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Abstract 
This paper investigates the impact of government R&D spending on promoting technology convergence. We test 
the hypotheses that a government funding program has a positive effect on technology convergence and the 
effects are heterogenous on different participants (i.e., academic, and industrial inventors). To investigate this, 
our empirical test applies the Advanced Sequencing Technology Program (ASTP) as one example. We develop 
a novel dataset by linking the ASTP grantee information with the PATSTAT patent database. Based on this, we 
create inventor-level characteristics to implement propensity score matching, selecting an appropriate control 
group of inventors who are comparable to those enrolled in the ASTP. We then employ DiD models to evaluate 
the impact of the program on the matched sample. The results confirm that the program is a driving force of 
technology convergence. The findings also indicate that the program is more influential to industry inventors 
than to their academic counterparts. Additionally, we conceptualize a ‘leverage effect’ of the program and show 
it can attract many external industrial inventors. The work contributes to better understanding the role of a 
government-funded program in encouraging convergence and providing implications for developing 
convergence-related R&D programs in the future. 
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1. Introduction 
 
Technology convergence refers to the phenomenon of emerging overlapping trends 
among at least two technological fields. Following Kodama’s (1995) seminal perspective, 
which states that the combination of existing technologies could spawn novel ones, 
technology convergence is considered as a source of innovation. Noteworthily, given the 
complementary nature of contemporary general-purpose technologies (e.g., 
nanotechnology, information technology, etc.), it is expectable that new technologies will 
be developed through the form of convergence. Indeed, the concept of innovation-as-
combination can be traced back to Schumpeter’s notion (1939): ‘… innovation combines 
factors in a new way, or that it consists in carrying out new combinations.’ By 
emphasizing innovation as the sine qua non of economic development and firms as a 
carrier of implementing innovation, he metaphorizes firms as human beings that are 
constantly being born and destined to die. In the case of firms, they die as they are unable 
to maintain the pace in innovating themselves and then will be eventually overturned by 
others. For this reason, both policymakers and firm leaders (e.g., entrepreneurs) need to 
keep an eye on technology convergence, as one of the roots of innovation, to promote 
economic growth and stay ahead of the competition. 
 
Several researchers have laid the theoretical foundation for technological convergence 
and taxonomies (Curran and Leker, 2011; Karvonen and Kässi, 2013), while others 
contributed to methodological development for either understanding the historical 
patterns or forecasting the future convergence chances (Preschitschek et al., 2013; Ko et 
al., 2014; Kim et al., 2014; Passing and Moehrle, 2015; Zhou et al., 2019; Eilers et al., 
2019; Kim and Lee, 2017; Kim et al., 2019; Lee et al., 2020; Kim and Sohn, 2020). One 
of the primary goals of comprehending technology convergence is to help business 
entities to sense and exploit new opportunities, organize R&D activity, and survive in the 
present dynamic business environment. On the other hand, as a source of innovation, the 
convergence processes can give birth to innovation that can either create untapped niche 
markets or transform people’s lives tremendously. 
 
The perceived importance of technology convergence, as well as the academic endeavors 
to conceptualize and quantify it, may point to a more fundamental and pivotal question 
of what drives technology convergence (Jeong and Lee, 2015; Sick and Bröring, 2021). 
Drawing on Curran’s four-stage sequential process (science, technology, market, and 
industry), the growing cross-disciplinary research collaborations will erode the boundary 
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and reduce the distance between science areas, reaching technology convergence (Curran 
and Leker, 2011). The framework implies that convergence can be driven by both 
scientific push and market pull. Song et al. (2017) classify convergence drivers into four 
categories: technological advancement, regulation and policy, market expectation, and 
social environment change. While these works leave a clue for investigating the drivers 
of convergence, only a few studies have provided empirical evidence and explanations 
on what triggers the convergence (Jeong and Lee, 2015, Caviggioli, 2016). Moreover, 
previous research on this topic has yielded only broad conclusions, stating convergence 
can be driven by closely related technological fields, a lower technology readiness level, 
and a longer R&D time horizon. This study aims to contribute to this emerging research 
field by empirically demonstrating and explaining government R&D spending as one of 
the drivers of technology convergence, as well as by attempting to understand the 
underlying mechanism by which a government-funded program can affect the behavior 
of industrial and academic inventors, who are main pillars engaging in the convergence 
process. 
 
The program we explore in this study is the Advanced Sequencing Technology Program 
(ASTP), (or the Advanced Sequencing Technology awards) funded by the US National 
Human Genome Research Institute (NHGRI). While the program has been credited with 
its contribution to the success of reducing the costs of genome sequencing, it is also noted 
as an endeavor that constantly accentuated the multidisciplinary collaborations and 
steered public-private partnerships (Hayden, 2014). Several of the program’s distinctive 
features, such as mandatory grantee meetings, also benefit knowledge transfer throughout 
the sectors and promote information dissemination to external entities. In these respects, 
ASTP is a better match for our objective of examining the effects of government R&D 
investment in encouraging technological convergence. 
 
The remainder of this paper is organized as follows: in Section 2 we provide a review of 
the literature on technology convergence and its drivers, and the hypotheses of the paper; 
in Section 3 we provide an overview of the programme under study and illustrate the 
process for constructing the dataset and the models for analyzing the ASTP; Section 4 is 
dedicated to the illustration the empirical results and analysis of the impact of government 
R&D spending as well as its implications; finally, we conclude the paper by summing up 
and discussing our findings in Section 5. 
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2. Literature review 
 
2.1. Technology convergence and its drivers 
 
While the notion of technology convergence varies according to managerial scope 
(Hacklin, 2007), we refer to it in this study as the blending of existing technologies. When 
different technological boundaries erode, spillovers between fields eventually lead to 
convergence. Unlike the conventional approach, which seeks breakthroughs via a linear 
R&D pattern, the convergence approach focuses on spawning new technologies by 
combining distinct ones. Hence, it is more complementary and collaborative in nature 
(Kodama, 1992). Additionally, Schumpeter (1934) maintained in his seminal work, The 
Theory of Economic Development, that innovation is a combination of existing resources. 
Technology convergence could be seen as an instance of the combinatorial process in this 
context by explicitly emphasizing hybrid technologies. Evidently, the rising exposure of 
the phenomenon of convergence can be observed in the demise of the adage “one 
technology, one industry” (Kodama, 1992). 
 
Sick and Bröring (2021) conducted a thorough review of the literature on convergence 
from the standpoint of technology and innovation management. Among the prior works 
on technological convergence, great efforts have been made in methodological 
development to identify historical convergence patterns or anticipate future convergence 
possibilities through patent analysis (Preschitschek et al., 2013; Karvonen and Kässi, 
2013; Ko et al., 2014, Eilers et al., 2019). Surely admitted their great implications to both 
enterprise and policymakers, it is also necessary to return to the central topic in 
convergence research, namely, which drivers promote the convergence process. From an 
evolutionary perspective, Hacklin (2007) conceptualized the convergence process into 
four phases: knowledge, technological, applicational, and industrial convergence. Curran 
et al. (2010) subsequently presented a four-stage model, illustrating the chronological 
order of science, technology, market, and industry convergence. The model implicitly 
suggests that technological convergence might be fueled by science/technology-push and 
market-pull, which have been addressed as innovation drivers by Mowery and Rosenberg 
(1979). Given the numerous factors which can contribute to the convergence, Song et al. 
(2017) proposed a taxonomy consisting of four groups: technological progress, regulation 
and policy, market expectation, and social change. In terms of technological progress, the 
rapid growth of the ICT industry can be viewed as the primary source and driver of 
convergence, as evidenced by the recent digital transformation (Han and Sohn, 2016). 
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Besides, other General-Purpose Technologies (GPTs), including information technology 
and nanotechnology, thanks to the nature of great technological generality (Gambardella 
and Giarratana, 2013), may serve as a vital knowledge provider to different fields (Appio 
et al., 2017). In the view of market expectation, it stresses the convergence driven by the 
demand-side. Dowling et al. (1998) claimed that the purchasing power may create a 
significant market need for products with integrated functions, which would then 
motivate firms to adopt and coordinate a variety of technologies. When it comes to social 
change, convergence is propelled by the challenges and needs that society faces. For 
example, the recent growth of green technology requires the convergence of different 
GPTs1. 
 
2.2. Policy and Technology convergence 
 
The policy can be designed to remove both artificial and technological barriers among 
different technological fields. For removing the artificial barriers, one example would be 
the Telecommunications Act of 1996, which unlocked the restriction between the 
telephone sector and the IT industry. In this case, policymaking may be more closely 
aligned with deregulation. The technological barriers, on the other hand, may refer to the 
technological distance among distinct domains, and costs for combining them. Discipline-
specific vocabulary, theories, and cognitive differences can lead to huge transaction costs 
associated with achieving convergence in a multidisciplinary setting (Nordmann, 2004). 
In addition, Jeong et al. (2011) claimed that, in a situation where the level of technology 
readiness is high, researchers, even within the same organization, are reluctant to work 
with colleagues with different backgrounds. In this scenario, policy refers to public R&D 
funding or a multidisciplinary incentive program. According to Littler and Coombs 
(1988), government-supported programs typically cover a wider range of technical fields 
than private sector projects but developed with a modest speed. Even if Metzger and Zare 
(1999) cast doubt on the effectiveness of such programs in fostering technological 
convergence, Jeong and Lee (2015) empirically showed that government-funded R&D 
initiatives with a longer timespan or a lower budget had a positive impact on convergence. 
In addition, Kim et al. (2017) showed that standards can also be a driving force of 
technology convergence through guiding the technological trajectories. 
 

 
1 OECD: https://www.innovationpolicyplatform.org/www.innovationpolicyplatform.org/content/bio-

nano-and-converging-technologies-green-innovation/index.html  

https://www.innovationpolicyplatform.org/www.innovationpolicyplatform.org/content/bio-nano-and-converging-technologies-green-innovation/index.html
https://www.innovationpolicyplatform.org/www.innovationpolicyplatform.org/content/bio-nano-and-converging-technologies-green-innovation/index.html
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Apart from these two barriers, it is also necessary to mention the uncertainties and costs 
that usually come along with the convergence. Ambiguity in the market and technological 
scope are two types of uncertainty that have been often highlighted. Technological 
uncertainty refers to the incapacity to fathom some facets in technological environments 
(Song and Montoya-Weiss, 2001) which is common in the context since convergence has 
the potential to unite previously unrelated fields (Hacklin et al., 2013). On the other hand, 
market uncertainty raises concern because too innovative products may initially only 
attract the least lucrative customers (Bores et al., 2003). Besides, the fulfillment of 
convergence potential requires a considerable initial investment, which may cause 
enterprises to reallocate their resources to other endeavors (e.g., more promising near-
term product development). Companies may then suspend or even kill these initiatives to 
avoid potential market failure, resulting in under-investment in knowledge creation 
through convergence. From this perspective, government-supported programs featured 
with university-industry knowledge exchange help reduce R&D market failures and 
ensure the benefits of the investments (Martin and Scott, 2000). The peer-review process 
adopted by government agencies such as the National Science Foundation (NSF) and the 
National Institutes of Health (NIH) has also been cited as a critical factor to success 
(Metzger and Zare, 1999). 
 
To sum up, the existing literature on the impact of government policy on technology 
convergence leaves a clue that deregulations and public funding programs can be a 
potential driver of the convergence. However, we found that the related empirical works 
on this topic are still rare, which motivated us to devote efforts to this field. 
 
2.3. Hypotheses 
 
The literature review presented in Section 2.2 shows that scholars have investigated the 
relationship between government funding programs and technology convergence. One of 
the most critical specificities of technology convergence is multidisciplinary cooperation, 
which provides a knowledge foundation for convergence. The participation of specialists 
from a variety of backgrounds may spark novel ideas and inspirations while collaborating. 
However, a multidisciplinary configuration also implies that developing convergence-
related projects would be more hazardous and time-consuming (Schmoch et al., 1994): 
participants need more time to familiarize themselves with people from diverse 
backgrounds and more cycles of test and failure to identify suitable solutions. As a result 
of these uncertainties and risks, both academic and industrial participants are more 
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inclined to shift their focus to short-term and insured undertakings. In this regard, the 
government funding programs, which offer longer-than-usual grant durations, can enable 
researchers to conduct in-depth studies rather than seeking quick success. Indeed, since 
the early decades of the twenty-first century, government-supported initiatives (e.g., held 
by the National Science Foundation, the National Institutes of Health, etc.), which have 
incorporated a multidisciplinary setup (with a particular focus on the convergence of 
nanotechnology, biotechnology, and information technology), usually offered a long-
term funding plan (Roco and Bainbridge, 2002). 
 
Besides, since technological convergence is essentially commercially oriented in nature, 
it also necessitates the commercial potential and feasibility of interdisciplinary knowledge. 
In this light, the experience can be learned from the U.S. government innovation programs, 
which fostered the commercial applications and attracted nonfederal investment in R&D 
through promoting university-industry (U-I) collaborations or directly sponsoring 
industrial enterprises (Roessner, 1989). The inclusion of industrial entities underlines the 
commercial viability of developed projects, promoting technological development. In 
addition, industry-university collaborations enhance academia-industry knowledge 
diffusion. The influence of this might be bidirectional. On the one hand, firms can stay 
aware of cutting-edge academic research findings and recruit highly competent and well-
matched personnel. On the other hand, academic scholars can get insight into what is 
happening in the industry sector, understanding potential applications of their work. 
Moreover, this may allow certain academic workers to shift from pure scientific 
exploration to technological research. Based on these, we, therefore, propose the 
following hypothesis: 
 
Hp 1. A government-funded R&D program has a positive impact on promoting 
technology convergence. 
 
Secondly, university and industry are regarded as two of the most important pillars of 
technological advancement. Hence, we want to further break down the analysis to 
investigate the roles of academic and industry inventors in the convergence process, 
respectively. While government-funded R&D programs are usually accompanied with an 
explicit goal of knowledge creation, but their management practices (e.g., reciprocal 
information sharing mechanisms) could also facilitate a mutual learning process across 
disciplines and sectors, which has the potential to lessen the cognitive distance for both 
academic and industrial participants. The shortened cognitive distance will enable 
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companies to gain higher absorptive capacity, which then allows them to acquire new 
value or knowledge and translate it into innovation quickly (Cohen and Levinthal, 1990). 
In addition, in comparison to science-based knowledge, which is sufficiently codifiable, 
firm-based knowledge is more implicit, making dissemination more challenging (Kani 
and Motohashi, 2018; Kogut and Zander, 1992). Also, as opposed to scientific knowledge, 
which is regarded as a global public good, technological knowledge is often protected by 
intellectual property laws, which contributes to transmission difficulty as well. In this 
sense, we anticipate that government-funded R&D programs, which aid in the spread of 
knowledge, would have a greater policy shock on industry inventors than on university 
inventors. 
 
On the other hand, the efficacy of reduced cognitive distance to university scholars may 
be impeded in several ways. Despite several efforts have been made to foster 
multidisciplinary collaboration in universities, current assessment mechanisms still place 
a premium on individual accomplishment, which disincentivizes faculty and departments 
to work across fields (Klein and Falk-Krzesinski, 2017; Pfirman and Martin 2017). As 
noted by Arnold et al. (2021), compared to a multidisciplinary setting, tenure/promotion 
committees may assess an academic worker more objectively in a uni-disciplinary context 
by comparing the productivity and impact of scholarly work to that of colleagues within 
a discipline. Also, it is risky for an academic researcher to jump into an unfamiliar field. 
Furthermore, technological convergence inherently bears a commercial purpose. In this 
sense, researchers inside universities often place a high value on publishing activity, since 
it carries a higher degree of prestige than commercialization (Sauermann and Stephan, 
2013). However, companies typically put a priority on the commercialization potential of 
technology. And programs that support industry for convergence-related projects would 
incentivize businesses to move away from short-run projects and toward long-run 
convergence innovation activities, which are previously less likely to be performed by 
firms due to the risks and expensive initial expenditure (Feldman and Kelley, 2006). 
Therefore, firms are more urgent and have more motivation to engage in technology 
development and patenting activities. This leads to our second hypothesis: 
 
Hp 2. Among the funded inventors, a government-funded R&D program has a greater 
impact on industrial inventors than university inventors. 
 
The second hypothesis targets delineating the behaviors of the funded inventors. We then 
want to study how a program may influence the behaviors of inventors outside the 
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program, which can also be divided into university and industry groups. The following 
three reasons lead us to expect that an R&D program may have a significant impact on 
attracting external industrial inventors than academic inventors. First, an R&D program 
that provides funding to not only traditional academic researchers but also companies 
maintains the commercial feasibility of developed projects. The commercialization 
relevance has a greater chance of attracting the attention of outside firms. Second, 
although many naysayers in the private sector may be reluctant to or even go against the 
convergence ideas initially, new markets and demands created later through converged 
technologies are very appealing to firms (Park, 2017). In this regard, the scholarly peer-
review process inside a program increases the authority of the concepts, which further 
helps to convince partners for commercialization. Also, the program per se can act as a 
conduit for the external audience to see and acquire reassurance about associated results 
and accomplishments, changing their mindset from risk-averse to risk-neutral. We further 
conceptualize the attractive force to external players as ‘leverage effects,’ in which the 
government takes the initiative to invest in convergence ideas and then discloses internal 
progress and conclusions to grab the attention of externally prospective parties. Given the 
enormous costs associated with developing technologies through convergence, although 
the government spending might be only a drop in the bucket, the government can adopt a 
funding program as a lever to amplify the input force (government R&D spending) to 
provide a greater output force (potential private investors, industrial and academic 
participants), thereby achieving the social benefits. Due to the commercial nature of 
technology convergence, the corresponding leverage effects are expected to be more 
visible to external industrial inventors than university inventors. Finally, we propose the 
following hypothesis: 
 
Hp 3. Government spending on R&D has a more significant impact on attracting external 
industrial inventors than academic inventors. In other words, the leverage effects of a 
program are more effective/visible to external industrial inventors than university 
inventors. 
 
2.4. Conceptualization  
 
This section presents the positions of the three hypotheses in Figure 1. While convergence 
can generate new technologies, it often comes with barriers, uncertainties, and substantial 
initial investments. In this study, we argue that a government-funded R&D program can 
be a driver of technology convergence (hypothesis 1). To explain why it is the case, we 
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focus on the program’s impact on the behaviors of internal and external participants in 
the scenario of convergence, which is illustrated by hypotheses 2 and 3. Hypothesis 2 
states that the program will encourage academic and industrial inventors to engage in 
convergence activities, fostering technological development and research. Hypothesis 3, 
on the other hand, is concerned with the external participants, declaring that the program 
per se could be a crucial channel for disseminating internal knowledge and assuring 
authorities of convergence concepts by which motivate external players to take part. As 
we suspect that its impact will be significant on external industrial players and only 
limited on external academic researchers, we further conceptualize these as a ‘leverage 
effect’ for industry and an ‘eye-catching effect’ for academia. 
 

 

Figure 1. Conceptualization of the role of a government R&D spending in promoting 
technology convergence and the position of each hypothesis 

 
3. Data source and methodology 
 
Our empirical test relies on the Advanced Sequencing Technology Program (ASTP) at 
the National Institutes of Health (NIH). In the next section, we first present the context of 
ASTP that is considered as a potential convergence driver under this study. 
 
3.1. Advanced Sequencing Technology Program from 2004 to 2014 
 
When the Human Genome Project (HGP) was completed in April 2003, the total cost of 
this project was approximately 3 billion dollars. In the same year, the National Human 
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Genome Research Institute (NHGRI), an institute of NIH, announced two broad visions 
for the future genomics research: ‘elucidating the structure and function of genomes’ and 
‘translating genome-based knowledge into health benefits,’ highlighting the potential of 
revolutionizing biomedical and clinical practice if the costs of sequencing can be 
significantly reduced (Collins et al., 2003). For this reason, in 2004, the NHGRI launched 
a funding program with an explicit goal of reducing costs by two to four orders of 
magnitude. This program is formally known as the Advanced Sequencing Technology 
Program (ASTP), which consists of two requests for applications (RFAs): ‘Near-Term 
Technology Development for Genome Sequencing’ (the $100,000 genome 2 ) and 
‘Revolutionary Genome Sequencing Technologies’ (the $1000 genome3). Even though 
the explicit goal for the project was to reduce the costs, the NHGRI emphasized that the 
goal should be achieved through multidisciplinary team collaborations, which can be seen 
from the three characteristics of the program. First, the ASTP calls for participation by 
multidisciplinary investigator teams, including biochemistry, chemistry, physics, 
mathematical modeling, software development, and so on. Second, unlike the traditional 
funding programs, which are exclusively awarded for academia, the ASTP offers grants 
to academic, industry, and foreign investigators, which can be seen from most grants were 
allocated to academia researchers and small companies, and even several research 
projects inside big companies (e.g., Intel and IBM) can also receive the funds. Finally, 
annual grantee meetings were held by NHGRI, mandatorily requiring entities sponsored 
by ASTP to share their findings, which also served as a bridge role in facilitating the 
knowledge diffusion between academic and industry investigators. Noticeably, the 
grantee meetings were considered a major feature of the program, and the participators 
were later extended to people outside the program, including investigators, investors, and 
so on. In addition, the ASTP also had a high tolerance to accept risky ideas, which were 
atypical of other NIH grants. Given these exceptional features of the ASTP, we expect 
this government funding program could be a potential driver of the convergence process. 
 
The Sanger-based sequencing approach (i.e., capillary array electrophoresis (CAE)) was 
employed for the HGP, which was heavily dependent upon the field of biochemistry and 
is also referred to as First Generation Sequencing (Schloss, 2008). While the Sanger CAE 
method achieved high-quality results, the use of electrophoresis only allowed for a limited 
degree of parallelization, translating into comparably low efficiency and expensive 

 
2 https://grants.nih.gov/grants/guide/rfa-files/RFA-HG-04-002.html  
3 https://grants.nih.gov/grants/guide/rfa-files/RFA-HG-04-003.html 

https://grants.nih.gov/grants/guide/rfa-files/RFA-HG-04-002.html
https://grants.nih.gov/grants/guide/rfa-files/RFA-HG-04-003.html


11 
 

sequencing costs. Compared to traditional Sanger sequencing, next-generation 
sequencing (NGS), which employs massively parallel techniques (also known as cyclic-
array strategies), enables significantly increased data throughput, scalability, and 
efficiency (Shendure and Ji, 2008). The success of NGS implementation is dependent on 
a synergy of biochemistry, information technology, and nanotechnology. For example, 
information technology is involved in library preparation, which is typically the initial 
stage in a sequencing operation (van Dijk et al., 2014). Furthermore, the expanding 
volume of NGS data presents challenges for bioinformatics in areas such as sequence 
quality assessment, alignment (i.e., re-sequencing), assembly, and data analysis. In this 
regard, we might refer to the evolution of NGS as a ‘convergence age.’ 
 
3.2 Data and measures 
 
In studies of technology convergence, patent data, which indicate the knowledge 
accumulation and development in a specific technical field, are frequently used as a proxy 
for monitoring the convergence (Karvonen and Kässi, 2013). In this work, the technology 
convergence is measured by the inter-field citations between information technology (IT) 
and biotechnology (BT), which are two main technologies used by the Next-Generation 
Sequencing (NGS). We extract the IT and BT patent data and citation information from 
the PATSTAT 2020 Autumn version, noting all collected patents are published from the 
US patent office. To define the boundary of IT and BT patents, we use the concepts of 
technology classification issued by WIPO. The time window of the data is set from 1996 
to 2019 to gather sufficient information for constructing patent indicators. As for the 
ASTP data, the grant lists are scraped from the NHGRI’s websites, which provided 
detailed records for the ASTP awards from 2004 to 2014. We manually disambiguate the 
ASTP inventors and then link them to the PATSTAT database. The process for collecting 
data is visualized in Figure 2. 
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Figure 2. Data collection and processing 
 
3.3. Reduction of selection bias using propensity score matching 
 
Before testing the first hypothesis of the causality effects of government R&D spending 
on promoting technology convergence, which can be reflected from the inventors enrolled 
in the program becoming more likely to form inter-field backward citations and receive 
inter-field forward citations, we need to alleviate the bias induced by the selection process 
of ASTP review offices. Applicants for the ASTP needed to undergo a peer review 
process, which was assessed based on five criteria by review panels: Significance, 
Approach, Innovation, Investigator, Environment4. The first three criteria are relevant to 
the project outlined in the RFA, while the rest two tie into the investigator per se (i.e., the 
experience level) and their surrounding community (i.e., collaborativeness of the 
surrounding environment). We select and design variables based on these criteria and 
implement the propensity score matching with the dependent variable ASTP (1 to denote 
if a given individual is enrolled in the program and 0 otherwise). The selected covariates 
can be categorized into patent portfolio-level, inventor-level, and environment-level. The 
descriptions for each group of variables are given as follows. 
 
Patent portfolio-level variables are relevant to the first three criteria. For example, in 
terms of innovation, it is asked for ‘does the project employ novel concepts, approaches 
or methods?’ and ‘are the aims original and innovative?’, which are evaluated on the 

 
4 These criteria are the same for the abovementioned two RFAs. 
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project sketched in the RFA. However, we are not able to rate the quality of the project 
based on these criteria and the data for the reviewing results are not disclosed either, and 
more importantly, such information is nonexistent for people who never apply for the 
program. Therefore, we assume some of the metrics can be reflected in one’s past works. 
For example, we estimate an inventor’s innovativeness by aggregating (i.e., average) the 
innovative scores over his or her past patent portfolio. Based on this, four variables are 
created: originality, radicalness, number of coinventors, and number of institutions. 
Trajtenberg et al. (1997) designed an indicator to measure the originality of a patent by 
arguing an invention depending on diverse knowledge sources (i.e., a wide range of 
technology fields) is more likely to be original. The radicalness index originated from 
Shane (2001)’s idea, which states that the more radical an innovation is, the more it is 
based on paradigms that are not the same as the one to which it is applied. For 
variable number of coinventors, we set up a set of ASTP inventors coinventors, and then 
each person will be measured by the number of coinventors that in that set. The idea is 
that if a person co-authored with the ASTP inventors’ coinventors, he or she may share 
similar characteristics with the ASTP inventors. And for the variable number of 
institutions, it is similar to coinventors, but in this case, we consider the ASTP inventors’ 
institutions associated with the patent assignee information. Note that these variables will 
be first examined at the patent-level, and then aggregated to person-level based on one’s 
patent portfolio. 
 
Inventor-level variables are related to the criterion of Investigator. In this group, six 
variables are designed: experience, degree centrality, betweenness centrality, PageRank, 
local betweenness centrality, and local PageRank. Variable experience refers to the 
number of patents published until the given timestamp. The remaining five variables are 
network statistics derived from an undirected coinventor network. Specifically, degree 
centrality (number of collaborators), betweenness centrality (role as a bridge), and 
PageRank (importance of an inventor) are referred to as global measures, which are 
obtained from the global coinventor network. The global coinventor network can further 
be decomposed into several connected components, which we call local networks or 
communities. local betweenness centrality (role as a bridge within his/her community) 
and local PageRank (importance of an inventor (node) within his/her community) are 
local network statistics computed from these connected components. The reason for 
creating both global and local network statistics is to take into account the situation where 
one may have a relatively small value of PageRank (global importance) but actively act 
as a bridge in his or her community (large value of local betweenness centrality). 
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Environment-level or community-level variables tied to the criterion of Environment. The 
network statistics in the previous section are calculated with respect to a node. In this 
section, we create environment-level variables using network statistics with respect to a 
connected component (community). In this manner, we propose four variables: diameter 
(the size of the community), average clustering coefficient (the likeliness that two 
neighbors of an inventor are also connected within the community), efficiency (how 
efficiently an inventor can reach others within the community), and community diversity. 
The first three are commonly used network statistics. The last one is inspired by Aggarwal 
et al.’s (2020) work, where they demonstrated a method for measuring within-team 
knowledge diversity and across-team knowledge diversity. In our case, each inventor in 
a community would be first represented by a characteristic vector, where each element 
shows his or her experience in each International Patent Classification (IPC) subgroup. 
The cosine diversity score is then calculated to measure the degree of diversity for a 
community (as described in further detail later in the Appendix). As all variables 
constructed in this group are network-level statistics, inventors within the same 
community will share the same values. 
 
The matching process will be conducted based on these fourteen variables and 
implemented for each year separately as the ASTP had multiple application receipt dates. 
Also, one inventor may receive the ASTP award more than one time, and in this case, we 
only count the earliest time for each inventor being enrolled in the ASTP. For each year, 
these fourteen variables will be recomputed based on the information before that 
timestamp. We carry on an optimal pair matching strategy using the R package ‘MatchIt,’ 
where the sum of the pairwise distances in the matched sample will be minimized. Each 
treated observation would be matched with two control observations. After that, we pool 
together the matched sample for each year into a whole dataset. The overall flowchart is 
depicted in Figure 3. 
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Figure 3.  Flowchart of implementation of propensity score matching 

 
3.4. Matching results 
 
After estimating the propensity scores, one treated observation is matched with two 
control observations for each year. In our sample, there are cases that a non-treated 
observation is being matched multiple times to treated observations in different years. 
Hence, in the final combining process, we only keep unique individuals by removing the 
repeated non-treated observations. Also, there are two special cases where ASTP 
inventors are matched into control groups before they are enrolled in the program5. For 
these two cases, we simply delete them from the control group. In total, we get 54 
observations in the treatment group and 70 observations in the control group. Table 1 
reports the results before and after matching for the first year (2004), where propensity 
scores differ quite substantially between treated and untreated inventors before the 
matching. After matching, the gap of propensity scores between treated and untreated 
units is well alleviated, which can also be seen from other variables. Besides, the 
distribution of propensity scores after matching is presented in Figure 4, which also 
evidently proves the quality of matching. In particular, the mean values for the treatment 

 
5 Leamon, John H. and Korlach, Jonas are being matched as untreated units to sample of 2004 and 2005, 

and both of them later received the grants in 2009 and 2010, respectively. This also somehow proved the 

quality of selected variables for the matching process. 
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and control groups before matching reveal some characteristics of the selected ASTP 
inventors in that year. In terms of the past patent portfolio, the ASTP inventors, on 
average, have relatively lower originality and radicalness values than inventors outside 
the program. Also, it is noted that ASTP inventors are more likely to act as a ‘bridge’ than 
others from the larger values of betweenness centrality (normalized) and local 
betweenness centrality. Finally, in terms of the community environment, the table shows 
that ASTP inventors are in a more extensive and more diversified community than 
external inventors on average. 
 

 
Table 1. Before and after matching results of the sample in 2004 
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Figure 4. Distribution of propensity scores after matching 
 

 
3.5. Regression models 
 
We expect that a government R&D program can promote technology convergence, which 
can be observed from the increasing number of inter-field citations of inventors after 
being enrolled in the program. We further divide the inter-field citations into backward 
and forward citations, where the backward citations exhibit the engagement of inter-field 
innovation activities, and the forward citations manifest their impact on the external 
environment. As the ASTP had multiple application receipt dates, we adopt a difference-
in-differences (DiD) specification with multiple periods to estimate the relation between 
the ASTP and the inter-field citation counts. The regression set-up is given as follows: 
 

log(1 + 𝑌𝑌𝑖𝑖𝑖𝑖) = 𝛼𝛼 + 𝛽𝛽𝐷𝐷𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖 + 𝜆𝜆𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 ,
𝑖𝑖 = 1, … , 124; 𝑡𝑡 = 2000, … , 2019  

 
In the above equation, 𝑌𝑌𝑖𝑖𝑖𝑖 is a measure of technology convergence of person 𝑖𝑖 in year 𝑡𝑡, 
which can be either inter-field backward or forward citation counts. Both backward and 
forward citations are first counted at the patent level and then aggregated into inventor 
level by taking the sum over one’s patent portfolio. When dealing with the forward 
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citations, we adopt a fixed window patent citation count (count forward citation accrued 
to the patent of interest from the patent application date to 5 years thereafter). 𝜆𝜆𝑖𝑖 and 𝜇𝜇𝑖𝑖 
are year and individual fixed effects, 𝜖𝜖𝑖𝑖𝑖𝑖 is the error term. The variable of interest is 𝐷𝐷𝑖𝑖𝑖𝑖, 
a dummy variable that equals one in the years after person first being enrolled in the 
ASTP and zero otherwise. The coefficient, 𝛽𝛽, therefore indicates the impact of the ASTP 
on technology convergence. 𝑋𝑋𝑖𝑖𝑖𝑖 is a set of time-varying person-level control variables. 
Control variables are employed to secure a reliable estimate of the impact of ASTP on 
enrolled inventors. The variables are selected to control three aspects: an inventor’s patent 
quality, an inventor’s characteristics in the global and local network, and the 
characteristics of an inventor’s surrounding network. Most of the variables are selected 
from those being used for matching. In addition, we need to control for the increase in 
total citation counts. Furthermore, we include variable science, which represents the 
number of backward citations of non-patent literature (NPL), to control for the effects of 
citing scientific papers. Karvonen and Kässi (2013) suggest the count of NPL evaluates 
the proximity between technological innovation and scientific research, which can be 
used to measure the science-technology linkage to some extent. With that being said, 
Meyer (2000) raises caution that NPL can be added by applicants to intentionally enhance 
the breadth of patent coverage or due to the standard conduct of examiners. 
 
4. Results 
 
4.1. Empirical results 
 
Our first analysis is to show the effects of a government funding program on promoting 
technology convergence. Table 2 and 3 report the impact of the ASTP on change of inter-
field citations. The model 1-5 show that the coefficients of treated variable 𝐷𝐷𝑖𝑖𝑖𝑖  are 
statistically significant at the 5% significance level when considering the inter-field 
backward citations. Thus, we found evidence showing that the enrollment encouraged the 
inventors to engage in multidisciplinary innovation activities. For model 2 and model 5, 
variable science has statistically significant positive coefficients, suggesting inventors 
who tend to cite more NPL are more likely to form inter-field backward citations. As for 
the inter-field forward citations, we found that the coefficients of 𝐷𝐷𝑖𝑖𝑖𝑖 are statistically 
significant in terms of model 6, 8, 9 and 10, while it becomes insignificant when we are 
controlling the patent quality. For variable science, it is significant (at the 1% level) and 
positive again, in this case, indicating inventors who tend to cite more NPL are more 
likely to receive inter-field forward citations. However, when considering the forward 
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citations, both community efficiency and community diversity show negative coefficients, 
suggesting locating in a diversified community may not increase the forward citations. In 
summary, we found strong evidence that the program encouraged inventors to engage in 
multidisciplinary innovation activities, while relatively weak evidence for its influences 
on the inventors outside the program. 
 

 Model 1 

log(#InterBWD+1) 

Model 2 

log(#InterBWD+1) 

Model 3 

log(#InterBWD+1) 

Model 4 

log(#InterBWD+1) 

Model 5 

log(#InterBWD+1) 
treated 0.2822** 

(0.1246) 
0.2114** 
(0.0941) 

0.2361** 
(0.1109) 

0.2289** 
(0.1096) 

0.1713** 
(0.0858) 

log(#TotalBWD+1) 0.5016*** 
(0.0475) 

0.3617*** 
(0.0552) 

0.4992*** 
(0.0500) 

0.6031*** 
(0.0567) 

0.4357*** 
(0.0552) 

originality  2.1380*** 
(0.6213) 

  2.6407*** 
(0.5364) 

radicalness  0.1538 
(0.2673) 

  0.3549 
(0.2357) 

science  0.0738*** 
(0.0109) 

  0.0584*** 
(0.0094) 

degCentNorm   0.6346 
(3.0947) 

 2.5546 
(2.1819) 

btwnCentNorm   0.0678** 
(0.0300) 

 0.0240* 
(0.0125) 

btwnCentLocal   -0.1641 
(0.3086) 

 0.0636 
(0.2476) 

pagerank   1.6467 
(5.2970) 

 -0.9004 
(3.6013) 

pagerankLocal   -1.3559** 
(0.5704) 

 -1.7171 
(1.1311) 

community diameter    0.0009 
(0.0053) 

0.0007 
(0.0069) 

community avgcluster    -0.3793** 
(0.1803) 

-0.5364* 
(0.3044) 

community efficiency    -0.3902** 
(0.1588) 

0.2533 
(0.4915) 

community diversity    -0.2370 
(0.3620) 

-0.2360 
(0.2551) 

constant -0.0615 
(0.0646) 

-0.0653 
(0.0546) 

-0.0381 
(0.0742) 

0.0639 
(0.0714) 

0.0187 
(0.0607) 

N 
adj. R2 

AIC 
BIC 

2480 
0.6973 
3700 
3900 

2480 
0.7838 
2900 
3000 

2480 
0.7208 
3600 
3700 

2480 
0.7260 
3500 
3600 

2480 
0.8023 
2700 
2900 

Standard errors in parentheses 

* p<0.10, ** p<0.05, *** p<0.01 

 

Table 2. DiD estimation results of backward inter-field citations 
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 Model 6 

log(#InterFWD+1) 

Model 7 

log(#InterFWD+1) 

Model 8 

log(#InterFWD+1) 

Model 9 

log(#InterFWD+1) 

Model 10 

log(#InterFWD+1) 
treated 0.1283** 

(0.0807) 
0.1086  

(0.0818) 
0.1458* 
(0.0807) 

0.1821** 
(0.0754) 

0.1397** 
(0.0763) 

log(#TotalFWD+1) 0.5179*** 
(0.0361) 

0.4099*** 
(0.0402) 

0.5064*** 
(0.0357) 

0.5092*** 
(0.0357) 

0.4298*** 
(0.0389) 

originality  0.1884 
(0.2604) 

  0.2765 
(0.2750) 

radicalness  -0.2016* 
(0.1132) 

  0.1747 
(0.1105) 

science  0.0394*** 
(0.0104) 

  0.0327*** 
(0.0104) 

degCentNorm   -2.2677 
(1.7502) 

 -1.1640 
(1.4680) 

btwnCentNorm   0.0461 
(0.0305) 

 0.0176  
(0.0183) 

btwnCentLocal   -0.5500** 
(0.2691) 

 -0.2127 
(0.2841) 

pagerank   2.8892 
(2.6612) 

 2.0277 
(2.4623) 

pagerankLocal   -0.2944 
(0.2559) 

 0.4113 
(0.7421) 

community diameter    0.0100** 
(0.0048) 

0.0035 
(0.0049) 

community avgcluster    -0.0036 
(0.1080) 

0.0765 
(0.1741) 

community efficiency    -0.1348 
(0.0993) 

-0.4262 
(0.3066) 

community diversity    -0.8221*** 
(0.2319) 

-0.7176*** 
(0.2356) 

constant -0.0773* 
(0.0423) 

-0.0681 
(0.0449) 

-0.0631 
(0.0495) 

-0.0330 
(0.0436) 

-0.0332 
(0.0453) 

N 
adj. R2 

AIC 
BIC 

2480 
0.6619 
2400 
2600 

2480 
0.6969 
2200 
2300 

2480 
0.6751 
2300 
2500 

2480 
0.6847 
2300 
2400 

2480 
0.7154 
2000 
2200 

Standard errors in parentheses 

* p<0.10, ** p<0.05, *** p<0.01 

 

Table 3. DiD estimation results of forward inter-field citations 
 
4.2. Dynamics of Enrollment 
 
In this section, we examine the causality effects of the program by incorporating a series 
of dummy variables to trace the year-by-year effects of the enrollment. We do this by 
fitting the regression model: 
 

log(1 + 𝑌𝑌𝑖𝑖𝑖𝑖) = 𝛼𝛼 + 𝛽𝛽1𝐷𝐷𝑖𝑖𝑖𝑖−3 + 𝛽𝛽1𝐷𝐷𝑖𝑖𝑖𝑖−2 + ⋯+ 𝛽𝛽1𝐷𝐷𝑖𝑖𝑖𝑖+15+𝜇𝜇𝑖𝑖 + 𝜆𝜆𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖  , 
 
where the dummy variable 𝐷𝐷−𝑗𝑗 equals one for persons in the 𝑗𝑗th year before enrollment, 
while 𝐷𝐷+𝑗𝑗  equals one for persons in the 𝑗𝑗 th year after enrollment. It equals zero 
otherwise. We exclude the first year (2000), thus the dynamic effects of enrollment, the 
𝐷𝐷’s, are estimated with respect to the first year. Figures 5 and 6 plot the estimated results 
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and the 95% confidence intervals for inter-field backward and forward citations, 
respectively. 
 

 
Figure 5. The dynamic impact of enrollment on backward inter-field citation counts. 

 

 
Figure 6. The dynamic impact of enrollment on forward inter-field citation counts. 

 
 
Figure 5 reveals two important observations. First, the estimated coefficients do not 
significantly differ from zero in the three years before being enrolled in ASTP, 
eliminating the concern of reverse causality that the ASTP might have selected 
multidisciplinary inventors at the beginning. Second, the impact of the ASTP materializes 
very fast, which can be seen from the estimated coefficients as well as the corresponding 
confidence intervals quickly shift from zero. The quick responses are probably driven by 
the stringent milestone system of the National Advisory Council for Human Genome 
Research. The stringent milestone system has been an effective tool for NHGRI staff to 
plan and monitor progress, which was also incorporated as a condition of award. In 
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addition, this could be also credited to the ‘Mandatory Annual Grantee Meetings’ held by 
NHGRI, where ASTP inventors had to regularly report and share their progress. 
 
On the other hand, for the inter-field backward citations in figure 6, the estimates 
coefficients show no effects in the three years before being enrolled in ASTP. And even 
in the first two years after being enrolled in the ASTP, the coefficients still do not 
significantly differ from zero (confidence intervals contain zero). While starting from the 
third year after being enrolled, we can see gradually increasing effects on the number of 
inter-field forward citations (confidence intervals shift from zero). The lagged effects of 
the program on the external environment are probably due to external players needing 
time to sense and assess the ASTP inventors’ works. Besides, the gradual increase in 
estimated coefficients proved its impact of promoting external multidisciplinary 
innovation activities. The annual grantee meetings, which is a distinct and innovative 
feature of ASTP, could be one of the key factors that impel and foster the process. The 
meeting had been limited to the ASTP inventors and only a small group of selected 
participants during the first years of the program, but then extended to a large group of 
audience from representatives of large companies to young scholars and students. The 
collegial nature of the meetings facilitates knowledge sharing and forms a channel for 
attracting experts in different fields, which in turn enhances its impact on nurturing 
multidisciplinary collaborations. 
 
To sum up, our results confirm what was hypothesized: government R&D spending has 
a positive impact on promoting technology convergence, which can be seen from the 
significant positive values of treated variables on both inter-field backward and forward 
citations. However, the impact might be heterogeneous from different groups of people 
(i.e., university and industry). Therefore, in the next section, we further break down the 
analysis to see its impact on the university and industry inventors. 
 
4.3. Impact of government R&D spending 
 
The ASTP supported both academic and industrial inventors. In this section, we test the 
remaining two hypotheses. To test the second hypothesis, we labeled the ASTP inventors 
in our dataset into two groups: university and industry. And for testing the third one, we 
classified the backward and forward citations accrued to the ASTP inventors by using the 
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attribute psn_sector provided by PATSTAT6. Explicitly, hypotheses 2 and 3 focus on 
internal and external inventors, respectively. 
 
4.3.1. Direct influences on the internal inventors 
 
To see the program’s heterogeneous impact on enrolled academic and industrial groups, 
we conduct the DiD estimations on these two groups, respectively. And in this case, we 
are interested in backward citations only, as backward citations reflected how ASTP 
shaped the behaviors of inventors who were participants in the program. Table 4 
summarizes the regression results on two groups of people. The coefficients of the treated 
variable are positive and significant for almost all scenarios, indicating the program 
encouraged both parties to engage in technology convergence activities. However, we 
found the coefficients for industrial groups are larger than that of academic groups, 
regardless of inclusion of controlled variables, suggesting the program has greater impact 
on industrial inventors than university inventors. Therefore, the results support the second 
hypothesis. 
 

 Panel A: ASTP university inventors Panel B: ASTP industrial inventors 

log(#InterBWD+1) log(#InterBWD+1) log(#InterBWD+1) log(#InterBWD+1) 

treated 0.4603** 
(0.2007) 

0.1631 
(0.1104) 

1.0401*** 
(0.2312) 

0.2951** 
(0.1162) 

Constant 0.0813 
(0.0793) 

-0.0049 
(0.0743) 

0.1086 
(0.0829) 

0.0272 
(0.0646) 

     
Control  Yes  Yes 
Year FE Yes Yes Yes Yes 
Individual FE Yes Yes Yes Yes 
Observations 
Adj-R2 
AIC 
BIC 

1900 
0.3401 
3700 
3800 

1900 
0.7541 
1900 
2000 

1980 
0.4287 
4100 
4200 

1980 
0.7852 
2200 
2400 

Standard errors in parentheses 

* p<0.10, ** p<0.05, *** p<0.01 

Table 4. DiD estimation results for the ASTP university and industry inventors 

 
6 In PATSATA, each applicant has been assigned to one or more sectors, including individual, company, 

unknown, government, non-profit organization, university, and hospital. In our sample, the applicants of 

backward and forward citations are mainly from the sectors of company, university, and individual. In the 

following analyses, we will focus on the sectors of company and university, and use ‘industry’ as an 

interchangeable word for company. 
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In addition, as the backward citations depicted the knowledge flows in, we can, therefore, 
also track the source of knowledge of the ASTP inventors. Specifically, we look at four 
different channels that knowledge flows to inventors inside the program, which are 
represented by four arrows in figure 7. The thickness of each arrow is proportional to the 
citation counts shown in figure 9. In figure 7 and 9, the sector of industry plays a dominant 
role in exploiting multidisciplinary knowledge from outside. This probably can be 
explained as, by receiving funding from the ASTP, companies can shift from near-term 
product development and to devote resources to innovative early-stage projects. In figure 
9, even the trend of ASTP university inventors is lower than their industrial counterparts, 
we still can observe a clear growing pattern after being enrolled in the program. This may 
be explained as the ASTP buttressed regular academic sections to participate in 
technological development projects, which are generally overlooked in a lab since these 
are typically just seen as non-hypothesis-driven, and massive data-gathering exercises 
(Schloss et al., 2020). Additionally, when looking at the knowledge source of the ASTP 
university inventors, we found they cited a comparable number of patents from the 
industry. This result is somewhat interesting because the university has always been 
considered as one of the major knowledge sources for industry. The reverse relationship, 
in this case, leaves a clue for government intervention can forward technological research. 
And the phenomenon might also be interpreted as the effects of the grantee meetings, 
which facilitated the knowledge diffusion between industrial and academic groups, and 
in turn let university research perceive knowledge in the industry sector. 
 

 
Figure 7. Channels for inflow knowledge (directions for backward citations) 
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Figure 8. Channels for outflow knowledge (directions for forward citations) 

 

 
Figure 9. Decomposition of citation counts 

 
 
4.3.2. Influences on the external inventors 
 
For the third hypothesis, we argue that the program has a more significant impact on 
attracting external industrial inventors than academic inventors, which can be traced by 
the forward citations received by the ASTP inventors. Since the forward citations trace 
the trajectory of knowledge flows out, it is equivalent to expect that these forward 
citations are mainly cited by external industrial entities. Figure 8 delineates the four 
channels that knowledge flows from the ASTP inventors to inventors outside the program, 
where the thickness of each arrow is proportionate to the forward citation counts shown 
in figure 9. In figure 8 and 9, the results suggest that the external industrial players are 
the main audience to program. Table 5 presents the statistical comparison of the forward 
citations made by the external university and industry players. The results again confirm 
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that forward citations made by external industrial inventors are significantly greater than 
that of external university inventors on average. 

 

Table 5. Forward citations made by external university and industry players 
 
As we mentioned earlier, the attractive force to external inventors can also be 
conceptualized as the ‘leverage effects’ of the program. The results suggest that the 
‘leverage effects’ are more effective to external industrial inventors, indicating the 
program per se can be considered as a ‘lever’ to attract other industrial players (e.g., 
investors) coming on board, bringing extra resources to the table for further development 
and commercialization. While for the external academic inventors, the limited ‘leverage 
effect’ is observed. And that might be because the costs for developing the related 
technologies go beyond the affordability of most laboratories. Also, as we explained 
before, external academic inventors may have less motivation to directly the convergence 
activities. 
 
5. Conclusion and discussion 
 
This paper has investigated the impact of a government funding program (i.e., ASTP) on 
promoting technological convergence. We hypothesize that a government-supported 
program has a positive effect on promoting technology convergence and the program has 
a greater impact on industrial inventors than university inventors. Also, we conceptualize 
a ‘leverage effect’ of the program and hypothesize that it is more effective to external 
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industrial inventors than their academic counterparts. To investigate this, we developed a 
novel dataset by linking the ASTP grantee information provided by NHGRI with the 
PATSTAT patent database. Based on this, we created inventor-level characteristics to do 
propensity score matching, establishing a control group of inventors who are comparable 
to those enrolled in the ASTP. We then evaluated the impact of the ASTP through DiD 
models on the matched sample. Our results provided evidence that the ASTP encouraged 
the enrolled inventors and external inventors to engage in multidisciplinary innovation 
activities. We then illustrated the program’s heterogeneous effects on different groups of 
grantees. The results confirmed our second hypothesis that it has a greater impact on 
industrial inventors than university inventors. Finally, we also showed the ‘leverage 
effects’ of the program are more effective to external companies than academic 
institutions. 
 
Some of the results of this work are in line with previous theoretical and empirical studies 
(e.g., Karvonen and Kässi, 2013; Hacklin, 2007). The regression table suggests that the 
number of non-patent citations is positively correlated to the forming of both inter-field 
backward and forward citations. This echoes the previous literature (e.g., Curran and 
Leker, 2011), which states scientific research provides a knowledge base for convergence. 
However, Caviggioli (2016) demonstrates that new convergence is more likely to occur 
among fields that are less anchored in scientific research. This calls for more research to 
explore the relation of scientific knowledge to convergence. Besides, it is interesting but 
natural to discover that, in the case of the forward citations, the treatment effects became 
insignificant when patent quality was controlled, suggesting future research should 
include this factor. 
 
5.1. Government R&D spending as a convergence driver 
 
Unlike a conventionally linear R&D activity, which impels technological advancement 
by deepening the investigation within a single area, convergence creates novel 
technologies through combining knowledge from various domains. The inherent 
multidisciplinary nature implies that convergence requires a long-run development and is 
usually associated with uncertainties and risks, which is a major hindrance to daunt 
potential private investors. In this sense, as innovation and management scholars 
discussed, government-supported programs with distinct features help remove barriers, 
reduce R&D market failures, and ensure the benefits of the investments (Littler and 
Coombs, 1988; Jeong and Lee, 2015; Martin and Scott, 2000). Specifically, the 
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multidisciplinary configuration establishes a knowledge foundation for the convergence, 
and the longer-than-usual grant durations allow 1) industrial players to shift back from 
guaranteed near-term product development and 2) academic researchers to conduct in-
depth research rather than ‘muddle through’ the problem. Although the program’s direct 
impact, namely, propelling participants to engage in convergence activities, might only 
induce a few initial sparks in the existing technological space, its ripple effects could start 
a prairie fire. First, the program itself could be a route for increasing the exposure of 
internal discoveries. In addition, the peer-review mechanism ensures scientific credibility 
and standards, which can help to convince external parties. Moreover, with the 
involvement of industrial participants, which facilitates the demonstration of 
commercialization potentials, it may attract more private investors to join in (or even 
induce social bubbles) and then speed up the development of converged technologies. 
The joint force may eventually create a significant transformation in the technological 
space (e.g., converged technologies become mainstream, for example, next generation 
sequencing in this work). 
 
5.2. Implications 
 
As the ASTP was successful in achieving its goal through fostering multidisciplinary 
collaboration and facilitating the commercialization of the NGS (Hayden, 2014; Nature 
2014), this study contributes to an empirical demonstration of how a government funding 
program can promote technology convergence. For explicitly promoting innovation 
through the channel of technology convergence, a large-scale convergence-oriented R&D 
program is needed (Jeong and Lee, 2015). In this study, the results suggest that industrial 
inventors under such a program are more actively engaging in convergence activities than 
academic counterparts. Also, the involvement of industrial participants underscores the 
commercial viability of the projects, which may motivate universities to take on 
technological research rather than pure scientific exploration. This gives the suggestion 
of when designing technology convergence-oriented R&D programs, policymakers 
should consider the effects of the inclusion of industrial entities. In addition, scholars 
have raised concerns about the impact of such programs (Metzger and Zare, 1999; Jeong 
and Lee, 2015) may be only marginal. Our work shows that a government R&D program 
can serve as a channel for disclosure and propagandize internal findings and assuring 
authorities of incipient and risky convergence concepts, which may lead to ‘leverage 
effects’ enticing outside private investors and industrial players on board. However, such 
‘leverage effects’ are only limited to academic players. In terms of the limitations and 
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future, the paper mentioned that several program settings and management practices may 
also contribute to the positive impact of convergence; however, the prominence of these 
features may need to be addressed in future studies. 
 
Appendix 
Table A.1. Measuring the degree of diversity for a community 

 
The characteristic vector for inventor 𝑖𝑖 is formed based on their patents in each class, 
which can be represented by 𝑥𝑥𝑖𝑖. And then the degree of diversity for a community is 
given as  

1 − 1
𝑛𝑛(𝑛𝑛−1) [∑ 𝑠𝑠�𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑗𝑗�𝑖𝑖,𝑗𝑗 − 𝑛𝑛], 

where function 𝑠𝑠 is the cosine similarity. For the given two examples, the degree of 
diversity for the community I is 0.059, and 0.251 for the community II. 
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