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1 Introduction

What is the cause of aggregate fluctuations (see Figure 1)? For this fundamental question in macroeco-

nomics, recent studies (e.g., Gabaix (2011)) argues that microeconomic shocks to firms substantial generate

aggregate fluctuations. This is due to the high heterogeneity of firm sizes (i.e., granularity), that is, microe-

conomic shocks to giant firms cannot be averaged out even at the aggregate level and contribute to aggregate

fluctuations. Since the high heterogeneity of firm sizes is one of the stylized facts, this granular view has

been widely accepted in the recent literature.1

However, the distribution shape of aggregate output induced by microeconomic shocks, given an

empirical granularity of firm sizes, is not fully analyzed in previous studies. In particular, can the granular

view explain the important features of the distribution of the GDP growth rates? For example, the distribution

of the GDP growth rates deviate from Gaussian in the tail region, that is, the probability that an economy

experiences a large shock is higher than that predicted by Gaussian.2 Furthermore, Figure 1 shows that

when an economy experiences a rare event, other economies are likely to experience a rare event at the same

time (i.e., the tail dependence). In order to assess the importance of the granular view, it is necessary to

examine whether the micro-originated aggregate fluctuations is consistent with these features of the GDP

growth rates.

This paper analyzes whether an empirical granularity is large enough to explain the distribution prop-

erties of aggregate fluctuations using firm-level data in G7 countries. The main idea of my analysis is to

quantify how close to Gaussian the distribution of aggregate output induced by microeconomic shocks is.

Given the empirical granularity for G7 countries, I find that the resultant distribution of aggregate output is

very close to Gaussian. This means that although the central limit theorem (CLT) does not hold due to the

high granularity, the averaging effect is still dominant, that is, most of the variation of microeconomic shocks

are canceled each other out. Since the empirical GDP growth rates deviate from a Gaussian distribution in

the tail regions, I conclude that the granular view cannot explain the tail properties of the GDP growth rates.

My analysis focuses on the empirical facts of three distributions: the distribution of firm sizes, the

distribution of firm growth rates, and the distribution of the GDP growth rates. First, it is well known in the

literature that the firm size measured by annual sales revenues are highly heterogeneous and follows Zipf’s

law, that is, the firm size distribution has Pareto tail with an exponent close to 1.3 In my analysis, using

firm-level data taken from Orbis, which is compiled by Bereau van Dĳk, I confirm that Zipf’s law holds

for G7 countries. This high heterogeneity of firm sizes is the basis of the granular view. Second, I focus

on the distribution properties of the sales growth rates. In an empirical literature, it is empirically shown

1In the following, I use the two terms "heterogeneity" and "granularity" interchangeably.

2See Section 2.1.

3See, for example, Axtell (2001) and Gabaix (2009).
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Figure 1: Time series of the GDP growth rates across G7 countries from 1994Q1 to 2021Q3. See the explanation in
Table 1.

that the distribution of sales growth rates deviates from Gaussian but is close to a Laplace distribution.4

The Laplace distribution is characterizes by the sharp peak around the center and a fatter tail than Gaussian.

In particular, the fatter tail of the Laplace distribution suggests that the probability of a rapid growth (or

shrinkage) is larger than that predicted by Gaussian. For example, if such a shock hits giant firms in an

economy, whose existence is suggested by Zipf’s law, the impact of microeconomic shocks may be relevant

even at t he aggregate level. In my analysis, I use the sales growth rates and these distribution properties

as proxies for productivity (TFP) shocks and their distribution properties. Third, I focus on the distribution

tail of the GDP growth rates. Its deviation from Gaussian has been documented by recent empirical studies,

that is, the probability of rare events (such as severe economic downturns) is larger than that predicted by

Gaussian.5 In addition to that, I consider the bivariate distribution of the GDP growth rates for two countries

and analyze its dependence structure by using the copula method. I find that there exists significant tail

dependence across countries; that is, rare events (i.e., large negative/positive shocks) for two countries are

likely to occur simultaneously. The research question in this paper is to test whether these three distribution

properties (firm size, sales growth rates, and GDP growth rates) are consistent with each other, given the

granular idea.

To analyze how these distribution properties are related with each other, I use probabilistic methods

given in Section 3. I focus on the distinction between asymptotic and non-asymptotic results: The asymptotic

4See, for example, Coad (2009), Dosi et al. (2017), Bottazzi and Secchi (2006), and Arata (2019). Since the firm-level TFP is
estimated from firms’ sales revenue (i.e., TFPR), I assume that the distribution of TFP growth rates inherits the Laplace shape of
the distribution of the sales growth rates. The Laplace distribution for TFP shocks is also used in Acemoglu et al. (2017), though
their empirical analysis is at sector-level.

5See, for example, Fagiolo et al. (2008), Cúrdia et al. (2014), and Clark and Ravazzolo (2015). In particular, Adrian et al. (2019)
focus on the evolution of the GDP growth rate distribution over time and use a skewed student’s t distribution for approximation.
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results mean the properties of aggregate output as the number of firm tends to infinity. The slow decay rates

of the variance (Gabaix (2011)) and tail probability (Acemoglu et al. (2017)) and the condition of the

convergence to Gaussian (Acemoglu et al. (2012)) are examples of the asymptotic results. In contrast, the

non-asymptotic results mean the properties of aggregate output with a fixed (and finite) number of firms, that

is, firm sizes are empirically given. In particular, in my analysis, I use saddlepoint method to approximate

the distribution of aggregate output with given firm sizes. Although most of previous studies rely on the

asymptotic results (this is why the granular view is widely accepted), the asymptotic and non-asymptotic

results do not necessarily give the same implication about micro-originated aggregate fluctuations. For

example, there is possibility that while the distribution of aggregate output does not converge to Gaussian at

the limit, the distribution of aggregate output with given firm sizes are very close to Gaussian. My analysis

shows that this possibility is crucial in the analysis of micro-originated aggregate fluctuations.

The main finding of this paper is given in Section 4. First, I find that because of the granularity of

firm sizes, the CLT does not hold for all countries, as expected by the granular hypothesis. That is, the

distribution of aggregate output induced by microeconomic shocks does not converge to Gaussian. On

the other hand, given the empirical granularity (and Laplace assumption about microeconomic shocks), I

find that the distribution of aggregate output turns out to be very close to a Gaussian. This result is not

contradiction: the non-convergence of to Gaussian does not imply that the distribution is far from Gaussian.

My analysis reveals that even when the CLT fails, the averaging effect does not cease to work and makes the

resultant distribution close to a Gaussian. Furthermore, the closeness to Gaussian has another implication for

the two-dimensional case. I find that because of the closeness to Gaussian, there would be no tail dependence

between two countries; that is, it is highly unlikely that two countries experience rare events simultaneously,

which is inconsistent with the empirical counterparts. Thus, I conclude that microeconomic shocks cannot

explain the observed tail features of the GDP growth rates. Put differently, the empirical granularity is not

high enough to generate substantial aggregate fluctuations.

Related literature

This paper belongs to the recent literature on the micro origin of aggregate fluctuations (see Carvalho

(2014) and Carvalho and Tahbaz-Salehi (2019) for a survey). In particular, this paper is closely related

to studies that analyze the relation between the granularity and distribution properties of aggregate output:

Gabaix (2011), which proposes the granular hypothesis, shows that if the firm size distribution has Pareto’s

tail with exponent close to 1, the micro-originated aggregate variance decays slowly as n → ∞. Closely

related to Gabaix (2011), Acemoglu et al. (2012) focus on the heterogeneity of an input-output network

and provide the condition that the distribution of aggregate output converges to Gaussian. Acemoglu et al.

(2017) focus on the tail probability of aggregate output and show that it decays slowly as n → ∞ when

the granularity is high. In contrast, this paper argues that these slow decay rates and non-convergence to

4



Gaussian found in literature do not necessarily implies the empirical relevance of the granular view. This

is because these results are asymptotic results as n → ∞ and non-asymptotic results are more important to

assess its empirical relevance. In particular, by extending the methods developed in Arata (2021) and Arata

and Miyakawa (2022), my analysis shows that the resultant distribution of aggregate output with empirical

granularity is very close to Gaussian, which contradicts the empirical properties of the GDP growth rates.6

This paper contributes to the empirical literature on the relevance of the granular hypothesis. Carvalho

and Gabaix (2013), Di Giovanni et al. (2014), and Stella (2015) analyze firm-level data and argue that the

variance of the GDP growth rates is associated with the granularity in an economy. Magerman et al. (2017)

and Miranda-Pinto (2021) use an empirical (firm-level/sector-level) input-output data and show that because

of the heterogeneity of the network, microeconomic shocks are an important source of aggregate fluctuations.

In contrast to these studies, my analysis focuses not only the variance but the distribution shape of aggregate

output including the tail probability of aggregate output. In particular, by focusing on the closeness to the

Gaussian distribution, I find that microeconomic shocks would generate only small fluctuations (measured

by the variance), and not a large deviation (measured by the tail probability), in aggregate output.

Furthermore, my analysis about the bivariate distribution of aggregate output for two countries is related

to international business cycle synchronization. For example, Di Giovanni and Levchenko (2012) and Di

Giovanni et al. (2018) argue that because of the granularity and import/export relations, aggregate output

for two countries comove. In contrast, my analysis shows that although import/export relationships generate

economically significant positive correlation, the closeness to Gaussian (copula) implies that there is no

tail dependence for the two countries. That is, it is unlikely that two economies experience a rare event

simultaneously.

Outline of this paper

This paper is organized as follows. Section 2 overviews firm-level data and the GDP time series. Section

3 provides probabilistic methods to characterize the distribution of aggregate output. Section 4 provides

empirical results. Section 5 concludes this paper. The Appendix provides the proofs of propositions and

robustness check of my empirical results.

2 Overview of data

This section overviews data used in my analysis. In our analysis, I focus on the G7 countries (i.e.,

Canada, France, Germany, Italy, Japan, the UK, the US). Section 2.1 examines the GDP growth rates and

6In Arata and Miyakawa (2022), I use the Edgeworth expansion to approximate the distribution of aggregate output. Although the
Edgeworth expansion is one of the widely used methods, it is known that the approximation is not reliable when the true distribution
is far from Gaussian. See, for example, Kolassa (2006). In this paper, I use the saddlepoint approximation, which provides more
accurate approximation especially for the tail regions.
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country count mean sd mad max min since when

CAN 242 0.0075 0.0128 0.0073 0.0860 -0.1170 1961Q2
DEU 122 0.0030 0.0152 0.0069 0.0866 -0.1053 1991Q2
FRA 166 0.0042 0.0188 0.0044 0.1708 -0.1447 1980Q2
GBR 266 0.0057 0.0195 0.0060 0.1619 -0.2163 1955Q2
ITA 102 0.0011 0.0222 0.0052 0.1466 -0.1362 1996Q2

JPN 110 0.0016 0.0136 0.0079 0.0498 -0.0839 1994Q2
USA 298 0.0076 0.0116 0.0069 0.0728 -0.0936 1947Q2

Table 1: Summary statistics of the GDP growth rates for G7 countries. The GDP growth rate is defined as gt :=

log(GDPt)− log(GDPt−1). The time series are based on real GDP (i.e., adjusted for price changes) and also adjusted
for seasonal influences.

their cross-sectional dependence. Section 2.2 describes the firm size distribution. Section 2.3 describes the

distribution of sales growth rates.

2.1 GDP growth rate

I analyze the quarterly growth rates of seasonally-adjusted real GDP for G7 countries. The data are

taken from OECD database. Let gt be the growth rate of GDP defined by the log difference of GDP over

two successive periods, that is, gt := logGDPt − logGDPt−1. The time series of gt for G7 countries are

depicted in Figure 1. Their summary statistics are given in Table 1.

Let us consider the distribution properties of the GDP growth rates. As an example, Figure 2 shows that

the histogram and QQ plot of the GDP growth rates for the US.7 As indicated by both of these figures, one of

the important features of the distribution of the GDP growth rates is the deviation from Gaussian especially in

the tail region. That is, the probability that an economy experiences a large deviation is higher than predicted

by a Gaussian distribution. For later purpose, we compare the counter cumulative distribution function

(CCDF) of negative GDP growth rates with its Gaussian counterpart, in which the standard deviation is

estimated by the robust consistent estimator under the Gaussian assumption. Figure 3 shows that even when

the consistent estimator is given, the Gaussian assumption underestimates the tail probability of the GDP

growth rates. This suggests that to explain the important features of the GDP growth rates, it is necessary to

discard the Gaussian assumption, and without the Gaussian assumption, the variance is not a good measure

for the tail probability of a random variable.8

The above discussion shows that the Gaussian assumption is not adequate for the univariate case, that

is, the distribution of the GDP growth rates for a single country. The same idea can be applied to the

7I confirm that similar deviation from Gaussian can be observed for other countries.

8For this point, see Acemoglu et al. (2017).
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(a) Histogram (b) QQ plot

Figure 2: Distribution of the GDP growth rates in the US. In Panel (b), the straight line represents a Gaussian
distribution, that is, if the GDP growth rates follow a Gaussian distribution, sample points would lie on the straight
line.

Figure 3: Tail probability. The counter cumulative distribution function of the negative GDP growth rates and its
Gaussian counterpart are plotted. For the parameters of the Gaussian distribution, we use the median and median
absolute deviation, respectively.
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(a) Gaussian copula (b) t copula

Figure 4: Example of copulas with normal scores.

bivariate case, that is, the dependence structure of the GDP growth rates for two countries. To make this

point rigorous, let us consider the copula C defined by the following identity:

F (y) = C(F1(y1), F2(y2)), y ∈ R2

where F is the bivariate distribution function of the GDP growth rates for two countries, and F1, F2 are

its marginal (univariate) distributions. This equation decompose F into two parts: the copula function C

representing the dependence structure and marginal distributions F1 and F2. Note that the copula function

C assumes the quantiles as arguments, which are independent of the marginal distributions. It can be shown

that C is uniquely determined given F , and recover the original bivariate distribution.

An important example of the copula is the Gaussian copula derived from the two-dimensional Gaussian

distribution. The left panel of Figure 4 depicts the Gaussian copula with normal scores, showing the

elliptic shape.9 Another important example of the copula is the t copula derived from the two-dimensional

t distribution, which is depicted in the right panel of Figure 4. Compared to the Gaussian copula, one of

the features of t copula is the diamond shape, that is, it is more likely that extremes of two variables occur

simultaneously than predicted by the Gaussian copula. This example shows that even when the correlation

coefficient is same as each other, the magnitude of the tail dependence can be different depending on the

underlying copula.

9Normal scores mean the transformation of both axes by applying the quantile function of the standard Gaussian distribution to the
marginal distributions of y1 and y2. More precisely, instead of y1 and y2, we consider the transformed samples defined as follows:(

Φ−1(F1(y1)),Φ
−1(F2(y2))

)
where Φ is the standard Gaussian distribution. In practice, the true marginal distributions are unknown, we use their empirical
distributions. The rationale behind normal scores is that this transformation erases the differences coming from those of the marginal
distributions and that the resultant scatter plot can highlight the differences of the dependence structure, that is, its copula function.
In particular, since the scatter plot of the transformed samples would be a Gaussian distribution for the bivariate Gaussian case, the
normal scores highlight departures from the Gaussian copula.
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Figure 5: Correlation matrix of the GDP growth rates for G7 countries. For the correlation coefficient, Spearman’s ρ
is used.

To measure the tail dependence more concretely, I use the following coefficient of the tail dependence:

for two random variables X1 and X2,

λl := lim
u↓0

P(X2 ≤ F←2 (u) | X1 ≤ F←1 (u)) = lim
u↓0

C(u, u)/u

λu := lim
u↑1

P(X2 > F←2 (u) | X1 > F←1 (u)) = lim
u↑1

(1− C(u, u))/(1− u)

This measures the likelihood of the rare event of X2 conditional on the rare event of X1. One can show

that for the Gaussian copula, λl and λu are equal to 0, regardless of the parameter ρ. That is, when the

dependence structure of two random variables is described by the Gaussian copula, it is unlikely that both

variables experience a large deviation simultaneously. This tail independence is an important feature of

the Gaussian copula. In contrast, one can shows that when the dependence structure follows the t copula,

λl = λu > 0. There is a positive probability that the rare events of both two variables occur simultaneously.

What does the empirical copular of the GDP growth rates for two countries look like ? As an example,

let us consider the copula of the GDP growth rates for Italy and France, the US and Canada, which are the

combination having higher Spearman’s ρ (see Figure 5). Figure 6 gives the density estimates with normal

scores of the GDP growth rates. Both figures suggest that the empirical copula look more similar to the

diamond shape of t copula and put more weights on the lower-left and up-right corners. To quantify the tail

dependence, I parametrically estimate the student’s t copula by the maximum likelihood method. I find that

the estimate of λl = λu is 0.344 for the US and Canada and 0.554 for Italy and France. This result suggests

that the empirical dependence structure does not follow Gaussian copula, and extremes of both variables are

more likely to occur simultaneously than expected from Gaussian copula.

To summarize, there are two deviations from Gaussian: the tail probability (for univariate case) is

significantly larger than that of Gaussian, and the tail dependence is substantial, rather than 0 predicted

9



(a) the US and Canada (b) Italy and France

Figure 6: Density estimate with normal scores.

country count mean sd q1 median q3 max min

CA 10000 194850.1 1303227.5 35000.00 35000.0 75000.0 45760100 21300
DE 10000 440924.3 2434467.0 79441.50 124351.0 254662.0 95415683 55480
FR 10000 302433.3 1563325.2 63500.75 93831.5 176983.0 70548393 47694
GB 10000 571784.2 3746157.1 89065.00 140267.5 300321.2 180816000 64500
IT 10000 190507.6 677621.9 50250.00 73535.0 134790.8 25202300 37913

JP 10000 702073.6 2316519.8 160650.00 243902.0 496106.2 106245756 118102
US 10000 2314779.1 11462766.3 262979.25 468784.0 1273778.8 559151000 174000

Table 2: Summary statistics of variables for individual firms. The unit of sales is a thousand USD.

by Gaussian copula. Thus, the empirical question to answer in this paper is to test whether the empirical

granularity is large enough to explain these deviation from Gaussian. In Section 2.2, I review the empirical

granularity for G7 countries.

2.2 Firm size distribution

To measure the empirical granularity for each G7 country, I analyze annual firm sales revenues in 2020

taken from Orbis, which is provided by Bureau van Dĳk. I use unconsolidated firms as the definition of firm.

I exclude firms in the sector of banking, insurance, and government. I focus on the 10,000 largest firms for

each country. Their summary statistics are given in Table 2.

One of the stylized facts regarding firm size is its high heterogeneity across firms. In particular, it is

known that the distribution of firm sizes has Pareto’s tail with an exponent close to 1: there exists some large

x∗ > 0 such that

P (sale > x) ∼ Cx−α for x > x∗.

This empirical regularity is called Zipf’s law. I confirm that Zipf’s law holds in my samples. Figure 7
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Figure 7: CCDF of sales. The CCDF is plotted in the log-log scale.

plots the counter cumulative distribution function (CCDF) of firm sizes for G7 countries in the log-log scale.

Although the firm size itself tends to be large in larger economies, the decay rate of the probability is very

similar to each other and the CCDF is close to a straight line. Thus, consistent with previous studies, the tail

of the distribution of firm sizes can be approximated by Pareto’s tail.

2.3 Firm growth rates

The third empirical stylized fact that I use in my analysis is the distribution of sales growth rates. As

in the GDP growth rates, the growth rate for each firm is defined by the log difference of sales, that is,

gt := log(salet)− log(salet−1). The summary statistics of the sales growth rates are given in Figure 3.

Let us assume that for each country, firm i’s sales growth rate is iid random variables drawn from a

common distribution function. Under this assumption, the left panel of Figure 8 shows the density estimate

of the standardized growth rates. Interestingly, as long as location and scale parameters are adjusted, the

density of growth rates for G7 countries lie on the same curve. In particular, as described in the right figure,

this curve deviates from Gaussian but is well approximated by a Laplace distribution.

f(x;µ, b) =
1

2b
exp

(
−|x− µ|

b

)
where µ and b is the location and scale parameters. The variance of the Laplace distribution is given by 2b2.

Intuitively, since a Laplace distribution has a fatter tail than Gaussian, the probability that a firm

experiences a rapid expansion is higher than that predicted by Gaussian. But, since a Laplace distribution

has finite moment for all orders, the tail probability is not so heavy compared to power-law tails. Another

important feature of the Laplace distribution is that the density sharply peaks around 0, meaning that the

most of firms do not increase or decrease its size. In particular, the excess kurtosis, which is defined by the

kurtosis minus 3, is equal to 3. Since the excess kurtosis is equal to 0 for Gaussian distribution, the excess
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country count mean sd q1 median q3 µ σ

CA 1421 0.165 0.703 -0.090 0.068 0.265 0.053 0.201
DE 9634 0.089 0.573 -0.050 0.035 0.129 0.031 0.122
FR 9785 0.071 0.435 -0.053 0.041 0.131 0.038 0.127
GB 9199 0.069 0.649 -0.128 0.016 0.163 0.011 0.176
IT 9906 0.083 0.462 -0.070 0.048 0.160 0.042 0.146

JP 9945 -0.030 0.284 -0.119 -0.036 0.043 -0.036 0.111
US 4531 0.049 0.357 -0.068 0.032 0.145 0.030 0.146

Table 3: Summary statistics of the sales growth rates. The maximum likelihood estimates of the parameters of a
Laplace distribution are also given.

(a) G7 countries (b) Comparison with Gaussian and Laplace distributions

Figure 8: The density estimates of the standardized growth rates. In panel (b), the density estimate for the US is
plotted for comparison purpose.

kurtosis is one of the measures to distinguish the two distributions.

In this section, I provided three distribution properties: the deviation from Gaussian for the GDP growth

rate (for uni- and bivariate cases), Zipf’s law, and the Laplace distribution of the sales growth rates. The next

section shows how these three properties are linked with each other.

3 Methods

I provide methods to analyze the distribution of aggregate output induced by microeconomic shocks. In

Section 3.1, I provide the asymptotic behavior of the aggregate variance and its relation to the CLT condition.

In Section 3.2, I review the saddlepoint method to approximate the distribution of aggregate output.

12



3.1 Variance and the CLT

Suppose that aggregate output Z can be represented as the weighted sum of microeconomic shocks

ϵ1, ..., ϵn with weights w1, ..., wn:

Z :=
∑
i

wiϵi (1)

where n is the number of firms and wi represents the impact of firm i’s microeconomic shock on aggregate

output. I assume that microeconomic shocks are independent and identically distributed with mean 0 and

variance σ2
ϵ . Under this assumption, the variance of Z is given by

σ2
Z = σ2

ϵ ∥w∥22

where the ℓ2-norm is defined as ∥w∥2 :=
√∑

iw
2
i . For example, if an economy is homogeneous (i.e.,

wi = 1/n for all i), the variance of Z decays at the rate of n−1.

Next, let us consider the CLT condition for Z. When the heterogeneity of the weights is low, the

classical Lindeberg-Feller CLT characterizes the condition of the convergence to Gaussian:

Theorem 3.1 (Lindeberg-Feller CLT; see, e.g., Theorem 4.7 in Petrov (1995)). LetX1, ..., Xn be independent

random variables with mean 0 and finite variance σ2
i . Let sn :=

∑
i σ

2
i and Zn := s

−1/2
n

∑
iXi. If

Lindeberg’s condition, that is,

s−1n

∑
i

E
[
X2

i · 1{|Xi|≥εs
1/2
n }

]
→ 0

holds, then Zn converges in distribution to Gaussian.

Lindeberg’s condition is related to the heterogeneity of the weights. In particular, Lindeberg’s condition

means that the maximum of the variance of components needs to be sufficiently small compared to the

variance of their sum:

s−1n max
1≤i≤n

σ2
i → 0 (2)

Furthermore, under the condition Eq.(2), one can show that the Lindeberg’s condition is equivalent to the

convergence of Zn to Gaussian. For this reason, the classical Lindeberg-Feller CLT is for the case where no

component dominates the whole.

Let us return to my case where Xi = wiϵi for all i. Thus, Eq.(2) is reduced to
maxiw

2
i∑

iw
2
i

=
∥w∥2∞
∥w∥22

(=: rmax) → 0 (3)

where ∥w∥∞ and ∥w∥2 are the ℓ∞- and ℓ2-norms of the weights, that is, ∥w∥22 :=
∑

iw
2
i and ∥w∥2∞ :=

maxi(w
2
i ). Let denote the ratio in Eq.(3) by rmax. One might ask whether the condition Eq.(3) holds when

the heterogeneity of the weights is high. For this question, Proposition 3.5 in Arata (2021) characterizes the

asymptotic behavior of rmax when the distribution of the weights has a Pareto tail.

Proposition 3.2 (Proposition 3.5 in Arata (2021)). Suppose that the weights are independently drawn from a

common distribution with Pareto’s tail with an exponent 0 < α < 2. Then, limn→∞ rmax is a non-degenerate
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random variable and

lim
n→∞

Ermax > 0

This propositions means that under the high heterogeneity of firm sizes, the variance contribution from

the largest firm is still dominant even at the limit of n. For this reason, one cannot use the classical CLT to

analyze the distribution of aggregate output. In other words, it is necessary to consider non-classical setting

where rmax ̸→ 0.10

There is another important perspective about how the condition Eq.(3) is related to the Gaussian

distribution. Let X1 and X2 be independent random variables, and consider the distribution of the sum

X1 + X2. It is well known that if X1 and X2 are Gaussian, the sum also follows Gaussian. Cramer’s

decomposition theorem states that its converse also holds true; that is, if a Gaussian random variable can be

represented as the sum of two independent random variables, then the two random variables are Gaussian.

In other words, for the sum of independent random variables to be Gaussian, each component comprising

the sum must follow a Gaussian distribution. Thus, since the condition Eq.(3) means that a significant

component of the sum Z does not follow Gaussian, the distribution of Z does not converge to Gaussian.

This point is formalized by Theorem 1(c) in Acemoglu et al. (2012).

Proposition 3.3 (Theorem 1(c) in Acemoglu et al. (2012)). Suppose that ϵ1, ..., ϵN are not Gaussian random

variables and that limn→∞ rmax ̸→ 0. Then, 1
σϵ∥w∥2Z does not converge to a Gaussian distribution.

It should be noted, however, that the other condition that microeconomic shocks are not Gaussian

random variables is necessary for the non-convergence to Gaussian. Otherwise, since the sum of independent

Gaussian random variables are Gaussian, Z is Gaussian for all n. In light of this fact, one might think that

if the distribution of microeconomic shocks is sufficiently close to Gaussian, the resultant distribution of Z

is also close to Gaussian. For example, consider the two independent random variables X1 and X2, and

suppose thatX1 is large and Gaussian andX2 is tiny and not Gaussian. By Cramer’s decomposition theorem,

the sum X1+X2 does not follow a Gaussian distribution. But, since X1 dominates the sum and is Gaussian,

one would expect that the distribution of the sum is mainly determined by X1 and thus close to Gaussian.

In general, the fact that the distribution does not converge to Gaussian does not necessarily mean that the

distribution is far from Gaussian. As shown in the following results by Zolotarev (1997), the closeness to

Gaussian depends on two factors: the granularity of the components and the closeness of the distribution of

each component to Gaussian.

Theorem 3.4 (Theorem 2.3.2 in Zolotarev (1997)).

ρ(Fn,Φ) ≤ 4µ1/4
n , n ≥ 1

10In the filed of probability theory, the CLT under this condition is called non-classical CLT. See the monograph by Zolotarev (1997).
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where

µ2
n := min

ε>0
max

ε2, 2
∑
j

∫
|x|>ϵ

|x||Fnj(x)− Φnj(x)|dx


In Theorem 3.4, µ2

n can be small in two ways: When the granularity is low, that is, each component

is arbitrarily small as n → ∞, µ2
n becomes arbitrarily small. Even though the granularity is high, if the

distribution of the component is close to Gaussian, µ2
n becomes arbitrarily small. Thus, the closeness of the

distribution of Z is determined by these two factors.

Given these theoretical results above, the research question in this paper can be summarized as follows:

given the empirical granularity and Laplace assumption about microeconomic shocks, how close to Gaussian

is the distribution of Z? This is a non-asymptotic result with a fixed and finite n, in contrast to the asymptotic

result given in Proposition 3.3. Although the calculating the values of µn is an option to get the upper bound

of the deviation from Gaussian, the value of Levy’s metric has no simple interpretation. In the following,

I review the method called saddlepoint approximation, by which I approximate the distribution of Z with

given weights.

3.2 Approximation of the distribution

The previous section considers the asymptotic properties of the distribution of Z as n → ∞. Here, I

review the saddlepoint approximation method to approximate the distribution of Z non-asymptotically, i.e.

with weights fixed. This method is based on the one-to-one correspondence between the distribution and its

corresponding cumulant generating function.

Let KX(t) denote the cumulant generating function of random variable X: for some t ∈ R,

KX(t) := log(E exp(tX))

The jth-order cumulant κj is defined as its jth-order derivative at 0. For example, if X follows a Gaussian

distribution with 0 and σ2, the corresponding cumulant generating function is KX(t) = 1
2σ

2t2, and κ1 = 0,

κ2 = σ2, κj = 0 for j ≥ 3.

The cumulant generating function has the following useful property: If X1 and X2 are independent

random variables, the cumulant generating function of the sum X1 +X2 satisfies

KX+Y (t) = KX(t) +KY (t)

This property is useful in our analysis because Z is the weighted sum of iid random variables.

To approximate the distribution of Z with given weights, it is necessary to specify the distribution of

microeconomic shocks. In our analysis, I assume that microeconomic shocks follow a Laplace distribution:11

Assumption 3.1. Microeconomic shocks follows a Laplace distribution.

11In empirical literature on the firm growth dynamics, it is well known that the growth rate of firm size follows a Laplace distribution.
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The cumulant generating function of the Laplace distribution is given by KX(t) = − log(1− b2t2) for

t with |t| < 1/b. Thus, under Assumption 3.1, the cumulant generating function of Z is given by

KZ(t) = −
∑
i

log(1− w2
i b

2t2) (4)

Since a distribution is uniquely determined by its cumulant generating function, the relation between the

distribution of Z and weights can be clarified by analyzing Eq.(4). For example, if the heterogeneity of the

weights is low (e.g., wi = 1/n), one has log(1− w2
i b

2t2) ≈ w2
i b

2t2. Thus, Eq.(4) is reduced to

KZ(t) ≈
∑
i

w2
i b

2t2 = ∥w∥22b2t2

Since the right-hand side is the cumulant generating function of Gaussian with variance 2b2∥w∥22, this means

that the distribution of Z is very close to the Gaussian, as expected by the CLT. In other words, by measuring

the difference between the cumulant generating functions of Z and Gaussian, one can analyze how close (or

far) to the Gaussian the distribution of Z is. This is the main idea of the saddlepoint approximation.

Formally, the saddlepoint approximation of the probability density is given as follows:12

Proposition 3.5 (see, e.g., Chapter 2 in Butler (2007)). The approximation of the density is given by

f̂(x) :=
1√

2πK ′′(ŝ)
exp{K(ŝ)− ŝx}

where ŝ := ŝ(x) is the unique solution to the following saddlepoint equation.

K ′(ŝ) = x

For example, if the distribution is Gaussian, the saddlepoint equation reduced to ŝ = x. Thus, the

saddlepoint approximation reproduces the exact probability density of the Gaussian distribution. It is known

that as the distribution is closer to Gaussian, the saddlepoint approximation becomes more accurate.13

It is worth mentioning that the saddlepoint approximation is a non-asymptotic method with a fixed n;

that is, weights are given empirically and fixed. This is in sharp contrast with the asymptotic method given

in Section 3.1, in which the number of firms tends to ∞. The implications drawn from these two methods

do not necessarily coincide with each other. That is, there is the possibility that the distribution of Z does

not converge to Gaussian as n → ∞ (i.e., asymptotic result), while the distribution of Z with given weights

12More precisely, the saddlepoint approximation is the consequence of Laplace’s approximation.

13Similarly, the saddlepoint approximation of a distribution function is given as follows: The estimate is given by

F̂ (x) :=

 Φ(ŵ) + ϕ(ŵ)(1/ŵ − 1/û) if x ̸= µ
1
2
+ K′′′(0)

6
√
2πK′′(0)3/2

if x = µ

ŵ := sgn(ŝ)
√

2{ŝx−K(ŝ)}, û := ŝ
√

K′′(ŝ)

where ŝ is the unique solution to saddlepoint eq K′(ŝ) = x, and ϕ and Φ are the standard normal density and distribution function,
respectively. Theoretically, the saddlepoint approximation of a distribution function is just the integration of the saddlepoint
approximation of the probability density function. The only difficulty is that through carrying out the integration, Temme’s
approximation is used.

16



is very close to Gaussian (i.e., non-asymptotic result). This case actually happens, as discussed in the next

section.

4 Empirical Results

I approximate the distribution of Z by saddlepoint approximation. In Section 4.1, I show that the

univariate distribution of Z is very close to the Gaussian under Assumption 3.1. In Section 4.2, I consider

the bivariate case of the GDP growth rates, that is, the two-dimensional distribution of the GDP growth rates

for two countries, and analyze its dependence structure.

4.1 One-dimensional distribution

Let us analyze the distribution of aggregate output for the univariate case, given the empirical granularity

in an economy. First, consider the aggregate variance induced by microeconomic shocks and the CLT

condition discussed in Section 3.1. Table 4 provides the norms of the weights for G7 countries. For the US

case, if the standard deviation of the growth rates for firms 14.6% at the annual basis, σZ at quarterly basis,

which corresponds to Table 1, is given by

σZ = (1/2)× 14.6%× 0.056 = 0.41%

where 1/2 is introduced due to the assumption that microeconomic shocks are iid. Comparison with Table 1
suggests that microeconomic shocks are important source of the aggregate variance. That is, because of

the granularity, microeconomic shocks do not die out at the aggregate level, consistent with the granular

hypothesis.

Note that the non-negligible aggregate variance is mainly driven by shocks to the largest firm. Table 4
shows the ratio of the two norms of the weights for G7 countries, e.g., rmax = 0.23 for the US. That is,

23% of the micro-originated aggregate variance come from the contribution of the largest firm only. Similar

to the US case, the high presence of the largest firm (i.e., rmax is significantly larger than 0) is observed

for other G7 countries. As discussed in Section 3, owing to this high presence of the largest firm, the CLT

does not hold, and the distribution does not converge to Gaussian. That is, in the sense of asymptotics, the

distribution of aggregate output is different from Gaussian.

However, as emphasized in Section 3, the fact that the CLT does not hold does not necessarily imply

that the distribution of aggregate output is far from a Gaussian. In the following, I show that the distribution

of aggregate output with weights empirically given turns out to be very close to Gaussian. Before applying

the saddlepoint approximation, consider how the cumulant generating function of Z changes through the

summation. For example, if the single firm dominates an economy completely (i.e., w1 = 1 and wi = 0 for

all i ̸= 1), the cumulant generating function of Z is equivalent to that of the Laplace distribution. As the

largest firm become less dominant in an economy, the averaging effect works more, and the distribution of Z
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country count ℓ2-norm max ratio

CA 10000 0.076 0.026 0.121
DE 10000 0.061 0.024 0.149
FR 10000 0.056 0.025 0.196
GB 10000 0.131 0.063 0.228
IT 10000 0.033 0.012 0.128

JP 10000 0.047 0.021 0.193
US 10000 0.056 0.027 0.229

Table 4: Norms of the weights for G7 countries.

Figure 9: Comparison of the cumulant generating function. The cumulant generating functions of a Gaussian and
Laplace distributions, and KZ with the empirical weights are plotted.

becomes closer to Gaussian. To see whether the distribution of Z is close to Gaussian or Laplace, Figure 9
compares the cumulant generating functions of Gaussian, Laplace, and Z for the US case. This figure shows

that the cumulant generating function of Z is very close to that of a Gaussian. This closeness to Gaussian

becomes clearer when the kurtosis is considered. Through the summation, the kurtosis of the distribution of

the standardized Z is reduced to

κ4(Z
∗) = κj(ϵ

∗)
∑
i

w∗4i = 3× 0.05 = 0.15

where w∗i = wi/∥w∥2 and ϵ∗i = ϵi/σϵ. That is, the kurtosis, which is 3 when the single firm dominates the

economy, is reduced to 0.15, which is very close to 0, i.e., that of the Gaussian distribution. This indicates

that given the empirical granularity, the averaging effect works substantially, and thus, the corresponding

distribution of Z is close to a Gaussian.

Given these backgrounds, I apply the saddlepoint approximation. The left panel of Figure 10 shows the

saddlepoint approximations of the density function of the normalized Z (i.e., Z∗) for G7 countries. In the

18



(a) For Z∗ (b) For Z

Figure 10: Saddlepoint approximation of probability density function. In Panel (b), I also plot the histogram of the
GDP growth rates for comparison.

same figure, I plot the standard Gaussian distribution for comparison. This figure shows that the all density

approximations for G7 countries lie on almost the same curve and are very close to that of Gaussian. That

is, although there are some differences in the weights and their norms between G7 countries, there is no

differences when it comes to the distribution shape; that is, the differences in the weights and their norms

only affect the variance of Z. Put differently, the empirical granularity for G7 countries are low enough to

let the averaging effect work substantially, resulting to the distribution of aggregate output close enough to

Gaussian.

The right panel of Figure 10 shows the approximation of the density of Z at the original scale and

compares it with the histogram of the GDP growth rates. This figure shows why the micro-originated

aggregate variance is economically significant but the contribution to the tail probability of Zis negligible.

That is, microeconomic shocks generate relatively small fluctuations of Z around its mean and generate

non-negligible aggregate variance. In contrast, as seen in Section 2.1, the distribution of the GDP growth

rates deviates from Gaussian, and thus, the difference between the empirical and approximated density is

large in the tail region. This suggests that microeconomic shocks would explain only small fluctuations and

not a large deviation in the GDP growth rate.

Finally, I approximate the distribution tail of Z. Figure 11 shows that the saddlepoint approximation

of the tail probability of Z. Consistent with the approximated probability density, the approximated tail

probability decays rapidly (i.e., the Gaussian decay). This rapid decays means that microeconomic shocks

with the empirical granularity cannot explain the observed tail probability of the GDP growth rates. As

mentioned above, the point is the closeness to the Gaussian distribution: although the CLT does not hold and

the distribution is rigorously not Gaussian, the averaging effect makes the distribution of Z close enough to

Gaussian. Thus, I conclude that the empirical granularity is not large enough to explain the characteristic

features of the GDP growth rates.
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Figure 11: Saddlepoint approximation of the distribution function of Z. In Figure, 1−F (x) is plotted. I also plot the
CCDF of the GDP growth rates for comparison.

4.2 Two-dimensional distribution

Suppose that there are two countries denoted by A and B and that each firm in country A (B) exports

its product to country B (A) by the fraction αi (αj) in its sales. Assume that when a microeconomic shock

ϵi hits firm i with sale si in A, its impact on aggregate output is proportional to (1 − αi)siϵi for country

A and to αisiϵi for country B. This model can be interpreted that a firm with size (1 − αi)si in country

A has its branch in country B with size αisi, and they share the common microeconomic shock ϵi. In this

model, the micro-level dependence between a firm and its branch, that is, an export/import relation, leads to

the dependence of aggregate outputs between the two countries. Thus, the relation between microeconomic

shocks and aggregate output is given by ZA

ZB

 =

 1
GDPA

(
∑

i∈A si(1− αi)ϵi +
∑

j∈B sjαjϵj)

1
GDPB

(
∑

i∈A siαiϵi +
∑

j∈B sj(1− αj)ϵj)


This equation corresponds to Eq.(1) in Section 3.

For simplicity, assume that αi = αA for all i ∈ A. Thus, the variances of ZA and ZB are given by

σ2
A =

σ2
ϵ

GDP2
A

(
(1− αA)

2∥s∥22,A + α2
B∥s∥22,B

)
σ2
B =

σ2
ϵ

GDP2
B

(
α2
A∥s∥22,A + (1− αB)

2∥s∥22,B
)

and its covariance is

σAB =
σ2
ϵ

GDPAGDPB

(
∥s∥22,AαA(1− αA) + ∥s∥22,BαB(1− αB)

)
For example, if αA = αB = α and ∥s∥2,A = ∥s∥2,B (i.e., the two countries are symmetry), the correlation
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(a) US and Canada (b) France and Italy

Figure 12: Approximated copula with normal scores. The dotted line represents the Gaussian copula with correlation
coefficient equal to the one used in the saddlepoint approximation.

coefficient ρ is given by

ρ =
2α(1− α)

(1− α)2 + α2
(5)

Note that ρ is uniquely determined by the export ratio α and does not depend on ∥s∥2. That is, ρ is

independent of the granularity of firm size. However, as discussed in Section 2.1, the dependence structure

(i.e., the copula function) is not determined by the correlation coefficient. In the following, I analyze how

the degree of the granularity of two economies affects the dependence of aggregate outputs for two countries

by using the saddlepoint approximation.

Given the firm-level data (i.e., sales for each country), I approximate the bivariate distribution of aggre-

gate output under Assumption 3.1 and compute the resultant copula function that describe their dependence

structure. Figure 12 shows the approximated copula with normal scores for the US and Canada and for

France and Italy, which are theoretical counterparts of Figure 6 in Section 2.1. In Figure 12, I plot the

Gaussian copula with the same correlation coefficient as empirical one for comparison. Both figures show

that the approximated bivariate copula shows the elliptic shape and is very close to Gaussian copula. The

logic behind this result is the same as in the univariate case in Section 4.1. That is, even when the CLT does

not hold, the averaging effect does not cease to work. Through the summation of microeconomic shocks,

the bivariate distribution of aggregate outputs becomes close to Gaussian, and therefore, the copula function

becomes close to Gaussian copula as well. Similar to the univariate case, when it comes to non-asymptotic

properties, the empirical granularity is not large enough to compensate the averaging effect of microeconomic

shocks.

As discussed in Section 2.1, the closeness to Gaussian copula has an important implication for the tail

dependence. Given the empirical weights, the copula of Z is sufficiently close the Gaussian copula and

thus has no tail dependence, while empirical copula has significant tail dependence as shown by Figure 6.

Indeed, the coefficient of the tail dependence numerically calculated from Figure 12 is given in Figure 13.
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(a) The US and Canada (b) France and Italy

Figure 13: The coefficient of the tail dependence.

As expected, the coefficient decreases to 0 as x becomes large, that is, no tail dependence. Note that no tail

dependence does not contradict the positive correlation coefficient; in fact, the positive export ratio generate

the positive correlation of the approximated bivariate distribution. My finding shows that microeconomic

shocks with the empirical granularity of the weights generate the positive correlation but no tail dependence

because the averaging effect makes the copula close enough to the Gaussian copula.

To summarize, my analysis shows that the empirical granularity is not large enough to cease the

averaging effect. Even when the CLT does not hold, most of microeconomic shocks are cancelled each

other out, and thus, the distribution of Z both in one- or two-dimensional settings turns out to be close

to Gaussian. The closeness to Gaussian immediately implies that the tail probability and tail dependence

induced by microeconomic shocks would be very small. On the other hand, the empirical GDP growth rates

deviate from the Gaussian distribution in the tail region. Therefore, given the empirical granularity observed

in data, the granular hypothesis cannot explain the important features of the empirical aggregate fluctuations.

5 Conclusion

What drives aggregate fluctuations? Regarding this fundamental question, the recent literature proposes

the granular view: because of the high heterogeneity of firm sizes, microeconomic shocks to giant firms

in an economy do not die out but contribute substantially to aggregate fluctuations. Although this idea has

been widely accepted in the literature, the size of the micro-originated aggregate fluctuations consistent with

empirical granularity has not fully investigated. This paper aims to measure the micro-originated aggregate

fluctuations using firm-level data in G7 countries.

The main contribution of this paper is to focus on the non-asymptotic properties of the distribution of

aggregate output rather than the asymptotic properties. My analysis shows that the difference between these

two properties is crucial. On the one hand, I find that because of the high granularity observed in data, the

CLT does not hold, that is, the distribution of aggregate output does not converge to Gaussian as n → ∞.
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This means that the largest firm accounts for a significant part of the economy even at the limit, and thus,

aggregate fluctuations are affected by microeconomic shocks to the largest firm. On the other hand, given

the empirical granularity (i.e., fixed weights), I also find that the distribution of aggregate output induced by

microeconomic shocks is very close to Gaussian. This result does not contradict the asymptotic result that the

CLT does not hold because the closeness to Gaussian is non-asymptotic property of aggregate output. Even

when the CLT does not hold, the averaging effect does not cease work, making the distribution of aggregate

output closer to Gaussian. In other words, the empirical granularity is not large enough to compensate this

averaging effect. Since the distribution of the GDP growth rate deviates from Gaussian (both in one- and

two-dimension case), microeconomic shocks cannot explain the distribution properties of the GDP growth

rates in the tail region.

Finally, it is worth mentioning the limitations of my analysis. Since my analysis is based on Hulten’s

theorem, other mechanisms that are not considered in Hulten’s theorem are also beyond the scope of my

analysis. For example, when an extensive margin such as entry/exit is introduced, microeconomic shocks

can be amplified and contribute to aggregate fluctuations even more. My negative result about the granular

idea should be viewed that such another amplification mechanism is necessary to explain the observed large

deviation in aggregate output. Indeed, recent studies (e.g., Baqaee (2018)) theorize such extensive margins

and analyze the impact of microeconomic shocks on aggregate output. I believe that my analysis contributes

to this recent literature by showing the limitation of Hulten’s theorem with intensive margins only.

6 Appendix

Section 6.1 provides the robustness of my findings in Section 4 by considering the distribution of

microeconomic shocks with a fatter tail than that of a Laplace distribution. Section 6.2 describes data on the

exporting share in sales for French firms.

6.1 Robustness

To check the robustness of my results in Section 4, I consider the distribution of microeconomic shocks

with a heavier tail than an exponential tail considered in Assumption 3.1. Because of this heavier tail, the

corresponding moment generating function does not exist. Since the saddlepoint approximation relies on the

moment generating function to recover the true distribution, it cannot be applied to this case. However, by

using the property of the heavier tail, I can estimate the tail probability of Z with given weights.

The class of distributions having a heavier tail than an exponential tail is called subexponential dis-

tributions.14 This class includes many examples encountered in applications, such as lognormal, Pareto,

14For details about the subexponential distribution, see the monograph by Foss et al. (2011). See also Arata (2021), in which I use the
property of the subexponential distributions in the analysis of aggregate fluctuations.
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and Weibull distributions. One of the most important properties of this distribution class is the principle

of a single jump. More precisely, let X1, ..., Xn be independent random variables drawn from a common

subexponential distribution F . Then, one can show that the tail probability of the sum of X1, ..., Xn is

asymptotically equivalent to the sum of the tail probability of X1, ..., Xn:

P (
∑
i

Xi < −x) ∼
∑
i

P (Xi < −x)

Intuitively, the above equation means that the large deviation of the sum is driven by the large deviation

of a single component Xi. In other words, the probability of the large deviation of the sum caused by the

combination of many components with middle size can be ignored in the asymptotics.

This property can be extended to the case of weighted sum as in Z and enables us to calculate the tail

probability of Z in a simple way. That is, I approximate the tail probability of Z by the following equation:

P (Z < −x) ∼
∑
i

P (wiϵi < −x) (6)

For an empirical exercise, I consider the distributions with a Weibull tail and Pareto tail as that of microeco-

nomic shocks in the following.

First, consider the two-sided Weibull distribution defined as follows:

P (ϵi ≤ −x) =
1

2
exp

(
−
(x
b

)τ)
, b > 0, 0 < τ < 1

where β is the scale parameter and τ is the shape parameter that controls the heaviness of the distribution

tail. Note that the tail of the distribution becomes arbitrary close to exponential as τ → 1, that is, the Laplace

distribution can be seen as the limit of the distributions as τ → 1. The variance of this distribution is given

by

σ2
ϵ = 2b2

[
Γ

(
1 +

2

τ

)
−
(
Γ

(
1 +

1

τ

))2
]

where Γ is Gamma function. In my exercise, I fix the scale parameter b to the estimated one used in Section

4 and change the shape parameter τ from 0.9 to 0.6. Then, I analyze how the tail probability of Z changes

according to the shape parameter τ .

As the second example of subexponential distributions, I consider a distribution with Pareto tail. More

precisely, suppose that there exists some constant x∗ such that for x ≥ x∗,

P (ϵi ≤ −x) = Kx−τ , τ > 0

where K and τ are some positive constants. In my exercise, I set x∗ equal to the first quantile xq1 , that is,

P (ϵi ≤ −x) =
1

4

(xq1
x

)τ
, τ > 0

In particular, I consider the shape parameter τ ranging from 2.5 to 4.0 so that the growth rates have finite

variance. Then, I approximate the tail probability of Z using Eq.(6).15

15Since the quantile of the sales growth rates at the quarterly basis is not available, I use the property of the subexponential distribution
again. That is, if the annual growth rate consists of iid quarterly growth rates, the tail probability of annual growth rates is
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(a) Two-sided Weibull tail (b) Pareto tail

Figure 14: Tail probability of Z. For comparison, the CCDF of the GDP growth rates for the US is plotted.

The tail probability under these two distributions for microeconomic shocks is given in Figure 14. For

comparison, the CCDF of the empirical GDP growth rates for the US is also plotted. Both figures shows

that as the tail of the distributions of microeconomic shocks becomes heavier, the resultant tail probability

of Z become larger. However, in both cases, the tail probability of Z still underestimates the empirical

counterpart. Note that as Eq.(6) suggests, only the tail probability for large firms contribute to the tail

probability of Z. Thus, this result shows that the sizes of such large firms are not large enough to generate

the large deviation of aggregate output. Consistent with the finding in Section 4, through the summation of

microeconomic shocks, the tail probability of Z decays much faster than the aggregate variance, reflecting

the power of the averaging effect.

6.2 Exporting ratio in sales

In my data, exporting shares in sales are not available for all countries but are available for about half of

firms in France. I use the exporting share for these French firms to infer parameter α in Section 4.2. Table 5
give their summary statistics, in which I exclude firms which report the exporting share of a negative value.

Figure 15 depicts the average of the exporting shares according to its firm size. Consistent with the literature

on international economics, this figure shows that the exporting share is positively associated with the firm

size, that is, larger firms exports their products more. Since large firms play a crucial role in the analysis of

the distribution of aggregate output, I focus on exporting share for large firms only. More concretely, I focus

on firms with sale larger than 100 million dollar and use their sample average of exporting shares, 0.168, as

parameter α.

asymptotically equivalent to the sum of the tail probability of the quarterly growth rates.

P (ϵi,a < −x) ∼ 4P (ϵi,q < −x)

where ϵi,a and ϵi,a are the annual and quarterly growth rates, respectively. Since the sample quantile of the annual growth rates is
available from my date, I can calculate the tail probability of the quarterly growth rates.
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count mean sd q1 median q3 max min

349726 4.233371 16.47377 0 0 0 100 0

Table 5: Summary statistics of exporting shares in sales for firms in France. Firms which report a negative value of
exporting share are excluded.

Figure 15: Sample average of exporting shares according to firm sizes.
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