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Abstract 

This paper gauges the impacts of robots on task changes, in particular, identifying which tasks 

increased or decreased as robot penetration was promoted in Japan between 1980 and 2018 by using 

three unique datasets: the “Production and Shipments of Manipulators and Robots” produced by the 

Japan Robot Association; the administrative data of the “Basic Survey on Wage Structure” produced 

by the Ministry of Health, Labour and Welfare; and numerical indicators of occupational 

characteristics in the Japanese version of O-net by the Japan Institute of Labour Policy and Training. 

We first construct an index in which tasks have increased or decreased for each industry by using the 

Japanese version of five-category task scores a la Acemoglu and Autor (2011), computed from 

numerical indicators of occupational characteristics and the Basic Survey on Wage Structure. Then, 

we clarify how this index has been affected by robot stocks by industry, which is calculated from the 

Production and Shipments of Manipulators and Robots. The estimation result shows that as robot 

penetration increases, routine-manual tasks decrease while cognitive tasks relatively increase. A rise 

in robot penetration leads to a relative increase in employment in occupations requiring more different 

tasks to the occupations where tasks were lost, indicating that the process of robotization in Japan has 

caused the displacement effect.  
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1 Introduction

Whether machines will take our jobs away is not a new concern, tracing back, at least, to about

100 years ago. Still, we have not observed a significant decline in the labor share to date. With

significant progress in artificial intelligence and machine learning algorithms, the concern has

turned into fear, and is becoming increasingly prominent. A study by Frey and Osborne (2017),

which identifies the jobs that will disappear in the future, attracted worldwide attention.

Academics tackle this issue from theoretical and empirical angles, reflecting society’s anxi-

ety about the future and desire to understand the consequence of robotization. While theoret-

ical studies that discuss the impact of robots on the future labor market, focusing on whether

they are alternative or complementary to labor, have been conducted for a relatively long time,

empirical analysis has only recently begun to increase. This is because robotization is relatively

a recent phenomenon, and the data on robots are only available, at most, for the last two to

three decades.

Graetz and Michaels (2018), Bessen et al. (2019), Humlum (2019), Acemoglu and Restrepo

(2020), Acemoglu et al. (2020), Adachi et al. (2020a), Aghion et al. (2020), Dekle (2020), de Vries

et al. (2020), Fujiwara and Zhu (2020), Adachi (2021), Dauth et al. (2021), Koch et al. (2021)

and Mann and Puttmann (2021) estimate the impacts of increase usage of robots on the labor

market. Implications from these previous studies are somewhat mixed. For example, regarding

the robot’s impact on employment, Acemoglu and Restrepo (2020) conclude that increase in

robot penetration results in the reduction of employment in the US, while Adachi et al. (2020a)

and Dekle (2020) report the opposite result in Japan. Graetz and Michaels (2018) and Fujiwara

and Zhu (2020) considering the global data and Dauth et al. (2021) considering the German

data present only ambiguous impacts of robots on employment.

This paper also evaluates the impacts of robot penetration on employment. Our focus is on

the heterogeneous impacts. Original aspects of our research are twofold. First, we include the

1980s in Japan, when the introduction of robots became very active for the first time in human

history. Second, we explicitly consider the task and identify what tasks the introduction of the

robot has increased or decreased.

Regarding the first point, we believe that the impact of robots on the labor market can be

clarified by using data from 1978, including the early days of the introduction of robots, for

Japan, which has been a leading robotics country. We utilize the “Production and Shipments of

Manipulators and Robots” published by the Japan Robot Association (hereafter, JARA). Merits

in using the JARA data are as follows. First, the sample size is much larger, and provides more

detailed information by industry, application, and time. On the cross-sectional dimension, in

the 2018 table in the JARA data, 44 industries are covered with 28 major categories and their

sub-categories in columns. Rows present 36 applications for 17 major categories with attending

sub-categories. On the time-series dimension, while the International Federation of Robotic
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(hereafter, IFR) data, which is frequently used in the literature, starts from 1993, the JARA data

starts from 1978. Third, price information is available. The IFR data only reports quantities,

while the JARA data report both quantities and sales. Finally, it is about Japan, which was

the largest producer of robots and with the highest robot density and the number of robots

installed per worker.1

Regarding the second point, Acemoglu and Restrepo (2020) use “the importance of routine

jobs in a commuting zone (the fraction of employment in a commuting zone in routine occu-

pations as defined in Autor and Dorn (2013))” as the control variable. Dauth et al. (2021) show

that “The negative impact of robots on individual earnings arises mainly for medium-skilled

workers in machine-operating occupations, while high-skilled managers gain.” However, both

Acemoglu and Restrepo (2020) and Dauth et al. (2021) do not consider the differences in tasks

explicitly.

The seminal study by Autor et al. (2003) emphasizes the importance of distinguishing tasks:

(i) nonroutine-analytical; (ii) nonroutine-interactive; (iii) nonroutine-manual; (iv) routine-cognitive;

(v) routine-manual, in understanding the effects of computerization on labor demands. Ace-

moglu and Autor (2011) further improves the task scores using “O-net,” an occupational in-

quiry database. Now, the five-task scores in Acemoglu and Autor (2011) have established

themselves as the standard indices to evaluate the changes in employment characteristics.

There are several attempts to construct the task scores in Japan following Autor et al. (2003)

and Acemoglu and Autor (2011). Ikenaga (2009) is the first study in Japan to compute the task

score and concludes that shares of routine-manual and routine-cognitive tasks have decreased.

The task scores in Ikenaga (2009) are further improved by Ikenaga and Kambayashi (2016).

They find similar result to Ikenaga (2009) in that nonroutine tasks have increased, while rou-

tine tasks have decreased, and show that the pace of polarization is slower and smaller in Japan

compared to other countries. The Japan Institute of Labour Policy and Training (hereafter,

JILPT) recently developed the Japanese version of O-net (hereafter J-O-net) and provided nu-

merical indicators of occupational characteristics. A recent study by Komatsu and Mugiyama

(2021) calculate the five-task scores in Acemoglu and Autor (2011) by using numerical indica-

tors in J-O-net.

In order to understand the impacts of robot penetration on employment by task, we first

construct indices of which tasks have increased or decreased for each industry – We hereafter

call these indices the industry task scores. Using numerical indicators of occupational character-

istics in J-O-net and the administrative data of the Basic Survey on Wage Structure, this study

transforms the myriad of occupations’ information into a few industry task scores. When ag-

gregating task scores by industries, this study bridges the J-O-net’s occupational categories

1Japan still maintains the status of robot frontier countries. According to “World Robotics 2020” published by
IFR, Japan is the second-largest producer of robots and the third in robot density.
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with occupational categories in the administrative data of the Basic Survey on Wage Structure

by using the crosswalk file of Komatsu and Mugiyama (2021).

The industry task score is a weighted average of the task score over occupations within the

industry. Since five tasks are considered in this paper following Autor et al. (2003), Acemoglu

and Autor (2011) and Komatsu and Mugiyama (2021), we have the time series of 5 (tasks) x 12

(industries) = 60 scores from 1978 until 2018. Although more detailed industry classification

data is available, we decided to follow Adachi (2021) and consolidate the data into 12 indus-

tries.

No single occupation consists of a single task. If one interprets an occupation as consisting

of a single task, this may lead to an overestimation of the impact of robots. Therefore, this

analysis computes the five-task scores for each occupation and, in aggregate, for each industry

and measures how the degree of robot penetration by industry affected these industry task

scores. As a result, we can measure the influence of robots on tasks in a very detailed manner.

The occupational and therefore task composition have changed. In major purchasers of in-

dustrial robots such as general, electric and transport machineries, routine-manual and nonroutine-

manual tasks declined in the 1980s and other tasks increased in exchange. However, in other

industries such as nonferrous metals, pulp, paper and printing, and non manufacturing, which

were not active purchasers of industrial robots, industry tasks scores were stable during the

1980s.

Then, we regress the industry task scores on robot stocks. This study follows Adachi et al.

(2020a) and employs the 2-stage least square method using robot unit prices as instruments to

alleviate the endogeneity bias. Also, to alleviate the omitted variable bias, this study adopts

several control variables that may affect the composition of occupations within industries: de-

mographics, globalization, and information and communication technology (hereafter, ICT)

advancement factors. We also conduct commuting zone level analysis.

We find that the amount of routine-manual task inputs decreases as robot stocks increase,

suggesting that the composition of such occupations has declined due to the introduction of

robots. In contrast, the amount of analytical, interactive, and cognitive-task inputs increases. If

a person’s job is lost due to the introduction of a robot, and if a worker moves to another oc-

cupation that performs a similar task within the same industry, the industry task scores should

not change. However, since they have changed, it can be interpreted as a relative increase in

the number of occupations performing different tasks to the occupation where tasks were lost.

Let us now elaborate on the relationship with previous studies. Adachi et al. (2020a), using

similar datasets to ours, report an increase in the number of workers after introducing robots.

The result of this study point out the importance of the heterogeneous effects on workers.

When we look at the breakdown of workers, there are statistically significant changes in the
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composition of tasks, indicating the displacement effect; “robots directly displace workers from

tasks that they were previously performing” as in Acemoglu and Restrepo (2020).

This study is not the first to find such heterogeneous effects among workers.2 Dauth et al.

(2021) point out the substitution between manufacturing and non-manufacturing industries.

However, our result indicates that it is not simply a substitution between the manufacturing

and non-manufacturing industries. Instead, it is a substitution between routine-manual and

nonroutine-analytical or nonroutine-interactive tasks within manufacturing industries.

We also extend our analysis to the commuting zone level analysis. Robotization causes

similar compositional changes of tasks to those found in the industry level analysis, even in the

regional labor market. Additional insights obtained from the commuting zone level analysis

is that robotization does not cause a substitution between routine-manual tasks and routine-

cognitive tasks within the same local labor market but shifts of workers across different regions.

The remainder of this paper is structured as follows. After the literature review on the ef-

fects of robotization in the labor market, Section 2 explains the data used in this paper and how

to construct the industry task scores, the five-task scores by industry. We also show how the

task composition has changed in Japan. Section 3 introduces a model to theoretically under-

stand the impacts of robots on tasks in a simple framework. Section 4 presents the estimation

strategy and the estimation result. Finally, Section 5 concludes.

1.1 Related literature

Reflecting society’s anxiety about the future and desire to understand the consequence of robo-

tization, academics tackle this issue from theoretical and empirical angles. Since the massive

robotization is yet to happen and its consequences will become more evident in the future,

several discuss possible future scenarios in a hypothetical world replicated by the dynamic

general equilibrium model. In such theoretical studies, whether the increasing use of robots

reduces labor inputs or not crucially depends on the elasticity of substitution in production

technologies. Depending on the size of this elasticity, robots and labor become (Edgeworth)

complement or substitute for each other. If they are substitutes (complements), robotization

enhanced by improvements in the robot stock augmenting technology, which lead to lower

prices of robots, will decrease (increase) labor inputs. Zeira (1998), Benzell et al. (2015), Sachs

et al. (2015), Nakamura and Zeira (2018), Caselli and Manning (2019), Berg et al. (2018), Graetz

and Michaels (2018), Leduc and Liu (2019) and Acemoglu and Restrepo (2020) explore the con-

sequences stemming from technological progresses in robotics in both short to medium and

long-run. Reported results are mixed depending on the model’s settings, particularly on the

production side, which determines whether robots are substitutes or complements to labor.3

2The closest to our study are de Vries et al. (2020) and Aghion et al. (2020), which explore the heterogeneous
impact of robot adoption by skill level. For details, see Section 1.1.

3Guerreiro et al. (2017), Costinot and Werning (2018), and Jaimovich et al. (2021) explore normative aspects of
robot penetration, and propose effective policy reactions.
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Robotization is a relatively recent phenomenon. The data on robots are only available, at

most, for the last two to three decades. Graetz and Michaels (2018), Acemoglu and Restrepo

(2020), and Dauth et al. (2021) estimate the impacts of increased usage of robots on the la-

bor market. Implications from these previous studies are also somewhat mixed. Graetz and

Michaels (2018)evaluate the impacts in Europe with the cross-sectional data on industries and

countries, and conclude that robotization increases labor productivity and real wage but causes

no significant impact on labor inputs. de Vries et al. (2020) explore the impact of robots on jobs

in thirty-seven countries using World Robotics: Industrial Robots by IFR from 2005 to 2015 and

conclude that introduction of robots leads to a fall in the share of routine-manual task intensive

jobs. Acemoglu and Restrepo (2020) first show that there are three effects of robot adoption on

labor: (i) the negative displacement effect – robots replacing humans; (ii) the positive industry

productivity effect – robots lowering costs in a particular industry; (iii) the positive general

equilibrium effect – robots raising productivity and increasing output and labor demand for

the industry introducing the robots. Then, they use the US data by commuting zone to show

that more automation leads to fewer labor inputs and the lower real wage through the above

three effects. Dauth et al. (2021) focus on detailed Germany labor market data and obtain sim-

ilar conclusions to Graetz and Michaels (2018) but find no significant impacts on real wage at

the macro level. Dauth et al. (2021) find significant heterogeneity in the impacts on real wage

among households by income level. These studies use the data from IFR.

The use of administrative data for analysis has been increasing significantly in recent years.

Bessen et al. (2019) show that automation increases job separation and decreases wage rate

using Dutch micro-data over 2000-2016. Humlum (2019) uses administrative data connecting

workers and firms in Denmark and then structurally estimates the dynamic general equilib-

rium model. He concludes that robot adoption increases the average real wage but reduces

the real wage in the manufacturing sector. Acemoglu et al. (2020) use the firm-level data in

France and show that firms who adopt robots reduce labor shares but increase value-added,

productivity, and employment. Aghion et al. (2020) also use comprehensive micro-data in the

French manufacturing sector between 1994 and 2015 and report that automation is positive on

employment and wages. Koch et al. (2021) explores the impact of robot adoption using micro-

data of Spanish manufacturing firms between 1990 and 2016.4 They report that robot adoption

increases output and productivity and leads to net job creation but does not significantly affect

the average wage. Mann and Puttmann (2021) first compute a new measure of automation

using patent data between 1976 and 2014. According to their commuting zone level analysis,

automation leads to higher employment in local labor markets.

Japan is one of the leading countries in robot production. Several studies utilize the robot

adoption data published by JARA. Adachi et al. (2020a) estimate the impacts of robot adoption

4Their primary focus is the causal impacts of robots on firms and aims to answer two primary questions: (1)
Which firm characteristics prompt firms to adopt robots? (2) What is the impact of robots on adopting firms relative
to non-adopting firms?
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Table 1: Summary: Aggregate impacts of robots on the labor market

hours employment productivity wage
Graetz and Michaels (2018) 0 0 + +
Bessen et al. (2019) n.a. - n.a. -
Humlum (2019) n.a. n.a. n.a. +
Acemoglu and Restrepo (2020) - - n.a. -
Acemoglu et al. (2020) n.a. - + 0
Adachi et al. (2020a) - + n.a. +
Aghion et al. (2020) n.a. + n.a. 0
Dekle (2020) n.a. + n.a. n.a.
Fujiwara and Zhu (2020) 0 0 + 0
Adachi (2021) n.a. - n.a. -
Koch et al. (2021) n.a. + + 0
Dauth et al. (2021) 0 0 + 0
Mann and Puttmann (2021) n.a. + n.a. 0

Note: +, - and 0 denote positive, negative and insignificant impacts, respectively. We report the impacts on
macroeconomic variables, but some present average but firm or industry level reactions.

on labor in Japan by industry and commuting zone. A unique aspect of this study is that it uses

price information as an instrumental variable. It embodies the information on technology and

attempts to eliminate reverse causality, i.e., the impact of the labor market condition on robot

adoption. Adachi et al. (2020a) conclude that higher robot penetration results in higher employ-

ment and wage in Japan. Dekle (2020) evaluates the three effects in Acemoglu and Restrepo

(2020). According to his industry panel estimates, “the displacement effect is insignificant, the

productivity effect is sometimes positively significant, and the macroeconomic general equi-

librium effect is always highly positively significant.” As a result, robots have increased labor

demand in Japan. Fujiwara and Zhu (2020) construct the quality-adjusted robot stock using the

JARA data and the industrial robot price index in the “Corporate Goods Price Index” of the

Bank of Japan. According to their panel estimation by country and industry, industrial robots

increase labor productivity and have exerted insignificant effects on hours worked, employ-

ment and wage. Adachi (2021) shows a robot shock, an exogenous increase in robot price in

Japan, reduces the US occupational wages. This robot shock is estimated using the JARA data.

Table 1 summarizes empirical impacts of robots on labor market variables in aggregate in

previous studies. +, - and 0 denote positive, negative, and insignificant impacts, respectively.

Our focus is on the heterogeneous impacts of robot adoption on tasks. Several previous

studies also offer the distributional consequences of robot penetration. Humlum (2019) reports

that as robots are introduced, wages for production workers decrease, but those for tech work-

ers increase. Acemoglu et al. (2020) and Koch et al. (2021) analyze the impact of robots, distin-

guishing between the impact on companies that have implemented robots and the impact on

their competitors— employment by robot adopting firms increase, but competitors’ employ-

ment declines. Moll et al. (2021) develop a model where high-skilled workers and owners of
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the firms are benefited from new technologies. They conclude that automation is responsible

for the observed increase in income and wealth inequality.

Acemoglu and Restrepo (2020) use the importance of routine jobs in a commuting zone –

the fraction of employment in a commuting zone in routine occupations as defined in Autor

and Dorn (2013) – as the control variable. Dauth et al. (2021) conclude that robotization leads

to a change in the labor market composition, in particular, pointing out the substitution be-

tween manufacturing and non-manufacturing industries. However, the differences in tasks are

not explicitly considered in both Acemoglu and Restrepo (2020) and Dauth et al. (2021). In

addition, we analyze whether industry differences or task differences are more important in

considering the asymmetric impacts of robots.

The most related previous studies are de Vries et al. (2020) and Aghion et al. (2020), which

analyze the impacts of robot adoption by task. de Vries et al. (2020) report that a rise in robot

adoption decreases the share of routine-manual task intensive jobs. However, there is a one-to-

one relationship between occupation and task. The fact that one occupation performs multiple

tasks is not taken into account. As a result, as with the criticism to Frey and Osborne (2017), the

impact of robots may have been over-estimated. Furthermore, since the data was taken from

2005, the analysis does not include the period when robots rapidly spread, as in our study.

Aghion et al. (2020) analyze the impacts of robot adoption by skilled and unskilled indus-

trial workers and report that the impact of automation is positive on employment, even for

unskilled industrial workers. Following Charnoz and Orand (2017), the employment shares

for (1) routine jobs, (2) service jobs, and (3) high-skill jobs are calculated by region. The differ-

ence between our analysis and theirs is that our task index is rather considered a continuous

measure because we measure it by first aggregating the task scores by occupation. Aghion

et al. (2020) is considered a discrete measure because they classify the task index by occupa-

tion and take the ratio. We think our approach is less susceptible to the criticism mentioned

above to Frey and Osborne (2017): by considering the nature of labor in a discrete way for each

occupation, the impact of robots on employment is overestimated.

2 Data

This section first explains the robot data and then task scores.

2.1 Robot data

The JARA robot data used in this study has two characteristics: finer granularity and more

extended time series. The former provides us with variations in data needed for identification,

and the latter enables us to cover the periods of massive robot penetration in the 1980s. Adachi

et al. (2020a) and Fujiwara et al. (2021) offer comprehensive and detailed information about the

JARA data. Therefore, we only briefly explain the above two characteristics of the JARA data.
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One crucial characteristic of the JARA data is its granularity. JARA publishes two types of

data. One is publicly shown on the JARA website,5 and the other is only available as a booklet

in Japanese. The latter contains more detailed information by industry and application. When

gauging the impacts of robots on different tasks, sharper result can be obtained with more

disaggregated data. Therefore, we decide to use the latter, in particular, Table B, which presents

sales and the number of robots by industry and application.6

In the 2018 table, 44 industries are covered with 28 major categories and their sub-categories

in columns. Rows present 36 applications for 17 major categories with attending sub-categories.

New robots are invented, and some old robots become obsolete — industries and applications

in the table change over time. Also, there are many empty spaces, and each year, around two-

thirds of the spaces are empty. Therefore, we follow Adachi et al. (2020a) and consolidate the

data into 12 industries and 6 applications. The specific 12 industries consist of “iron and steel,”

“nonferrous metals,” “metal products,” “general machinery and equipment,” “electrical ma-

chinery and equipment,” “transport machinery and equipment,” “food, beverage, tobacco, and

feedstuff,” “pulp, paper, paper products, and printing,” “chemical,” “ceramic and stone prod-

ucts,” “other manufacturing,” and “non-manufacturing.”7 The specific 6 applications consist

of “assembling,” “dispensing,” “handling,” “processing,” “welding,” and “others”. Table 2

presents the detailed mapping of sub-categories of applications.

Table 2: Mapping of application classifications in the JARA data

Application classification Sub-categories
Assembling General assembling

Inserting and mounting
Pointing
Sealing and gluing
Screwing
Other assembling

Dispensing Dispensing
Plating

Handling Material handling
Picking and packaging
Shipments

Processing Load and unload
Grinding and cutting
Deburring
Other processing

Welding Welding (Arc, spot, laser, other)
Soldering

Others Others, education, research and development, clean room

5https://www.jara.jp/e/data/index.html
6The JARA booklet “Production and Shipments of Manipulators and Robots” consists of Table A, B, and C. Table

A presents sales and the number of robots by industry and robots’ structure. Table C presents exports of robots by
country and applications.

7Our classification is the same as that in Adachi et al. (2020a), which use 13 categories of industries. The only
difference is the treatment of “general machinery and equipment” and “precision machinery and equipment.” Al-
though Adachi et al. (2020a) treat these industries differently, we consider these two a single industry due to the data
availability. The precision machinery industry becomes discontinued in the latest Basic Survey on Wage Structure
because of the 12th revision of the Japan Standard Industrial Classification.
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Figure 1 depicts the trend of robot shipments by industry. Significant heterogeneity in de-

Figure 1: Robot shipments by industry: 1978-2018

mand by industry is observed. The electric and transport-machinery industries are the major

demand destinations of robots, accounting for nearly half of the total demand. Some industries

are active purchasers of robots while others are not. Notice also that the share of each industry

has been stable over time.

Figure 2 shows the industry share by application. Electric machinery has a high demand for

Figure 2: Industry share by application

assembling robots, while the transportation machinery industry demands welding, dispensing,

and processing robots. Figure 3 presents the developments of robot prices by application. Time

Figure 3: Robot prices

paths of robots’ prices are different by application. Together with Figure 3, Figure 2 suggests

that each industry faces a unique robot price index, hinting that robot prices by industry are

suitable instrumental variables to identify the causal effects from robot stocks. Adachi et al.

(2020a) indeed employ robot prices by industry as instrumental variables.
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The robot price index of industry i, zi,t, which is used as an instrument variables, is com-

puted as the composite of prices over application a: zi,t = ∑a∈A (za,t)
ωa,i,t0 , where za,t is a robot

unit price of application a, A is the set of application robots in the economy, and ωa,i,t0 is a sales

weight of application a in industry i at time t0. The sales weight suffices ∑i ωa,i,t0 = 1. Then,

robot price by application a, za,t, is given by

za,t =
∑i∈I salesa,i,t

∑i∈I qa,i,t
,

where salesa,i,t, qa,i,t, and I denote sales and quantities of application a in industry i at time t,

and the set of industries in the economy, respectively.

Another critical characteristic of the JARA data is the long time series. The JARA robot

data is available after 1978.8 In contrast, the IRF robot data, which previous studies such as

Graetz and Michaels (2018) and Acemoglu and Restrepo (2020) use, is available only after 1993.

Industrial robots gradually spread to production sites since 1962, when the first commercial

industrial robots were released in the United. States.9 It seems inappropriate to ignore any

developments in the relationship between robots and the labor market before 1993. The long-

time series of the JARA data offers an advantage over previous studies. Therefore, we use the

Production and Shipments of Manipulators and Robots produced by JARA from 1978 to 2018.10

Figure 4 stresses the importance of the long time series of data when examining the effects

of robot penetration. Figure 4 presents the historical developments of robot stocks from 1970.11

Here, the calculation of robot stocks is complicated with finer granularities. Specifically, robot

stocks in Figure 4 are the capital stocks aggregated over industries i ∈ I : Kt = ∑i∈I Ki,t where

Ki,t is robot capital stocks in industry i. Industry’s capital stocks are the stocks of robots in-

vestments, Ri,t, using the perpetual inventory method: Ki,t = Ri,t + (1− δ)Ki,t−1, where the

depreciation rate δ is set at 10 percent per annum following Graetz and Michaels (2018). Robot

8Before 1978, JARA surveyed the state of robot shipments in 1970 and started releasing the statistics on robot
shipments in 1974. Notice that the format was different from the current one between 1974 and 1977. In1993, JARA
started providing data to IFR.

9In 1962, Unimation Inc. released the first commercial industrial robot, “Unimate”, in the United. States.
10According to the Japanese Industrial Standards (hereafter, JIS), a robot is defined as “a locomotion mechanism

that is programmed to operate on two or more axes, has a degree of autonomy, and operates in an environment
to perform a desired task. Note 1: A robot includes a control system and an interface to the control system. Note
2: The classification of a robot as an industrial or service robot depends on its intended use.” The industrial robot
is defined as “A robot that is automatically controlled, reprogrammable, versatile manipulator, programmable in
three or more axes, fixed in one place or with mobile functions, and used in industrial automation applications. Note
1: Industrial robots include the following – Manipulators (including actuators) including Control units [including
pendants and communication interfaces (hardware and software)]. Note 2: Industrial robots include additional
axes by integration.” JARA is involved in the creation of JIS standards for robots and industrial robots.

11Before 1978, robot shipments in detail are not available. However, JARA provides the aggregate robot ship-
ments of 1970 and 1975 in “Demand and supply trends in robots industry (industrial robots edition).” This study
interpolates these shipments data between 1970-1975 and 1975-1978 by the cubic spline, assuming that the robot
shipments were for domestic use during the periods.

11



Figure 4: Robot capital stocks in Japan

Note: Authors’s calculation based on JARA, “Production and Shipments of Manipulators and Robots” and JARA,
“Trends of Demand and Supply of Robot Industries (Industrial Robot Edition).” Figure presents the domestic robot
stocks (the number of robots). Blue bars correspond to 1978 and 1993, respectively.

investment in industry i is the composite over application a ∈ A:

Ri,t = ∑
a∈A

(
salesa,i,t

za,t

)ωa,i,t0
, (1)

where salesa,i,t is robot sales of application a in industry i at time t.

The figure uncovers that robot adoption spread quickly in the 1980s.12 In fact, JARA (2003)

designates 1980 as the initial year of robot dissemination. This JARA data, which includes the

period of both robot penetration and afterward, is a valuable source of information to study the

effects of robot adoption. It is impossible to ignore the labor market impact of the significant

robotization of the 1980s.

Figure 5 depicts robot stocks by application and the number of workers in related occupa-

tions. We choose the related occupations based on the occupational titles. Specifically, the se-

lected occupational titles of welding, dispensing, assembling, and handling robots are welder,

dispenser, assembler, and packer, respectively. We omit the processing robots and others from

the figure because it is hard to find related occupations. This figure shows inverse relations,

especially for welding and dispensing robots. The correlation coefficients for these four are

negative: -0.893, -0.535, -0.018, and -0.234 from left to right.

The figure appears to be consistent with the displacement story: robots took jobs away

from humans (Frey and Osborne, 2017). However, drawing a legitimate implication from this

12Kawasaki heavy industry Ltd. released the first domestic industrial robot, “Kawasaki Unimate 2000,” in 1969.
However, it took time for industrial robots to spread to production sites because early robots had low performance
and high maintenance. For example, Kawasaki Unimate 2000 was hydraulic and had a payload of only 12 kg,
whereas it weighed 1.6 tons, measured 1.6 x 1.2 x 1.3 meters. In 1980, “Fujikosi” Ltd. succeeded in developing an
electric robot that was easy to maintain, and since then, the use of robots has increased.
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Figure 5: Robot stocks by application and the number of workers in related occupations

Note: Robot stocks by application are calculated by the perpetual inventory method (the depreciation rate is 10
percent). The number of workers in each occupation is taken from the Population Census. The related occupa-
tional titles of welding, dispensing, assembling, and handling robots are welder, dispenser, assembler, and packer,
respectively. The scale of the number of workers in related occupations is presented in the right-hand axis.

exercise is difficult because “related occupations” are arbitrary. Further, examining the effects

of robotization for each of the hundreds of occupations is not an effective research strategy

because it is cumbersome and inevitably involves subjective judgments. Only from the occu-

pation title can we not judge which tasks are required (Arntz et al., 2016). In this regard, Autor

et al. (2003) introduce a new perspective, which is tasks instead of occupations, arguing that

workers in each occupation perform multiple tasks.

2.2 Task scores

Autor et al. (2003) and Acemoglu and Autor (2011) propose to classify task inputs of workers

into five categories: (i) nonroutine-analytical; (ii) nonroutine-interactive; (iii) routine-cognitive;

(iv) routine-manual; (v) nonroutine-manual. They assign quantitative scores of these five tasks

to each occupation. In particular, Acemoglu and Autor (2011) calculate the five-task scores

using numerical indicators of occupational characteristics provided in the job referral database

called O-net. JILPT recently developed J-O-net, a comparable job referral database. Komatsu

and Mugiyama (2021) calculate the five-task scores for each occupation in Japan using J-O-net.

We calculate the five-task scores following Komatsu and Mugiyama (2021).13 Table 3, which

is the English translation of Table 3 in Komatsu and Mugiyama (2021), summarizes the corre-

spondence of numerical indicators of occupational characteristics and the five-task scores.

If task scores do not differ across occupations, it is not an effective strategy to summarize

the number of occupations in a few indicators using task scores. Table 4 reports the correlation

coefficients of task scores among occupations.14 As shown in Komatsu and Mugiyama (2021),

nonroutine-analytical and nonroutine-interactive tasks (Tasks 1 and 2) and routine-cognitive

tasks (Task 3) are positively correlated with each other. In contrast, they are negatively cor-

related with routine-manual and nonroutine-manual tasks (Tasks 4 and 5). Occupations that

13The JILPT kindly provides us numerical indicators in the “general work activities” category of J-O-net’s Oc-
cupational Information Database. We use JILPT, “Occupational Information Database: Simplified Numerical Data
Download ver. 2.0” for other numerical indicators, which were downloaded in June 2020 from the Occupational
Information Provision Site (J-O-NET, https://shigoto.mhlw.go.jp/User/download).

14Table 4 is different from Table 5 in Komatsu and Mugiyama (2021) because (i) occupations used in this study
are different from the previous study; (ii) they report correlation coefficients weighted by the number of workers.
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Table 4: Correlation matrix of five tasks

Task 1:
Nonroutine
analytical

Task 2:
Nonroutine
interactive

Task 3:
Routine

cognitive

Task 4:
Routine
manual

Task 5:
Nonroutine

manual
Task 1 1.000
Task 2 0.805 1.000
Task 3 0.426 0.410 1.000
Task 4 -0.231 -0.131 0.171 1.000
Task 5 -0.393 -0.243 -0.141 0.697 1.000

input the first three tasks are distinctively different from those that input the latter two. Since

the correlation coefficients lie between -0.4 and 0.8, there are sizable variations in task inputs

by occupations. When aggregated, the industry task scores have enough variations for proper

empirical analysis as long as the distribution of occupations in each industry is different.

Using the five-task scores and the administrative data of the Basic Survey on Wage Struc-

ture, this study transforms the myriad of occupations’ information into a few industry task

scores. J-O-net’s numerical indicators are normalized to have a mean zero and a standard de-

viation of one when calculating the five-task scores. If a task score uses multiple numerical

indicators, we add them to create a composite index and then re-standardize to have a mean of

zero and a standard deviation of one.

To clarify the characteristics of the five-task scores, let us focus on the subset of occupa-

tions. Specifically, we present the five-task scores of production-related occupations, which

are thought to face the direct threat of replacement with increasing usage of robots. Figure 6

depicts the average task scores of 43 production-related occupations. To pick the production-

related occupation, we use the occupational titles in Japanese. In particular, occupations with

the suffix “kou” in Japanese are considered those engaged in production-related works. Here,

we select 43 such occupations as production-related ones.15 Since task scores are normalized

to be zero on average, a positive (negative) score means that a task input of the occupation is

higher (lower) than the average. Figure 6 represents the nature of manufacturing. Tasks 4 and 5

(routine-manual and nonroutine-manual) of production-related workers are positive, suggest-

ing that manual-task inputs of these workers are higher than those of the others. In contrast,

Tasks 1, 2, and 3 (nonroutine-analytical, nonroutine-interactive, and routine-cognitive) are neg-

ative, suggesting that these workers’ analytical, interactive, and cognitive task inputs are lower

than those of the others.

One might wonder whether all the production-related occupations engage in very similar

tasks. However, it is not correct. There are variations in the five-task scores within production-

related occupations. Accordingly, one standard deviation of task scores (dotted lines) in Figure

15See the note of Figure 6 for specific occupational titles.
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Figure 6: Five-task scores of production-related workers

Note: Solid and dotted lines are the average and ±1 standard-deviation bands of task scores. For the details of the
task score calculation, see Section 4.1.1. The specific titles of 43 production-related occupations are as follows: steel
worker, nonferrous metal refiner, foundry worker, die forger, steel heat treatment worker, rolling and stretching
worker, metal inspector, general chemical worker, chemical fiber spinner, glassware worker, ceramics worker, lathe
worker, milling machine worker, metal press worker, iron worker, sheet metal worker, electroplater, buffing worker,
finisher, welder, machine assembler, machine inspector, machine repairer, heavy electrical equipment assembler,
light electrical equipment inspector, automobile assembler, automobile maintenance worker, bread and confec-
tionery manufacturer, light electrical equipment inspector assembly workers, heavy electrical machinery assem-
bly workers, communication equipment assembly workers, semiconductor chip manufacturing workers, printed
wiring workers, light electrical machinery inspection workers, automobile assembly workers, automobile main-
tenance workers, bread and confectionery manufacturing workers, spinning workers, weaving workers, sewing
workers, sewing machine operators, lumber workers, wood molding workers, furniture workers, joinery manu-
facturing workers, paper making workers, paper container workers, process plate-making workers, offset printing
workers, and synthetic resin product molding workers.
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Table 5: Numerical example: task k score by industry i in year t

Share (λj,i,t) matrix from Wage census Task k score vector Task k score
from JILPT by industry

industry\occupation j1 j2 j3 ... Sk
j Sk

i,t
i1 0.25 0.2 0.05 ... j1 1.35 i1 1.2
i2 0.4 0.1 0.2 ... x j2 0.345 = i2 0.2
i3 0.3 0.3 0.3 ... j3 -1.233 i3 -0.5
... ... ... ... ... ... ... ... ...

Note:

Wage census means the Basic Survey on Wage Structure. Industry i1 can be replaced with commuting zone c1.

6 is large. Therefore, it is not appropriate to simplify the analysis by consolidating many occu-

pations into a single “production-related” occupation.

When aggregating task scores by industries, this study bridges the J-O-net’s occupational

categories with occupational categories in the administrative data of the Basic Survey on Wage

Structure by using the crosswalk file of Komatsu and Mugiyama (2021).16 Suppose more than

two occupational categories in the J-O-net correspond to an occupational category in the Basic

Survey on Wage Structure. In that case, we take weighted averages by using the weights based

on the number of workers in the administrative data of the Basic Survey on Wage Structure in

2005.17

The number of occupations is 130 (129 occupations plus one management occupation). De-

noting the set of occupations in the economy as J = {1, ..., 130}, the task k’s score in industry

i at time t, Sk
i,t, is the index given by a weighted average of the score k over occupations j ∈ J

within the industry:

Sk
i,t = ∑

j∈J

λj,i,tSk
j , (2)

where

i ∈ {1, ..., 12}, k ∈ {1, ..., 5}.

λj,i,t is a share of occupation j in industry i that suffices ∑j λj,i,t = 1. This share of occupations,

which is for regular workers in private firms, is computed using the administrative data of the

Basic Survey on Wage Structure. Sk
j is the task k’ score of occupation j, which is calculated

following Komatsu and Mugiyama (2021). Table 5 illustrates that the industry task score, Sk
i,t,

is computed as the inner product of share (λj,i,t) matrix and task score (Sk
j ) vector as shown

in Since the individual task score is time-invariant, time developments of the industry task

score Sk
i,t come solely from compositional changes of occupations within industry i. Notice

that our industry task score does not capture complete changes of task inputs at both extensive

16Specifically, we use the crosswalk file corresponding to Japanese standardized occupational category of the year
2005.

17Until 1990, the Basic Survey on Wage Structure was produced every five years, but they have been produced
annually since then. Accordingly, our sample periods are 1980, 1985, and from 1989 to 2018.
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and intensive margins. This study focuses on changes in task scores caused by changes in the

number of workers in each occupation.

Figure 7 depicts the time series of the industry task scores . Solid and broken lines represent

Figure 7: Industry task scores
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Note: Solid and broken lines are manual-related tasks and the other tasks. Task scores by occupations are aggre-
gated using the shares of occupations within industries as weights. The number of occupations by industry is taken
from the administrative data of the Basic Survey of Wage Structure.

developments of manual task inputs and other task inputs, respectively. The figure shows that

occupational composition has changed. Expressly, in major purchasers of industrial robots

such as general, electric and transport machineries, routine-manual and nonroutine-manual

tasks declined in the 1980s and other tasks increased in exchange. However, in other industries

such as nonferrous metals, pulp, paper and printing, and non manufacturing, which were not

active purchasers of industrial robots, tasks scores were stable during the 1980s.

However, it is too early to make any inferences based on this figure. Robot investments and

task inputs are equilibrium objects and likely codetermined. In addition, various factors such as

the advancement of ICT, globalization, and demographic changes may affect the labor market

in Japan during the sample period. Therefore, it is necessary to make statistical inferences,

controlling potential endogeneity and the influence of various factors. In this vein, this study

estimates the relationship between robot penetrations and task inputs.
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3 Model

We consider a simple model where the introduction of robots induces shifts of tasks. A repre-

sentative consumer maximize utility U implicitly defined over goods i ∈ I:

[∫ 1

0
β (i)

1
σ

(
C (i)
Uφ(i)

)1− 1
σ

di

] σ
σ−1

:= 1,

considering also disutility stemming from labor supply: vH (H) and vL (L), subject to the bud-

get constraint: ∫ 1

0
P (i)C (i) = WH H + WLL + Π.

C, P, H, L, W, and Π denote consumption, price, task H labor supply, task L labor supply,

nominal wage rates, and nominal profits, respectively. β and σ and weight parameter and

the elasticity of substitution among heterogeneous consumption goods. As shown in Hanoch

(1975), Sato (1975), Matsuyama (2019) and Comin et al. (2021), φ (i) defines the Engel effects.

We assume that φ (i) increases in i, implying that income effects become stronger with higher

i. Notice that when φ (i) = 1, the above collapses to the standard CES demand system.

Each consumer good is produced using the CES technology:

Y (i) =

α (i)
1

η(i)

[(
γ (i)

1
ε(i) R (i)1− 1

ε(i) + (1− γ (i))
1

ε(i) L (i)1− 1
ε(i)

) ε(i)
ε(i)−1

]1− 1
η(i)

+ (1− α (i))
1

η(i) H (i)1− 1
η(i)


η(i)

η(i)−1

.

α (i) and γ(i) are weight parameters. ε (i) and η (i) denote the elasticity of substitution between

robots and type L task and that between combined inputs of robots and type L task and type

H task, respectively. The key setting is that ε (i) decreases in i, implying that robots and type L

task becomes more substitutable as with lower i. This pins down whether type L task in each

industry i increases or decreases.

α(i) and γ(i) increase as i increases. This setting aims to capture the Baumol effects through

robot capital deepening using the mechanism in Acemoglu and Guerrieri (2008). This together

with the Engel effects through φ (i) induces labor and production to shift from lower i to higher

i goods, as robot penetration increases, in the model.

Robot is simply created only by the type H task: R = Ā f (HR) ,where Ā denotes the tech-

nology for robot production. Labor market clearing conditions are given by

H =
∫ 1

0
H (i)di + HR,

J =
∫ 1

0
L (i)di.
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Goods markets clear as

C (i) = Y (i) .

Since we cannot obtain the analytical solution to the above problem, let us consider the

simplified version consisting of only two industries i = {1, 2}. We set σ = 1, φ (i) = 1, η (i) = 1,

ε (1) = ∞, ε (2) = 1, vL (L) = L and vH (H) = 1/(1 + ηH)H1+ηH , where ηH > 0. The disutility

function for L task is linear while that for H task is convex, implying that labor adjustments in

L task are less costly than in H task.18 In addition, robots are produced purely exogenously as

R̄.19 Under this simplified assumption, the employment ratio in each industry is analytically

given by
L2

H2
=

α2 (1− γ2)

1− α2
Γ

1
1−α1β−α2(1−β) ,

L
H

=
α1β + α2 (1− β)

(1− α1) β + (1− α2) (1− β)
Γ

1
1−α1β−α2(1−β) − R̄,

where

Γ :=
[
αα1

1 (1− α1)
1−α1 β

]β [
αα2

2 (1− α2)
(1−α2) (1− β)

]1−β [
γ

γ2
2 (1− γ2)

1−γ2
]α2(1−β)

.

Therefore, in industry 2, where the elasticity between task L labor and robots is lower, the

size of robot stock does not change the employment ratio. On the other hand, in industry 1,

where task L labor and robots are complete substitutes, the share of task L labor decreases as

robot adoption increases.
d L1

H1

dR̄
< 0.

Whether robots induce the replacement of a particular task to robots depending on the pa-

rameters. In the following sections, we empirically evaluate how an increase usage of robots

prompts replacements among tasks.

Appendix A shows the relationship between L1/H1 and R̄ in more general settings.

4 Empirical assessments

This study estimates the effects of robot penetration on task inputs. To this end, we employ

two types of panel regression models: an industry-level panel model and a commuting-zone

panel model. The industry-level and commuting-zone-level analyses aim to draw national and

regional implications, respectively. Methodologically, the commuting-zone-level analysis are

18The analytical solution can be also obtained with vH (H) = H and vL (L) = 1/(1 + ηL)L1+ηL .
19It is equivalent to assume that robots are produced without labor and the technology of the robot production is

exogenous.
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based on the shift-share method a la Adao et al. (2019), Goldsmith-Pinkham et al. (2020), and

Borusyak et al. (2021).

4.1 Empirical strategy

4.1.1 Econometric model I: industry-level analysis

The first model uses an industry-level panel dataset, and we regress the industry task scores

on robot stocks.

Sk
i,t = αk

i + αk
t + βk ln (Ki,t) + X′i,tγ

k + εk
i,t, (3)

where Xi,t and εk
i,t are other control variables, and i.i.d. normal residuals. Following Adachi

et al. (2020a), to alleviate the omitted variable bias, this study adopts several control variables

that may affect the composition of occupations within industries, such as demographics, glob-

alization, and ICT.

Controlling for aging is important. massive population aging in Japan leads to an increase

in nonroutine-manual tasks (Ikenaga, 2011). In addition, as in other developed countries, the

number of highly educated workers has increased. This increased high-skill labor could also

lead to changes in occupational compositions (Autor et al., 2003; Goos and Manning, 2007;

Spitz-Oener, 2006). Furthermore, the Equal Employment Opportunity Law enacted in 1985

might affect female participation in labor markets.20 Considering the above aspects, we employ

the ratio of workers under 35, the ratio of workers over 50, the ratio of high school graduates,

the ratio of university graduates, and the ratio of females as control variables. We calculate

these variables by industry from the administrative data of the Basic Survey on Wage Structure.

Globalization has progressed in the past 40 years. The influx of foreign products and global

outsourcing has had significant impacts on domestic manufacturing industries (Felbermayr et

al., 2011; Autor et al., 2013; Dauth et al., 2014). We use the openness, the sum of imports and

exports, by industry, as a control variable to account for effects from globalization. They are

computed by using the Japan Industrial Productivity (hereafter, JIP) database ,21 a database

compliant with KLEMS.22

ICT also had a significant impact on the occupational structure, coupled with a shift to high-

skilled labor (Autor and Dorn, 2013; Ikenaga and Kambayashi, 2016). To disentangle the effects

of ICT advancement, we use ICT stocks by industry, which are again calculated using the JIP

database.23

20Abe (2011) points out that the Equal Employment Opportunity Law’s long-term impact on females’ employ-
ment is small.

21For details, see Fukao et al. (2007) and Fukao et al. (2021).
22ICT stocks are calculated in the following manner. First, for the period 1995-2018, we add stocks of information

equipment, telecommunications equipment, and computer software in the investment-asset table of JIP2018, which
is compiled under the 2008SNA standard. For earlier periods, we use the ITC stocks of the JIP2015, which are
compiled under the 1993SNA standard. In connecting these two data, we use the industry correspondence table of
JIP2018.

23We separately evaluate the impact of ICT on task changes in Appendix C.
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One concern about the regression model in equation (3) is the potential endogeneity be-

tween robot stocks and labor-related variables used in constructing the industry task scores. To

alleviate this endogeneity bias, this study employs the two-stage least square (2SLS) method

using robot unit prices, zi,t, as instruments.

When the sales weight is time-varying and predicts the labor-related variables on the left-

hand side of equation (3), estimated coefficients do not measure the impacts of robots. They

also reflect sales-share changes in addition to effects from robotization. To avoid this endogene-

ity issue and ensure the exogeneity of sales share ωa,i,t0 , we use the sale share at the beginning

of the sample periods, that is, the sales share of robots purchased during 1978 to 1980, following

Adachi et al. (2020a).

The first stage regression equation is specified as

ln (Ki,t) = α1st
i + α1st

t + β1st ln (zi,t) + X′i,tγ
1st + ε1st

i,t , (4)

where ε1st
i,t denotes i.i.d. normal residuals.

4.1.2 Econometric model II: commuting-zone-level analysis

The second model uses a commuting-zone-level panel dataset to examine the effects of roboti-

zation in local labor markets. The definition of the commuting zone is developed by Adachi et

al. (2020b), which apply the methodology of Tolbert and Sizer (1996) to the Japanese data. The

specification is similar to that used in the industry-level analysis; we estimate the following

equation:

Sk
c,t = αk

c + αk
t + βk ln (Kc,t) + X′c,tγ

k + εk
c,t, (5)

where the subscript c denotes a commuting zone c ∈ C.

The commuting-zone task score, Sk
c,t, namely task k’s score in the commuting zone c, is given

by the weighted average of the score k over occupations j ∈ J:

Sk
c,t = ∑

j∈J

λj,c,tSk
j , (6)

where λj,c,t is a share of occupation j in a commuting-zone c that suffices ∑j λj,c,t = 1. This

share is again computed using the administrative data of the Basic Survey on Wage Structure.

Since the individual task score is time-invariant, time developments of the commuting-zone

task score, Sk
c,t, come solely from compositional changes of occupations within the commuting

zone.

In line with Acemoglu and Restrepo (2020), this study adopts the Bartik-style measurement

(Bartik, 1991) of “exposure to robots” using robot stocks and the industry’s share in terms of
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the number of workers within the commuting zone at the initial period of estimation ιc,i,t0 :

ln(Kc,t) = ∑
i

ιc,i,t0 ln(Ki,t), (7)

where t0 = 1980.

4.2 Empirical result

4.2.1 Industry-level analysis

Table 6 reports the main result of this study. 24 F statistics at the bottom of the table exceed 10,

Table 6: Industrial analysis: main result

Dependent variables
S1

i,t S2
i,t S3

i,t S4
i,t S5

i,t
Task

description
Nonroutine
analytical

Nonroutine
interactive

Routine
cognitive

Routine
manual

Nonroutine
manual

ln(Ki,t) 0.619** 0.929*** 0.466** -1.105*** -0.089
(0.243) (0.326) (0.253) (0.383) (0.189)

2-way FE X X X X X
Demographic controls X X X X X
Globalization controls X X X X X
ICT controls X X X X X
Obs. 382 382 382 382 382
Weak instrument F-stat 12.936 12.936 12.936 12.936 12.936

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. The calculation is based on the 2SLS using the robot prices as exogenous
instrumental variables. Sk

i,t and Ki,t are k-th task score and robot stocks in an industry i. The standard errors in the
parentheses are robust standard errors. F-stat is the Cragg-Donald Wald F statistics for the weak identification test.
All regressions are weighted by sales values of robots.

suggesting that weak instruments are not issues in the first-stage IV regression.

First, the amount of routine-manual task inputs decreases as robot stocks increase. As

presented in Figure 6, the routine-manual task score is higher in production-related occupa-

tions. Therefore, the estimation result in Table 6 implies that production-related occupations

have declined due to the introduction of robots. In contrast, nonroutine-analytical, nonroutine-

interactive, and nonroutine-cognitive task inputs increase with robot stocks. If a worker moves

to another occupation that performs a similar task, resulting industry task scores should not

change. Since the industry task scores have changed, it can be interpreted as a relative increase

in the number of occupations performing a different task than the occupation where tasks were

lost.

Table 7 reports the result of regressing the instrumental variable directly on the industry

task scores to check the robustness of the 2SLS estimation. Coefficients are again statistically

24Table 6 presents the result estimated with all regression controls. See the Appendix B for the result estimated
by adding regression controls in a stepwise manner.
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Table 7: Reduced form models

Dependent variables
S1

i,t S2
i,t S3

i,t S4
i,t S5

i,t
Task

description
Nonroutine
analytical

Nonroutine
interactive

Routine
cognitive

Routine
manual

Nonroutine
manual

ln(zi,t) -0.182*** -0.273*** -0.094** 0.324*** 0.026
(0.060) (0.073) (0.068) (0.079) (0.056)

2-way FE X X X X X
Demographic controls X X X X X
Globalization controls X X X X X
ICT controls X X X X X
Obs. 382 382 382 382 382
R2 0.916 0.915 0.902 0.687 0.868

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. The calculation is based on the ordinary least square. Sk
i,t and zi,t are k-th

task score and robot prices in an industry i. The standard errors in the parenthesis are robust standard errors. All
regressions are weighted by sales values of robots in each year.

significant for Tasks 1 to 4. Also, the estimated signs are consistent with the main result in Table

6. Notice that the signs of coefficients are reversed compared to Table 6, because of the inverse

relationship between robot prices and robot stocks.

Let us now elaborate on the relationship with previous studies. Adachi et al. (2020a) report

an increase in the number of workers after the introduction of robots. At first glance, it may

seem like we are getting a contradictory result, but that is not the case. The result of this

study points out the importance of the heterogeneous effects on workers. The breakdown of

workers presents statistically significant changes in the composition of task inputs, indicating

the displacement effect – “robots directly displace workers from tasks that they were previously

performing” (Acemoglu and Restrepo, 2020) – at work. This study is not the first to find such

heterogeneous impacts. Dauth et al. (2021) conclude that robotization leads to a change in the

composition of the labor market.

Dauth et al. (2021) point out the importance of substitution between manufacturing and

non-manufacturing industries. Table 8 reports the estimation result after dropping the non-

manufacturing industry from the dataset to evaluate whether this substitution is critical for

our result. Again, coefficients are positive for Tasks 1 to 3, and it is negative for Task 4, and

they are all significant. This invariance in the estimation result suggests that the substitution

between manufacturing and non-manufacturing is not the main channel of the heterogeneous

impacts from increased robot penetration. The substitution between routine-manual tasks and

nonroutine-analytical or nonroutine-interactive tasks must be signed with the increasing usage

of robots.

Robustness checks Our main result is based on several assumptions. Here, we conduct sev-

eral robustness checks. The first is the exogeneity of prices. If there is an endogenous relation-
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Table 8: Industrial analysis: manufacturing only

Dependent variables
S1

i,t S2
i,t S3

i,t S4
i,t S5

i,t
Task

description
Nonroutine
analytical

Nonroutine
interactive

Routine
cognitive

Routine
manual

Nonroutine
manual

ln(Ki,t) 0.625* 1.026** 0.497 -1.304** -0.142
(0.327) (0.466) (0.348) (0.584) (0.271)

2-way FE X X X X X
Demographic controls X X X X X
Globalization controls X X X X X
ICT controls X X X X X
Obs. 352 352 352 352 352
Weak instrument F-stat 8.107 8.107 8.107 8.107 8.107

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. The calculation is based on the 2SLS using the robot prices as exogenous
instrumental variables. Sk

i,t and Ki,t are k-th task score and robot stocks in an industry i. Non-manufacturing
industries are excluded. The standard errors in the parenthesis are robust standard errors. F-stat is the Cragg-
Donald Wald F statistics for the weak identification test. All regressions are weighted by sales values of robots.

ship between robot capital stocks and prices, robot prices are not good instrumental variables.

Therefore, we conduct regression analyses using an alternative price index. Instead of using

robot prices computed from domestic purchases, we use export prices by application as alterna-

tive instrumental variables. Note that export prices are not directly affected by domestic robot

investments.25 The estimation result using export prices as instrumental variables is shown

in Table 9 (I). Similar results to Table 6 are obtained. Coefficients are significantly positive for

Tasks 1 to 3, and it is significantly negative for Task 4.

The next robustness check is about the weight for aggregation used to construct robot stocks

and prices. The main analysis employs the sales share purchased from 1978 to 1980 as weight

and estimates the model using the data from 1980 and onward. However, if this sales share

correlates with outcomes (the industry task scores) through channels other than robot penetra-

tion, estimated parameters do not correctly reflect the effects of robot penetration. Therefore,

in (II) of Table 9, we re-estimate the model by changing the initial point of the sample period

from 1980 to 1985, keeping the weight as it is before. This creates a five-year time lag between

the weight and outcomes and, therefore, weakens the potential correlation. The result in (II) of

Table 9 still shows that coefficients on Task 1-3 are significantly positive, and that on Task 4 is

significantly negative.

An essential variable in this study is, naturally, robot stocks. Table 10 examines the sensitiv-

ity of main result to an alternative measure of robot stocks. The first one is stocks constructed

using an alternative depreciation rate. We presume that the depreciation rate is 10 percent in

the main result, following Graetz and Michaels (2018). As a robustness check, we here examine

25Export prices are computed using the export quantities and sales data reported in JARA Production and Ship-
ments of Manipulators and Robots.

25



Table 9: Industrial analysis: validity checks (I)

Dependent variables
S1

i,t S2
i,t S3

i,t S4
i,t S5

i,t
Task

description
Nonroutine
analytical

Nonroutine
interactive

Routine
cognitive

Routine
manual

Nonroutine
manual

(I) Price measure: export prices
ln(Ki,t) 0.619** 0.929*** 0.466* -1.104*** -0.089

(0.243) (0.326) (0.253) (0.383) (0.189)
Obs. 382 382 382 382 382
Weak instrument F-stat 12.936 12.936 12.936 12.936 12.936
(II) Dropping observations in 1980
ln(Ki,t) 0.614* 0.848** 0.593* -1.049** 0.031

(0.331 ) (0.417) (0.333) (0.507) (0.252)
Obs. 370 370 370 370 370
Weak instrument F-stat 8.508 8.508 8.508 8.508 8.508

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. The calculation is based on the 2SLS using the robot prices as exogenous in-
strumental variables. The model includes the individual FE, the time FE, and other control variables (demographic,
globalization, ICT). Sk

i,t and Ki,t are k-th task score and robot stocks in an industry i. The standard errors in the
parentheses are robust standard errors. F-stat is the Cragg-Donald Wald F statistics for the weak identification test.
All regressions are weighted by sales values of robots in each year.

the depreciation of 20 percent, which Nomura and Momose (2008) estimate as to the industrial

robots’ depreciation rate.26 (I) in Table 10 presents the estimation result with the capital stocks

accumulated based on this depreciation rate. Our main result is robust to this change.

We also examine the alternative measure of robot investments. We use the robot sales de-

flated by robot prices as robot investments in the main result, and this treatment is consistent

with our measure of robot prices. Instead, (II) in Table 10 reports the result based on the capital

stocks based only on quantities. Again similar results to Table 6 are obtained. Coefficients are

positive and significant for Tasks 1 to 3, and it is negative for Task 4.

Finally, we examine the sensitivity to the initial values of robot stocks. This study presumes

that robot stocks are zero before 1978. Although robot stocks before 1980 were small, they were

still positive (Figure 4). To check the sensitivity to this assumption, we construct alternative

stocks using the 7-year immediate withdrawal method and estimate the model for the sample

period after 1985.27 Since the capital stocks as of 1977 retired in 1985 in the 7-year immedi-

ate withdrawal method, the initial value of stocks does not affect the estimated coefficients of

this sensitivity check. (III) in Table 10 reports that the main result is robust. Coefficients are

significantly positive for Tasks 1 to 3, and it is significantly negative for Task 4.

26Adachi et al. (2020a) use a similar value (18 percent) for the sensitivity check.
27The x-year immediate withdrawal method calculates the capital stock assuming that the capital remains in

operation for x years and depreciates completely after x years. IFR adopts the immediate withdrawal method to
calculate the working capital stocks (IFR, 2018).
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Table 10: Industrial analysis: robustness checks (II)

Dependent variables
S1

i,t S2
i,t S3

i,t S4
i,t S5

i,t
Task

description
Nonroutine
analytical

Nonroutine
interactive

Routine
cognitive

Routine
manual

Nonroutine
manual

(I) Alternative depreciation rate (20 %)
ln(Ki,t) 0.496** 0.744*** 0.374* -0.885*** -0.072

(0.197) (0.260) (0.201) (0.298) (0.151)
Obs. 382 382 382 382 382
Weak instrument F-stat 12.013 12.013 12.013 12.013 12.013
(II) Robots measurement: JARA quantities
ln(Ki,t) 0.698** 1.047** 0.525 -1.245** -0.101

(0.328) (0.377) (0.334) (0.495) (0.211)
Obs. 382 382 382 382 382
Weak instrument F-stat 10.553 10.553 10.553 10.553 10.553
(III) Immediate withdrawal (life time: 7 years) and the sample period starts from 1985
ln(Ki,t) 0.418** 0.577** 0.403* -0.714** 0.021

(0.221) (0.272) (0.219) (0.322) (0.172)
Obs. 370 370 370 370 370
Weak instrument F-stat 7.411 7.411 7.411 7.411 7.411

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. The calculation is based on the 2SLS using the robot prices as exogenous in-
strumental variables. The model includes the individual FE, the time FE, and other control variables (demographic,
globalization, ICT). Sk

i,t and Ki,t are k-th task score and robot stocks in an industry i. The standard errors in the
parentheses are robust standard errors. F-stat is the Cragg-Donald Wald F statistics for the weak identification test.
All regressions are weighted by sales values of robots in each year.
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4.2.2 Commuting-zone-level analysis

So far, industry-level analysis suggests that robotization causes changes in the composition

of task inputs from routine-manual task toward nonroutine-analytical, nonroutine-interactive,

and routine-cognitive tasks. These estimated substitution effects are macroeconomic phenom-

ena because the industry-level analysis implicitly presumes a single unified labor market in the

economy. However, in reality, individuals work in local labor markets. The commuting-zone-

level analysis in this section explores whether robotization also causes compositional changes

of task inputs in the regional labor market.

The estimation result shown in Table 11 is consistent with those obtained in the industry-

level analysis. Routine-manual task inputs decline, while nonroutine-analytical and nonroutine-

Table 11: commuting-zone analysis: Bartik measures

Dependent variables
S1

c,t S2
c,t S3

c,t S4
c,t S5

c,t
Task

description
Nonroutine
analytical

Nonroutine
interactive

Routine
cognitive

Routine
manual

Nonroutine
manual

ln(Kc,t) 0.271*** 0.397*** -0.018 -0.209*** -0.067*

(0.063) (0.086) (0.042) (0.057) (0.040)
2-way FE X X X X X
Demographic controls X X X X X
Globalization controls X X X X X
ICT controls X X X X X
Obs. 7084 7084 7084 7084 7084
R2 0.196 0.319 0.142 0.247 0.300

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. The calculation is based on the 2SLS using the robot prices as exogenous
instrumental variables. Sk

c,t and Kc,t are k-th task score and robot stocks in a commuting zone c. The standard errors
in the parentheses are robust standard errors. All regressions are weighted by sales values of robots.

interactive tasks increases.

Some differences are also observed. First, the coefficient on routine-cognitive task inputs be-

comes smaller and no longer significantly different from zero. This result from the commuting-

zone-level analysis implies that robotization does not cause a substitution between routine-

manual and routine-cognitive tasks within the same local labor market. Increased use of robots

causes shifts of tasks across different regions.

Second, the coefficient of nonroutine-manual task inputs becomes significantly negative,

suggesting that robotization substitutes both routine-manual and nonroutine-manual tasks

within the regional market. In Table 3, the numerical indicators that make up nonroutine-

manual tasks include “Operating vehicles, mechanized devices, or equipment.” This estima-

tion result implies that workers who operate equipment and machines moved to other regions.

As a result, nonroutine-manual task inputs have decreased at the regional level but have not

changed much at the industry level.
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Tables 12 and 13 present estimation outputs from several robustness checks in the commuting-

zone-level analysis. Table 12 shows that the main result is robust even with IV estimation using

Table 12: commuting-zone analysis: IV regression

Dependent variables
S1

c,t S2
c,t S3

c,t S4
c,t S5

c,t
Task

description
Nonroutine
analytical

Nonroutine
interactive

Routine
cognitive

Routine
manual

Nonroutine
manual

ln(Kc,t) 0.241*** 0.389*** -0.051 -0.256*** -0.087
(0.075) (0.098) (0.055) (0.068) (0.054)

2-way FE X X X X X
Demographic controls X X X X X
Globalization controls X X X X X
ICT controls X X X X X
Obs. 7084 7084 7084 7084 7084
Weak instrument F-statistics 1.1e+04 1.1e+04 1.1e+04 1.1e+04 1.1e+04

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. The calculation is based on the 2SLS using the robot prices as exogenous
instrumental variables. Sk

c,t and Kc,t are k-th task score and robot stocks in a commuting zone c. The standard errors
in the parentheses are robust standard errors. All regressions are weighted by sales values of robots.

Table 13: commuting-zone analysis: dropping 1980

Dependent variables
S1

c,t S2
c,t S3

c,t S4
c,t S5

c,t
Task

description
Nonroutine
analytical

Nonroutine
interactive

Routine
cognitive

Routine
manual

Nonroutine
manual

ln(Kc,t) 0.274*** 0.401*** -0.018 -0.213*** -0.068*

(0.064) (0.087) (0.043) (0.057) (0.041)
2-way FE X X X X X
Demographic controls X X X X X
Globalization controls X X X X X
ICT controls X X X X X
Obs. 6860 6860 6860 6860 6860
Weak instrument F-stat 0.197 0.320 0.143 0.249 0.310

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. The calculation is based on the 2SLS using the robot prices as exogenous
instrumental variables. Sk

c,t and Kc,t are k-th task score and robot stocks in a commuting zone c. The standard errors
in the parentheses are robust standard errors. All regressions are weighted by sales values of robots.

robot prices as an instrumental variable.28 In Table 13, we check the sensitivity of aggregation

weights, employment shares within the commuting zone in 1980 in Table 11. Table 13 reports

that the result reported in Table 11 is robust even after dropping 1980 out of the sample.

28Regional robot prices are averages of industries’ robot prices calculated using industries’ labor share within
each commuting zone as a weight.
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5 Conclusion

This study shows that the amount of routine-manual task inputs decreases as robot stocks

increase, suggesting that the composition of such occupations has declined due to the intro-

duction of robots. In contrast, the amount of nonroutine-analytical, nonroutine-interactive,

and routine-cognitive task inputs relatively increases, suggesting that the displacement effect

caused by robotization does not result in replacing occupations with similar tasks but rather in

a relative increase in occupations with other types of tasks. For this purpose, we construct the

industry task scores by using three unique datasets: the Production and Shipments of Manipu-

lators and Robots, the administrative data of the Basic Survey on Wage Structure and numerical

indicators of occupational characteristics from J-O-net.

Focusing on the fact that no single occupation consists of a single task, this analysis com-

putes the five-task scores for each occupation and, in aggregate, for each industry and mea-

sured how the degree of robot penetration by industry affected these five-task scores. As a

result, we can measure the influence of robots on tasks in a very detailed manner. On the

other hand, since the five-task scores are standardized indices, it is difficult to obtain quantita-

tive implications from this study. Therefore, it is impossible to know to what extent workers

– how many or what percentage of workers – shifted among industries. These can be easily

determined if one interprets an occupation as consisting of a single task, but this may lead

to overestimating the impact of robots, as seen in the criticism to Frey and Osborne (2017).

Analysis of the quantitative impact of robots on tasks is left for our future study.
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Figure 8: Numerical simulation

(a) without the Baumol effect: γ (1) = γ (2) = .5
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(b) with the Baumol effect: γ (1) = .75 and γ (2) = .25 (c) with the Baumol effect: γ (1) = .25 and γ (2) = .75
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Note: parameters are set as follows: σ = 1; η (1) = 1; η (2) = 1; ε (1) = 10; ε (2) = 1; β = .5; φ (1) = 1; φ (2) = 1;
α (1) = 0.5; α (2) = 0.5; vL (L) = L; η2 = 1. In addition, γ (1) = 0.5 and γ (2) = 0.5 in (a), γ1 = 0.75 and γ2 = 0.25
in (b), and γ1 = 0.25 and γ2 = 0.75 in (c).

Appendix

A Numerical simulation

The panel (a) in Figure 8 displays the case when the parameters in the model presented in

Section 3 are set as follows: σ = 1; η (1) = 1; η (2) = 1; ε (1) = 10; ε (2) = 1; β = .5; φ (1) = 1;

φ (2) = 1; α (1) = .5; α (2) = .5; vL (L) = L; ηH = 1; γ (1) = .5; γ (2) = .5. Contrary to the

analytically solvable case in Section 3, robots and labor are not perfect substitutes. As a result,

the ratio of L task over H task, L2/H2, increases as an increase in robot adoption.

The Baumol effect through the different factor shares by industry is incorporated in panels

(b) and (c) in Figure 8. In these cases, only γs are altered such that γ (1) = .75 and γ (2) = .25 in

(b), while γ (1) = .25 and γ (2) = .75 in (c). Factor share of robots is higher in industry 1(2) than

in industry 2(1) in the panel (a) ((b)). Acemoglu and Guerrieri (2008) show that the differences

in the factor share in the production function shifts the relative prices with the technological

progress, which work similarly to the Baumol effect. In the panel (b), the pace of decline L task
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in industry 1 is larger due to this effect.29

Depending on the parameter values, the relationship between L/H and R̄ in each sector

changes. The relationship between task shifts and robot penetration is explored through esti-

mations examined in Section 4.

B Stepwise regression

This section presents the result estimated by adding regression controls in a stepwise manner.

B.1 Industry-level analysis

Table 14 shows the result of the industry-level analysis. Table 14 (I) shows that the relative

Table 14: Industrial analysis: stepwise regressions

Dependent variables
S1

i,t S2
i,t S3

i,t S4
i,t S5

i,t
Task

description
Nonroutine
analytical

Nonroutine
interactive

Routine
cognitive

Routine
manual

Nonroutine
manual

(I) 2-way FE only
ln(Ki,t) -0.312 0.192 -0.564 -2.511*** 0.015

(0.512) (0.540) (0.678) (0.926) (0.304)
Obs. 382 382 382 382 382
Weak instrument F-stat 7.572 7.572 7.572 7.572 7.572
(II) 2-way FE + demographic factors
ln(Ki,t) 0.728*** 1.276*** 0.285 -1.665*** -0.048

(0.276) (0.437) (0.259) (0.577) (0.224)
Obs. 382 382 382 382 382
Weak instrument F-stat 10.640 10.640 10.640 10.640 10.640
(III) 2-way FE + demographic + global factors
ln(Ki,t) 0.593** 0.930*** 0.480* -1.127*** 0.003

(0.263) (0.357) (0.279) (0.426) (0.235)
Obs. 382 382 382 382 382
Weak instrument F-stat 9.928 9.928 9.928 9.928 9.928
(IV) 2-way FE + demographic + global + ICT factors
ln(Ki,t) 0.619** 0.929*** 0.466** -1.105*** -0.089

(0.243) (0.326) (0.253) (0.383) (0.189)
Obs. 382 382 382 382 382
Weak instrument F-stat 12.936 12.936 12.936 12.936 12.936

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. The calculation is based on the 2SLS using the robot prices as exogenous
instrumental variables. Sk

i,t and Ki,t are k-th task score and robot stocks in an industry i. The standard errors in the
parentheses are robust standard errors. F-stat is the Cragg-Donald Wald F statistics for the weak identification test.
All regressions are weighted by sales values of robots.

decline in routine-manual tasks is so robust that it is statistically significant even without any

29Non-homotheticity does not play any significant role in changing the relationship between L/H and R̄.
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controls. Nonroutine-analytical and nonroutine-interactive tasks become statistically signifi-

cant when adding demographic factors (Table 14 (II)). When adding the global factor, routine

-cognitive tasks become significant (Table 14 (III)) and coefficients approach our preferred spec-

ification (Table 14 (IV)).

B.2 Commuting-zone-level analysis

Table 15 is the result of the commuting-zone-level analysis. Table 15 (I) shows that the relative

Table 15: commuting-zone analysis: stepwise regressions

Dependent variables
S1

c,t S2
c,t S3

c,t S4
c,t S5

c,t
Task

description
Nonroutine
analytical

Nonroutine
interactive

Routine
cognitive

Routine
manual

Nonroutine
manual

(I) 2-way FE only
ln(Kc,t) 0.295*** 0.427*** -0.040 -0.199 -0.009

(0.073) (0.111) (0.044) (0.077) (0.0.041)
Obs. 7084 7084 7084 7084 7084
R2 0.089 0.193 0.051 0.066 0.065
(II) 2-way FE + demographic factors
ln(Ki,t) 0.284*** 0.416*** -0.013 -0.226*** -0.071*

(0.067) (0.100) (0.042) (0.078) (0.040)
Obs. 7084 7084 7084 7084 7084
R2 0.189 0.264 0.141 0.126 0.303
(III) 2-way FE + demographic + global factors
ln(Ki,t) 0.283*** 0.429*** -0.015 -0.250*** -0.071*

(0.067) (0.099) (0.041) (0.073) (0.040)
Obs. 7084 7084 7084 7084 7084
R2 0.189 0.277 0.142 0.176 0.303
(IV) 2-way FE + demographic + global + ICT factors
ln(Kc,t) 0.271*** 0.397*** -0.018 -0.209*** -0.067*

(0.063) (0.086) (0.042) (0.057) (0.040)
Obs. 7084 7084 7084 7084 7084
R2 0.196 0.319 0.142 0.247 0.300

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. The calculation is based on the 2SLS using the robot prices as exogenous
instrumental variables. Sk

i,t and Ki,t are k-th task score and robot stocks in an industry i. The standard errors in the
parentheses are robust standard errors. All regressions are weighted by sales values of robots.

increases in nonroutine-analytical and nonroutine-interactive tasks are so robust that they are

statistically significant even without any controls. When adding demographic factors, routine-

manual and nonroutine-manual tasks become significantly negative as in our preferred spec-

ification (Table 14 (II)). Adding the global and ICT factor does not change much, although

absolute values of coefficients become slightly smaller (Table 14 (III) and (IV)).
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C ICT penetration and task changes

This section provides first the empirical framework and then the result.

C.1 Empirical framework

This appendix presents additional results on the relationships between ICT penetration and

task changes. In this analysis, we use the commuting-zone-level data and estimate the follow-

ing equation.

Sk
c,t = αk

c + αk
t︸ ︷︷ ︸

2-way FE

+ βkK ICT
c,t︸ ︷︷ ︸

ICT’s effects

+ γkXc,t︸ ︷︷ ︸
The other effects

+εk
c,t,

where K ICT
c,t represents the exposure to ICT in commuting zone c and defined as follows,

K ICT
c,t = ∑

i∈I

λi,c,t0 K ICT
i,t ,

where λi,c,t0 and K ICT
i,t are industry i’s share of workers in commuting zone c at the initial period

t0 and industry i’s ICT capital stocks. As in the main analysis, the exposure to the ITC is Bartik-

type measure; the aggregation weight is fixed at the value of the initial period.

The other control variables are the same as in Section 4, although we use robot stocks instead

of ICT stocks as a control variable in this analysis.

C.2 Result

Table 16 reports the main estimation result by commuting zones. The result presented in

panel (I) shows that the introduction of ICT increased the amount of nonroutine-analytical

and nonroutine-interactive tasks. On the other hand, routine-manual and nonroutine-manual

tasks decreased upon the introduction of ICT. These results suggest that substitution from man-

ual tasks to nonroutine-analytical and nonroutine-interactive tasks occurred during the sample

period.

The above result is consistent with the observed polarization in the labor market (Autor

and Dorn, 2013; Ikenaga and Kambayashi, 2016). According to Autor et al. (2003), nonroutine-

analytical and nonroutine-interactive tasks require problem-solving, intuition, persuasion, and

creativity and are suitable for workers with a higher level of education and analytical capa-

bilities. On the other hand, they also state that manual tasks do not require a higher level of

education. Together with the result presented in Table 16, we consider that introduction of

ICT has increased the demand for high-skilled workers while it has decreased the demand for

middle or low-skilled workers.

One potential concern in panel (I) is the endogeneity. Since the ICT stocks are simultane-

ously determined with the labor market variables used to construct the task scores on the left-

hand side, the result in panel (I) may be distorted by endogeneity. To alleviate the endogeneity
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Table 16: ICT adoption and tasks in commuting zone

Dependent variables
S1

i,t S2
i,t S3

i,t S4
i,t S5

i,t
Task

description
Nonroutine
analytical

Nonroutine
interactive

Routine
cognitive

Routine
manual

Nonroutine
manual

(I) OLS
ln(K ICT

i,t ) 0.117*** 0.168*** 0.008 -0.103*** -0.044**

(0.025) (0.033) (0.018) (0.026) (0.021)
Obs. 7124 7124 7124 7124 7124
R2 0.184 0.263 0.137 0.200 0.319
(II) 2SLS
ln(K ICT

i,t ) 0.133*** 0.176*** 0.004 -0.111*** -0.035
(0.029) (0.035) (0.024) (0.029) (0.025)

Obs. 7124 7124 7124 7124 7124
Weak instrument F-stat 1.6e+04 1.6e+04 1.6e+04 1.6e+04 1.6e+04
(III) different sample period (1985-)
ln(K ICT

i,t ) 0.116*** 0.167*** 0.006 -0.103*** -0.043**

(0.026) (0.034) (0.018) (0.026) (0.021)
Obs. 6900 6900 6900 6900 6900
R2 0.187 0.266 0.139 0.202 0.328

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. The calculation is based on the 2-way FE model with demographic, global-
ization, and robotization factors. Panel (II) is based on the 2SLS using the ICT prices as an exogenous instrumental
variable. Sk

c,t and KICT
c,t are k-th task score and ITC stocks in a commuting zone c. The standard errors in the paren-

theses are robust standard errors. F-stat is the Cragg-Donald Wald F statistics for the weak identification test. All
regressions are weighted by the ICT stocks.
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concern, we use the 2SLS method with ICT prices as an instrumental variable.30 According to

the estimation result in panel (II), the result is in line with the main result in panel (I): the in-

troduction of ICT has increased nonroutine-analytical and nonroutine-interactive tasks, while

it has decreased manual tasks. Accordingly, the adoption of ICT has contributed to the polar-

ization of the labor market.

Another concern is related to the aggregation weight used to construct the ICT stocks. Em-

ploying the shift-share method, we use the workers’ share at the initial period, 1980, as the

aggregation weight of ICT capital stocks. However, if the aggregation weight at the initial

period predicts subsequent development in the labor markets, factors other than ICT would

affect the estimated parameters. Therefore, we leave the aggregate weights as of 1980, shift the

starting period for estimation to 1985, and re-estimate the model. The lower panel (III) of Table

16 indicates no significant change in the result even if we weaken the relationship between the

aggregate weight and the data used for the estimation by leaving a five-year gap between the

two.

In the analysis so far, we estimate the model with all control variables. To check the sensi-

tivity to the choice of control variables, Table 16 reports how the result changes when adding

control variables in a stepwise manner. The result shows that the analysis is robust though

demographic factors matter for the statistical significance of nonroutine-manual tasks.

30This study calculates the ICT price using the JIP statistics as follows. First, we divide the industrial nominal
ICT investment by the real ICT investment and then aggregate using industries’ worker share within commuting
zones at the initial period.
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Table 17: ICT adoption and tasks in commuting zone: additional analysis

Dependent variables
S1

i,t S2
i,t S3

i,t S4
i,t S5

i,t
Task

description
Nonroutine
analytical

Nonroutine
interactive

Routine
cognitive

Routine
manual

Nonroutine
manual

(I)2-way FE only
ln(K ICT

i,t ) 0.139*** 0.181*** 0.013 -0.084*** -0.013
(0.028) (0.033) (0.020) (0.026) (0.020)

Obs. 7124 7124 7124 7124 7124
R2 0.067 0.149 0.025 0.045 0.034
(II) 2-way FE+ demographic
ln(K ICT

i,t ) 0.126*** 0.173*** 0.012 -0.098*** -0.037*

(0.026) (0.035) (0.018) (0.028) (0.020)
Obs. 7124 7124 7124 7124 7124
R2 0.179 0.239 0.135 0.147 0.310
(III) 2-way FE+ demographic + globalization
ln(K ICT

i,t ) 0.124*** 0.182*** 0.010 -0.115*** -0.043**

(0.027) (0.036) (0.018) (0.028) (0.022)
Obs. 7124 7124 7124 7124 7124
R2 0.180 0.249 0.135 0.180 0.314
(IV) 2-way FE+ demographic + globalization + robotization
ln(K ICT

i,t ) 0.117*** 0.168*** 0.008 -0.103*** -0.044**

(0.025) (0.033) (0.018) (0.026) (0.021)
Obs. 7124 7124 7124 7124 7124
R2 0.184 0.263 0.137 0.200 0.319

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. Sk
c,t and KICT

c,t are k-th task score and ITC stocks in a commuting zone c. The
standard errors in the parentheses are robust standard errors. F-stat is the Cragg-Donald Wald F statistics for the
weak identification test. All regressions are weighted by the ICT stocks.
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