prefectures to the total number of transactions
in Hokkaido and Okinawa is high. Nevertheless, these are not apparent from
the IO table data shown in Figure 1 (right). Note that this distinction may
cause the TSR data to fail to reflect the industrial characteristics of transaction
values. In this study, we assume that the TSR data can reproduce the actual
industrial structure of prefectures through the number of transactions at the
firm level and detailed industry classification.

III. Methodology

In this section, we discuss multi-layer network analysis to examine the Japanese
prefecture’s similarity and connectivity of industrial networks.

A. Multi-layer Network Representation

We constructed the multi-layer network reproducing the Japanese economic
system of transactions within and between industries and within and between
prefectures.

We define a multi-layer network as a pair M = (G, C), where G = {G↵;↵ 2
{1, · · · ,M}} of the family of graphs G↵ = (V↵, E↵), where the set of nodes
of layer G↵ is denoted as V↵, and M is the number of layers. C = {E↵� ✓
V↵ ⇥ V�;↵, � 2 {1, · · · ,M},↵ 6= �} is a set of interconnections between the
nodes of di↵erent layers G↵ and G� with ↵ 6= �.

Given a layer G↵ corresponding to one of the M = 47 prefectures in
Japan, the N↵ nodes corresponding to the industrial sectors are denoted by
V↵ = {s↵1 , · · · , s↵N↵

}, and intra-layer neighboring matrix of each layer G↵ is
denoted by A

[↵] =
�
a
↵
ij

�
, where the element a

↵
ij corresponds to the num-

ber/amounts of transactions from the industrial sector si to sj in the pre-
fecture ↵. Alternatively, the cross-layer adjacency matrix E↵� is the matrix

1. https://www.rieti.go.jp/jp/database/r-io2011/index.html (in Japanese)
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A
[↵,�] =

⇣
a
↵�
ij

⌘
, which represents transactions between prefectures. The el-

ement a
↵�
ij corresponds to the number/amounts of transactions from the in-

dustrial sector si of prefecture ↵ to the industrial sector sj in the prefecture
�.

B. Similarity measurement and structural reducibility

Aggregating interactions of a similar nature into single layers can engender dif-
ferent multilayer networks. We use the method to reduce the number of layers
to a minimum while maximizing the distinguishability between the multilayer
network and the corresponding aggregated one by investigating the mesoscale
structural similarity of networks, proposed by De Domenico et al. (2015). At
each step, the most similar layers are aggregated, forming a dendrogram de-
scribing the further aggregation of layers. Finally, the best aggregation proce-
dure is discovered by cutting the dendrogram at a level equivalent to the best
score function, characterizing the best aggregation. Therefore, this approach
can provide us with hierarchical clustering of layers and structural reducibility
for the multilayer network. We should note that cross-prefecture transactions
are neglected to evaluate the similarity between industry transactions within
each prefecture.

First, the similarities between the layers are computed using the quantum
Jensen-Shannon distance to construct the dendrogram explaining the aggrega-
tion procedure. Considering two density matrices ⇢[↵] and ⇢[�], we can quantify
to what extent ⇢[↵] is di↵erent from ⇢[�], by the means of the Kullback-Liebler
divergence,

DKL(⇢
[↵]||⇢[�]) = Tr

⇥
⇢[↵]

�
log2

�
⇢[↵]

�
� log2

�
⇢[�]

��⇤
. (1)

As the symmetrized Kullback-Liebler divergence, the Jensen-Shannon diver-
gence between two density matrices ⇢[↵] and ⇢[�] is defined as

DJS(⇢
[↵]||⇢[�]) =

1

2
DKL(µ

[↵,�]||⇢[↵]) +
1

2
DKL(µ

[↵,�]||⇢[�])

= h
�
µ[↵,�]

�
� 1

2

⇥
h
�
⇢[↵]

�
+ h

�
⇢[�]

�⇤
(2)

where µ[↵,�] is the average of two density matrices, µ[↵,�] = 1
2(⇢

[↵] + ⇢[�]), and
h(⇢[↵]) is the von Neumann entropy of the density matrix ⇢[↵]. For the set
A = {A[1]

, A
[2]
, · · · , A[M ]} of intra-layer adjacency matrices, we can compute

the von Neumann entropy hA[↵] of layer ↵, where it can be written in terms
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of the set
n
�
[↵]
1 ,�

[↵]
2 , · · · ,�[↵]

N

o
of the eigenvalues of rescaled Laplacian matrix

associated to the adjacency matrix A
[↵] of layer ↵,

hA[↵] = �
NX

i=1

�
[↵]
i log2

⇣
�
[↵]
i

⌘
. (3)

The Laplacian spectrum well includes rich information about the multiscale
structure of undirected graphs, e.g., the second smallest eigenvalue of the
Laplacian matrix is known as the algebraic connectivity as proposed by Fiedler
(1973). Moreover, the relationship between the spectrum and community struc-
ture has been empirically validated by Newman (2006), and the definition of
the Laplacian matrix for directed graphs and these properties have been dis-
cussed by Chung (2005). Hence, we assume that the Jensen-Shannon diver-
gence, built upon the Laplacian spectrum, is suitable for pattern recognition
between networks concerning mesoscale structural similarity. After computing
the Jensen-Shannon distance matrix between all pairs of layers, we perform
hierarchical clustering of layers.

Subsequently, we aggregate some of the original layersA = {A[1]
, A

[2]
, · · · , A[M ]}

and obtain a reduced multilayer network C = {C [1]
, C

[2]
, · · · , C [X]} with X 

M layers. The von Neumann entropy H(A) of a multilayer network is com-
puted as the sum of von Neumann entropies of its M layers, that is, H(A) =PM

↵=1 hA[↵] . Furthermore, we quantify the distinguishability between the multi-
layer network C and the equivalent aggregated graph A = A

[1]+A
[2]+· · ·+A

[M ]

through the relative entropy,

q(C) = 1� H̄(C)
hA

, (4)

where H̄(C) is the entropy per layer of the multi-layer network C,

H̄(C) = H(C)
X

=

PX
↵=1 hC[↵]

X
. (5)

The larger relative entropy q(C) conforms to the more distinguishable multi-
layer network C from the corresponding aggregated graph A. Therefore, the
relative entropy q(•) is used as the quality function for the resulting partition.

Finally, we selected the partition that maximizes the relative entropy, qmax(•).
The reducibility of a multilayer network A of M layers can be characterized as

�(A) =
M �Mopt

M � 1
, (6)

where Mopt is the number of layers consistent with the maximum value of
relative entropy qmax(•).
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C. Hierarchical community structure

The Infomap method (Rosvall and Bergstrom, 2008), one of the most thriv-
ing community detection algorithms on single networks, is a flow-based and
information-theoretic approach to identify an e�cient code for minimizing the
length of the description of the random walk for generating a module par-
tition M to divide n nodes into m communities. Subsequently, the average
single-step description length is defined as

L(M) = qxH(Q) +
mX

i=1

pi�H(Pi) . (7)

The first term arises from the movements of the random walker across modules,
where qx is the probability that the random walker switches communities, and
H(Q) depicts the average description length of the community index code-
words given by the Shannon entropy. The second term arises from the intra-
community movement of the random walker, where the weight pi� represents
the fraction of the movements within the community, and H(Pi) represents
the entropy of the intra-community movement. Furthermore, this approach
has been expanded to a hierarchical map equation (Rosvall and Bergstrom,
2011) that decomposes a network into communities and subcommunities.

In this study, the same industrial sector belonging to various prefectures is
considered to have di↵erent nodes, thus creating a single-layer network and ap-
plying this methodology. We discovered the hierarchical communities using the
multicoding Infomap method, and we use the “Level” index to denote the hier-
archy of communities; communities at the 2nd level represent subcommunities
at the 1st level. To define the hierarchical communities and to evaluate the
connectivity between prefectures, we use the attribution with the prefecture
consistent with the layer.

IV. Results and Discussions

We applied the method explained in Section III for the industrial networks
constructed by the firm-level (TSR) data from 2011 to 2018 and for the IO table
data from 2011 to investigate the validity and complementary of the finding.
Notably, the number of nodes N for each layer corresponds to the number of
industrial sectors; N = 98 for the TSR data and N = 31 for the IO table
data. Although the findings from the TSR data do not reflect the industrial
characteristics of the transaction value, this study anticipates reproducing the
actual industrial structure of prefectures through the number of transactions
per firm and detailed industry classification.
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A. Similarity between industrial structures of inner-prefecture

The results of structural reducibility according to the TSR data and IO table
data are presented in Table 2. We found that the multilayer networks of
prefecture industries based on the TSR data cannot be reduced except for
the TSR2018 case. However, the prefecture layers of the industrial network
based on the IO table data can be reduced to only two layers, corresponding to
Tokyo and the others. This result implies that while firm-level data is suitable
for representing the mesoscopic characteristics of industries in each prefecture,
data from the IO table is unsuitable owing to over-aggregation.

We demonstrated the dendrograms resulting from hierarchical clustering
with the dashed red lines identifying the maximum of the quality function
qmax(•) and the color-coded map of Japan based on the results of hierarchical
clustering and structural reducibility in Figure 2 to Figure 9. The upper and
lower parts of Figure 2 depict the result based on TSR2011 data and IO table
2011, respectively. In the IO table 2011 case, because the 1st-level clustering
is equivalent to the maximum of distinguishable cutting, the result is reflected
in the coloring of the map. Because the prefecture layers on the TSR case,
except for 2018, cannot be reduced, we have shown the color-coded map based
on the result of the 2nd-level cluster. Figure 9 depicts the result based on the
TSR2018 data, and the three reducible pairs of prefectures belonging to the
cluster colored in red are presented in di↵erent colors: Tochigi and Fukuoka;
Gunma and Okayama; and Niigata and Hyogo.

We observed the three structural patterns at the 2nd-level clusters each
year from 2011 to 2018: a) prefectures including three major metropolitan ar-
eas, including Tokyo, Osaka, and Aichi; b) prefectures surrounding the main
metropolitan areas; and c) the other prefectures far from the central cities, in-
cluding the Hokkaido and Kyushu region. We should note that even though we
ignored connections between prefectures, the clusters that reflected geographic
adjacencies are observed. These results suggest that the inner prefecture’s
industrial mesoscopic structure can be classified by a degree of urbanization.

B. Connectivity between prefectures in community structure

We detected the hierarchical communities using the multi-coding Infomap
method. Table 3 and Table 4 present the statistics for the hierarchical commu-
nities found using the multicoding Infomap method for the industrial networks
based on the TSR data and IO table data, respectively. “# of com.” is the
number of all communities, “# of irr.com.” is the number of fundamental com-
munities, which are communities that do not have any subcommunities. “#
of nodes” represents the number of nodes, including industries, in irreducible
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communities. We determined the number of nodes “# of nodes” in irreducible
communities at each level. We discovered that most of the nodes belong to the
2nd-level communities. Therefore, we limit our discussion of subcommunities’
properties to those of the 2nd level.

From Table 5 to Table 13, we demonstrate the features of the 1st- and 2nd-
level communities, including more than 150 nodes in the TSR data, and over
50 nodes in the case of the IO table data, respectively. Parentheses denote the
percentage of prefectures. We have outlined only communities that contain
two or more prefectures with a share of 5% or more. Moreover, from Figure 10
to Figure 18, we indicate the results for communities across prefectures by
color coding them on the map of Japan. The color-coded maps of Japan are
based on the findings of hierarchical communities at the 1st (left) and the 2nd
(right) levels. The label of colors correspond to the index corresponding tables,
from Table 5 to Table 13. However, when more than 70% of nodes belonging
to one community form one prefecture, the prefectures are colored by dark
gray. These results frequently show that industrial networks are geographically
clustered. However, as is clear from the 2011 comparison in Figure 10 and
Figure 11, the same prefectural communities (Shikoku, Kyushu, and others)
are observed in the 1st-level communities for both the TSR data and IO table
data, whereas the results for the 2nd level are di↵erent. Using the IO table data
for 2011, communities with various prefectures could not be found except for
Kanto (Tokyo, Saitama, and Chiba) and Kagoshima-Okinawa. Although this
study cannot conclude whether this di↵erence is caused by the overly coarse-
grained industry classifications in the IO tables or by di↵erences in network
weights (number of transactions/amounts), the results from firm-level data
reveal communities with robust industrial connectivity among prefectures that
are not evident in the results from the IO tables.

We discovered that there are pairs of prefectures belonging to the same
community at the 2nd level from 2011 to 2018: Tokyo, Ibaraki, Kanagawa,
Chiba, Saitama, and Gunma; Ishikawa and Toyama; Gifu and Aichi; Hiroshima
and Okayama; and Shimane and Tottori. However, we observed that the Kanto
community extended into Tohoku and Hokkaido between 2012 and 2015, as
depicted in Figure 12 to Figure 15, and split again into the Kanto and Tohoku
communities in 2016, as shown in Figure 16. These results might cause a
temporary decrease in the number of firm-level transactions in the Tohoku
region due to the Great East Japan Earthquake in 2011 and suggest that firm-
level data can help visualize changes in the time-series structure of industries,
which is challenging using an IO table.
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V. Conclusion

In this study, we analyzed the industrial multiplex network with 47 layers corre-
sponding to prefectures using the firm-level data of transactions for one million
firms in Japan. Moreover, we proposed new classification techniques for prefec-
tures based on similarities in industrial structure to give a better understanding
of the geographic characteristics of each region’s industrial structure. We ap-
plied hierarchical clustering analysis based on the quantum Jensen-Shannon
distance, which showed the mesoscale structural similarity of industrial struc-
tures of inner-prefecture. Applying the approach proposed by De Domenico et
al. (2015), we determined the hierarchy in which prefectures belonging to the
same cluster have the highest identifiability across mesoscale industrial struc-
tures using von Neumann entropy to assess the significance of clustering. Be-
cause of the over-aggregation of industrial sectors in the IO table data, we could
distinguish only Tokyo and the other prefectures in terms of the mesoscale fea-
ture of industrial structures. However, we found the three structural patterns at
the 2nd-level clusters by a degree of urbanization: prefectures, including three
primary metropolitan areas; prefectures surrounding the main metropolitan
areas; and the other prefectures far from the central cities. We also used the
hierarchical community detection known as the Infomap method (Rosvall and
Bergstrom, 2008) to explore connectivity between prefectures and industrial
sectors. Although we could not find communities with various prefectures ex-
cept for Kanto (Tokyo, Saitama, and Chiba) and Kagoshima-Okinawa based on
the IO table data, the analysis of the firm-level data showed pairs of prefectures
belonging to the same community at the 2nd level from 2011 to 2018: Tokyo,
Ibaraki, Kanagawa, Chiba, Saitama, and Gunma; Ishikawa and Toyama; Gifu
and Aichi; Hiroshima and Okayama; and Shimane and Tottori.

In this study, we conducted a survey of industrial structure at the pre-
fectural level to compare it with inter-prefectural IO tables and contribute to
policy making at the prefectural level. Concerning policy implications, similar
economic policies may be e↵ective among prefectures with high similarity, and
when considering economic policy within a prefecture, a group of prefectures
with high connectivity should consider more economic spillover e↵ects among
prefectures with high connectivity. As studied in spatial economics, these re-
gional cluster structures’ origins are expected to be investigated in the future
by utilizing microscopic data.

However, there may be some potential limitations in this study. We ex-
pected that the firm-level data reproduce the actual industrial structure of
prefectures through the number of transactions and detailed industry classi-
fication in this study because of data availability. Although the firm-level
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data collected by TSR include the address of the headquarters of each firm,
it should be the address of the place of business as in the IO table data. Fu-
ture study should consider the weight of the network reflecting the industrial
and geographical characteristics of transaction values to assess the validity of
the results in more detail. Therefore, we emphasize again that IO table data
plays an essential role in investigating the actual industrial structure of Japan
prefectures. The firm-level analysis helps us understand the more microscopic
features of industrial structure at shorter time intervals.
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Figure 1. The fractions of internal and external transactions to the total number or amounts
of transactions for each prefecture based on the data of TSR2011 (left) and IO Table 2011
(right). The external transactions are distinguished between the incoming and outgoing
flows. Notably, ratios in the TSR data do not reflect the transaction values between firms.
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Figure 2. Left: the dendrogram resulting from hierarchical clustering with the dashed red
lines identifying the maximum of the quality function qmax(•). Right: the color-coded map
of Japan according to the hierarchical clustering analysis and structural reducibility. The
upper and lower figures show the result based on the TSR2011 data and IO Table 2011,
respectively. Because the prefecture layers in the TSR2011 case cannot be reduced, we show
the color-coded map based on the finding of 2nd-level clusters. In the IO table 2011 case,
because the 1st-level clustering corresponds to the maximum of distinguishable cutting, the
result is reflected in the coloring of the map.
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Figure 3. Left: the dendrogram resulting from hierarchical clustering with the dashed
red lines identifying the maximum of the quality function qmax(•). Right: the color-coded
map of Japan according to the hierarchical clustering analysis and structural reducibility.
Because the prefecture layers in the TSR2012 case cannot be reduced, we demonstrate the
color-coded map based on the result of 2nd-level clusters.
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Figure 4. Left: the dendrogram resulting from hierarchical clustering with the dashed red
lines identifying the maximum of the quality function qmax(•). Right: the color-coded map of
Japan according to the hierarchical clustering analysis and structural reducibility. Because
the prefecture layers in the TSR2013 case cannot be reduced, we show the color-coded map
based on the result of 2nd-level clusters.
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Figure 5. Left: the dendrogram resulting from hierarchical clustering with the dashed red
lines identifying the maximum of the quality function qmax(•). Right: the color-coded map of
Japan according to the hierarchical clustering analysis and structural reducibility. Because
the prefecture layers in the TSR2014 case cannot be reduced, we show the color-coded map
based on the result of 2nd-level clusters.
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Figure 6. Left: the dendrogram resulting from hierarchical clustering with the dashed red
lines identifying the maximum of the quality function qmax(•). Right: the color-coded map
of Japan according to thehierarchical clustering analysis and structural reducibility. Because
the prefecture layers in the TSR2015 case cannot be reduced, we show the color-coded map
based on the result of 2nd-level clusters.
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Figure 7. Left: the dendrogram resulting from hierarchical clustering with the dashed red
lines identifying the maximum of the quality function qmax(•). Right: the color-coded map of
Japan according to the hierarchical clustering analysis and structural reducibility. Because
the prefecture layers on the TSR2016 case cannot be reduced, we show the color-coded map
based on the result of 2nd-level clusters.
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Figure 8. Left: the dendrogram resulting from hierarchical clustering with the dashed red
lines identifying the maximum of the quality function qmax(•). Right: the color-coded map of
Japan according to the hierarchical clustering analysis and structural reducibility. Because
the prefecture layers on the TSR2017 case cannot be reduced, we show the color-coded map
based on the result of 2nd-level clusters.
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Figure 9. Left: the dendrogram resulting from hierarchical clustering with the dashed red
lines identifying the maximum of the quality function qmax(•). Right: the color-coded map
of Japan according to the hierarchical clustering analysis and structural reducibility. In the
TSR2018 case, we indicate the color-coded map based on the result of 2nd-level clusters.
The reducible three pairs of prefectures belonging to the cluster colored in red are shown in
di↵erent colors: Tochigi and Fukuoka, Gunma and Okayama, and Niigata and Hyogo.
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Figure 10. The color-coded maps of Japan based on the results of hierarchical communities
at the 1st (left) and the 2nd (right) level based on the TSR2011 data. The label of colors
corresponds to the index in Table 5. When over 70% of nodes belonging to one prefectural
layer form one community, these prefectures are colored with dark gray.

Figure 11. The color-coded maps of Japan based on the results of hierarchical communities
at the 1st (left) and the 2nd (right) level based on the IO table 2011 data. The label of colors
corresponds to the index in Table 6. When over 70% of nodes belonging to one prefectural
layer form one community, these prefectures are colored with dark gray.
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Figure 12. The color-coded maps of Japan based on the results of hierarchical communities
at the 1st (left) and the 2nd (right) level based on the TSR2012 data. The label of colors
corresponds to the index in Table 7. When over 70% of nodes belonging to one prefectural
layer form one community, these prefectures are colored with dark gray.

Figure 13. The color-coded maps of Japan based on the results of hierarchical communities
at the 1st (left) and the 2nd (right) level based on the TSR2013 data. The label of colors
corresponds to the index in Table 8. When over 70% of nodes belonging to one prefectural
layer form one community, these prefectures are colored with dark gray.
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Figure 14. The color-coded maps of Japan based on the results of hierarchical communities
at the 1st (left) and the 2nd (right) level based on the TSR2014 data. The label of colors
corresponds to the index in Table 9. When over 70% of nodes belonging to one prefectural
layer form one community, these prefectures are colored with dark gray.

Figure 15. The color-coded maps of Japan based on the results of hierarchical communities
at the 1st (left) and the 2nd (right) level based on the TSR2015 data. The label of colors
corresponds to the index in Table 10. When over 70% of nodes belonging to one prefectural
layer form one community, these prefectures are colored with dark gray.
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Figure 16. The color-coded maps of Japan based on the results of hierarchical communities
at the 1st (left) and the 2nd (right) level based on the TSR2016 data. The label of colors
corresponds to the index in Table 11. When over 70% of nodes belonging to one prefectural
layer form one community, these prefectures are colored with dark gray.

Figure 17. The color-coded maps of Japan based on the results of hierarchical communities
at the 1st (left) and the 2nd (right) level based on the TSR2017 data. The label of colors
corresponds to the index in Table 12. When over 70% of nodes belonging to one prefectural
layer form one community, these prefectures are colored with dark gray.
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Figure 18. The color-coded maps of Japan based on the results of hierarchical communities
at the 1st (left) and the 2nd (right) level based on TSR2017 data. The label of colors
corresponds to the index in Table 13. When over 70% of nodes belonging to one prefectural
layer form one community, these prefectures are colored with dark gray.

Table 1. The number of firms and transactions extracted from the TSR data from 2011 to
2018. The extracted firms could be active, identify the geographical location, and classify as
98 industry classifications.

Year # of firms # of transactions
2011 1,003,304 4,498,690
2012 1,026,152 4,585,893
2013 1,065,382 4,840,612
2014 1,071,622 4,893,952
2015 1,073,218 4,940,266
2016 1,074,365 4,991,876
2017 1,069,554 5,016,434
2018 1,074,802 5,084,967
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Table 2. Comparison of reducibility results based on the TSR and IO table data. N
is the number of nodes for each layer corresponding to the number of industrial sectors.
Mopt is the number of layers corresponding to the maximal value of the quality function
(qmax(•)) obtained through the greedy hierarchical clustering procedure and the value of the
reducibility �.

TSR N = 98
Year Mopt qmax(•) �

2011 47 0.023 0.000
2012 47 0.023 0.000
2013 47 0.024 0.000
2014 47 0.024 0.000
2015 47 0.025 0.000
2016 47 0.024 0.000
2017 47 0.023 0.000
2018 44 0.023 0.065

IO Table N = 32
Year Mopt qmax(•) �

2011 2 0.093 0.978
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Table 3. Statistics for the hierarchical communities detected using the multicoding Infomap
method for the industrial networks based on TSR data. ”# of com.” is the number of
all communities, and “# of irr.com.” is the number of irreducible communities, which are
communities that do not have any subcommunities. “# of nodes” denotes the number of
nodes, including industries, in irreducible communities.

Year Level 1 2 3 4
# of com. 377 47 9 -

2011 # of irr. com. 374 45 9 -
# of nodes 374 3,885 344 -
# of com. 353 40 8 -

2012 # of irr. com. 350 38 8 -
# of nodes 350 3,909 344 -
# of com. 297 37 4 -

2013 # of irr. com. 295 36 4 -
# of nodes 295 4,219 92 -
# of com. 286 31 18 3

2014 # of irr. com. 284 29 17 3
# of nodes 284 2,945 1,332 45
# of com. 277 37 4 -

2015 # of irr. com. 275 36 4 -
# of nodes 275 4,239 92 -
# of com. 269 40 7 -

2016 # of irr. com. 267 38 7 -
# of nodes 267 3,989 350 -
# of com. 268 39 10 -

2017 # of irr. com. 266 37 10 -
# of nodes 266 3,990 350 -
# of com. 261 45 10 2

2018 # of irr. com. 258 43 9 2
# of nodes 258 3,998 335 15
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Table 4. Statistics for the hierarchical communities found using the multicoding Infomap
method for the industrial network based on IO table data. “# of com.” is the number of
all communities, and “# of irr.com.” is the number of irreducible communities, which are
communities that do not have any subcommunities. “# of nodes” represents the number of
nodes, including industries, in irreducible communities.

Year Level 1 2 3
# of com. 3 44 3

2011 # of irr. com. 0 43 3
# of nodes 0 1,395 62

Table 5. Characteristics of hierarchical communities based on the TSR2011 data at the 1st
and 2nd level, including over 150 nodes. Parentheses indicate the percentage of prefectures,
and only communities that include two or more prefectures with a share of 5% or more are
outlined.

1st-level
Index Size Prefecture

2 701
Oita (12.8), Kagoshima (12.7), Okinawa (12.7)
Nagasaki (12.6), Kumamoto (12.4), Saga (12.1)
Fukuoka (12.1), Miyazaki (11.8)

3 339
Ehime (25.7), Kagawa (25.7)
Kochi (24.8), Tokushima (23.3)

2nd-level
Index Size Prefecture
1:1 242 Osaka (31.8), Kyoto (31.0), Shiga (28.9)

1:2 641
Tokyo (14.0), Ibaraki (13.9), Kanagawa (13.9)
Chiba (13.7), Saitama (13.1), Gunma (12.9)
Tochigi (12.8)

1:3 176 Hiroshima (49.4), Okayama (47.2)
1:4 178 Aichi (48.9), Gifu (47.8)
1:10 163 Shimane (50.3), Tottori (49.7)
1:14 164 Toyama (51.2), Ishikawa (48.8)
1:18 256 Aomori (33.1), Miyagi (33.1), Iwate (32.7)
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Table 6. Characteristics of hierarchical communities based on the IO Table 2011 data
at the 1st and 2nd level, including over 50 nodes. Parentheses indicate the percentage of
prefectures, and only communities that include two or more prefectures with a share of 5%
or more are presented.

1st-level
Index Size Prefecture

2 248
Oita (12.5), Kagoshima (12.5), Kumamoto (12.5)
Nagasaki (12.5), Okinawa (12.5), Fukuoka (12.5)
Miyazaki (12.5), Saga (12.5)

3 134
Kagawa (25.0), Ehime (25.0)
Tokushima (25.0), Kochi (25.0)

2nd-level
Index Size Prefecture
1:1 94 Chiba (33.0), Tokyo (33.0), Saitama (33.0)
2:1 62 Kagoshima (50.0), Okinawa (50.0)
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Table 7. Characteristics of hierarchical communities based on the TSR2012 data at the 1st
and 2nd level, including over 150 nodes. Parentheses indicate the percentage of prefectures,
and only communities that include two or more prefectures with a share of 5% or more are
presented.

1st-level
Index Size Prefecture

2 700
Nagasaki (12.9), Oita (12.9), Kagoshima (12.7)
Okinawa (12.7), Fukuoka (12.3), Saga (12.1)
Kumamoto (12.0), Miyazaki (12.0)

3 346
Ehime (25.4), Kagawa (25.4)
Tokushima (24.0), Kochi (24.0)

2nd-level
Index Size Prefecture

1:1 360
Hyogo (25.3), Osaka (24.2)
Kyoto (22.8), Shiga (21.7)

1:2 652
Tokyo (14.0), Ibaraki (13.8), Kanagawa (13.7)
Chiba (13.5), Gunma (12.9), Saitama (12.7)
Tochigi (12.6)

1:3 176 Hiroshima (49.4), Okayama (48.3)
1:4 180 Aichi (48.9), Gifu (47.2)
1:9 162 Shimane (50.6), Tottori (49.4)
1:13 167 Toyama (52.1), Ishikawa (47.9)
1:16 254 Miyagi (33.9), Aomori (33.1), Iwate (32.7)
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Table 8. Characteristics of hierarchical communities based on the TSR2013 data at the
1st and 2nd level, including more than 150 nodes. Parentheses indicate the percentage of
prefectures, and only communities that include two or more prefectures with a share of 5%
or more are outlined.

1st-level
Index Size Prefecture

2 808
Nagasaki (11.5), Oita (11.4), Kumamoto (11.3)
Okinawa (11.1), Kagoshima (11.1), Miyazaki (10.9)
Fukuoka (10.9), Saga (10.5), Kochi (10.1)

2nd-level
Index Size Prefecture

1:1 325
Hyogo (28.0), Osaka (27.1)
Kyoto (26.2), Shiga (12.6)

1:2 835
Ibaraki (10.9), Tokyo (10.9), Chiba (10.8)
Kanagawa (10.7), Fukushima (10.7), Miyagi (10.7)
Saitama (10.2), Tochigi (10.2), Gunma (10.2)

1:3 180 Hiroshima (48.9), Okayama (48.3)
1:4 181 Aichi (49.2), Gifu (47.5)
1:6 175 Kagawa (51.4), Tokushima (46.3)
1:11 169 Shimane (50.3), Tottori (48.5)
1:15 170 Toyama (51.8), Ishikawa (47.1)
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Table 9. Characteristics of hierarchical communities based on the TSR2014 data at the
1st and 2nd level, including more than 150 nodes. Parentheses indicate the percentage of
prefectures, and only communities that include two or more prefectures with a share of 5%
or more are presented.

1st-level
Index Size Prefecture

2 801
Oita (11.5), Nagasaki (11.4), Okinawa (11.4)
Kagoshima (11.2), Miyazaki (11.1), Fukuoka (11.0)
Kumamoto (10.9), Saga (10.9), Kochi (10.2)

2nd-level
Index Size Prefecture
1:1 192 Hyogo (46.4), Osaka (41.7), Nara (5.7)

1:2 1,283

Ibaraki (7.2), Hokkaido (7.2), Tokyo (7.2)
Chiba (7.2), Miyagi (7.2), Kanagawa (7.1)
Fukushima (7.0), Tochigi (7.0), Gunma (7.0)
Yamagata (6.9), Iwate (6.9), Saitama (6.9)
Aomori (6.9), Akita (6.8)

1:3 178 Okayama (49.4), Hiroshima (48.3)
1:4 180 Aichi (48.9), Gifu (47.8)
1:6 173 Kagawa (51.4), Tokushima (47.4)
1:11 151 Kyoto (51.0), Shiga (48.3)
1:12 171 Shimane (50.9), Tottori (48.0)
1:16 172 Toyama (50.6), Ishikawa (47.7)

33



Table 10. Characteristics of hierarchical communities based on the TSR2015 data at the 1st
and 2nd level, including over 150 nodes. Parentheses indicate the percentage of prefectures,
and only communities that include two or more prefectures with a share of 5% or more are
listed.

1st-level
Index Size Prefecture

2 898

Nagasaki (10.5), Kumamoto (10.2), Oita (10.2)
Ehime (10.0), Kagoshima (10.0), Okinawa (10.0)
Fukuoka (9.8), Miyazaki (9.7), Saga (9.6)
Kochi (9.5)

2nd-level
Index Size Prefecture
1:1 180 Hyogo (48.9), Osaka (44.4)

1:2 916

Tokyo (10.0), Kanagawa (9.8), Ibaraki (9.8)
Miyagi (9.8), Chiba (9.7), Fukushima (9.6)
Iwate (9.5), Tochigi (9.4), Gunma (9.4)
Saitama (9.2)

1:3 178 Hiroshima (49.4), Okayama (47.8)
1:4 177 Aichi (50.3), Gifu (48.6)
1:5 175 Kagawa (51.4), Tokushima (47.4)
1:11 151 Kyoto (51.0), Shiga (47.7)
1:12 170 Shimane (50.6), Tottori (48.2)
1:15 174 Toyama (50.0), Ishikawa (48.3)
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Table 11. Characteristics of hierarchical communities based on the TSR2016 data at the 1st
and 2nd level, including over 150 nodes. Parentheses indicate the percentage of prefectures,
and only communities that include two or more prefectures with a share of 5% or more are
listed.

1st-level
Index Size Prefecture

1 1,157

Nagasaki (8.1), Oita (8.0), Kumamoto (7.9)
Kagoshima (7.8), Ehime (7.8), Okinawa (7.8)
Miyazaki (7.7), Kochi (7.6), Fukuoka (7.6)
Saga (7.5), Kagawa (7.5), Yamaguchi (7.4)
Tokushima (7.3)

2nd-level
Index Size Prefecture
1:10 172 Kagawa (50.6), Tokushima (48.3)

2:1 263
Hyogo (33.1), Osaka (30.4), Kyoto (27.4)
Shiga (6.1)

2:2 653
Ibaraki (14.1), Tokyo (14.1), Kanagawa (13.8)
Chiba (13.6), Saitama (13.2), Tochigi (13.0)
Gunma (13.0)

2:3 175 Hiroshima (50.3), Okayama (46.3)

2:4 178
Aichi (50.0)
Gifu (48.3)

2:9 171 Shimane (49.7), Tottori (48.5)
2:12 174 Ishikawa (49.4), Toyama (48.9)
2:15 258 Iwate (33.3), Miyagi (33.3), Aomori (32.6)
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Table 12. Characteristics of hierarchical communities based on the TSR2017 data at the
1st and 2nd level, including over 150 nodes. Parentheses show the percentage of prefectures,
and only communities that include two or more prefectures with a share of 5% or more are
listed.

1st-level
Index Size Prefecture

1 1,073

Nagasaki (8.8), Kumamoto (8.6), Oita (8.6)
Okinawa (8.5), Kagoshima (8.4), Miyazaki (8.4)
Ehime (8.3), Kagawa (8.3), Kochi (8.1)
Saga (8.1), Fukuoka (8.1), Tokushima (7.7)

2nd-level
Index Size Prefecture
1:9 173 Kagawa (51.4), Tokushima (47.4)
2:1 183 Hyogo (47.0), Osaka (42.6)

2:2 652
Tokyo (14.1), Kanagawa (13.8), Ibaraki (13.8)
Chiba (13.7), Saitama (13.5), Tochigi (13.0)
Gunma (13.0)

2:3 179 Hiroshima (49.7), Okayama (48.0)
2:4 179 Aichi (49.2), Gifu (48.0)
2:11 171 Tottori (49.7), Shimane (49.1)
2:14 174 Ishikawa (49.4), Toyama (48.9)
2:17 257 Iwate (33.5), Miyagi (33.5), Aomori (32.3)
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Table 13. Characteristics of hierarchical communities based on TSR2018 data at the 1st
and 2nd level, including over 150 nodes. Parentheses indicate the percentage of prefectures,
and only communities that contain two or more prefectures with a share of 5% or more are
presented.

1st-level
Index Size Prefecture

2 714
Kagoshima (12.7), Oita (12.7), Nagasaki (12.6)
Miyazaki (12.6), Okinawa (12.6), Kumamoto (12.5)
Saga (12.2), Fukuoka (11.6)

3 354
Kagawa (25.1), Ehime (24.6)
Kochi (24.3), Tokushima (23.7)

2nd-level
Index Size Prefecture
1:1 176 Hyogo (48.9), Osaka (44.3)

1:2 654
Ibaraki (14.1), Tokyo (13.9), Kanagawa (13.8)
Chiba (13.8), Saitama (13.3), Gunma (13.0)
Tochigi (13.0)

1:3 175 Hiroshima (52.0), Okayama (46.3)
1:4 172 Aichi (49.7), Gifu (48.0)
1:11 172 Shimane (50.6), Tottori (48.8)
1:15 172 Toyama (50.6), Ishikawa (49.4)
1:17 259 Miyagi (34.0), Iwate (33.2), Aomori (32.0)
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