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Abstract 

 

This paper measures the extent to which the quality of robots has improved in Japan between 

1990 and 2018, by using data from the “Production and Shipments of Manipulators and Robots” 

of the Japan Robot Association and the “Corporate Goods Price Index” of the Bank of Japan. We 

first calculate quality-unadjusted robot price indices applying three approaches: the traditional 

index number approach, the stochastic approach in the spirits of Edgeworth and Jevons, the 

structural approach. Then, we compute robot quality by dividing quality-unadjusted prices by the 

quality-adjusted industrial robot price index produced by the Bank of Japan. Based on three 

approaches, significant decline in improvement in the quality of robots in the last decade is found. 

The differences in the growth rates of the robot quality between the 2000s and the 2010s show 

substantially negative values around -3 percentage points per annum. 
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1 Introduction

The question of whether machines will take human jobs away is not a new concern; it traces

back at least 100 years. With significant progress in artificial intelligence and machine learning

algorithms, this concern has now become an increasingly prominent fear. In response to this

societal fear, academics tackle this issue from both theoretical and empirical angles.

In the theoretical strand, Benzell et al. (2015), Sachs et al. (2015), Berg et al. (2018), Graetz

and Michaels (2018), Caselli and Manning (2019), and Acemoglu and Restrepo (2020) have

explored the consequences stemming from technological progress in robotics from short to

medium and long-run terms. Results of such studies are mixed, depending on the settings in

the model, particularly, on the production side, which pins down whether robots are substitute

or complement to labor.

Although data on robots are only available, at most, for the last two to three decades, Graetz

and Michaels (2018), Acemoglu and Restrepo (2020), Dauth et al. (2018), Humlum (2019),

Adachi et al. (2020), Adachi (2021), and Fujiwara and Zhu (2020) have estimated the impacts of

the increased usage of robots on the labor market, eliciting somewhat mixed implications. For

example, Graetz and Michaels (2018) and Dauth et al. (2018) have concluded that robotization

increases labor productivity and real wage but causes no significant impact on labor inputs,

whereas Acemoglu and Restrepo (2020) indicate that more automation leads to fewer labor

inputs and lower real wages.

However, to the best of our knowledge, no study has specifically investigated the rate of

technological progress; namely, quality improvement of robots.1 For any attempt to predict

how robots will affect the macroeconomy, in recognition of society’s existing anxiety, it is vital

to understand the progress of robot production and quality improvement path of robots. If the

pace of quality improvement in robots slows down or has already diminished, fear regarding

robots taking human jobs away may dissipate. This paper aims to fill in this gap.

The lack of research on robot quality can be traced to the lack of price information available

in time series in typical datasets, such as “World Robotics,” which is published annually by the

International Federation of Robotics. Most studies examine how the number of robots; namely,

the quality-unadjusted stock of robots, affects labor market variables.2

Two novel datasets that contain price information on robots are used in this study. The first

is the “Production and Shipments of Manipulators and Robots” published by the Japan Robot

Association (hereafter, JARA). JARA publishes sales data and the number of robots installed

by industry and application. The 2018 table exhibits sales and the number of robots installed

for 44 industries, reporting 36 applications. The price of robots by industry and application can

be obtained by dividing sales by the number of robots installed. Note that prices computed in

1As a robustness check, Adachi et al. (2020) compute robot quality indirectly by assuming the exogenous shifter
in the CES aggregator as unobserved quality following Khandelwal et al. (2013). Note that such an exogenous
shifter can also be considered an unobserved demand shifter instead of quality as shown in Redding and Weinstein
(2020). Contrary to Adachi et al. (2020), we aim to directly measure the quality of robots.

2Notable exceptions are Adachi et al. (2020), Adachi (2021), and Fujiwara and Zhu (2020). They all use data
published by the Japan Robot Association, the details of which are discussed below.
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this manner are not quality-adjusted.

The second dataset is the “Corporate Goods Price Index” (hereafter, CGPI), which is pub-

lished by the Bank of Japan (hereafter, BOJ). BOJ began releasing the quality-adjusted price

index of industrial robots as one of the components in CGPI in 1990. Therefore, we measure

quality improvement of robots over time by dividing the quality-unadjusted price index of

robots computed from JARA data by the industrial robot deflator produced by BOJ.

With this quality-adjusted price index of robots in hand, the key to measuring the quality

of robots is determining how to calculate the quality-unadjusted robot price index from JARA

data. A simple average of robot prices may well serve this purpose. However, the distribution

of prices is found to be significantly positively skewed. While many are overly concentrated

near median, some items have a small probability of eliciting a substantial inflation rate. It is

not clear whether such outliers should be included or excluded in calculating a representative

index of quality improvement in robots.

This question is reminiscent of classic arguments regarding the ideal presentation of price

indices among giants of economics, such as Edgeworth, Frisch, Jevons, Keynes, and Walsh.3

In the late 19th and early 20th centuries, a fierce debate occurred about two characteristics of

prices. First, if only one price increases among many goods, should the representative price

index increase? Second, are price indices stochastic variables? In other words, do they contain

ambiguous fluctuations? Edgeworth and Jevons said no to the first question and yes to the

second, whereas Frisch, Keynes, and Walsh argued strongly to the contrary.4

In our current view, the answer to the second question is, for sure, yes; most macroeco-

nomic variables are assumed to be stochastic. The answer to the first question depends on the

perception of what prices are intended to be. If prices are viewed as the cost-of-living for con-

sumers, then prices should rise, as an increase in the price of one good raises cost for consumers.

However, if prices are the target of monetary policy (i.e., a measure of changes in the value of

money), then changes in commodity prices, such as fresh food and energy prices, which vary

considerably from other commodities, are excluded from the price index which is referred to

as core inflation. This trimmed mean is considered a good measure of the core inflation rate

and therefore is more related to other major macroeconomic variables with a better forecasting

power. In constructing a price index for robots (i.e., measuring the quality of robots), should ex-

treme values be excluded or included? There is no prior knowledge on the impacts of extreme

3For the details, see Diewert (1993, 2010, 2020) and Abe (2019).
4For example, in Jevons (1884), “In drawing our averages the independent fluctuations will more or less destroy

each other; the one required variation of gold will remain undiminished.”; in Edgeworth (1887), “A third principle
is that less weight should be attached to observations belonging to a class which are subject to a wider deviation
from the mean.”; in Keynes (1930), “What is the flaw in the argument? In the first place it assumed that the fluc-
tuations of individual prices round the ‘mean’ are ‘random’ in the sense required by the theory of the combination
of independent observations. In this theory the divergence of one ‘observation’ from the true position is assumed
to have no influence on the divergences of other ‘observations’. But in the case of prices, a movement in the price
of one commodity necessarily influences the movement in the prices of other commodities, whilst the magnitudes
of these compensatory movements depend on the magnitude of the change in expenditure on the first commodity
as compared with the importance of the expenditure on the commodities secondarily affected.”; in Walsh (1921),
“Commodities are to be weighted according to their importance, or their full values.”; in Frisch (1936), “We cannot
assume that the “monetary factor” will manifest itself as a proportional change of all prices.”
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entries in robot prices on other macroeconomic variables, particularly employment, wage, and

labor productivity.

In addition to the inclusion or exclusion of such extreme values, there are two other reasons

why such an index cannot be narrowed down to a single price index. First, there is a compo-

sition effect; even if there is no change in the price of individual robots, the quality per robot

will change when the composition changes. Again, we do not know whether accounting this

composition effect would make a difference in the impact of robot adoption on labor markets

and other macroeconomic variables.

Second, although BOJ (2009, 2020, 2021) offer detailed explanations on the quality adjust-

ment, we still do not know how the quality adjustment is conducted by BOJ or on which items.

BOJ (2021) says, “It is the principle of CGPI to survey product prices continuously with fixed

quality.” In contract, it also says that in reaction to product turnover, “sample price replacement is

conducted to change reporting companies, surveyed products, and counterparties and terms of

transactions, etc. which were set at the start of surveys.” It is not possible to determine a priori

whether a quality-unadjusted robot price index should be created only for products that have

existed for a relatively continuous period or whether a robot price index should be created to

cover a wide range of products.

Given the above three backgrounds – whether to include extremes, whether to take the com-

position effect into account, and whether to focus on a small number of representative robots

– this paper will calculate several robot price indices, endeavoring to obtain robust results on

robot quality, taking three approaches. The first is the classic index number approach. The sec-

ond applies the stochastic approach in the spirits of Edgeworth and Jevons, aiming to capture

the common trend of price fluctuations among individual robots. Finally, we seek to obtain

a theoretical price index using the structural approach, which is explicitly based on firms’ cost

minimization problem.

For the index number approach, we calculate both arithmetic and geometric mean and me-

dian of robot prices. Since these are computed using sales as the weight, they represent rough

measures of the theoretical price index, similar to the cost-of-living index.5 Following Bryan

and Cecchetti (1994) and Shiratsuka (1997), we also compute the trimmed means to reduce

the impacts of extreme entries. As first demonstrated by Diewert (2010), trimmed means are

closely related to the stochastic approach in that “less weight should be attached to observa-

tions belonging to a class which are subject to a wider deviation from the mean” as noted by

Edgeworth (1887).6 Trimmed means are effective for excluding outlier observations to render

sample prices more homogeneous and representative. Therefore, these are more congruent

with the elementary price index or elementary aggregates and likely to be more comparable to the

industrial robot price index in CGPI. For this purpose, we also calculate robot price indices

based on a simple average without using sales weights, and those only using items that have

5Notice that we consider firms’ profit maximization problem instead of households’ utility maximization prob-
lem.

6Notice that extreme entries have fewer weights in the geometric mean and median of the robot prices, so,
computing these is also somewhat in congruence with the stochastic approach of Edgeworth and Jevons.
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existed for the entire period.

In the stochastic approach, we estimate inflation rates of individual robots on time fixed ef-

fects in reference to the specifications proposed by Selvanathan and Prasada (1994). Estimated

coefficients on the time dummies are considered the common trend, which is not susceptible to

broader deviations from mean.

The CES aggregator is quite often estimated using the micro-founded structural approach.

However, the CES function is broadly acknowledged as restrictive. There is no existing prior

knowledge to justify the assumption behind the CES aggregator that all robots are subject to

the same elasticity of substitution. In addition, JARA’s robot data is intermittent; the number of

available robot data is time-varying. To address these issues, Matsuyama and Ushchev (2017)

propose a new and highly flexible homothetic preference. In what they coin the “homothetic

demand system with a Single Aggregator” (hereafter, HSA), the theoretical price index can be

estimated in the homothetic demand system with a minimal assumption that the expenditure

share is the function of the relative price. In the structural approach, we estimate the aggregate

robot price index under HSA using higher-order polynomials as examined in Kasahara and

Sugita (2020).

Some heterogeneity exists among aggregate robot price indices computed by different ap-

proach. Nonetheless, robust findings are obtained regarding the quality of robots in the last

three decades in Japan. The findings show that the quality per robot increased or leveled off

in the 2000s and decreased in the 2010s. In all measures, growth rates in the 2000s elicit large

positive values. Conversely, those in the 2010s are mostly negative. Most importantly, the dif-

ference in the growth rates between the 2000s and 2010s also takes negative values of around -3

percentage points per annum. According to the price information on robots from Japanese man-

ufacturers, quality improvement in robots has significantly slowed down in the last decade.

These results agree with recent observations on the possibility of a slowdown in the investment-

specific technological progress, which manifests itself as a slowdown in relative price declines.

For example, Fernald (2014), Byrne and Pinto (2015), IMF (2019), and Takahashi and Takayama

(2021) report a dramatic slowdown in the pace of relative price declines of capital goods over

consumer goods. This implies a slowdown of the investment-specific technological progress,

that may include robot quality. In a related study, Bloom et al. (2020) present evidence that

“research effort is rising substantially while research productivity is declining sharply.” This

ideas-are-getting-harder-to-find hypothesis advocated by Bloom et al. (2020) may apply to robot

production as well.

The remainder of this paper is structured as follows. Section 2 explains the details of data

including the Production and Shipments of Manipulators and Robots published by JARA and

the industrial robot price index in CGPI by BOJ. Section 3 discusses our strategies to compute

the aggregate robot price index and the quality of robots. Sections 4, 5, and 6 explain the

processes of computing the robot price index using the index number, the stochastic and the

structural approaches, respectively. Results on quality improvement from each approach are

also reported. In Section 7, we summarize the findings on quality improvement in Sections 4, 5,
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Table 1: Numbers of industries and applications

year Industry Application Total
1990 - 1997 26 31 806
1998 - 2001 26 34 884
2002 - 2013 22 34 748
2014 - 2018 26 34 884

and 6. We also confirm that the decline in quality improvement in the 2010s is a robust finding.

Finally, Section 8 concludes.

2 Data

We first explain the “Production and Shipments of Manipulators and Robots” dataset from

JARA, followed by the industrial robot price index in CGPI of BOJ.

2.1 JARA data

We use the Production and Shipments of Manipulators and Robots produced by JARA from

1990 to 2018.7 Adachi et al. (2020) also use this database to gauge the impacts of robots on

employment in Japan, offering comprehensive and detailed information about JARA data. The

following will describe the main characteristics of JARA data that are of importance to our

results.

JARA publishes two types of data. One is available on the JARA website.8 The other is only

available as a booklet in Japanese. The latter contains more detailed information by industry

and application. Since we need to use data that are as disaggregated as possible to gauge

quality improvement in robots, we decide to use the latter; in particular, Table B, which presents

sales and the number of robots by industry and application.

In the 2018 table, 44 industries are covered with 28 major categories and their sub-categories

in columns. Rows present 36 applications for 17 major categories with attending sub-categories.

New robots are invented, and some old robots become obsolete. Therefore, industries and ap-

plications in the table change over time. As a result, the numbers of industries and applications

available in JARA data in Table B across our sample from 1990 to 2018 become smaller. This

is presented in Table 1. In total, there are potentially 23,400 (= 806 x 8 + 884 x 4 + 748 x 12 +

884 x 5) data points over industries, applications and years. There are, however, a considerable

7According to the Japanese Industrial Standards (hereafter, JIS), a robot is defined as “a locomotion mechanism
that is programmed to operate on two or more axes, has a degree of autonomy, and operates in an environment
to perform a desired task. Note 1: A robot includes a control system and an interface to the control system. Note
2: The classification of a robot as an industrial or service robot depends on its intended use.” The industrial robot
is defined as “A robot that is automatically controlled, reprogrammable, versatile manipulator, programmable in
three or more axes, fixed in one place or with mobile functions, and used in industrial automation applications. Note
1: Industrial robots include the following – Manipulators (including actuators) including Control units [including
pendants and communication interfaces (hardware and software)]. Note 2: Industrial robots include additional
axes by integration.” JARA is involved in the creation of JIS standards for robots and industrial robots.

8https://www.jara.jp/e/data/index.html
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Table 2: Descriptive statistics

mean variance skewness kurtosis
price 6.5 2949 25.8 833.9

quantity 134.0 315,358 8.9 109.9
sales 792.3 8,588,599 7.6 88.1

Note: Price is computed as the sales divided by the quantity. We normalize data so that median equals zero.

Figure 1: Distributions of prices over time
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Note: All panels plot paths of prices in logarithmic scale. Red thick, blue thick, blue dashed, and blue dotted lines
plot mean, median, 25 and 75 percentiles, and 10 and 90 percentiles, respectively.

number of empty spaces. In each year, around two-thirds of spaces are empty. As a result, the

total non-zero entries are 8,266, resulting in a large number of disaggregated information on

the prices, quantities, and sales.

2.1.1 Descriptive statistics

Table 2 presents the descriptive statistics for the prices, quantities, and sales in our dataset. To

be comparable across time, we normalize all data so that median is zero. In 2018, median price

was 3.6 million JPY, median quantity was 9, and median sales were 48 million JPY. Several

characteristics are worth mentioning. First, variances in both price and quantity (and therefore

in sales) are massive. Second, given median set as zero, mean is always positive. Skewness and

kurtosis are also positive and considerably large. These altogether imply that distributions of

price, quantity, and sales are concentrated around median, but significantly positively skewed.

There are entries with a huge number but with minimal probabilities.

Figure 1 demonstrates how distributions of prices evolve. All data are used in the left panel,

only data that exist for two consecutive periods are used in the center panel, and only data that
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exist for the whole sample are used in the right panel. In accordance with Table 2, means are

simple average and computed with equal weights on all items.

Initially, it is apparent that the dynamics in mean differ from those in median. This observa-

tion is congruent with the characteristics found in Table 2. Very few robots are sold at very high

prices, causing distributions to be significantly positively skewed. As a result, mean paths are

always located above those of median and fluctuate around the upper 25 percentile. Second,

while most series show declining trends, no clear declining trend in mean is identifed in the

right panel. Also, the upper tail, the 90 percentile, is not in a declining trend. Note that there

is no product turnover at the industry and application level in the right panel, whereas this is

taken into acount in the left and the center panels. This observation implies that the prices of a

few considerably costly robots that are always sold do not exhbit any trend. Therefore, product

turnovers of high-end products are appear to be related to the declining trend in robot prices.

This also implies that the downward trend in means observed in the left and center panels is

primarily as a result of decreasing price of high-quality robots.

When gauging quality improvement in robots, or calculating the aggregate price index of

robots, should the impacts from such a few very expensive entries be eliminated? To date, no

consensus has been reached on this question. Therefore, we compute several aggregate price

indices of robots in this paper, aiming to obtain a robust conclusion on quality improvement

in robots. The trimmed means in the index number approach and the price indices based on

the stochastic approach do not include those extreme values. This issue will be discussed in

Section 3.

2.1.2 Relative prices

Table 3 presents relative prices by industry and application. Relative prices are calculated with

a sample mean of unity. Significant heterogeneity exists in prices. The quality is quite different

among various robot categories. For instance, those used for measurement, inspection and test

and mounting, or in Radio, TV, and communication equipment, and Iron and steel, are considerably

more expensive than others.

Figure 2 illustrates the dynamics of the number of robots installed by industry and appli-

cation. The upper and lower panels plot paths of quantities in logarithmic scale by industry

and application, respectively. All numbers are normalized to zero in 1990. The trend of volume

change is distributed both by industry and by application. While most of the items show a

gradual downward trend, some items present clear upward or significant downward trends.

In addition, some items’ quantities fluctuate wildly upward and downward.

Table 3 and Figure 2 imply that the composition effect is not negligible. Even if there is no

change in the price of individual robots, the quality per robot will change when the composition

changes. However, whether the composition effect should be eliminated when considering the

impacts of robots at a macroeconomic level is unknown. Therefore, several price indices are

computed using JARA data. While the stochastic approach aims to remove this composition

8



Table 3: Relative prices by industry and application

Industry Relative price Application Relative price
Iron and steel 1.78 Die-casting 0.34

Non-ferrous metals 0.62 Other casting 0.92
Fabricated metal products 0.84 Forging 1.15
Other general machinery 0.71 Resin molding 0.88

Civil engineering and construction machine 0.88 Press 0.81
Metal processing 0.91 Arc welding 1.21

Electronic computer 1.35 Spot welding 0.58
Household electrical equipment 1.17 Laser welding 1.04

Electric machinery 0.86 Other welding 0.66
Radio, TV, and communication equipment 1.99 Painting 0.73

Other electric machinery 0.80 Load / unload 0.80
Precision / optics instruments and machinery 1.14 Mechanical cutting 0.76

Ship manufacturing and repairing 1.49 Polishing and deburring 0.61
Railroad vehicle 0.96 Other machining 0.76

Automobile 0.92 Gas cutting 1.15
Other transportation machinery 0.75 Laser cutting 1.52

Beverages, tobacco and feed 1.36 Water jet cutting 0.81
Dry goods, apparel and leather goods 0.67 Other cutting 0.92

Lumber, wood and cork products 0.78 General assembly 0.83
Paper and paper products / publishing and printing 0.84 Inserting 1.67

Chemical and allied products 0.81 Mounting 2.39
Petroleum coal products 0.83 Ponting 0.85

Rubber products 0.51 Soldering 0.49
Plastic products 0.81 Sealing and Gluing 0.41

Ceramic, stone and clay products 1.56 Screw tightening 0.26
Other manufacturing 0.65 Other assembly 1.90

Shipment 0.94
Measurement, inspection and test 3.23

Material handling 0.49
Education and research 0.60

Clean room: flat panel display 1.05
Clean room: semi-conductor 0.51

Clean room: others 0.71
Others 2.03

Figure 2: Quantity by industry and application
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by industry
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-6

-4
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Note: The upper and lower panels plot paths of quantities in logarithmic scale by industry and application,
respectively. All numbers are normalized to zero in 1990.
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effect, simple means from the index number approach and the theoretical price index computed

from the structural approach incorporate the composition effects.9 This issue will be further

discussed in Section 3.

2.2 Industrial robot price index in CGPI

CGPI is the price index for goods traded in the corporate sector. As is usual with official price

indices, CGPI is a quality-adjusted series. According to BOJ (2021), “The prices of products

(goods) with the quality and contract terms fixed are continuously surveyed. ... At the time of

sample price replacement, it is endeavored to reflect only “pure price change” to price indexes,

after removing “price change resulting from quality changes” by using the following quality

adjustment method”:

price differencial between old and new product

= price change resulting from quality change + pure price change,

where the first and second terms in the right hand side of the equation are used “for quality

adjustment” and “to reflect to price index,” respectively.

BOJ started releasing the industrial robot price index as one of the components in CGPI in

1990. Figure 3 plots the price index of the industrial robots in CGPI. The price of industrial

robots was on a declining trend until 2010. The pace of decline was more significant in the

1990s than in the 2000s. The price index has remained almost flat since 2010. Since CGPI is

a quality-adjusted index, it is not possible to determine from data alone whether the decline

through 2010, for example, represents a decline in prices or quality improvement. Combined

with the quality-unadjusted price index of robots to be computed from JARA data, we can

measure the quality of robots through dividing it by the industrial robot price in CGPI. The

details on how quality is calculated are given in Section 3.

According to BOJ (2021), CGPI continuously surveys product prices with a fixed quality.

However, in reaction to product turnover, “sample price replacement is conducted to change

reporting companies, surveyed products, and counterparties and terms of transactions, etc.

which were set at the start of surveys.” It is not possible to determine a priori whether a quality-

unadjusted robot price index should be created only for products that existed for a relatively

continuous period or whether a robot price index should be created to cover a wide range of

products.

Thus, we calculate several robot price indices from JARA data. The trimmed means in the

index number approach and the price indices based on the stochastic approach aim to capture

prices with fixed quality that are continuously available. In excluding outlier observations to

make sample prices more homogeneous and representative, these exercises are more congruent

with the elementary price index and likely to be more comparable to the industrial robot price

9Note that we can exclude the composition effect at the industry and application level but not at the individual
product level.
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Figure 3: Industrial robot price - CGPI
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Note: The index is in logarithmic scale and normalized to unity in 1990.

index in CGPI. For this purpose, we also calculate robot price indices based on simple averages

without using sales weights, and those using only items that have existed for the entire period.

Regarding quality adjustment methods, BOJ (2021) employs nine quality adjustment ap-

proaches: (i) the direct comparison method, (ii) the unit price comparison method, (iii) the

overlap method, (iv) the production cost method, (v) the hedonic regression method, (vi) the

attribute cost adjustment method, (vii) the option cost method, (viii) the fuel efficiency method,

and (ix) the webscraped prices comparison method.

Figure 7-25 in BOJ (2021) clarifies the procedure for selecting a quality control method.

The selection flow works as follows: If the quality is considered constant, use (i) the direct

comparison method; if not, and the only change in quality is in quantity, use (ii) the unit price

comparison method; if not, and cost information can be obtained from reporting companies,

use (iv) the production cost method; if not, and the new and old products are sold in parallel

and the prices are moving in parallel, use (iii) the overlap method; if not, and the hedonic

method is applied, use (v) the hedonic regression method; if not, and the prices of key parts

causing quality changes are available, use (vi) the attribute cost adjustment method; if not, and

the only change in quality is in the standardization of options, use (vii) the option cost method.

Also, in this case, if monetary equivalent amounts of the fuel efficiency improvement effect are

available, (viii) the fuel efficiency method can be employed together; if not, and prices in the

retail market are available, and quality improvement is seen as a trend, use (ix) the webscraped

prices comparison method.

Table 7-28 in BOJ (2020) demonstrates that, of the quality-adjusted items in CGPI, 35% are
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quality-adjusted using (i) the direct comparison method, 33% using (iv) the production cost

method, 9% using (ii) the unit price comparison method, 8% using (v) the hedonic regression

method, 2% using (iii) the overlap method, and the remaining 13% using other methods. Al-

though it covers slightly older data (actual data from 2008), Figure 6 in BOJ (2009) shows, for

General purpose machinery – a large category that includes industrial robots – 48% is quality-

adjusted using (iv) the production cost method, 38% using (i) the direct comparison method,

3% using (v) the hedonic regression method, 2% using (iii) the overlap method, and the re-

maining 9% using other methods.

Further details regarding how the quality adjustment is conducted and which items is not

available from BOJ. In addition, the coverage by BOJ is likely to differ from that by JARA. Thus,

some caution in interpreting the results is necessary.

3 Measuring quality

This section discusses how the index number approach, the stochastic approach and the struc-

tural approach are linked to the structural equations with the micro-foundation. Note that the

major advantage of the stochastic approach and the index number approach is that they do not

rely on strong structural assumptions. However, here, we aim to demonstrate that they are not

entirely without a theoretical basis.

3.1 A simple CES example

There are j industries and k applications. As a result, there are n = j× k categories. Consider

a simple economy in a partial equilibrium, wherein a representative robot aggregator and the

robot producers exist.10

A representative robot aggregator minimizes the total cost:

n

∑
i=1

ρi,tRi,t, (1)

subject to the CES aggregating technology:

Rt =

[
n

∑
i=1

ω
1
η

i (atRi,t)
1− 1

η

] η
η−1

. (2)

ρt, Rt and at denote the price, the robot investment, the common quality, respectively.11 The

parameter, η, denotes the elasticity of substitution among different robots.

10The assumption that a pseudo-single economic agent represents the demand side may be considered strong. The
stochastic approach, as shown below, does not require such an assumption.

11Theoretically, since robots are durable goods, their prices should be measured as rental costs. However, the
industrial robot price index is calculated by BOJ as the flow price of robots in a similar manner to the calculation of
the investment deflator in SNA. Thus, this study does not measure the robot price as a rental cost for consistency
with the industrial robot price index in GGPI.
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3.1.1 Measuring quality

By minimizing (1) subject to equation (2), we can derive the Hicksian demand function:

Ri,t = ωi

(
ρi,t

ρ∗t

)−η

Rt. (3)

ρ∗t denotes that the theoretical price index, which is quality-adjusted. Substituting equation (3)

into equation (2) yields the theoretical price index:

ρ∗t =

[
n

∑
i=1

ωi (atρi,t)
1−η

] 1
1−η

, (4)

which is equivalent to the cost-of-living index in households’ utility maximization problem.

The JARA dataset offers individual robot price i, and ωi as the sales share. However, the

quality measure, at, is not available. The robot price index to be computed from JARA data is

not quality-adjusted and therefore given by

PJARA
t = ρt =

(
n

∑
i=1

ω
1
η

i ρ
1−η
i,t

) 1
1−η

, (5)

where PJARA
t denotes the quality-unadjusted robot price index computed from the JARA database.

The industrial robot price index in CGPI, denoted by PBOJ
t , is the quality-adjusted series.

Therefore,

PBOJ
t = ρt,

where the right-hand side is given by equation (4). Using equations (4) and (5), robot quality is

given by

at =
PJARA

t

PBOJ
t

. (6)

Robot quality can simply be computed by dividing the price index computed from the JARA

database, PJARA, by the price index of industrial robots by BOJ, PBOJ .

Using this quality-adjusted series of robot price, the key to measuring the quality of robots

is obtaining the quality-unadjusted price index for robots from the JARA dataset. Several issues

must be considered.

1. The distribution of robot prices is significantly skewed positively, as shown in Table 2

and Figure 1. While many are overly concentrated near median, some items have a small

probability of showing an enormous price or inflation rate. It is not evident whether such

extremes should be included or excluded in calculating a representative index of robot

quality improvement, which should have much to do with other major macroeconomic

variables; particularly employment, wage, and labor productivity.

2. There is the composition effect, as hinted by Table 3 and Figure 2. Even if there is no
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significant change in the price of robots by industry and application, the quality per robot

will change when composition changes. We do not know how accounting for such a

composition effect would make a difference in the impact of robot adoption on labor

markets and other macroeconomic variables.

3. We do not know how BOJ conducts the quality adjustment on which items. BOJ (2021)

indicates that CGPI continuously surveys product prices with a fixed quality. Conversely,

it also says that BOJ conducts sample price replacement to alter reporting companies,

surveyed products, and counterparties and terms of transactions, etc, that were set at the

start of surveys, in reaction to product turnover. It is not possible to determine a priori

whether a quality-unadjusted robot price index should be created only for products that

have existed for a relatively continuous period, or whether a robot price index should be

created to cover a wide range of products in the manner of a cost-of-living index.

Thus, the index cannot be narrowed down to a single price index. In this paper, several ag-

gregate price indices of robots are computed in the interest of obtaining a robust conclusion on

quality improvement in robots. To do so, we take three approaches, as previously described:

the classic index number approach; the stochastic approach in the spirits of Edgeworth and Jevons,

with which we aim to capture the common trend of price fluctuations among individual robots;

the structural approach, with which we aim to obtain the theoretical price index being explicitly

based on the cost minimization problem by firms.

As for the first point, the trimmed means in the index number approach and the price in-

dices based on the stochastic approach are computed to exclude extreme values. Regarding the

second point, the stochastic approach is applied to remove the composition effect, whereas the

simple means from the index number approach and the theoretical price index computed from

the structural approach include the composition effect. On the third point, the trimmed means

from the index number approach and the price indices based on the stochastic approach aim

to capture and gauge the underlying changes in product prices that are continuously available

with fixed quality.

In addition, to get closer to elementary aggregates and therefore the industrial robot price

index in CGPI by BOJ, we also calculate robot price indices based on simple averages without

using sales weights, and those using only items that are tracked for the entire period. Outlier

observations are excluded to render sample prices more homogeneous and representative.

3.1.2 Index number approach

When the elasticity of substitution, η, is unity, equation (5) collapses to the Cobb-Douglas ag-

gregator:

ρt =
n

∏
i=1

ρωi
i,t ,

14



where
n

∑
i=1

ωi = 1.

These two equations show that ρt is given by the geometric mean of ρi,t. Thus, the geometric

mean is considered a reasonable approximation of the theoretical price index in equation (5),

particularly when the elasticity of substitution is close to unity.

Even when the elasticity of substitution is not unity, the price indices computed by the index

number approach can be derived from the theoretical model. Suppose that the weights in the

theoretical price index are the same across i and unity. Then, equation (5) collapses to

ρt =

(
n

∑
i

ρ
1−η
i,t

) 1
1−η

,

or

exp (pt) = exp

[
1

1− η
ln

(
n

∑
i

exp ((1− η) pi,t)

)]
, (7)

where we define pt := ln (ρt) and pi,t := ln (ρi,t) . Taking the first order approximation of

equation (7) around pt−1 and pi,t−1 yields

πt =
n

∑
i

pi,t−1Ri,t−1

∑n
k pk,t−1Rk,t−1

πi,t,

where we use the definition of inflation rates: πt:=pt − pt−1. This equation expresses the defi-

nition of the inflation rate using the Laspeyres index.12

3.1.3 Stochastic approach

We next consider the problem of another economic agent. Robot producer i under the monop-

olistic competition maximizes the profit:

ρi,tRi,t − rtKi,t − wthi,t, (8)

subject to the production technology:

Ri,t = Ztzi,t (Ki,t)
α (hi,t)

1−α , (9)

and the Hicksian demand function in equation (3). rt, Kt, ht, Zt and zi,t denote the rental rate,

capital, labor, the common technology, and i-specific technology, respectively. We assume that

Zt has a positive trend, whereas zi,t is stationary. The parameter, α, denotes the capital share.

12Similarly, the first order approximation of equation (7) around pt and pi,t leads to the following:

πt =
n

∑
i

pi,tRi,t

∑n
k pk,tRk,t

πi,t,

which denotes the inflation rate using the Paasche index.
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From the first order necessary conditions, we have the condition for the optimal price set-

ting:

ρi,t =
η

η − 1
1

Ztzi,t

( rt

α

)α
(

wt

1− α

)1−α

.

Taking logs from both sides yields

pi,t

pi,t−1
=

common trend︷ ︸︸ ︷
ln

[
Zt−1

Zt

(
rt

rt−1

)α ( wt

wt−1

)1−α
]
+

idiosyncratic shock︷ ︸︸ ︷
ln
(

zi,t−1

zi,t

)
. (10)

Equation (10) offers a micro-foundation of the stochastic approach in the spirits of Edgeworth

and Jevons. We can estimate the common trend by the panel regression of inflation rates of in-

dividual robots on time fixed effects. As can be seen from equation (10), the stochastic approach

is not subject to the composition effect because it uses inflation rates for estimation.13

3.2 HSA – structural approach

The price index obtained in the index number approach is theoretically valid in only a restric-

tive situation. For example, we do not have any prior knowledge to justify the assumption

behind the CES aggregator that all robots are subject to the same elasticity of substitution. In

addition, JARA’s robot data is intermittent; the number of available robots is time-varying. The

standard CES aggregator cannot handle such product turnovers.14

Matsuyama and Ushchev (2017) propose a new and highly flexible homothetic preference.

With what they call the “homothetic demand system with a Single Aggregator” (hereafter,

HSA), the theoretical price index can be estimated in a homothetic demand system with a min-

imal assumption that the expenditure share is the function of the relative price. With HSA, each

factor can have its unique constant price elasticity, any number of essential and of inessential

factors can be considered, and factors can be gross substitutes but essential.

HSA assumes that expenditure share is simply the function of the relative price:

si,t = m
(

ρi,t

ρt

)
, (11)

where si,t denotes the nominal expenditure share of good i, and a function m : R+ → R+ maps

the relative price of good i denoted by ρi,t
ρt

to its expenditure share.15

13Notice that with the current data, the composition effect at the level of individual goods cannot be removed.
14When the time variation in the available set of robot varieties is allowed for, as in Feenstra (1994), the corre-

sponding price index becomes the product of the conventional Sato–Vartia (SV) index, following Sato (1976) and
Vartia (1976).

15Note that CES is a special case of HSA. With the CES aggregator, the expenditure share is given by the function
of the relative price such that

si,t = ωi

(
ρi,t
ρt

)1−η

.
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Summing up equation (11) over i yields

nt

∑
i=1

si,t =
nt

∑
i=1

m
(

ρi,t

ρt

)
= 1. (12)

Equation (12) defines our HSA price index. HSA price index is the theoretical price index, sim-

ilar to the cost-of-living index, and therefore incorporates the composition effect and extreme

values.

The challenge in obtaining the price index from equation (12) is that we have two unknown

components: the unknown function m(·) and a latent variable ρt. The details of our estimation

strategy will be discussed in Section 6.

4 Index number approach

When gauging quality improvement in robots, or calculating the aggregate price index of

robots, should we eliminate the impacts from a few but considerably expensive entries as ob-

served in Table 2 and Figure 1? A popular approach in calculating the trend inflation rate is the

trimmed mean approach following Bryan and Cecchetti (1994) and Shiratsuka (1997). To elim-

inate the influences from massive, but short-lived, fluctuations, we exclude a few percentiles’

inflation rates at the top and bottom when computing the price index or the trend inflation rate.

The rationale behind such a trimmed mean approach in the computation of trend inflation rates

and the aggregate price index is that those fluctuations have very little to do with macroeco-

nomic fundamentals. This is not a new idea, tracing back to the classic proposal known as the

stochastic approach advocated by Jevons (1884) and Edgeworth (1887).

The answer hinges on how other macroeconomic variables are affected by the installation

of robots, particularly whether the upper tail dynamics in the robot price distribution, as hinted

by Table 2 and Figure 1, are critical, for instance, to the equilibrium of the labor market. If new,

but only a few, high-end robots have significant impacts on firms’ hiring or firing decisions, all

data should be included when measuring the quality of robots. In contrast, if it is the adoption

of robots close to the standard price range, (i.e., close to median price), that is important for

determining other macro variables, the trimmed mean approach should be employed when

computing the aggregate robot price index.

Rather than focusing on one index, in this section, we calculate several aggregate price in-

dices using the traditional index number approach. In addition to averages using sales weights

and median, we calculate the trimmed mean inflation rate of robots and then the aggregate

price index by taking the integral of inflation rates over time. To get closer to elementary ag-

gregates or the industrial robot price index in CGPI by BOJ, we also calculate robot price indices

based on simple averages without using sales weights, and those using only items that were

continuous for the entire period. We exclude outlier observations to make sample prices more

homogeneous and representative.
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Figure 4: Robot prices from levels
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Note: All are in logarithmic scale and normalized to unity in 1990.

4.1 Mean and median

Figure 4 displays time series of mean and median of individual prices. All are in logarithmic

scale and normalized so that the 1990 level is unity. When computing means, sales are used

as the weight. The paths of both arithmetic and geometric means are plotted. The arithmetic

mean presents the most volatile path, because it is the most susceptible to extreme fluctuations

at tails. In this sense, the geometric mean and median also reflect the essence of the stochastic

approach, as the tail portion has a more minor impact.

Declining trends in all measures are observed throughout the sample. The pace of decline

was much faster in the 2010s compared to the previous two decades. These developments

are in sharp contrast to those of the quality-adjusted CGPI industrial robot price denoted by

“BOJ”, which, in contrast, showed a higher pace of decline until 2010, remaining flat after 2010.

Since data in Figure 4 is expressed in logarithmic scale, the vertical differences between values

obtained from JARA data and CGPI industrial robot price represent the quality of robots. Even

considering the simplest statistics, such as mean and median, it is clearly apparent that the pace

of improvement in robot quality has been declining since around 2010.

4.2 Trimmed mean

Figure 5 plots the robot price indices computed from inflation rates. “Laspeyres” and “un-

weighted” indicate whether Laspeyres weights (weighted by sales in the previous period)
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Figure 5: Robot prices from inflation rates
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or equal weights are used to calculate the average inflation rate, respectively.16 We call it

Laspeyres in Figure 5, but since the weights are changed every period, it is the Laspeyres chain

index. Unweighted indices are computed so that they are more comparable to elementary ag-

gregates and therefore the industrial robot price index in CGPI by BOJ.

The difference between these and the arithmetic mean in Figure 4, of course, reflects the

different weights, but also the fact that Figure 5 covers only those prices that are measured con-

tinuously for two periods. The sample size of Figure 5 is smaller than that of Figure 4 because

it is not possible to calculate the inflation rate of individual robots without the availability of

continuous data for two periods.

As measures that are less susceptible to tail movements, “Laspeyres 90%” and “unweighted

90%” represent robot price indices based on the trimmed mean inflation rates using Laspeyres

and equal weights, respectively. Only price changes that fall in the 10% around median, with

the top and bottom 45% symmetrically trimmed, are considered to capture the price changes

of robots that are representative. We also calculate mean of equal weights. These are more

congruent with the stochastic approach, particularly that of Edgeworth (1887); “less weight

should be attached to observations belonging to a class which are subject to a wider deviation

from the mean.”

We can observe a similar tendency found in Figure 4. The pace of decline in the robot

price index is higher in the 2010s, once again suggesting a slowdown in the pace of quality

16In using the sales weights, we calculate the inflation rate using only the Laspeyres index. For the reason and
background, please refer to Appendix A.
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Figure 6: Robot quality from index number approach
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improvement. In Figure 5, the pace of decline is slower for the price index calculated using the

trimmed mean. This suggests that, as implied in Figure 1, the prices of expensive robots have

declined more.

Lines in magenta that are labeled “consecutive” plot means of prices for which data is avail-

able during the entire period. Again, these are for more comparable measures to the elementary

price index. There is no significant difference between red and magenta lines. “unweighted

consecutive” is slightly higher in recent years than unweighted, again reflecting the lower de-

mand for high-end products implied in Figure 1.

4.2.1 Robot quality

Figure 6 presents the quality of robots computed from the index number approach. Robot

quality is expressed as the robot price calculated from the JARA dataset divided by the CGPI

industrial robot price index, as in Equation (6). Numbers in Figures 4 and 5 are expressed in

logarithmic scale. In both charts, the vertical difference between each robot price represents

robot quality.

Regardless of the methods examined in this section (i.e., whether the composition effect is

considered, or whether only price trends of representative products are the focus), the results

show that the quality per robot has been declining since around 2010. The quality calculated

from median and the geometric mean presents a stronger downward trend in the 2010s than in

other periods. This implies that cheaper robots have been selling better since around 2010, and
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as a result, the average quality per robot is shown to be in decline.17

5 Stochastic approach

Table 2 and Figures 1 and 5 suggest that the shape of the robot price index can vary depending

on whether high-end products are included in the calculation. Also, Table 3 and Figures 2 and

5 imply that the composition effect is not negligible. To obtain robust results for robot quality,

calculating the robot price index excluding the composition effect is also a sound approach. As

shown in equation 10, the stochastic approach is not affected by the composition effect because

it estimates inflation rates on the common factor.

In addition, since JARA data collects information from the supply side, it is unclear whether

a price index can be estimated assuming that the demand side is represented by a pseudo-single

economic agent as shown in Section 3. With this concern in mind, the current section sets the

concept of the demand system aside for now and calculates an alternative price index without

relying on the sales share information.18

In this section, we estimate a common trend among prices as a core measure of robot prices.

We deliberately aim to measure the representative robot price index that is less susceptible

to the outliers and the composition effect as well as structural assumptions. This approach

is in line with the core inflation concept of Bryan and Cecchetti (1994) and the stochastic ap-

proach, which dates back to the classic proposal of Edgeworth and Jevons and is revived by

Selvanathan and Prasada (1994).

5.1 Framework

Consider that the data generating process of logarithmic changes of individual robot prices,

∆pi,t, consists of a common trend component, gt, and a zero-mean i.i.d. random component,

εi,t:

∆pi,t = gt + εi,t, (13)

where E(εi,t) = 0 and E(ε2
i,t) = σ2. If we are to make a structural interpretation, equation (13)

corresponds to equation (10). We estimate equation (13) using a following econometric model

with a panel of JARA’s individual robot prices:

∆pi,t =

common trend︷ ︸︸ ︷
T

∑
s=1

βsDs,t +

Individual fixed effect︷︸︸︷
ηi + εi,t, (14)

17Note also that if Paasche and Fisher weights are used, as implied in Figure 9 in Appendix A, quality decline in
the 2010s becomes much more significant. Quality measures based on Paasche and Fisher weights exaggerate the
declining quality of robots rather than weakening them.

18Section 3.1.3 shows that the stochastic approach can be derived from the demand system. However, the stochas-
tic approach itself is a method that breaks down changes in individual prices into common and individual factors
without assuming some structure a priori. For this reason, it can be viewed as a robust time-series analysis method
that does not rely on theoretical assumptions.
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where βs and Ds,t are parameters of time fixed effects and a binary dummy of time s at time t.

When estimating a variant of equation (14), Selvanathan and Prasada (1994) apply the weighted

least square using sales share as a weight by postulating that the variance of price i’s random

component is inversely proportional to its sales share. However, Diewert (2010) criticizes this

assumption because the variance assumption made in Selvanathan and Prasada (1994) is not

consistent with the observed behavior of prices. Thus, the estimation in this section does not

rely on the sales-share-weighted least square method. In this respect, price indices computed

by the stochastic approach are closer to the elementary price index and therefore more compa-

rable to the industrial robot price index in CGPI.

We estimate equation (14) using an unbalanced panel of JARA’s individual robot prices.

The sample period ranges from 1991 to 2018.

5.2 Empirical results

The upper panel of Figure 7 presents robot price indices computed using the stochastic ap-

proach. The blue solid line is the common trend in robot prices estimated using samples avail-

Figure 7: Price and quality: Stochastic approach
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Note: All are in logarithmic scale. Prices in the upper panel and quality in the lower panel are normalized to unity
and zero, respectively, in 1990. “estimated trend: two-period consecutive” and “estimated trend: whole-period con-
secutive” are the estimated trends using samples available for two consecutive periods and using samples available
for the entire period, respectively. The 90% confidence intervals – dotted lines – are based on the robust standard
error.

able for two consecutive periods. The blue dotted lines represent the 95% confidence interval.

The narrowly estimated confidence interval suggests that the parameters are sharply estimated.

The red solid line represents the common trend estimated using samples that are continuously
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available for the full period. For reference, BOJ’s industrial robot price index is plotted in the

black solid line.

The estimation result exhibits three critical points. First, the common movements in robot

prices indicate a declining trend over the sample period. Second, the declining trend is more

evident after around 2010. These findings are similar to those in the previous section. Inter-

estingly, the different approaches – the trimmed mean and the stochastic approach – elicit the

same conclusion. Third, the estimated trend using samples continuously available for the en-

tire period is more stable than the estimated trend using samples available for two consecutive

periods. The difference between these two series reflects the effect of product turnovers at the

industry and application level; the former allows some samples to entry and exit, whereas the

latter does not. Thus, it can be deduced that price declines are more pronounced for recently

used robots. These are likely to be the high-end products, as implied in Table 3 and Figures 2

and 5.

The lower panel of Figure 7 presents the quality measure of robots, which is the log dif-

ference between the estimated common trend in robot prices and BOJ’s quality-adjusted robot

price index. The figure suggests that the quality per robot continued to improve until around

2000, but it slowed down in the 2000s, and started to decline in the 2010s. The representative

robot index, which is less susceptible to the outliers and free from the composition effect, is

significantly different from the industrial robot index by BOJ. This indicates that the trend in

the lower panel of Figure 7 is significantly different from zero in the 2000s.

In summary, exercises in this section confirm the findings in the previous section; quality

improvement progress in robot industries began declining in the 2010s. We can conclude that

the declining trend in robot quality in the 2010s is not specific to particular types of robots.

In addition, it is unlikely to be a matter of the methodological issues in construction of the

conventional robot price index.

The stochastic approach used in this section still has some limitations, although they are

deliberately ignored in this section to attain the representative index.19 For example, this ap-

proach estimates common movements in prices, considering a relative price change as noise,

though it may contain substantial information value. The following section attempts to mea-

sure a price index under a flexible demand system to utilize the information contained in rela-

tive price movements.

6 Structural approach

This section aims to compute the theoretical robot price index applying the structural approach.

We estimate equation (11), which is based on a very general class of homothetic aggregator,

HSA, proposed by Matsuyama and Ushchev (2017). We compute the HSA price index in refer-

ence to Kasahara and Sugita (2020), assuming that every robot producer engages in monopo-

listic competition taking the price index as given.

19General criticisms to the stochastic approach to index number are also found in Diewert (2010).
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6.1 Framework

We assume that the share is additively separable into two components:

ln (si,t) = m
(

ρi,t

ρt

)
+ x′i,tβ,

where xi,t is a vector of controls which includes individual fixed effects by industry and appli-

cation, and β is a vector of regression coefficients.20 We proceed in two steps.

In the first step, we approximate the unknown function m(·) with a polynomial. This gives

us the following nonparametric model:

ln (si,t) = m̃k

(
ρi,t

ρt
; δk
)
+ x′i,tβ + ẽk,i,t, (15)

where k denotes the order of polynomial, and ek is the approximation error and hence depends

on k, and δk are regression coefficients. Under the power series approximation, equation (15)

can be transformed into

ln (si,t) = m̃k(
ρi,t

ρt
; δk) + x′i,tβ + ẽk,i,t

=
k

∑
l=1

δk
l pl

i,t +
k

∑
l=1

l

∑
j=1

(
l

j

)
δk

l︸ ︷︷ ︸
≡δk

l,j

pl−j
i,t (−pt)

j + x′i,tβ + ẽk,i,t. (16)

Since pt is a time-varying unobserved variable, estimation of equation (16) is infeasible. How-

ever, time dummies can be used to absorb the effect of pt. Rather than equation (16), we esti-

mate the equation below:

ln (si,t) = m̂k(ρi,t, τt; δk) + x′i,tβ + êk,i,t

=
k

∑
l=1

δk
l pl−1

i,t +
k

∑
l=1

T

∑
s=t0+1

δk
l,sτs pl−1

i,t +
T

∑
s=t0+1

δk
τ,sτs + x′i,tβ + êk,i,t, (17)

Notice that from equation (17), we can identify β and δk
l in equation (16).

In the second step, we use the identity:

nt

∑
i=1

si,t = 1 , for all t,

to solve for the price index pt. By using the parameters estimated in the first step, we have

s̄i,t = exp

(
k

∑
l=1

δ̂k
l

(
pi,t

pt

)l−1

+ x′i,t β̂

)
,

20Kasahara and Sugita (2020) show that HSA formalized in this manner can be derived from a unique preference
by applying proposition 1 in Matsuyama and Ushchev (2017).
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and we search for pt by the nonlinear least square method:

p̂t = argmin
pt

[
1−

nt

∑
i=1

exp

(
k

∑
l=1

δ̂k
l

(
ln

pi,t

pt

)l−1

+ x′i,t β̂

)]2

, for all t.

6.2 Empirical results

In Table 4, we present the regression results from this nonparametric model. The improvement

in fitting by increasing the order of the polynomial is marginal, at least, in the range of k = 2 to

k = 4. All regressions include fixed effects by industry and application, and heteroskedasticity

robust standard errors are reported.

Table 4: Polynomial regression

(1) (2) (3) (4)
Variables ln (si,t) ln (si,t) ln (si,t) ln (si,t)

pi,t -0.699*** -1.843*** -2.534*** -3.551***
(0.0843) (0.243) (0.369) (0.547)

(pi,t)
2 0.237*** 0.745*** 1.275*** 2.573***

(0.0170) (0.104) (0.257) (0.670)
(pi,t)

3 -0.0641*** -0.216*** -0.878**
(0.0127) (0.0709) (0.344)

(pi,t)
4 0.0142** 0.158**

(0.00663) (0.0755)
(pi,t)

5 -0.0111*
(0.00584)

Constant -7.475*** -6.768*** -6.505*** -6.299***
(0.105) (0.171) (0.177) (0.174)

Observations 8,266 8,266 8,266 8,266
R-squared 0.757 0.761 0.763 0.765

Note: Robust standard errors are in parentheses. Fixed effect is considered at industry-purpose
level. *** p<0.01, ** p<0.05, and * p<0.1.

The estimates of the price indices using the third and the fourth order power series approx-

imation are shown in the upper panel of Figure 8.21

21We do not show the result from the second order approximation, as the difference between the second and the
third order approximation is marginal; however, there is a huge increase in 2010 in the second order approximation.
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Figure 8: Price and quality: HSA
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Note: All are in logarithmic scale. Prices in the upper panel and quality in the lower panel are normalized to unity
and zero, respectively, in 1990. “3rd” and “4th” are the estimated price indices using the third and fourth order
approximation, repectively. The 90% confidence intervals – dotted lines – are based on the robust standard error.

All series are normalized so that p1990 = 1. Overall pictures are similar to those in Figures

4, 5, and 7. The aggregate robot price index demonstrates an upward trend until around 2010.

The trend becomes flattened or somewhat declining after that.

The lower panel in Figure 8 illustrates the evolution of the quality per robot in both the

third and the fourth order approximation. Results obtained here are congruent with our earlier

findings in Figures 6 and 13, confirming that growth in robot quality slowed down after around

2010.

7 Discussion: has quality improvement slowed down?

Figures 6, 7, and 8 show that quality improvement in robots slowed down after around 2010.

Table 5 summarizes the growth rate of the quality of robots illustrated in Figures 6, 7, and 8. The

results regarding the quality of robots in Sections 4, 5, and 6 are divided into narrow and broad

measures. The former is based on representative robot price indices that are less susceptible to

outliers and the composition effect, in the spirit of the classic stochastic approach by Edgeworth

and Jevons. Conversely, the latter views prices as a theoretical cost-of-living type index. Thus,

the broad measures include the effects from both outliers and the composition effect when

computing the quality of robots.

In all items examined in Sections 4, 5, and 6, the quality of robots improved in the 2000s

compared to that in the 1990s. The growth rates in both narrow and broad measures are around
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Table 5: Long-run trend in robot quality

narrow measures
I-1 I-2 I-3 I-4 S-1 S-2

growth rate 2000-2009 1.09 1.40 0.63 0.99 1.48 1.55
2010-2018 -4.05 -0.80 -1.33 -1.62 -5.58 -3.83

d(growth rate) -5.14 -2.20 -1.33 -1.62 -5.58 -3.83

broad measures
I-5 I-6 I-7 I-8 H-1 H-2

growth rate 2000-2009 1.92 0.08 1.01 1.07 0.78 1.15
2010-2018 -2.47 -2.28 -2.21 -1.54 1.02 0.28

d(growth rate) -4.39 -2.37 -3.22 -2.61 0.24 -0.87

Note: I-1 to I-8 correspond to quality measures in the index number approach: I-1 median; I-2 Laspeyres 90%; I-3
unweighted 90%; I-4 unweighted whole-period consecutive 90%; I-5 geometric mean; I-6 Laspeyres; I-7
unweighted; I-8 unweighted whole-periods consecutive. S-1 and S-2 correspond to those in the stochastic
approach: S-1 for two-period consecutive S-2 whole-period consecutive. H-1 and H-2 correspond to those in the
structural approach: H-1 3rd order polynomial; H-2 4th order polynomial.

1% per annum. In contrast, growth rates in the quality per robot in the 2010s compared to that

in the 2000s are mostly negative. They are all negative, and the average is -2.87% per annum,

in narrow measures. Even in broader measures, they are negative, except for those computed

using the structural approach. The average growth rate in the 2010s is -1.20% per annum.

Numbers in d(growth rate) show the differences in growth rates between the 2000s and

the 2010s. They take large negative values except for one case, the structural approach with

the third order approximation. The average differences are -3.28 and -2.20 percentage points

per annum in narrow and broad measures, respectively. Depending on the method to calculate

the quality-unadjusted robot price index, the level and the growth rate of robot quality can

differ. In particular, the structural approach using HSA shows relatively lower (higher) growth

rates in robot quality in the 2000s (2010s) compared to the index number and the stochastic

approaches. They all, however, show a significant slowdown in quality improvement in robots

in the last decade.

Figures 6, 7, and 8, and Table 5 show the decline in the level of the quality per robot. It may

be difficult to imagine that quality is declining in terms of level. As can be seen in Figures 4, 5,

7, and 8, the price per robot, whether narrowly or broadly defined, has been on a downward

trend in the 2010s. This means that the quality of each robot is declining; thus, less expensive

robots of lower quality are spreading.

This has some implications for the macroeconomic impact of robots, but it does not neces-

sarily mean that the spread of cheaper robots will weaken their impact on the labor market.

The conclusions in this paper suggest that robots may be as obsolete as conventional machines

have ever been, but this study does not consider any technological advances on the software

side that would expand the use and efficiency of robots. The benefits of the combination of ver-
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satility and the use of software to control robots can be seen as an improvement in the service

flow of intangible capital rather than a traditional intermediate input, and understanding this

from data and models is a major challenge for future research.

Detailed data for understanding the causes behind the decline in quality improvement in

robots is not yet available. Our results hinting at the decline in the pace of robot quality seems

to be congruent with recent observations in the slowdown in the pace of relative price declines

of capital goods over consumer goods. Fernald (2014), Byrne and Pinto (2015), and Takahashi

and Takayama (2021) report the dramatic slowdown in the pace of relative price declines of

capital goods. This implies the slowdown of the investment-specific technological progress,

which may include robot quality. In addition, in a related study, Bloom et al. (2020) present

evidence that “research effort is rising substantially while research productivity is declining

sharply.” This ideas-are-getting-harder-to-find hypothesis advocated by Bloom et al. (2020) may

also be applicable to robot production.

8 Conclusion

This paper investigates the extent to which the quality of robots has improved in Japan between

1990 and 2019, using novel datasets from JARA and BOJ that contain robot price information.

We first show that the quality per robot increased or leveled off in the 2000s and decreased in

the 2010s. We then report a drastic decline in improvement in robot quality in the last decade.

The difference in the growth rates of robots’ quality between the 2000s and the 2010s take

substantial negative values, mostly around -3 percentage points per annum.

Naturally, there are several caveats in our results. First, the quality adjustment is solely

dependent on BOJ’s CGPI. Since the details of the kind of industrial robots that are covered

are not available, caution is necessary in interpreting the results. According BOJ (2020), of the

quality-adjusted items in CGPI, 33% are quality-adjusted using the production cost method. On

actual data from 2008, BOJ (2009) shows that for General purpose machinery – a large category

that includes industrial robots – 48% is quality-adjusted using the production cost method.

Since this method assumes that quality change corresponds to the required production cost

change between old and new product obtained from reporting companies, it is possible that

quality has declined due to lowered prices of parts. Still, it seems unlikely that the markups

of Japanese manufacturers increased in the 2010s. So, we believe that the quality of each robot

decreased in some way. In addition, the coverage by BOJ is likely to differ from that by JARA.

Micro data is needed to obtain a consistent quality adjustment measure with JARA data.

In this respect, the “mismeasurement hypothesis” coined by Syverson (2017) may apply to

the observed slowdown in the quality of robots. Concerning the slowdown in labor productiv-

ity in the US, Syverson (2017) suggests that “the reasonable prima facie case for the mismea-

surement hypothesis faces real hurdles when confronted with data.” However, the quality of

robots may no longer be determined by the robot itself, but by the software that expands the

use of the robot. The latter seems to hardly be evaluated in currently available data.
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Second, our analysis is based only on Japanese data. A decline in the robot price indices

in the 2010s may reflect the Japanese robot industry’s global competitiveness, resulting in a

decline in the markups. For a long time, Japan was the largest producer of robots in the world.

According to “World Robotics 2020” published by the International Federation of Robotics,

China is the world’s largest producer of robots, producing about three times as many robots

as Japan. Singapore and South Korea also boast the highest robot density: the number of

robots installed per worker, with numbers more than double that of Japan. Still, Japan remains

the second-largest producer of robots and the third in robot density. Thus, something that is

happening in Japan must not be orthogonal to the global market developments. For a proper

analysis of the Japanese robot industry’s relative competitiveness, price information of robots

produced in foreign countries is needed.

Third, a deregulation of the safety standards for collaborative robots was implemented in

2013. Since collaborative robots are compact and cheaper, an increase in collaborative robots

might place downward pressure on robot prices.22 In the past, industrial robots with a motor

output of more than 80W had to be separated from human workspace by a fence or enclosure.

The Ministry of Health, Labor and Welfare issued a notice (Kihatsu 1224 No. 2) on December

24, 2013, to enforce the Ministerial Ordinance Partially Amending the Ordinance on Industrial

Safety and Health, and ISO 10218-1/-2:2011 stipulates that industrial robots designed, man-

ufactured, and installed under the conditions of use shall not be required to install fences or

enclosures if they are correctly used. However, no significant structural break in the trends

in robot prices around 2013 is evident. This may reflect the fact that the market for collabo-

rative robots is still not large, making up only 4.8% of all industrial robots according to the

International Federation of Robotics.

Careful analyses of each of these using new data and understanding the causes behind the

slowdown of robot quality are left for our future studies.

22Even if this is true, quality per robot declines, which may impact macroeconomic variables; thus, we are ussure
whether this deregulation is an issue for gauging robot quality.
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Appendix

A Why Laspeyres?

When computing price indices from inflation rates in Figure 5, we only report those using

Laspeyres or equal weights. Figure 9 compares robot price indices calculated from inflation

rates using Laspeyres, Paasche, and Fisher weights.23 Since the robot price index calculated

using Paasche and Fisher weights differ significantly from the trends shown in Figure 1 and 4,

we decided to report those using Laspeyres weights.

Figure 9: Laspeyres, Paasche and Fisher indices
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Note: All are in logarithmic scale and normalized to unity in 1990.

The divergence between the robot price indices calculated from the inflation rates using

Laspeyres and Paasche weights has been widening over time. Bortkiewicz (1923) shows that

when the covariance between price and quantity is negative (i.e., when there is a relationship

between high price and low quantity), the Laspeyres-Paasche gap is negative (i.e., the Paasche

Price Index is lower than the Laspeyres Price Index). For robots, the prices calculated using

Paasche weights become higher. This implies that the covariance between price and quantity

is positive, with higher-priced products having higher sales volume.

One potential source of this divergence is the demand switching behavior of Redding and

Weinstein (2020) arguing that preference shifts among goods create a bias in the cost-of-living

index. This bias is especially serious for the Paasche or Fisher index because the rise (fall)

23Since weights are changed every period in all measures, the Fisher index here is equivalent to the Törnqvist
index, which is one of the superlative indices.
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of relative prices caused by preference shocks incur the rise (fall) of current sales share. In

contrast, the bias is less severe for the the Laspeyres index that does not rely on the current

sales share information in the aggregation weight. To avoid the risk of this demand switching

bias, we only adopt the Laspeyres index in the main text.24

24Note that if the quality of robots is computed using Paasche or Fisher indices, the decline in robot quality in the
2010s becomes more significant than that computed using the Laspeyres index shown in Figure 6.
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