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1 Introduction
Code-sharing agreement (CSA) has been a prominent form of airlines alliance in the past
two decades. While airlines claim CSA confers benefits of extended networks beyond
what a single airline could offer, authorities raise concerns with anti-competitive effects
brought by CSA. Several empirical studies investigate the impact of CSA on market
competition and consumer welfare. However, most of them solely focus on fares, partially
because of the difficulty in measuring the product quality. Hence, the implication of
CSA for the quality of air-travel service and market competition is still unclear despite
the above arguments.

In this paper, we investigate the economic consequences of CSA on airlines’ incentive,
market outcomes, and consumer welfare. We particularly focus on two characteristics of
our data. First, the form of CSAs is relatively homogeneous, making the theoretical
analysis simple and more consistent. Basically CSA can be implemented in different
ways across each contract such as the quota of seats assigned to the partner. If the data
at hand contains several forms of CSA, the rigorous study will suffer from complicated
details and the larger parameter space. Contrary, in our data, regulations require all
airlines involved in CSA to sell the tickets of code-shared flights. An introduction of
CSA thus results in a combination of vertical relationship and partial ownership between
partners uniquely across markets.

Second, we focus on flight frequency as a measure of product quality and regard it
as an endogenous object. Introducing endogenous quality alter the incentives of airlines.
The implication of CSA in this situation is ex-ante ambiguous: It can aggravate the
anti-competitive effect by enhancing collusive behaviors, or have pro-competitive effect
by giving incentives to compete for additional revenue.

Our structural model incorporates these two features to study the mechanism of
CSA and its implication for market outcomes. The model consists of demand and supply
side, and describe the market competition as a Bertrand competition of differentiated
products. Extending the standard formulation, our model regards the fare and flight
frequency as equilibrium objects, determined endogenously through demand and supply
interaction. In addition, on the supply side, we view CSA as a contract that induces a
vertical relationship and partial ownership between the partners. Because the change
in the ownership structure affects the airlines’ incentive for both code-shared products
and non code-shared, products, or single-carrier products, the determination of fare and
quality differs from the standard Bertrand fashion.

We apply the structural model to the data set constructed from Japanese domestic
airline statistics. In particular, the timetable data provides detailed information including
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flight frequency and identity of code-shared flights. This detailed information facilitates
our estimation procedure. The airline market in Japan is suitable for studing CSA
implication in two ways. First, all code-sharing agreements are uniform in that the
compositions of agreement partners have few patterns and the contract forms is the
same, which simplifies the model analysis. Second, The government regulations on the
code-sharing practices are also useful in the estimation part.

The estimation result consists of the demand and supply side. The demand model is
based on the random coefficient model, which shows consistent results with the past
empirical studies. It also implies that the flight frequency is an important component
in consumers’ utility. The supply-side model consists of the marginal cost functions
and a code-sharing parameter, which governs the level of codeshare. The estimated
code-sharing parameters are around 0.09 to 0.4, i.e., a partner airline of CSA sells around
10 to 40% percentage of tickets of a code-shared flight, while it does not carry out any
actual operation.

Finally, using the estimated model, we conduct counterfactual simulations to quantify
the impact of code-sharing agreements. We calculate the market fares, flight frequencies,
and consumer welfare where the agreements does not affect competition. According
to the simulation results, if the flight frequencies are fixed, introducing CSA increases
fares by 15% and lowers the consumer welfare by 6%. Once we endogenize the flight
frequency, the flight frequency increases on average by 6% and alleviates the consumer
welfare loss. However, the anti-competitive effect of CSA via large fare raise is strong,
reducing the social surplus. To fruther investigate the impact of CSA, we decompose
the codeshare effect into several parts. We find that the horizontal partial ownership
amounts to half of the fare increase caused by CSA, and the airlines engaging in CSA
choose to impose higher price-cost margins than Non-CSA airlines.

Related Literature

This study relates to the literature on of domestic code-sharing agreement. Many of
the existing study focus on the effect on fares and consequences to the social welfare.
While early studies including Ito and Lee (2007) and Gayle (2008) employed reduced-
form approach on the price effect, several studies have examined the anti-competitive
effect of code-sharing agreement using structural estimation methods. Shen (2017)
builds a structural model of U.S. domestic codeshare, regarding CSA as horizontal
revenue-sharing rule. He explicitly estimates the degree of code-sharing, i.e., how much
revenue the agreement partners share each other. Gayle (2013) focuses on the vertical
relationship entailed by CSA to study the competitive effect of codeshare in the context
of double marginalization. Our study can be understood as a extension of both studies
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in that we build a model of both horizontal revenue share and vertical relationship.
In addition to such modeling strategies, our study also relates to two strands of

literature in industrial organization. The first one is the vertical relationship. Apart
from codeshare, several empirical studies have been conducted to examine the effect
of vertical relationship, such as Villas-Boas (2007), Bonnet and Dubois (2010), and
Crawford et al. (2018). In spirit of those research, we also focus on the problem of
double marginalization caused by vertical transaction, and its welfare effect.

The second strand of literature our study also contributes to is the on product quality.
Several empirical studies have been conducted recently to investigate the codeshare
effect on product quality. Brueckner and Luo (2014) estimates the reduced-form reaction
function to quantify the impact of strategic interaction between airlines on the product
quality, represented by flight frequency. Doi and Ohashi (2019) also use flight frequency
as product quality measure to carry out the structural estimation and post-merger
evaluation in terms of fare, frequency, and social welfare. Our approach resembles to
theirs in the treatment of flight frequency. In the context of codeshare, several empirical
studies employ reduce-form methods to examine the impact on product quality. Gayle
and Thomas (2015) use international airline data to examine the alliances, which includes
various forms of codeshare, in relation to routing quality. Their result implies that
the alliances enhance the routing quality. In US domestic market, Yimga (2022) uses
path quality as a quality measure and also finds that code-sharing agreement leads to
quality improvement in some cases. To our knowledge, in the context of codeshare, the
present study is the first empirical research to employ a structural model to quantify the
codeshare effect on product quality choice. We aims to provide insights from structural
approach.

The rest of the paper is organized as follows. Section 2 introduces institutional
details. Section 3 provides data used in the structural estimation. Section 4 describes
the structural model and identification strategy. Section 5 shows estimation results.
Section 6 presents our counterfactual simulation results. Section 7 concludes.

2 Institutional Background
This section provides an overview of the Japanese domestic airline market in relation
to CSA. CSA in Japan has a specific form: either of the two predominant incumbent
airlines always involves in marketing activity of code-shared flights, and their quota of
seats are under regulatory restriction. Also, most of the CSAs are tied with capital
relationships between airlines, which is supposed to enhance between-airline cooperation.
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2.1 Code-sharing practice in Japan

Japanese domestic airlines have been signing and expanding the code-sharing agreements
during the past decade. Figure 1 shows the evolution of the number of domestic routes
where some airlines make CSAs from 2011 to 2018. Compared with the number of
overall domestic routes, which steadily increases, that of the routes with code-shared
flights exhibits sharp increase especially in the early 2010s.

Figure 1: The evolution of the number of domestic routes containing code-sharing
agreements

We focus on three notable features of CSA in domestic Japan during this period.
The first is how they cooperate in an agreement. During this period, one agreement
partner operates the aircraft for the code-shared aviation service, and also sells a fraction
of seats of this aircraft by her own. The other partner is responsible for the rest of the
seats, and tries to sell them by his pricing policy. In other word, there exists a clear
distinction between the two partners in that one airline undertakes the operation of
aircraft1.

The second important detail is the identity of the airlines involving in CSA. In any
agreement during the sampling period, either of the two incumbent airlines, ANA and
JAL2, serves as one of the partners. Also, they always confine to marketing activity in

1. There are a different form of code-sharing agreement. They are beyond the scope of this paper.
2. We use three-letter code to represent airline companies throughout this paper.
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any agreement, i.e., they do not operate any aircraft as a code-shared flight.
Also, any agreement JAL is engaging in takes place where the market is monopoly

of the partner airline. Each partner provides aviation service and the market has no
other competing airlines, nor JAL. This monopoly structure is partially because of
the market sizes: partners of JAL are regional airlines and they offer flights in small
markets. Since the operating airlines are monopoly players, such an agreement does not
affect competition competition. Hence, we exclude those agreements from our empirical
analysis and concentrate on the agreements involving ANA. That allows us to reduce
the dimension of parameters to be estimated.

The third point is the quota of the code-shared seats, i.e., how much ratio of
seats each partner undertakes. A major concern on CSA is that it might dampen the
competition and harm the consumer surplus, especially when it includes a airline with
large market power. Having similar concerns in Japanese market, The Ministry of Land,
Infrastructure, Transport, and Tourism (MLIT) imposes legislative restrictions3 on the
quota assigned to the large marketing airlines: ANA and JAL are allowed to sell at
most 25% of the total seats of a code-shared flight. MLIT changed this ratio at the
beginning of 2013, from 25% to 50%.

We utilize the regulation imposed by MLIT to consider those numbers.

2.2 Airlines in domestic air transportation

This subsection overviews inter-airline relationships during the sampling period. The
two incumbents acquire capital stakes of several domestic airlines, which coincides with
CSA. This implies the possibility of between-airline cooperation via capital ties and
CSA.

To grasp the overview, we describe airlines’ relationship in Table A1, in the appendix.
Panels A and B refer to the group formed by ANA and JAL, respectively, while
C represents a group of airlines without any capital ties. It shows that those two
predominant airlines have some voting rights to the most of competitors to some degree.

It can be seen that the capital share distribution has two extremes: some airlines
has less than 20% shares owned by the dominant FSCs while the others are almost
fully owned. This is due to the regulation imposed by Ministry of Land, Infrastructure,
Transport, and Toursim (MLIT), which prohibits airlines from acquiring more than 20%
capital shares. From this observation, we regard those airlines with shares owned by
ANA/JAL less than 20% as independent competitors. On the other hand, the airlines
with owned shares more than 20% are reckoned as subsidiaries. We use this distinction to

3. On Use of New Preferential Quota for Joint Carriage, MLIT (2006)
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construct the ownership structure of product market competition later in the modeling
section.

3 Data
This section describes the data sets used in the empirical analysis. It is a panel data
containing flight-specific information such as origin-destination, fares, departure time,
and aircraft size with observations obtained biennially. We look at summary statistics
and results of preliminary statistical analysis to probe the market implication of CSA.

The first data is retrieved from published timetable data of domestic air-travel,
which allows me to access the microlevel panel data that contains characteristics of each
flight operated by an airline on a specific route. The data describes the exact schedule
information on quarterly basis, as we can see in the airline website or airport boards. As
a hypothetical timetable shown in Table A2, it tells which and when a flight is planned
to depart from and arrive at the endpoints with additional information on flight and
aircraft ID. It also specifies whether a flight is code-shared by which airline, if it is
shared.

The second source is Traveller Statistics in Domestic Airline Market published
by MLIT, conducted biennially in odd-numbered years from 2011 until 2017. From
all the passengers taking a plane on specific dates of November, the survey collects
detailed information including fares paid, the rank of seats, the ID of the flight, and
whether the ticket is direct or connecting. That enables us to construct microlevel
panel data of average fares for each flight, the operating airline, and market. Since this
data contains all flights departing on a particular date, we can also construct a flight
frequency measure for each period, market, and airline, which is regarded as product
quality of the air transportation service. To limit the heterogeneity across passengers, we
exclude observations that use first-class seats, connecting flights, or premiere discounts,
which account for around 15 to 20 % of the overall sample for each year.

The third is obtained from the Annual report on Air Transport Statistics, which is
again published by MLIT. The statistics provides the number of passengers conveyed by
airlines in most domestic OD pairs on monthly basis. We use this number to create a
panel of market-level share data, by combining it with the market size defined as the
geometric average of endpoint airports’ population. Note that an airport’s population
is specified as the population of the urban area where the airport is located. The
geographical definition and population data is from Kanemoto and Tokuoka (2002)4

4. This market size definition follows the procedure of Doi and Ohashi (2019) who empirically
investigate Japanese domestic airline.
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Combining these three data yields a panel data set with the observation unit being
the year- and market- level in 2011, 2013, 2015, and 2017. Since the market share data is
available at most route- and airline-specific level, We define a product as a market-airline
combination when employing the structural estimation. That is, a consumer evaluate
an air-travel service provided by an airline in terms of the day-level characteristics,
including average fares across tickets, the daily flight frequency, and the number of
flights operated in a peak demand time.

To separately treat the code-shared flights as a product, we use the survey statistics
to infer the number of passengers in the code-shared flights. First, we can calculate the
ratio of the respondents between the code-shared flights and purely operated flights.
Since the survey contains all the passengers in the given survey date, the calculated
ratio of respondents in turn allow me to deduce the market share of those two flights.

We also collect additional data required for improving estimation results, such as
demand or cost shifters. The cost shifters include jet-fuel spot prices and airport charge
fee. The former is obtained from the U.S. Energy Information administration as a
kerosene-type jet fuel spot price in U.S. gulf coast, and the latter is retrieved from the
MLIT website for state-owned airports, local administrators’ legislation records for local
airports, and each airport’s website for private ones. All fares, prices, and charge fees
are deflated using the consumer price index retrieved from OECD database.

Table 1 gives the summary statistics of product characteristics used in demand
and supply estimation in the subsequent sections. We divide products based on their
relationship to CSA: the left column represents the products whose owner is engaging
in CSA in the market, while the right column represents the product without any
relationship to CSA. Following the convention of the literature, we define a market
as a unique combination of time period and origin-destination. This table helps us
understand the feature of our data in relation to CSA.

Many of the product characteristics, including fares, peak-time ratio, aircraft size,
and per-flight charges, are similar between the two segments. However, following
characteristics exhibit a clear distinction: the number of competitors, market size, and
flight frequency. The difference in the first two, the number of competitor and market
size, indicates that the CSA are associated with larger market size. Similar pattern is
also reported in US domestic market by Gayle (2013).

The higher flight frequency in code-shared markets can be interpreted as a result
of their competitive environments: to steal passengers from competitors, airlines tends
to increase their product quality. The effect of CSA, however, is not clear from this
understanding with aggregated statistics. Airlines engaging CSA may have disincentive
from competing, thus inclined to lower the flight frequency. Since we only observe the
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aggregated values, the statistics does not describe the exact mechanism.
In short, the anti-competitive effect of CSA, if exists, is likely to dampen competitions

in large markets, thus harm the consumer welfare. The summary statistics, however,
does not provide clear evidence of such effect. That motivates us to conduct preliminary
analyses on the market outcomes and CSA.

Table 1: Summary statistics of product level data

CSA-related Non-CSA
share 0.003 (0.007) 0.005 (0.003)
market size (millions) 4.435 (4.881) 2.800 (3.619)
fare (1,000 JPY) 22.589 (4.859) 21.535(7.019)
flight frequency 4.201 (3.578) 3.557 (2.894)
code-shared dummy 0.490 (0.231) 0 (0)
peak time ratio 0.163 (0.270) 0.159 (0.228)
aircraft size (weight/ton) 71.331 (45.227) 70.467 (40.799)
aircraft size (#seats) 153.214 (85.107) 151.865 (83.218)
per-flight charge (1,000 JPY) 115.446 (79.324) 100.543 (76.381)
number of operating airlines 2.848 (1.243) 2.016 (1.041)

Observations 389 2,069
Note: The numbers in parentheses are standard deviations. The levels of fares and charges
are deflated in constant 2011 JPY, when exchange rate of U.S dollar to JPY was 86.7.
The left column corresponds to the products with owners involving in CSA in the market,
while the right corresponds to the products with owners not involving in CSA.

3.1 Preliminary analysis on the relationship between codeshare
and flight frequency

To further examine the relationship between CSA and market outcomes, we carry
out Regression Discontinuity (RD) study in this subsection. Although the graphical
representation may suggest anti-competitive effect of CSA, the estimates are insignificant
and does not provide conclusive evidence.

RD design requires three key elements: running variable, cutoff, and outcome variable.
Putting aside the assumptions for identification, we specify a specific RD design as
follows for the present analysis.

• running variable: time (quarter-level measurement unit)

• cutoff: introduction timing of codeshare
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• outcome variable: market outcomes

In this design, we aim to capture the impact of CSA on market outcomes. The iden-
tification of such effect depends on whether the continuity assumption holds (Cattaneo,
Idrobo, and Titiunik 2019). Suppose the number of passengers (market outcome) is
sufficiently smooth around the introduction timing of CSA for a given route. Then, if
agreements have any impact, the data will reveal discontinuous change in the observed
passenger volume. We try three market outcomes: fare, flight frequency, and passenger
volume.

Note that our design is not sophisticated in that the change in market outcomes
may reflect other causes than CSA. For instance, several agreements arise during the
agreement partners’ business crisis5. In such cases, the introduction of CSA may come in
parallel with a decline in passenger volume and flight frequency. The resulting estimates
are likely to overstate the impact of CSA. To deal with the concern, we try to adjust
such effect by including as much covariates as possible using the covariate-adjustment
method (Calonico et al. 2019). The covariates include fixed effect of time, airline, and
ODs and product characteristics such as average aircraft size. However, we are not
confident in the accuracy the obtained estimates.

Figure 2 shows the graphical representation of the result. The cutoff point, introduc-
tion of CSA, is normalized to be zero. And, for all outcomes, the study uses airline-level
observations and the triangular kernel function.

From the first two rows, the passenger volume and fare level, We cannot find any
prominent difference. Especially, the volatility in the passenger volume makes it difficult
to derive a inference from the graphs. For fares, as depicted in the second row, the
distribution of fares seem smooth around the cutoff point, while our data does not show
significant change at the timing of the agreement.

For flight frequency, the third row of Figure 2, we find relatively distinct change.
In particular, very after the introduction of code-sharing agreement, the observed
frequencies decreases by large amount. Although the estimated coefficient is not
significant as in Table 2, this result motives me to focus on flight frequency as well as
fare, in relation to code-sharing agreement.

The estimated effects are presented in the Table 2. Each columns corresponds to
the right side panels in Figure 2. Although all of them exhibit positive estimate, the
standard errors are large. Thus, although there may exist some apparent impact of CSA
introduction, the reduce-form analysis does not provide strong support for it.

5. An example is between ADO and ANA in around 2000.
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Figure 2: Graphic Evidence of codeshare impact on market outcomes from RD

(a) Number of passengers (all competitors) (b) Number of passengers (CSA partners
only)

(c) Fare (All competitors) (d) Fare (CSA partners only)

(e) Flight frequency (All competitors) (f) Flight frequency (CSA partners only)

Note: The horizontal axis represents the relative time to the introduction of CSA, measured at quarter level. The
vertical axis represents the market outcomes. Each point represents the average value of the market outcome across
airlines, at given time. For covariate adjustment, we include fixed effects of time, airline, and ODs and other product
characteristics described in Table 1.
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Table 2: RD study of the codeshare effect on flight frequency

outcome variable passneger volume fare flight frequency
codeshare impact 0.001 3.000 -0.551

(0.121) (17.565) (0.492)
kernel Triangular Triangular Triangular
RD specification Quadratic polynomials Quadratic polynomials Cubic polynomials
Number of Observation 1570 1570 1570

* p < 0.1, ** p < 0.05, *** p < 0.01
Note: All estimates are obtained by applying covariate-adjustment method of Calonico et al. (2019), where we use covariates of
flight characteristics and market characteristics.

4 Methodology
In this section, we describe the structural model used to analyze Japan domestic market
and the impact of code-sharing agreements. The model consists of demand side and
supply side. For the demand, we utilize the discrete choice framework presented by
McFadden (1981). Our model treats both product fares and quality, the flight frequency
in our setting, as endogenous variables. Then, we model the supply side as Bertrand
competition of differentiated products with several modifications. First, as coherent with
the demand-side specification, airlines choose flight frequency as well as fare to maximize
their profit. Second, we specifically formulate CSA as an inter-airline agreement that
introduce (i) partial ownership and (ii) vertical relationship. share The degree of CSA
is represented by an additional unobserved parameter, which represents the quota of
seats assigned to partner airlines.

4.1 Demand specification

In this subsection, we describe the demand-side model and estimation strategy. A
discrete-choice model is considered with random-coefficient assumption. The flight
frequency, perceived as product quality, is considered as endogenous as well as fare.

Following the methodology of those studies on the airline market, including Berry
and Jia (2010) and Doi and Ohashi (2019), We utilize the aggregated-level share and
product characteristics information for each market and airline and exclude ticket-level
information such as advanced purchase due to data limitations. Hence, our demand
model assumes that consumers value the aggregated characteristics of an airline’s flights
in a market, rather than a flight-specific information.

As a formal definition, we consider a consumer’s choice set at time t in a market

12



m ∈ {1, 2, . . . , Mt} as a set of product j ∈ {0, 1, . . . , Jmt}, where j = 0 denotes the
outside option of not using any flights.

We consider a random coefficient nested-logit (RCNL) model, where the effect of
fares and flight frequency are regarded as heterogeneous across consumers. The formal
specification of the indirect utility function of consumer i is written as

uijmt = αipjmt + βifjmt + x′
jmtγ + ξjmt + εijmt (1)

= δjmt (pjmt, fjmt, xjmt, ξjmt; α, β) + µijmt (pjmt, fjmt, Di; Π) + ξigrt + εijmt (2)
δjmt = αpjmt + βfjmtx′

jmtγ + ξjmt

µijmt = [pjmt, xj]′ ∗ ΠDiαi

βi

 =
α

β

+ ΠDi + Σ
νp

i

νf
i

 , (3)

where (αi, βi) denotes the consumer-specific coefficients and (α, β) is the average effect
of price and frequency. p denotes the average fare, f flight frequency, and x additional
exogenous variables, including code-sharing indicator, airline-, market-, or time-specific
fixed effects. Di represents the demographic variables consisting of demeaned income
and age, and νi = (νp

i , νf
i )′ is the random variation in each consumer’s taste. The

linear parameters of the RCNL model can be summarized into θd
1 = (α, β, γ′)′, while the

nonlinear parameters of RCNL model can be summarize into θd
2 = (Π, Σ). For the sake

of simplicity, we assume that Σ is a diagonal matrix and denote its diagonal elements as
(σp, σf ), and Di and νi are independently distributed.

For the unobserved components of this model, ξ represents product-level structural
error in utility, which is not captured by the above elements, The correlation between ξ

and p and f raises endogeneity issues be addressed in the identification argument later.
We assume that E[ξjmt] and the mean indirect utility from the outside option be 0 as
normalization. εijmt denotes the idiosyncratic mean-zero error of the consumer-specific
deviation from mean utility. A distribution assumption on εijmt leads to a corresponding
demand system and substitution patterns between products. As long as the Type-I
extreme value distribution, we assume that εijmt yields a nested-logit structure, where
all the products are placed in a single nest whereas the outside goods are separated to
another. We use ρ to denote the degree of substitution within the nest. as ρ approaches 0,
the nested-logit model collapses to a standard logit model without nests; as ρ approaches
1, then the degree of substitution within the nest is strengthened.

To derive the market share, we assume that consumers choose a single option that
gives them a highest utility. Then, integrating over the distribution of εijmt returns
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market shares as

sjmt =
∫ exp (δjmt + µijmt)

1 +∑Jmt
k=1 exp (δkmt + µikmt)

dF (Dit, νit) (4)

Since this market share function depends on the distribution of Dit and νit, we
employ the approximation method that uses random draws of Di and νi to compute
market shares from the data. Following Gandhi and Nevo (2021), Dit is drawn from the
National Population Census, and νit from i.i.d standard normal distribution by modified
latin hypercube sampling (MLHS) methods (Hess, Train, and Polak 2006) Assuming
Π = Σ = 0 yields the standard nested-logit specification. We also estimate such demand
specification and present in Section 5.

The identification problem arises when we estimate the demand parameters θD =
(θd

1, θd
2, ρ). We follow the approach of Berry, Levinsohn, and Pakes (1995), which derives

the generalized method of moments (GMM) estimator from the population moment
condition E[Z ′

jmtξ
∗
jmt(θD

0 )] = 0. Z is an appropriate vector of instruments, and ξ∗ is
the product-specific structural error defined as a function of demand parameters. θD

0
denotes the true demand parameter.

Following Berry, Levinsohn, and Pakes (1995), the GMM estimator for demand-side
can be defined as

θ̂D = arg min
θ

ξ∗(θ)′ZW −1
d Z ′ξ∗(θ) (5)

for some positive definite weighting matrix Wd. To obtain an optimal weighting, we
employ the two-step GMM estimator.

For consistency, we use several instruments that provide plausible exogenous variation.
The first set of instruments is the cost variables that are excluded from the indirect
utility function and exhibit no correlation with ξ, which is the typical strategy in the
empirical study of demand estimation. We use the average flight characteristics including
aircraft size, available number of seats, and maximum takeoff weight. Those variables
not only change fares, but also change flight frequency through the maximum number
of passengers transported at once. Also, we interact those variables with market-level
demographic variables, income and age, to identify the nonlinear parameters. Another
set of instruments that affect cost but not demand is composed of fuel expenses. We use
a three month lags in the three month moving average of kerosene jet-fuel spot prices
to represent the fuel expense for a flight. We also interact this value with the aircraft
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weight to reflect the approximate amount of loaded fuel. Finally, we use airport charge
fees airlines incur at each take-off. The per-flight charges are calculated based on the
maximum takeoff weight and noise level at the departure, which we calculate for each
airport and aircraft combination, and then take the average in a given year-market-airline
combination.

4.2 Supply specification

In this subsection, we build a model of airline market competition to consider the
implication of CSA and derive an estimation strategy. We focus on three issues:
the vertical structure of the code-shared flights, revenue-sharing rules of CSA, and
unilateral ownership of the capital stake between agreement partners. The solution of the
comprehensive model reduces to a familiar matrix representation as in Nevo2000cereal.

4.2.1 Assumptions in the supply model

We describe salient assumptions in our model of airline market competition. An
assumption on individual pricing of code-shared products leads to the vertical structure
between CSA partners. Also, we suppose that the CSA works as revenue-sharing rule
and capital stake holding induces partial ownership.

We consider a Bertrand competition of differentiated products with a subset of
products being code-shared. For the sake of simplicity, we suppress the market and
time subscription henceforth. Suppose that the market consists of two airlines, A and B,
with each airline operating a single-carrier flight a and b. There exists the other product
in this market, the code-shared flight denoted by c, which is operated by airline A.

We assume three structures in this particular setting. First, the airlines follow the
revenue-sharing rule for the code-shared product. This rule assigns the code-sharing
parameter λ ∈ (0, 1) to the airline B, which denotes the partial ownership of this airline
to the code-shared product c. Depending on the other assumptions, the airline B either
sells λ portion of the code-shared product by themselves or just receives the revenue
from the airline A. In the revenue-sharing structure, since both airline have claims over
the code-shared product, they are inclined to lessen the competition to save the profit
generated from it. Similar assumption on the CSA is found in Shen (2017).

Second, we assume that both partners, A and B, separately sells the tickets of the
code-shared product c, which induces a vertical relationship between the two airlines.
In the past empirical studies using structural approach, only one airline is supposed
to determine the retail price of code-shared products, whether it involves vertical
relationship (Gayle 2013) or not (Shen 2017).
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On the other hand, under our assumption, the λ fraction of seats of the code-shared
product are sold by airline B with its own pricing scheme as often seen in reality. This
λ amount of aviation service is manufactured by the airline A, and sold to the airline B

with a wholesale price w. Then, the airline B sells this seats based on its own pricing,
denoted by pb

c. The remaining 1 − λ fraction of the seats are sold by the airline A with
no wholesale price. We denote this retail price as pa

c . Figure 4 illustrate the structure.
We define the average price of the code-shared product c as pc = (1 − λ)pa

c + λpb
c.

Note that without this assumption, it is easier to interpret the code-sharing parameter
λ as the rate of simple revenue-sharing rule: the airline A exclusively sells the product
a and c, and then through some undisclosed negotiation the λ portion of the revenue
from the product c is transferred to the airline B.

Figure 4: The vertical relationship in the market with code-shared product

The vertical relationship between two firms with a code-shared flight is represented. Next to
each arrowhead is the wholesale price and retail fare for the product. The purely-operated
product a and b, and a part of the code-shared product (with fare pa

c ) are vertically integrated
with wholesale prices being zero, so we put to the side of arrows pj instead of (0, pj). The
remaining part of the code-shared flight c, marketed by airline B, has wholesale price w and
retail price pc

b as attached to the arrow from upstream A to downstream B.

In order to analyse the pricing behaviors, we assume that only the average fares
of each flight affect the demand, i.e., the demand is a function of p ≡ (pa, pb, pc)′,
independent from pj

c or identity of the marketing airline for code-shared flights. This
assumption allows us to derive the moment conditions from the first-order conditions of
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airlines’ profit maximization problem. Also, it alleviates the data limitation problem:
for the code-shared products, we do not have the information of the airlines from which
consumers purchased their tickets, so we cannot construct pj

c, but only pc for those
products. The validity of this assumption is sustained as long as the fare dispersion of
the code-shared flight is not too severe compared with the other single-carrier flights; in
the first place, many BLP type analyses use the average prices to represent the demand
function, and we hope this applies to the present situation.

4.2.2 Solution of the supply model

We solve the supply-side model as a version of Bertrand competition of differentiated
products. Although the observable data is limited, we show that a relevant form of
price-cost margin can be derived from the airlines’ optimal choice, using matrix notation.
The quality determination is also considered.

Following the studies of vertical relationship such as Villas-Boas (2007) and Gayle
(2013), we first solve the downstream pricing decision, then move to the upstream
wholesale price decision. Then, the frequency decision is considered.

Suppose that we have a market with two competing airlines A, B and three products
a, b, and c. The first two products are the single-carrier products of airlines A, B,
respectively. The product c is code-shared: the airline A operates the aircraft, and
airline B sells λ ∈ (0, 1) portion of it to the consumer.

Note that we omit the cross ownership stemming from mutual capital holding for
this section. As depicted in O’Brien (2000), such a capital structure can affect the
market competition. For the sake of simplicity, we leave the argument related to this
point to Appendix B. The intuition of this model is not affected by the exclusion of
cross ownership.

We first look at the downstream price decisions. Assuming the vertical structure,
airline A decides pa, pa

c , fa, and fc to maximize the downstream profit. That is, she
decides the ticket fares after the wholesale transaction with airline B was conducted.
The airline A’s problem is written as

max
pa,pa

c ,fa,fc

πA(p, f) =
[
(pa − mcp

a) · qa(p, f) − mcf
a · fa + (1 − λ)(pa

c − mcp
c) · qc(p, f) − mcf

c · fc

]
for given w, pb, and fb,

where mcj
p and mcj

f are the per-passenger and per-flight marginal cost of product j,
respectively. qj(p, f) ≡ M × sj(p, f) represents the demand function for flight j. apc

denotes the average per-flight airport charge.

17



which means she decides the ticket fares after the wholesale transaction with airline
B. We assume that the per-passenger marginal cost of the code-shared flights, mcp

c ,
is considered only for the fraction of (1 − λ), and the rest of the per-passenger cost is
assigned to the upstream stage6. Note that she incurs full per-flight marginal cost for
the code-shared product, mcf

c , since she actually operates the aircraft.
The first-order conditions (FOC) with respect to pa and pa

c are written as

0 = qa(p, f) + ∂qa

∂pa

(p, f)(pa − mcp
a) + ∂qc

∂pa

(p, f) · (1 − λ)(pa
c − mcp

c) (6)

0 = ∂qa

∂pa
c

(p, f)(pa − mcp
a) + ∂qc

∂pa
c

(p, f) · (1 − λ)(pa
c − mcp

c) + (1 − λ)qc(p, f)

⇔0 = ∂qa

∂pc

(p, f)(pa − mcp
a) + ∂qc

∂pc

(p, f) · (1 − λ)(pa
c − mcp

c) + qc(p, f) (7)

where we utilize the assumption of pc = (1−λ)pa
c +λpb

c, which implies ∂qi

∂pa
c

= (1−λ) ∂qi

∂pc
.

Recall that the airline B’s problem is written as

max
pb,pb

c,fb

πB =
[
(pb − mcp

b) · qb(p, f) − mcf
b · fb + (pb

c − w) · λqc(p, f) + κπA(p, f)
]

for given pa, pa
c , w, fa, fc.

max
pb,pb

c,fb

πB =
[
(pb − mcp

b) · qb(p, f) − mcf
b · fb + (pb

c − w) · λqc(p, f)
]

for given pa, pa
c , w, fa, fc.

Putting aside the flight frequency, FOCs with respect to pb and pb
c are as follows.

0 = qb(p, f) + ∂qb

∂pb

(p, f)(pb − mcp
b) + λ

∂qc

∂pb

(p, f)(pb
c − w) (8)

0 = ∂qb

∂pc

(p, f)(pb − mcp
b) +

(
λ

∂qc

∂pc

(p, f)(pb
c − w) + qc(p, f)

)
(9)

where Eq. (8) is for pb and Eq. (9) for pb
c. We use similar technique to derive (9) to

(7): ∂qi

∂pb
c

= λ ∂qi

∂pc
.

6. This assumption is innocuous because we can add up the downstream marginal cost and upstream
marginal cost eventually.
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The interpretation of (8) is straightforward: B behaves as if the product c is partially
owned by her since she sells λ part of code-shared product. Similar interpretation holds
for Eq. (9), but we need slight modification on the second term. Since the fare offered by
the airline B, pb

c, partially change the average fare of code-share product c, the marginal
change in its demand responding to an increase in pb

c is discounted by λ.
Collecting the FOCs with respect to prices, (6), (8), (7), and (9) yields the following

matrix representation.


qa(p, f)
qb(p, f)
qc(p, f)
qc(p, f)

 = Ωp(λ) ⊗ ∆p


pa − mcpa

pb − mcp
b

pa
c − mcp

c

pb
c − w

 (10)

where Ωp(λ) ≡


1 0 1 − λ 0
0 1 0 λ
1

1−λ
0 1 0

0 1
λ

0 1



∆p =


∇paq̃(p, f)T

∇pb
q̃(p, f)T

∇pa
c
q̃(p, f)T

∇pb
c
q̃(p, f)T

 (11)

q̃(p, f) =


qa(p, f)
qb(p, f)
qc(p, f)
qc(p, f)

 (12)

where Ωp is the ownership matrix in this model. The third row and the forth row are
normalized so that the diagonal elements take the value 1. ∆p is the price derivatives of
the demand function for all four prices, pa, pb, pa

c , and pb
c in this market.

Hence, we can obtain the matrix representation of price-cost margins of four prices
as


pa − mcp

a

pb − mcp
b

pa
c − mcp

c

pb
c − w

 = − (Ωp(λ) ⊗ ∆p)−1 q̃ (13)
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Since we observe aggregated price of the code-shared product pc, instead of pa
c and

pb
c, we need to manipulate (13) to obtain the price-cost margin for pc. Multiplying a

following matrix T yields the desired result.


pa − mcp

a

pb − mcp
b

pc − mcp
c − λ(w − mcp

c)

 = T


pa − mcp

a

pb − mcp
b

pa
c − mcp

c

pb
c − w

 (14)

= −T (Ωp(λ) ⊗ ∆p)−1 q̃

where T =


1 0 0 0
0 1 0 0
0 0 1 − λ λ


That is, T is a operation by which we take a weighted sum of the third row and

the forth row and eliminate the forth row. By extracting the first to third rows of (14),
we obtain the downstream markup terms, which still contains the upstream markup
λ(w − mcp

c).
To derive the equilibrium price for code-shared flights pc, we solve the upstream

problem. The upstream airline A decides the wholesale price of the code-shared seats
vis-a-vis the marketing airline B, which is formulated as

max
w

λ(w − mcp
c)qc(p, f) (15)

subject to pb
c = pb

c(w)

where pc(w) is derived from the first-order condition of the airline B’s problem with
respect to the pb

c. A’s profit maximization problem is subject to the upstream pricing
equation for the code-shared product. This is because the airline A knows that λ fraction
of the code-shared product is sold by her partner and the ticket price is dependent
on the wholesale price, as well as her own decision at the downstream market. From
the first-order condition with respect to the wholesale price, we can derive the optimal
wholesale price as

w∗ = mcp
c + λ−1

(
−∂qc

∂w

)−1

qc(p, f)
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where ∂qj/∂w is the derivative of product j with respect to wholesale price w.
In Appendix B.2, we discuss how to compute this derivative and its dependence on the
code-sharing parameter λ. Substituting this to the pricing equation Eq. (14), we obtain
the equilibrium price-cost margins

p − mcp = −T (Ωp(λ) ⊗ ∆p)−1 q̃ +


0
0

−
(

∂qc

∂w

)
qc(p, f)

 (16)

where p =


pa

pb

pc

 , mcp =


mcp

a

mcp
b

mcp
c


The price-cost margins consist of the downstream and upstream markup terms. The

downstream markup is represented by the first term of the right hand side of Eq (16).
The upstream markup, only relevant for the code-shared product, is represented by the
second term, which depends on the wholesale price derivative.

Utilizing those markup equations, We can write down the first-order conditions for
flight frequencies fa, fb, and fc as

mcf
a = ∂

∂fa

qa(pa − mcp
a) + (1 − λ) ∂

∂fa

qc(pa
c − mcp

c) (17)

mcf
b = ∂

∂fb

qb(pb − mcp
b) + λ

∂

∂fb

qc(pb
c − w) (18)

mcf
c = ∂

∂fc

qa(pa − mcp
a) + (1 − λ) ∂

∂fc

qc(p, f) (19)

which allows us to estimate the per-flight marginal cost function.
The matrix representation for the quality decision can be derived in a similar way.
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mcf =


1 0 0 0
0 1 0 0
0 0 1 0

[Ωf (λ) × ∆f
]


pa − mcp
a

pb − mcb
b

pa
c − mcp

c

pb
c − w

 (20)

where Ωf (λ) =


1 0 1 − λ 0
0 1 0 λ
1

1−λ
1 1 0

0 0 0 0


A slight modification of the ownership matrix, from Ωp to Ωf , is needed because of

the dimension of quality variable f .
We can also build different models by modifying the ownership matrix or the

dimension of variables. For example, we can consider a extreme case of anti-competitive
effect of CSA: the airlines engaging in CSA behave collusively. In that case, we have a
following matrix representation.

p − mcp = − (Ωp
collusion ⊗ ∆p)−1 q

where Ωp
collusion =


1 1 1
1 1 1
1 1 1


We employ such alternative specifications to verify the appropriateness of our model

assumption in Section 5 and to explore the effect of CSA in Section 6.

4.2.3 supply estimation

We describe the estimation approach of the supply-side parameters based on GMM
argument.

In order to estimate the marginal cost functions, we specify the per-passenger and
per-flight marginal costs as

log
(
mcp

jmt

)
= w′

jmtγ
p + ηp

jmt (21)

log
(
mcf

jmt + apcjmt

)
= w′

jmtγ
f + ηf

jmt (22)

(23)
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where wx
jmt denotes the observed product characteristics that affect marginal costs,

including fuel price, average aircraft size, engine compassion ratio, and fixed effects. ηx
jmt

denotes the structural error that is not captured by wx
jmt. apcjmt denotes the per-flight

airport charge. We assume that those observed characteristics are independent from the
structural error.

Taking the demand estimation result as given, we estimate the supply side of the
model. Based on the discussion in the previous section, the supply-side parameters to
be estimated are summarized to the vector θs = (γp, γf , λ)>, and we define η∗(θs; θd)
to represent the stacked structural errors as a function of the given parameter values.
Specifically, η∗ consists of ηp∗ and ηf∗, where ηp∗ comes from markup term equations Eq.
(16), and ηf∗ from Eq. (20). Then, we can define the GMM estimator using appropriate
instruments Zs

θ̂s = arg max
θ

η∗(θ; θ̂d)ZW sZ>η∗(θ̂; θd) (24)

To obtain a consistent estimator, we have to deal with the endogeneity problem
arising from the markup terms, which contain unobserved cost shocks through demand
functions. Since our model implies that the price-cost margins of some products contains
other products’ price-cost margins, it is inappropriate to employ cost shifters of others,
wx

−j as IV. Hence, we use two types of demand shifters that do not enter in the supply-
side model as instruments, following the argument of Berry and Haile (2014). The first
is the demand shifter included in the demand system linearly, the peak time ratio of
each product. As we discuss in Section 5, it impacts the demand in a positive way by
providing consumers with a convenient schedule. The second is the non-linear part of
demand shifters, that is, changes in the distribution of demographics across markets.
For example, demand and markups for products may be higher in markets with aging
population, who prefers comfortable transportation; the marginal costs, on the other
hand, is unlikely to be affected by demographics.

5 Results

5.1 Demand side

The table 3 shows the results of demand estimation. Each column corresponds to
different specifications. Columns (1) corresponds to the nested-logit specifications,
where the distributions of random coefficients are assumed to be degenerated. From
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(2) to (4), we show the estimation results of RCNL specifications: (2) is that the basic
specification, whereas (3) and (4) extends it to include codeshare-related variables in
consumer tastes. The column (4) shows the result of RCNL model with market-, airline-,
and year-fixed effects.

Many estimates exhibit statistically significant values with appropriate direction in
their signs. All estimated fare coefficient is statistically and economically significant.
Specification (1) yields the average own-price elasticity of −1.97, which is in line with
the past finding in both Japanese domestic airline (Doi and Ohashi 2019) and U.S.
airline market (Gayle 2013). The RCNL gives similar own price elasticity from 1.93 to
−2.51.

The RCNL specification has positive estimates for flight frequency. In the nested-logit
specifications, we add the square term of the flight frequency to capture its impact
on consumer taste as flexible as possible. Since the flight frequency is endogenized in
the supply model, we also calculate the own-frequency elasticity to see the relative
importance of frequency for consumers. The nested-logit specification yields average
values around 0.57, whereas the RCNL model gives around 0.821. Those values implies
that consumers evaluate frequency and will respond to the change in frequency elastically.

We also try to consider demand-side effect of codeshare in several ways. First,
the estimated coefficient of codeshare dummy is negative, and significant in some
specifications. The negative signs imply that code-shared products are perceived as
low-quality products by consumers, as Ito and Lee (2007) suggest. This argument is
based on the fact that consumers cannot use first-class seats or only receive limited
in-flight services compared to those of FSCs.

In the present data set, some consumers of code-shared flights purchase their tickets
from the operating airline’s website. For those consumers, since the aviation service
is indifferent whether they use a code-shared or single-carrier flight, the quality of
code-shared products should be reckoned same as the the single-carrier. The above
argument of inferior product quality only applies to the consumers from marketing
airlines, and the negative estimates are supposed to be driven by these consumers.
To verify this conjecture, in column (3) we include the interaction of the codeshare
dummy and the regulation dummy that indicates whether the observation time is after
the regulatory change in the ceiling of code-sharing level. Since the regulatory ceiling
increased from 25% to 50% in 2013, the ratio of consumers from marketing airlines
are likely to increase; that means the code-shared flights are more disliked on average,
resulting in the negative coefficient of this interaction dummy. Although not statistically
significant, the coefficient of the interaction shows negative sign. This result supports
the Ito and Lee (2007)’s hypothesis.
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Along with the negative side, we also consider the positive effect of codeshare
in demand side in the column (4). First, we include the marketing airline dummy,
capturing the benefit of expanding the consumer base. By codeshare, the product can
reach consumers in both airlines’ consumer base. The dummy tries to represent this
effect. Also, we add flight frequency of the marketing airline for a code-shared product.
The higher the flight frequency of the marketing airline’s product is, the more likely
consumers of the marketing airline are to find their convenient departure time. Both
coefficients are expected to be positive, which is consistent in the result presented in the
columns (4).

The nest parameter, ρ, is estimated around 0.3, which is again consistent with the
past findings as in Doi and Ohashi (2019). Relatively low value of this estimate indicates
that substitution between air travel and other transportation methods is somewhat
strong. It is known that the high-speed railway (HSR) is well-developed in Japan and
has been a prominent competitor in a certain transportation markets. While we try to
consider the presence of HSR by incorporating the market-fixed effect, the result implies
the relevance of different modes of transportation as substitutes.

The demand specification also includes several variables reflecting the airline-market
characteristics. The dummy variable of code-shared flight has a significantly negative
estimate, implying that consumers regard code-shared products as low-quality products
by consumers as Ito and Lee (2007) suggest. The dummy of slot control airports, which
takes value one if either of the endpoints airport is slot-controlled by regulators due to
congestion, does not exhibit significant estimate. This is possible because the market
specific effect absorbs the most of such congestion or low-convenience disutility from this
variable. We also include the variable that indicates the ratio of flights which departs
during the peak time. As many flights are departing in peak time, that route is expected
to become more convenient, which is consistent with the significantly positive estimates.

Henceforth, we use the specification (2) as the demand function.
Note that the overidentification test is not rejected at 5% significance level for all

the four specifications, implying that we can not reject the null hypothesis of the valid
moment conditions.

5.2 Supply side

This subsection provides the estimation results on supply-side model with marginal
cost function and profit sharing rule with code-sharing agreements. We also present
Rivers-Vuong test of non-nested models in order to compare the estimated model with
the model under different assumptions, such as CSA-cartel hypothesis.

Table 4 shows the estimated supply-side model of code-sharing parameters and
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Table 3: Results of demand estimation

Model: Nested-Logit RCNL
(1) (2) (3) (4)

fare (hundreds, JPY) -0.0127∗ -0.0457∗∗∗ -0.0843∗∗ -0.0771∗∗

(0.0017) (0.0021) (0.0041) (0.0391)
flight frequency -0.1142 0.1479 0.302 0.3249

(0.0809) (0.2001) (0.2261) (0.3444)
(flight frequency)2 0.0160∗∗∗

(0.0056)
code sharing dummy -0.3291∗∗∗ -0.1371 -0.1556 -0.9199∗∗∗

(0.0998) (0.3187) (0.2772) (0.2376)
code sharing × regulation -0.1096

(0.3492)
marketing carrier dummy 0.8811∗∗∗

(0.2353)
flight frequency (CSA partner) 0.0110

(0.0543)
slot control dummy 0.0236 -0.1603∗∗∗ -1.494∗∗∗ -1.339∗∗∗

(0.1418) (0.1364) (0.4218) (0.3368)
peak time ratio 0.076∗∗ 0.425∗∗ 0.2587 0.3382∗

(0.0373) (0.2153) (0.2812) (0.2112)

ρ 0.3465∗∗∗ 0.3133∗∗ 0.2891∗∗∗ 0.3232∗∗∗

(0.1615) (0.1684) (0.1442) (0.1449)
σp -0.0083∗∗ 0.0187∗∗

(0.0033) (0.0083)
σf 0.017 0.1353 -0.2343

(0.245) (0.2897) (0.4057)
Fixed-effects
OD Yes Yes Yes Yes
Airline Yes Yes Yes Yes
First-stage F statistics 24.787
GMM objective function value 0.005 0.006 0.006 0.006
Number of Observations 2,460 2,460 2,460 2,460

* p < 0.1, ** p < 0.05, *** p < 0.01
Note: The numbers in parentheses are standard errors that are clustered by markets.
The level of prices are deflated in constant 2011 JPY, when exchange rate of U.S.
dollar to JPY was 86.7. We omit the estimates of Π for the sake of simplicity.
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marginal cost functions. We estimate two models under different assumptions. The
first model, presented in the column A is the model embodying all the assumptions we
explain in Section 4.2: CSA induces vertical relationship and revenue-sharing between
airlines, and airlines may have some capital stake of other airlines, which elicits the
change in airlines’ incentive.

The first panel shows the estimates of CSA parameters λ. To reduce the dimension
of parameters, we split the sampling period into two folds based on the regulation. The
first period is 2011, before the regulatory maximum of λ changes from .25 to .5 in 2012.
We denote it by λ∼2012. The other period is 2013, 2015, and 2017, which is denoted by
λ2012∼.

In both periods, estimates are statistically significant at 5% level, and consistent
with the regulatory ceiling. λ∼2012 is substantially lower than the supposed ceiling value,
while it is compatible with the study of U.S. domestic CSA (Shen 2017). Although he
focuses on a particular period of 2004, our result suggests that the practice of CSA
significantly changes as the regulation alternates.

The estimates of marginal cost functions implies the existence of economy of scale,
which is consistent with other findings. As aircraft size increases, the per-passenger cost
significantly and substantially decreases. On the other hand, the increase in aircraft
size raises per-flight cost, possibly because of higher operational costs associated with
larger aircrafts. The interaction of fuel price and aircraft size does not exhibit significant
estimates. This can be attributed to the high-dimensional fixed costs included in the
cost functions.

The coefficient on the codeshare dummy captures the cost efficiency associated with
codeshare, which exhibits statistically and economically significant value of −0.2. That
is equivalent to around 15% decrease in per-passenger marginal cost for a product with
average level marginal cost of 145 per passenger. The main source of cost efficiency can
be considered as the effective coordination of marketing system, as pointed in Chua,
Kew, and Jong (2005). The cost efficiency does not appear in the per-flight cost function,
supporting our interpretation and suggesting that CSA does not affect the operational
cost of aircrafts.

The other column, B, presents the results of a different model from the full-assumption
model A: in model B, we assume that the cross ownership of capital stake does not affect
the airlines’ incentive. That is, even if an airline XXX is acquiring certain amounts of
capital stake of another airline YYY, the decision of both airlines does not change7.
Although two models has a common form of CSA and CSA paramters λ, airlines’ decision

7. In model A, such an assumption allows ANA to consider the revenue flow via capital stake from
ADO, for example. That leads to the higher markup charged by ANA. For the detail, see Appendix B
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may differ because of the capital stake.
The results on the CSA parameters exhibits a distinction between the two models.

In both periods, they are estimated 6-15% higher in the model B. Hence, we can say
that CSA and capital relationship are complements in the following sense: to justify the
same amount of markups, airlines without capital relationship must enhance the degree
of CSA. On the other hand, the estimates of cost parameters are indifferent between
the two models, which indicates the importance of considering the relationship between
CSA and capital stakes.

A possible implication is that CSA can work as a substitute for capital relationship
for airlines to cooperate. The regulation poses restrictions on the maximum amount
of capital stake competitors can obtain. Such regulation, however, can be avoided to
a certain degree by forming CSA and enhance it. That leads us to the speculation of
anti-competitive effect CSA might have.

Note that the overidentification test fails to reject the null hypothesis of the valid
moment conditions in both models, supporting the appropriateness of instruments.

To assess the appropriateness of the supply-side assumptions, we employ the statisti-
cal test of non-nested models. Rivers and Vuong (2002) propose a testing framework
for a broad class of objective functions including GMM . In the present setting, we
examine two models that are non-nested, such as the model with all assumptions and
the model of CSA-cartel. The null hypothesis is that both specifications are equally
incorrect. Using the GMM objective function QA(θA) and QB(θB), the Rivers-Vuong
test statistics is given as

T =
√

n
(
QA(θA) − QB(θB)

)
σ

,

where σ is the standard error of the difference between the objective functions. Rivers
and Vuong (2002) show that T asymptotically follows standard normal distribution; the
null hypothesis is rejected in favor of model A if T is smaller than −z1−α/2, and rejected
in favor of model B if T is greater than z1−α/2, where α is significance level and za is
the a-percent percentile of the standard normal distribution.

For implementation, we follow the testing procedure proposed by Backus, Conlon,
and Sinkinson (2021) to use bootstrapped samples for estimating the standard error of
difference between objective functions. We draw 100 bootstrap samples clustered at the
market by year level.

We report the test result in Table 5. We consider three models against the model of
full CSA assumptions, denoted by A. The first two is about the role of capital stake
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Table 4: Results of supply estimation

A: full assumptions B: without capital stake effect

ln(mcp) ln
(
mcf

)
ln(mcp) ln

(
mcf

)
CSA parameters
λ∼2012 0.086∗∗∗ 0.105∗∗∗

(0.042) (0.049)
λ2012∼ 0.398∗∗∗ 0.423∗∗∗

(0.015) (0.017)
cost parameters
aircraft size -0.004∗∗ 0.023∗∗ -0.003∗∗ 0.021∗∗∗

(0.002) (0.008) (0.001) (0.007)
fuel price × aircraft size 0.003 0.33 -0.001 0.021

(0.021) (0.122) (0.015) (0.273)
codeshare dummy -0.203∗∗∗ -0.03 -0.226∗∗∗ -0.021

(0.096) (0.232) (0.087) (0.281)
Fixed-effects
OD-Year Yes Yes
Airline Yes Yes
Observations 2,460 2,460

* p < 0.1, ** p < 0.05, *** p < 0.01
Note: The numbers in parentheses are standard errors that are clustered by markets. The levels of prices and fees
are deflated in constant 2011 JPY, when exchange rate of U.S dollar to JPY was 86.7.
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and CSA. As we show in Table 4, the code-sharing parameters can vary depending on
the assumption of capital stake, which suggests a certain interaction between the capital
stake relationship and CSA. Hence, we try to examine the model that best describes the
data in relation to the capital stake assumption. In particular, we consider two extreme
models. First is the model B in the previous paragraphs, i.e., the model where capital
stake does not have any effect on the airlines’ decision making. On the other hand, we
posit a model denoted by CSA-cartel, which assumes that the airlines holding CSA and
capital relationship cooperate as if they are horizontally merged.

The RV test implies that both models of are not as fitting to data as the full-
assumption model. The data does not support neither hypothesis that capital stake is
irrelevant, nor the one that the capital stake and CSA are used for making a cartel.

We also confirm the validity of our assumptions in terms of competition form and
CSA, in line with Gayle (2013): we study whether our assumption of vertical relationship
does explain data well compared with the model without any vertical relationship. The
result again supports the model of full assumptions, including vertical relationship,
which is also consistent with the result of Gayle (2013).

Hence, we rely on the model of CSA to carry out the following analysis of markups
and counterfactual simulations.

Table 5: Results of Rivers-Vuong test

A: Full CSA assumptions
Capital stake and CSA

B: no capital stake 5.22∗∗∗

(0.002)
D: CSA-cartel 4.69∗∗∗

(0.009)
CSA and competition

C: no vertical relationship 2.64∗∗

(0.003)

* p < 0.1, ** p < 0.05, *** p < 0.01
Note: The numbers in the parentheses are standard errors, which are
computed from the 100 draws of Bootstrap samples. Bootstrap samples
are clustered at each market by year.

Using the estimated model, we try to gain insights into the relative competitiveness
and profitability of code-shared products. In Table 6, we report the median elasticity,
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per-passenger and -flight marginal costs, and price-cost margins for non code-shared
and code-shared products, recovered from the model. The first two rows show the
own-elasticity: code-shared products exhibit higher own-price elasticity, implying that
the consumers are more price-sensitive to those products. This is consistent with the low
observed fares of code-shared products in the data, as in findings on U.S. domestic CSA
(Shen 2017), On the other hand, the lower own-frequency elasticities for code-shared
product imply that product quality of those products is less important in consumer’s
taste.

The second two rows report the marginal costs estimates. The per-passenger costs
decreases by around 15% on average by codeshare due to the cost efficiency. Although
our estimates does not show significant change in per-flight cost by codeshare, the
per-flight costs differs substantially: the median per-flight cost of purely-marketed
products is around three times larger than that of code-shared products. This large
difference can be attributed to the difference in the sizes of aircrafts. The weight of
aircrafts used in the code-shared flights are 10 to 20% smaller on average, which reduces
per-flight operational costs.

Finally, the last two rows show the price-cost margins. In the first row, we calculate
the price-cost margins using the per-passenger cost, but ignoring the per-flight marginal
cost, which corresponds to Lerner index in standard specifications. Since the model
entails the further cost structure, in the second one, we take into account the per-flight
marginal cost to calculate the additional per-passenger cost, dividing the per-flight
marginal cost by the number of passengers. The price-cost margins for non-codeshare
products are 0.32 and 0.36, similar to the results of other airline studies including
Gayle (2013), Shen (2017), and Doi and Ohashi (2019). In both measures, despite of
the low cost structure, the price-cost margins of code-shared products are around 20%
smaller than those of non code-shared products. A possible interpretation of the poor
profitability is that the high own-price and low own-frequency elasticities are significantly
affecting the demand for code-shared products.

6 Counterfactual Simulation
In this section, we conduct a counterfactual simulation to quantify the effect of CSA on
market outcomes and social welfare. The result shows that introducing CSA raises fares
significantly and decreases social welfare, even if the product qualities are endogenously
determined. We further explore the implication for competition policy, in comparison
with the regulation of mutual capital ownership between airlines: the simulation suggests
that airlines could bypass the upper bound of capital holding via forming CSA.
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Table 6: Elasticities, marginal costs, and price-cost margins

Non codeshare Codeshare
Elasticities
Own-price elasticity -2.12 -2.43
Own-frequency elasticity 0.89 0.66

Marginal costs
Per-passenger (1,000 JPY) 15.25 12.02
Per-flight (million JPY) 97.47 27.05

Price-cost margins
Per-passenger cost only 0.36 0.30
Including per-flight cost 0.32 0.25

Note: The sampling period consists of 2011, 2013, 2015, 2017. The markup term is
calculated from estimated per-passenger and per-flight marginal cost with average
number of passengers for each flight, and averaged within the segment.

To evaluate the effect of CSA introduced in the domestic market, we take into acount
both the partial ownership and vertical relationship we describe in Section 4. In short,
The vertical relationship affects the pricing of the code-shared products via wholesale
pricing (double marginalization); also, the partial ownership of the code-shared product
in the downstream market can dampens the market competition. Hence, we consider a
counterfactual simulation where the code-shared product is vertically integrated and
solely owned by the operating airline, and the supply-side model reduces to a standard,
horizontal competition of differentiated products among multi-product airlines.

For example, consider the simple market we describe in Section 4.2, which consists
of airlines A and B with product a, b, and c. Since the competition now becomes
horizontal, we can write the price/frequency first-order conditions using a ownership
matrix, Ω, defined as

(pmt − mcp
mt) = −

(
Ω̃mt ⊗ ∆p

mt(pmt, fmt)
)−1

smt (25)

mcf
mt = Ω̃mt ⊗ ·∆f

mt(pmt, fmt) (pmt − mcp
mt) (26)

Ω̃mt =


1 0 1
0 1 0
1 0 1

 . (27)
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ignoring the cross ownership stemming from capital structure.
In this scenario, a code-sharing agreement is considered as an ex-post profit sharing

that takes place after the competition. 100 × λ-percentage of profits from the code-
shared product c is distributed to the airline B, while B does not care that revenue flow
when making a decision. This is a assumption necessary to quantify the effect of CSA
employed in the markets. The first-order Eq. (25) and Eq. (26) and ownership matrix
Eq. (27) allows me to compute a new equilibrium fares and flight frequency.

Note that in this scenario, we assume that the market structure and CSA are
exogenously given. The identities of competitors are the same as before, and all
products, including the code-shared one, have strictly positive flight frequency. Since
this can be restrictive and inappropriate in some cases, We choose 20 markets which
has more than (i) three competitors and (ii) average-level market size. It turns out the
new equilibrium does not predict non-positive values of flight frequency in the selected
markets, implying the assumption is not binding. We also assume market sizes are
exogenously determined regardless of airlines actions.

To quantify the change in social welfare caused by the CSA, we follow the methods
of Small and Rosen (1981) to calculate the expected consumer welfare, as in Gayle
(2013). Formally, the expected consumer surplus measured by compensating variation
for consumer i in a market m at time t is given by

CSimt = 1
αi

ln
Jmt∑

j=0
eVijmt

 , (28)

where αi is the random coefficient on price and Vijmt = δjmt + µijmt from Eq. (1).
Let CS∗

imt denote the consumer surplus under the counterfactual scenario and CSimt

the consumer surplus recovered from the estimates and specification in Section 4.2.
The change in consumer surplus for i due to the introduction of CSA is defined as
∆CSimt = CS∗

imt − CSimt. Using the drawn values of Di and νi and the market size, we
can compute the changes in expected consumer surplus for a market.

To assess the relevance of airline’s quality choice to the market outcomes and
implication of CSA, we calculate two equilibria. One equilibrium treats the flight
frequency as exogenous, whereas the other considers the flight frequency determined
endogenously at equilibrium. Table 7 shows the average change in market fare, flight
frequency, passenger volumes, and welfare in the markets we pick up. With only fares
endogenously chosen by airlines, the CSA raises market fare by 15.1% on average and
lowers the consumer surplus by 6.4%. The producer surplus increases by 8.1%, while the
total surplus decreases 3.7%. That suggests the cost efficiency of codeshare is limited
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compared to the welfare loss caused by CSA.
In the right column of Table 7, we show the results when endogenizing the flight

frequency. The degree of fare increase becomes larger by four percentage point and the
welfare loss was relieved. This can be attributed to the increase in flight frequency, by
6.5%. Since the average frequency across markets we study is around six, the increase is
equivalent to an additional flight in a market of three competitors on average. In both
specifications, producer surplus increases due to large price increase. Since the decrease
in the consumer surplus is significant, the total surplus would decrease by three percent
once we introduce CSA.

It can be seen that the incorporating endogenous frequency choice alters the welfare
implication of CSA, but the overall pattern is robust to the treatment of product quality
in our setting.

Table 7: The effect of CSA compared with competitive market

Exogenous flight frequency Endogenous flight frequency
∆ Fare (%) 15.1 18.2
∆ flight frequency (%) − 6.5
∆ Passenger volume (%) -7.8 -12.8
∆ Consumer surplus (%) -5.7 -6.4
∆ Producer surplus (%) 8.1 9.5
∆ Total surplus (%) -3.7 -3.2

Note: Effects are measured as the difference of outcomes between an equilibrium without CSA and an equilibrium under
CSA. The left column uses a CSA-equilibrium with frequency exogenous, while the right uses a CSA-equilibrium with
frequency endogenous.

To further investigate the impact of CSA on market competition, we try to decompose
its effect in two directions. First, we consider the change in market structure caused by
CSA. As we discuss, CSA induces (i) partial ownership in downstream market and (ii)
vertical relationship of code-shared products. We consider an equilibrium where CSA
entails partial ownership, but does not bring vertical relationship. By observing the
effect of such a horizontal CSA, we can uncover the relevance of each components of
CSA.

The first panel of Table 8 shows the result. The left column corresponds to the
change caused by a hypothetical horizontal CSA. The right corresponds to CSA with
both partial ownership and vertical relationship, which is the same result as the Table 7.
Compared to the full specification, the increase in fare and flight frequency under
horizontal CSA is modest, by 7.3% and 2.0%, respectively. Hence the degree of loss in
consumer welfare is also smaller. On the other hand, between the two specifications,
the increase in producer surplus is not significantly different, which is mainly due to the
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price-sensitive demand functions. Although the horizontal structure makes the market
competition less severe, adding the vertical relationship particularly raise market fares,
but it does not contribute to overall airlines’ profit.

Next, we also try to address the question of which airline is affected and benefited
by CSA. To do so, using the equilibrium calculated in 7, we decompose the CSA effect
into two parts: those of airlines involving in CSA and those of not. As is shown in the
second panel of Table 8, the simulation yields a substantial increase in fares posted
by CSA airlines, over 20%, which in turn lowers passenger volumes to a large degree
of 19%. By contrast, for non-CSA airlines, the fare increase is relatively modest, and,
surprisingly, the passenger volume increases slightly. That is partly because of the
business stealing effect from raised fares of the CSA airlines, as well as the nesting
structure of the demand. As a result, the Non-CSA airlines enjoy more profit increase,
by 15%, than CSA airlines.

Table 8: The decomposition of the CSA effect

Structure level
CSA (horizontal) CSA (horizontal + verical)

∆ Fare (%) 7.3 18.2
∆ flight frequency (%) 2.0 6.5
∆ Passenger volume (%) −5.1 −12.8
∆ Consumer surplus (%) −2.2 −6.4
∆ Producer surplus (%) 8.4 9.5
∆ Total surplus(%) −1.1 −3.2

Airline level
CSA airlines Non-CSA airlines

∆ Fare (%) 21.6 15.4
∆ flight frequency (%) 7.2 4.2
∆ Passenger volume (%) −19.2 2.8
∆ Producer surplus (%) 5.1 14.8

Note: Effects are measured as the difference of outcomes from equilibrium without CSA and equilibrium
with CSA. In the first panel, we compute two equilibria: one under horizontal CSA and the other under
the full CSA. In the second panel, we use the full-CSA equilibrium, but decompose it to the CSA-related
products and Non-CSA products.

6.1 CSA and regulation on capital stake holding

We have so far examined how CSA would affect market competition in our setting.
In this subsection, we focus on another salient market structure, cross ownership. In
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particular, we examine the relationship between CSA and regulation on capital stake
for an application to competition policy. As we describe in 2, the Japanese authority
restricts the amount of capitals hold by domestic competitors to less than 20%. This
restriction, implemented in 2010, may not accommodate the impact of CSA. We try
to examine how the CSA can be related to inter-airline capital holding and capital
regulation.

We focus on the price effect of those two market structures. Specifically, we calculate
a price elasticity with respect to the parameters λ and κ, by counterfactual simulation.
By looking at the price elasticity of these parameters, we can quantify the price effect of
those market structures in a compatible way. The reason that we focus on the price
effect is based on the previous result: whether introducing the endogenous quality or
not, the price increase caused by CSA is so significant. That observation leads us to
solely considering impact on prices.

Formally, for product j, we compute the price elasticity with respect to the two
parameters as

ηλ
j =

∆p
j

∆λ

λ

pj

ηκ
j =

∆p
j

∆κ

κ

pj

where ∆λ, ∆κ denotes the change in parameters, and ∆p
j represents the price change

as a result of change in market structure. We consider 1% change in CSA and capital
stakes to simulate the price change. The set of products considered here is the same as
the previous set of ones within the 20 markets.

The result is as follows. The average of ηλ is equal to 0.16 with standard deviation
2.04, whereas the average of ηκ

j is equal to 0.12 with standard deviation 0.46. In short,
the market price is inelastic with respect to both parameters, compared to price elasticity
of demand: a one percent increase in λ, the degree of codeshare, would induce only
0.16% percent increase in price, and one percent increase in κ, the capital stake owned
by a competing airline, would raise price by 0.12%, on average.

From the price elasticity measures, we can derive the substitution between λ and κ

as ηκ

ηλ , which is equal to 1.15 on average value. It represents how much κ is needed to
compensate the price change caused by 1% increase in λ. Combining this substitution
measure with estimates λ̂ and data on κ, we can compute the effective increase in capital
stake measured by price increase, in the presence of CSA.

Figure 5 shows the actual values of κ and effective increases in κ for three airlines:

36



ADO, SFJ, and SNA, all of which are associated with ANA by CSA and capital
relationship. The black bars represent the actual share of capital hold by ANA at
each point. They are below the regulation maximum of 0.2 for all time, as the dotted
horizontal line shows. The gray bar is the effective capital share, consisting of the actual
capital share and the effective increase induced by CSA. After 2013, when the regulation
was eased and the degree of CSA was enhanced to nearly 40%, the effective capital
share has almost doubled, ranging from 30 to 40% across the three airlines. Observing
this vivid change, we can argue that the regulation on capital ownership is essentially
bypassed by introducing and strengthening CSA.

Although we have argued the anti-competitive aspect of CSA in relation to regulation,
notice that our approach may include some caveat. First, by solely focusing on the price
effect, we are abstracting away much of the market interactions caused by CSA and
cross ownership. While our results suggest disproportionately large effect via price, such
an inference may not hold in general settings.

Also, beyond the validity of approach, our measure is only static, in short term,
which can conceal an important point. For example, by bailing out airlines, CSA
may allows them to continue their aviation service, thus contributing to the airline
network and consumer benefit in longer term. In fact, Japanese Fair Trade commissioner
(JFTC) approved the first CSA between ADO and ANA in 2002, partly because of the
business crisis of ADO. When perceived as a means to enhance airline network, our
static approach can underestimate the benefit of CSA.

7 Conclusion
In this paper, we construct and estimate a structural model that incorporates CSA.
The supply-side model shows that we can obtain a nontrivial form of markup for each
product, if we consider the vertical relationship induced by CSA. The detailed data and
regulatory information on the Japanese domestic airline industry allows us to estimate
the code-sharing parameter and examine the airline behavior. Using the estimated
model, we carry out a counterfactual simulation to quantify the impact of CSA on the
market outcomes and social welfare. The simulation result shows that the agreements
dampen competition particularly by raising market fares, resulting in steep decline in
consumer welfare. Endogenizing flight frequency alleviates the welfare loss via increasing
product qualities, while such enhancement is limited.

A potential application of the present study is for slot-allocation problem. In Japan,
slots in Haneda airport, the most congested domestic airport, are allocated to airlines
every five years. The allocation mechanism differs from the international convention,
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Figure 5: The effective increase of capital stake holding caused by CSA

Note: The black bars depict the actual shares of the capital hold by ANA. The gray bars depict the sums of the
actual capital share and the effective increase in capital share caused by CSA, which is measured in terms of price
change. The horizontal dotted line is at 0.2, the regulation on the amount of capital holding by a competing airline.

which is based on the IATA guideline: the assessment reports published by MLIT outline
the allocation standards, which span from travel security level to the contribution to
competitive environment. Those measures may not fully take into account the market
structure of CSA and capital relationship. Hence, it is a relevant question whether the
current procedure can lead to the optimal allocation and, if not, how we can achieve it.

Our study has at least two limitations. First, the definition of a product is coarse in
the empirical analysis. We aggregate flight level characteristics, such as departure time
or fares into one product. Also, the ticket level information such as advanced purchase
discount is ignored in the data construction. More accurate data is required to further
assess the consumer behavior in micro level.

The second limitation is the static treatment of the agreement formation. Our struc-
tural model and counterfactual simulation assumes that CSA is exogenously determined.
It is more likely that the airlines negotiate the agreement contracts and route coverage
based on their expectation of future market and competition, as in the airline network
of formation (Aguirregabiria and Ho 2012). Such an analysis will require the estimation
of a dynamic game. We believe it can deepen our understanding of the nature of airline
competition and network structure. More research needs to be done in these areas.
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Appendix A Additional tables
In this section, we provide additional tables ommited from the above argument.

Appendix A.1 Data description

Table A1 shows the inter-airline relationship in the domestic airline market. Table A2
shows the information available from timetable data.

Table A1 has five columns: in the first column each airline name is represented by a
three-letter code, and in the second the capital share of the firm owned by the group
leader is presented. The third and forth columns show whether the airline is Low-cost
carrier (LCC) and commuter carrier, who serves only the regional routes8. The fifth
column shows the number of routes that the airline flies at least one aircraft per day,
indicating the relative size of each airline.

8. In this paper, we define regional routes as routes that do not include main cities, such as Tokyo,
Osaka and Fukuoka.
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Table A1: Overview of inter-airline relationships in 2017

airline % of capital share Low-cost carrier commuter carrier number of routes serving
Panel A : ANA

ANA No No 224
SKY 16.5 Yes No 38
APJ 77.9 Yes No 26
ADO 13.61 No No 21
SNA 17.03 No No 20
SFJ 17.96 No No 10
VNL 100 Yes No 10
ORC 5.6 No Yes 8

Panel B : JAL
JAL No No 138
JAC 60 No Yes 38
JJP 33.3 Yes No 32
JTA 72.8 No Yes 21
RAC 74.5 No Yes 16
SJO 5 Yes No 8

Panel C : Others
IBX No Yes 20
FDA No Yes 9
AMX No Yes 8

Appendix B Model description

Appendix B.1 Solution to the full-assumption model

In this subsection, we discuss the supply-side model with full assumptions and its
solution. The model in this paper’s body exclude the assumption of capital stake
relationship between airlines, which would induces partial ownership. Since we have the
exact capital share hold by airlines (see Table A1), considering capital stake does not
change the dimension of parameters of interest nor the inutition of our model; however,
the composition of the price-cost margins and resulting moment condition have to be
modified due to the change in the incentive structure.

Suppose that we have a market with two competing airlines A, B and three products
a, b, and c. The first two products are the single-carrier products of airlines A, B,
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Table A2: Example of timetable data for a hypothetical route from AAA to BBB

Period departure&arrival time flight ID plane ID operating firm marketing firm
2011Q1 06:55 - 08:30 503 772 JAL -
2011Q1 09:00 - 10:30 51 74P ANA -
2011Q1 10:25 - 12:05 507 7J2 ADO ANA
2011Q1 12:00 - 13:35 53 74P ADO -
2011Q1 15:00 - 16:40 509 773 JAL -

respectively. The product c is code-shared: the airline A operates the aircraft, and
airline B sells λ ∈ (0, 1) portion of it to the consumer.

Further, we assume that the airline B has κ ∈ (0, 1) portion of capital stake of airline
A. As we present in A1, certain amount of stake of many domestic airlines are hold by
either of two predominant players, ANA or JAL. This fact, combined with the practice
of CSA described in Section 2, naturally leads to the formulation of a bilateral capital
relationship κ. That is, the airline B is aware of the κ-share of the profit flow from the
airline A.

To model such incentive structure, we follow the strategy in O’Brien (2000). The
partial equity stake holding yields an unilateral pricing incentive for the airline B (equity
holder), who cares the profit flow via the partial ownership9. This is the most general
setting in our data set: only ANA or JAL hold the capital of competing airlines, and
they do not provide aircraft for CSA. We can consider more general setting of mutual
ownership, but that is out of the scope of this paper.

We first look at the downstream problem. Since the airline A has not capital of B,
its problem is indifferent from the previous one:

max
pa,pa

c ,fa,fc

πA(p, f) =
[
(pa − mcp

a) · qa(p, f) − mcf
a · fa + (1 − λ)(pa

c − mcp
c) · qc(p, f) − mcf

c · fc

]
for given w, pb, and fb,

9. We assume that those holding airlines does not have control over the airlines.
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Hence, the FOC with respect to pa, pa
c are written as

0 = qa(p, f) + ∂qa

∂pa

(p, f)(pa − mcp
a) + ∂qc

∂pa

(p, f) · (1 − λ)(pa
c − mcp

c) (B.1)

0 = (1 − λ)∂qa

∂pc

(p, f)(pa − mcp
a) + (1 − λ)

[
∂qc

∂pc

(p, f) · (1 − λ)(pa
c − mcp

c) + qc(p, f)
]

(B.2)

They are indifferent from the argument in the body because airline A do not
hold any capital stake of the other airline. Remember that we use the relationship
pc = (1 − λ)pa

c + λpb
c.

Airline B’s problem is written as

max
pb,pb

c,fb

[
(pb − mcp

b) · qb(p, f) − mcf
b · fb + (pb

c − w) · λqc(p, f) + κπA(p, f)
]

for given pa, pa
c , w, fa, fc.

Here, we have an additional κ · πA term for airline B’s profit function because of the
cross ownership. This changes B’s incentive structure.

Putting aside the flight frequency, the first-order conditions with respect to fare are
as follows.

0 = qb(p, f) + ∂qb

∂pb

(p, f)(pb − mcp
b) + λ

∂qc

∂pb

(p, f)(pb
c − w) (B.3)

+ κ

(
∂qa

∂pb

(pa − mcp
a) + (1 − λ)∂qc

∂pb

)

0 = λ
∂qb

∂pc

(p, f)(pb − mcp
b) + λ{λ

∂qc

∂pc

(p, f)(pb
c − w) + qc(p, f)} (B.4)

+ κλ

(
∂qa

∂pc

(pa − mcp
a) + (1 − λ)∂qc

∂pc

(pa
c − mcp

c)
)

where Eq. (B.3) is for pb and Eq. (B.4) for pb
c. The intuition does not change much

from the Eq. (8) and Eq. (9), except for the terms surrounded by large bracket: they
represents the marginal revenue flow from the other airline’s product via cross ownership.
That, as discussed in O’Brien (2000), could lessen the competitive incentive because
airline B enjoys larger profit from raising fares.

Combining these markup equations yields the following vector representation.
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pa − mcp

a

pb − mcp
b

pa
c − mcp

c

pb
c − w

 = − (Ωp(κ, λ) ⊗ ∆p)−1 q̃ Ωp(κ, λ) ≡


1 0 1 − λ 0
κ 1 κ(1 − λ) λ
1

1−λ
0 1 0

κ
λ

1
λ

κ1−λ
λ

1


(B.5)

The ownership matrix represents (i) partial ownership (λ) due to CSA and (ii) cross
ownership (κ) due to capital structure. The derivation of the upstream margin is almost
same, and depicted in Appendix B.2. Then, we have the following price-cost margins.

p − mcp = −T (Ωp(κ, λ) ⊗ ∆p)−1 q̃ +


0
0

−
(

∂qc

∂w

)
qc(p, f)

 (B.6)

where p =


pa

pb

pc

 , mcp =


mcp

a

mcp
b

mcp
c


The FOCs with respect to flight frequency are also written as

mcf
a = ∂

∂fa

qa(pa − mcp
a) + (1 − λ) ∂

∂fa

qc(pa
c − mcp

c) (B.7)

mcf
b = ∂

∂fb

qb(pb − mcp
b) + λ

∂

∂fb

qc(pb
c − w)+

κ

(
∂qa

∂fb

(pa − mcp
a) + (1 − λ)∂qc

∂fb

(pa
c − mcp

c)
)

(B.8)

mcf
c = ∂

∂fc

qa(pa − mcp
a) + (1 − λ) ∂

∂fc

qc(p, f) (B.9)

which can be summarized into the following vector representation.
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mcf =


1 0 0 0
0 1 0 0
0 0 1 0

[Ωf (κ, λ) × ∆f
]


pa − mcp
a

pb − mcb
b

pa
c − mcp

c

pb
c − w

 (B.10)

where Ωf (κ, λ) =


1 0 1 − λ 0
κ 1 κ(1 − λ) λ
1

1−λ
1 1 0

0 0 0 0



Appendix B.2 wholesale price derivatives

The derivation follows the method proposed by Villas-Boas (2007).
Again, we continue to stick to the simple market describe in Section 4.2. Recall that

the upstream problem is expressed as

max
w

λ(w − mcp
c)qc(p, f) (B.11)

subject to pb
c = pb

c(w)

The first-order condition with respect to pb
c works as the constraint. The upstream

airline A decides the wholesale price, knowing its effect on the downstream product
price.

0 = ∂qb

∂pc

(p, f)(pb − mcp
b) +

(
λ

∂qc

∂pc

(p, f)(pb
c − w) + qc(p, f)

)

The solution to this problem is

w∗ = mcp
c +

(
−∂qc

∂w

)−1

qc(p, f).

Thus, the remaining problem is to derive ∂qc

∂w
.

Since we assume a special vertical structure where the upstream airline only knows
that pb

c depends on w, the rest of the downstream fares are fixed. By totally differentiating
this equation with respect to downstream fare pb

c and wholesale price w, we obtain the
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following price derivatives with respect to the wholesale price.

0 = dpb
c

(
∂

∂p2
c

qb(p)(pb − mcb) + ∂

∂p2
c

qc(p) · λ(pb
c − w) + ∂

∂pc

qc(p)(1 + λ)
)

· λ − λ
∂qc

∂pc

dw

dpb
c

dw
=
(

∂

∂p2
c

qb(p)(pb − mcb) + ∂

∂p2
c

qc(p) · λ(pb
c − w) + ∂

∂pc

qc(p)(1 + λ)
)−1

∂qc

∂pc

(B.12)

which depends on the code-sharing parameter λ. Then, we can calculate the derivative
with respect to wholesale price ∂qc

∂w
as

∂qc

∂w
= ∂qc

∂pc

· ∂pc

∂pb
c

· dpb
c

dw

= λ · ∂qc

∂pc

· dpb
c

dw
.
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