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Abstract 

I examine the epidemiological and economic effects of two types of lockdowns during the COVID-19 

pandemic in Japan: a voluntary lockdown by which people voluntarily stay at home in response to the risk 

of infection, and a request-based lockdown by which the government requests that people stay at home 

without legal enforcements. I use empirical evidence on these two types of lockdowns to extend an 

epidemiological and economic model: the SIR-Macro model. I calibrate this extended model to Japanese 

data and conduct some numerical experiments. The results show that the interaction of these two types of 

lockdowns plays an important role in the low share of infectious individuals and the large decrease in 

consumption in Japan. Moreover, the welfare gains of a request-based lockdown greatly differ across 

individuals and can be negative for some when a voluntary lockdown exists. 
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Epidemic and Economic Consequences of Voluntary and Request-based Lockdowns in Japan 

 

1. Introduction 

The spread of Covid-19 and non-pharmaceutical government interventions (NPIs) to 

contain the spread seriously damaged many economies in 2020. Panel A of Figure 1 plots the rate 

of change in real GDP in the third quarter of 2020 from the previous year against the total number 

of deaths per million of population as of September 30.3 I use the latter as a proxy for the spread 

of the virus. Panel B of Figure 1 depicts the same rate of change in real GDP against the stringency 

index averaged from January 1 to September 30. 4  This index represents the strictness of 

lockdown-style policies that primarily restrict people’s behavior. They show that as the spread of 

the virus and the lockdown are severer, GDP tends to fall more. They further show that there are 

large variations in the degree of the spread of the virus, the severity of the lockdown, and the 

decrease in GDP. In the case of Japan, the decreases in real GDP were relatively large (-5.7%) 

while the death rate was low (12.453), and the lockdown policy was loose (30.8).  

To understand such epidemiological and economic dynamics in Japan, I focus on two 

types of lockdowns. First, the spread of the virus made people cautious about going out. Figure 2 

shows the new cases and the stay-at-home ratios for four prefectures in Japan. Here, the stay-at-

home ratio is defined as the ratio of people who stay within 500 square meters of home (Mizuno, 

2020). The ratio shows that as the number of new cases increases, the stay-at-home ratio increases 

and that this increase is especially prominent in the first wave of Covid-19 from March to May 

                                                      
3  The rate of change in real GDP is from the International Financial Statistics published by the 
International Monetary Fund. I add the value of Japan from the website of Cabinet Office of Japan. 
Total deaths per million is from Roser et al., (2020). I have also confirmed a negative correlation 
between the rate of change in GDP and total cases per million and a large variation in total cases per 
million across countries. 
4 The stringency index is from Hale et al. (2020b). 
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2020. Further, the increase is evident to some extent in the second and third waves from June to 

September and October to December 2020, respectively. I define a voluntary lockdown as the 

response of the stay-at-home ratio to an increase in the risk of infection hereafter. The presence 

of a voluntary lockdown can restrain the spread of new infections as the contacts between 

susceptible and infectious individuals are less frequent than in its absence. On the other hand, a 

voluntary lockdown may have adverse effects on economic activities beyond the government’s 

behavioral restrictions, especially consumption of goods and services that need face-to-face 

contact to take place.  

The second type of lockdown I focus on is the request-based lockdown that the Japanese 

government adopted. Although the Japanese government declared the state of emergency from 

April to May in 2020 in 2020, it only requested people to stay at home without legal enforcements 

or administrative penalties during the state of emergency.5  Thus, the government let people 

choose whether to go out or stay at home. Such a request-based lockdown can have heterogeneous 

effects on individuals’ choice of whether to stay at home and thereby on their welfare.  

Voluntary and request-based lockdowns potentially affect infections and the economy 

during the pandemic. Moreover, they are not unique to Japan but observed in other countries.6 

Nonetheless, their quantitative effects have been largely unexplored by the literature as I review 

in Section 2. To void this gap, I try to answer the following questions. First, do people really 

respond to the risk of infection in deciding whether to stay at home or not, and, if so, to what 

                                                      
5 According to Hale et al. (2020b), the index for stay-at-home requirements in Japan has been ranked 
1 (recommend not leaving house) for most of the period during which the data are available (from 
April 7, 2020 to February 1, 2021). The Japanese government declared the state of emergency again 
in January 2021 and it plans to continue the state until March 2021. 
6 For evidence of voluntary lockdowns, refer to Farboodi, Jarosch, and Shimmer (2020) for the US 
and Kruger, Uhlig and Xie (2020) for Sweden, among others. As for evidence of request-based 
lockdown, I use the index for stay-at-home requirements developed by Hale et al. (2020a) as a proxy 
for request-based lockdowns to find that the index takes the same value as that of Japan (1: recommend 
not leaving home) for many countries (e.g., 120 countries on December 31, 2020).   
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extent? Second, to what extent do voluntary and request-based lockdowns, solely or interactively, 

contain infections and restrain economic activities? Third, how does a request-based lockdown 

affect people’s welfare in the presence of a voluntary lockdown?   

To answer these questions, I first examine the existence and degree of a voluntary 

lockdown in Japan using a daily prefecture-level data. Then, I extend an epidemiological and 

macroeconomic model: the SIR-Macro model that is developed by Eichenbaum, Rebelo, and 

Trabandt (2020) to incorporate voluntary and request- based lockdowns. I calibrate it based on 

Japanese data and conduct some numerical experiments to examine the effects of both types of 

lockdowns.  

Our results can be summarized as follows: First, voluntary lockdowns exist in all the three 

waves in Japan although their degrees have been declining. Second, the interaction of these two 

types of lockdowns play an important role in the low share of infectious individuals and the large 

decrease in consumption in Japan. Third, the welfare gains of a request-based lockdown greatly 

differ across susceptible individuals and can be negative for some in the presence of a volunteer 

lockdown.  

There is rapidly growing literature on the impacts of Covid-19 on the macroeconomy as 

I briefly review in Section 2. Some of them focus on the substitution from high- to low-risk 

consumption goods as this present paper does (Farboodi, Jarosch, and Shimmer, 2020; Kaplan, 

Moll, and Violante, 2020; Kruger, Uhlig and Xie, 2020). However, as far as I know, none of these 

preceding studies focuses on the extensive margin of whether to go out to purchase the goods that 

involves the risk of infection or not. Incorporating this extensive margin has two benefits: First, I 

can use the actual high-frequency (i.e., daily) data about the proportion of individuals who go out 

to set the model’s parameters. Moreover, it turns out that a voluntary lockdown can have a large 

negative effect on the share of infectious individuals with plausible parameters and thus helps to 
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account for the low share observed in Japan.  

I further contribute to the literature by incorporating a request-based lockdown and 

examining its epidemiological and economic effects as well as its welfare implications. Request-

based lockdowns are different from uniform lockdowns (examined by Eichenbaum, Rebelo, and 

Trabandt, 2020, among others) in that some people do not stay at home under the former. Request-

based lockdowns are also different from targeted lockdowns (e.g., Acemoglu et al., 2020, among 

others) in that the government does not intentionally decide who to stay at home under the former 

while the government intentionally does under the latter. Consequently, request-based lockdowns 

can have unique distributional implications on welfare as well as epidemiological and economic 

effects. I find that the welfare gains of a request-based lockdown greatly differ across susceptible 

individuals and that they can be negative for those who stops going out due to the request.      

The rest of this paper proceeds as follows: In Section 2, I briefly review the related 

literature. In Section 3, I present reduced-form evidence on the presence of a voluntary lockdown 

from prefecture-level daily data and its effects on the infection and consumption. In Section 4, I 

present the SIR-Macro model that incorporates voluntary and request-based lockdowns. In 

Section 5, I set the parameters. Section 6 presents numerical experiments to show the effects of 

voluntary and request-based lockdowns. Section 7 concludes. 

 

2. Related Literature 

Following the seminal work by Eichenbaum, Rebelo, and Trabandt (2020a), there is 

growing literature on the effects of Covid-19 on economic activities. Among them, Farboodi, 

Jarosch, and Shimmer (2020), Kruger, Uhlig and Xie (2020), Kaplan, Moll, and Violante (2020), 

and Aum, Lee and Shin (2020) are most closely related to the present study in that they consider 

people’s responses to the risk of infection. Eichenbaum, Rebelo, and Trabandt (2020a) 
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incorporate an endogenous reduction in consumption and work in response to the spread of Covid-

19 in the canonical SIR model and show that such behavior decreases the share of infectious 

individuals while exacerbating the size of the recession caused by Covid-19.7 Farboodi, Jarosch, 

and Shimmer (2020) analyze the response of social activities to the risk of infection and its effects 

on the transmission of the virus. Kruger, Uhlig and Xie (2020) consider heterogeneous sectors 

that differ in the risk of infection. Estimating the model based on Swedish health data, they show 

that endogenous sectoral reallocation avoids more than two-thirds of the decline in aggregate 

output and consumption. Kaplan, Moll, and Violante (2020) integrate an expanded SIR model 

into a macroeconomic model with income and wealth inequality. They also incorporate an 

endogenous reduction in consumption and work that involve the risk of infection in response to 

an overall increase in the risk. While Kaplan, Moll, and Violante (2020) and Kruger, Uhlig and 

Xie (2020) analyze the sectoral shift from high- to low-risk sectors with the overall infection risk 

as this present paper does, they consider the intensive margin of substitution of how much each 

type of goods to consume. In contrast, this study considers the extensive margin: whether to go 

out to purchase the goods with a risk of infection (“social goods”) or not. Aum, Lee and Shin 

(2020) build a model in which people choose occupations and whether to commute for work or 

to work from home. Working from home entails lower earnings due to lower productivity but 

curtails the risk of infection. They show that more people choose to work from home as infections 

rise to a high level. While they focus on the extensive margin of work, I focus on that of 

consumption. This is because the latter has been largely unexplored in the literature although both 

can play a role in the epidemiological and economic dynamics. In fact, while Brinca, Duarte, and 

                                                      
7 Specifically, they show that the SIR-Macro predicts the share of the initial population that is infected 
peaks at 5.3% while it is 6.8% in the SIR model. They further show that average aggregate 
consumption in the first year of the epidemic falls by 4.7% in the SIR-Macro, a fall seven times larger 
than in the SIR model.   
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Faria e Castro (2020) show that two-thirds of the drop in the growth rate of hours worked in April 

2020 in the US are attributable to labor supply shocks, Watanabe (2020) provide evidence that the 

economic deterioration due to COVID-19 was largely driven by an adverse aggregate demand 

shock to face-to-face service industries in March 2020 in Japan.  

This study is also related to the literature on the effects of various lockdown policies 

(Eichenbaum, Rebelo, and Trabandt, 2020a; Farboodi, Jarosch, and Shimmer, 2020; Kruger, 

Uhlig and Xie ,2020; Kaplan, Moll, and Violante, 2020; Rachel, 2020; Acemoglu et al., 2020; 

Favero, Ichino, and Rustichini, 2020; Glover et al., 2020, among others). These studies show that 

lockdowns improve welfare because they curb the externalities associated with the consumption 

and/or labor that involves the risk of infection. Some studies further reveal that risk-based targeted 

lockdown policies outperform uniform ones (Acemoglu et al., 2020; Favero, Ichino, and 

Rustichini, 2020; Glover et al., 2020). However, most of these studies assume that the government 

can coerce or induce all or targeted people to stay at home (or firms to close). In the case of a 

request-based lockdown I consider, the government does not intentionally choose who follows 

the request, but let people choose. The effects of such untargeted and partial characteristics of a 

request-based lockdown have been largely unexplored by preceding studies although many 

countries adopt similar policies. 8  I examine the welfare implications as well as the 

epidemiological and economic effects of a request-based lockdown.     

Empirical studies on the presence of a voluntary lockdown are also related to this present 

study. Watanabe and Yabu (2020) study the determinants of the stay-at-home ratio in Japan. They 

find that while the government’s requests are responsible for about one quarter of the decrease in 

outings in Tokyo, the remaining three quarters are the result of people’s voluntary response based 

on their awareness of the seriousness of the pandemic. Shoji et al. (2020) provide survey-based 

                                                      
8 See footnote 5. 
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evidence that the increase in risk is associated with the likelihood of social-distancing behavior 

including infrequent dining outside. Evidence on the response of consumption to the risk of 

infection is not limited to Japan. Farboodi, Jarosch, and Shimmer (2020) show that individuals in 

the US substantially reduced their social activity before state and local governments imposed the 

stay-at-home restrictions. Kruger, Uhlig and Xie (2020) provide evidence of reallocation of 

consumption from restaurants (a typical example of goods that involves the risk of infection) 

towards food at home in Sweden.  

To focus on the role of voluntary and request-based lockdowns, I abstract from various 

other important aspects concerning the relationship between the spread of the Covid-19 and 

economic activities that preceding studies focus on. These include the risk of infection at a 

workplace and productivity gap between working at a workplace and from home (e.g., Aum, Lee 

and Shin, 2020; Jones, Philippon, and Venkateswaren, 2020), uncertainty about individual health 

status or aggregate state of infection (e.g., Eichenbaum, Rebelo, and Trabandt, 2020b; Hamano, 

Katayama, and Kubota, 2020), precautionary savings against the risk of infection (e.g., Kaplan, 

Moll, and Vilante, 2020), and heterogeneous risk of infection (.e.g., Acemoglu et al., 2020; Favero, 

Ichino, and Rustichini, 2020; Glover et al., 2020). These studies are all complementary to this 

present paper in that they consider various factors other than voluntary and request-based 

lockdowns.  

 

3. Reduced-form Evidence 

3.1 Data 

For epidemiological information, I use prefecture-level daily data compiled by Toyo 

Keizai Online (2020) that contain the numbers of infectious and recovered people. To derive the 

ratio of these people to the total prefectural population, I use the prefecture-level population as of 
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October 1, 2019, from the Population Estimates published by the Bureau of Statistics, Japan. 

Following a standard SIR model, I use these data to classify people in prefecture 𝑖𝑖 at 

date 𝑡𝑡 into three categories that depend on their health status: susceptible (𝑆𝑆), infectious (𝐼𝐼), and 

recovered (𝑅𝑅). Then, I denote the ratio of the number of each category to the total population of 

the prefecture by 𝑆𝑆𝑖𝑖𝑖𝑖, 𝐼𝐼𝑖𝑖𝑖𝑖, and 𝑅𝑅𝑖𝑖𝑖𝑖, respectively; so that 𝑆𝑆𝑖𝑖𝑖𝑖 + 𝐼𝐼𝑖𝑖𝑖𝑖 + 𝑅𝑅𝑖𝑖𝑖𝑖 = 1. 

Using the number of infectious people, I estimate the effective reproduction number 

(𝐸𝐸𝑅𝑅𝑖𝑖𝑖𝑖) for each prefecture by following Cori et al. (2013). I assume that the mean and standard 

deviation of the serial interval is 6.3 and 4.2 days, respectively, that follows Bai et al. (2020) and 

Yamanaka (2020). To exclude outliers, I take the following two steps: First, I drop 𝐸𝐸𝑅𝑅𝑖𝑖𝑖𝑖 if 𝐼𝐼𝑖𝑖𝑖𝑖 =

0 for 𝑠𝑠 = −14, …− 8, because in such cases 𝐸𝐸𝑅𝑅𝑖𝑖𝑖𝑖 has extraordinarily large values (typically, 

more than 10). Then, I drop 𝐸𝐸𝑅𝑅𝑖𝑖𝑖𝑖  that is equal to or larger than its 99th percentile for each 

prefecture. From the estimated 𝐸𝐸𝑅𝑅𝑖𝑖𝑖𝑖, I further construct the transmission rate, 𝛽𝛽𝑖𝑖𝑖𝑖 = 𝛾𝛾𝐸𝐸𝑅𝑅𝑖𝑖𝑖𝑖/𝑆𝑆𝑖𝑖𝑖𝑖, 

by assuming that the recovery rate 𝛾𝛾 = 1/7 as in Moll (2020).  

The sample period for the daily data of the epidemiological numbers runs from March 11 

to December 27, 2020, for the prefectures other than Tokyo and Kanagawa; while for these two 

prefectures, it runs from February 8 to December 27, 2020. Figure 3 shows the average values of 

𝑆𝑆𝑖𝑖𝑖𝑖, 𝐼𝐼𝑖𝑖𝑖𝑖, 𝑅𝑅𝑖𝑖𝑖𝑖, and 𝐸𝐸𝑅𝑅𝑖𝑖𝑖𝑖 across the 47 prefectures. It clearly shows that Japan experienced three 

waves in 2020. I define the first wave as the period from February 8 to May 31, the second from 

July 1 to September 30, and the third from October to December 27. I exclude the period from 

June 1 to June 31 from any wave because there were few new cases in many prefectures that 

month. Moreover, the third wave was still ongoing at the end of the sample period, December 27. 

For the information on the ratio of the people who stayed at home, I use the data provided 

by Mizuno (2020). Using the information on the real-time population distribution that is estimated 

from about 78 million base stations of a major telecom company in Japan, DOCOMO, he 
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estimates the number of outgoing people from residential areas that are defined as the difference 

between the daytime and nighttime population. Then he defines the stay-at-home ratio, 𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖𝑖𝑖, 

for prefecture 𝑖𝑖 on day 𝑡𝑡 as follows: 

𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖𝑖𝑖 = 1 −
# 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖  × 𝑆𝑆𝑎𝑎𝑝𝑝𝑎𝑎𝑆𝑆𝑜𝑜𝑝𝑝 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜 ℎ𝑜𝑜𝑜𝑜𝑎𝑎𝑠𝑠𝑖𝑖𝑖𝑖
# 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖0  × 𝑆𝑆𝑎𝑎𝑝𝑝𝑎𝑎𝑆𝑆𝑜𝑜𝑝𝑝 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜 ℎ𝑜𝑜𝑜𝑜𝑎𝑎𝑠𝑠𝑖𝑖0

 

Here, the subscript 0 denotes the average of the pre-pandemic period from January 6 to January 

31, 2020. “Outgoing” is defined as going outside of the 500 square meter mesh where the person’s 

house exists. Thus, for example, if 𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖𝑖𝑖 is 60 %, it means that 60 % of people stayed at home 

(or within the 500 square meters of the home). Refer to Mizuno, Ohnishi, and Watanabe (2020) 

for details. Table 1 shows the descriptive statistics of the daily data I use for each wave. 

For the information on consumption, I use prefecture-level monthly data on the sales of 

extant department stores and supermarkets from the Monthly Report on the Current Survey of 

Commerce published by the Ministry of Economy, Trade, and Industry. The sample period for the 

monthly sales data runs from January to October 2020. Figure 4 shows the year-on-year changes 

in sales and the moving average of stay-at-home ratios from January to October in 2020. They 

apparently move in the opposite direction. 

 

3.2 Regression results 

 

I first examine whether the stay-at-home ratio depends on the risk of infection, 𝜋𝜋𝑖𝑖𝑖𝑖, that 

I define as the ratio of new cases to the number of susceptible people: 𝜋𝜋𝑖𝑖𝑖𝑖 = −(𝑆𝑆𝑖𝑖𝑖𝑖 − 𝑆𝑆𝑖𝑖𝑖𝑖−1)/𝑆𝑆𝑖𝑖𝑖𝑖−1. 

Specifically, I run the following fixed-effect panel regression: 

 

𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑏𝑏1𝜋𝜋𝑖𝑖𝑖𝑖−1 + 𝑏𝑏2𝐸𝐸𝑀𝑀𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑝𝑝𝑝𝑝𝑊𝑊𝑊𝑊𝑆𝑆𝑦𝑦𝑖𝑖 + 𝑜𝑜𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 (1) 
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Here, 𝐸𝐸𝑀𝑀𝑖𝑖𝑖𝑖  denotes a dummy for the period of the state-of-emergency for prefecture 𝑖𝑖 , 

𝑊𝑊𝑝𝑝𝑝𝑝𝑊𝑊𝑊𝑊𝑆𝑆𝑦𝑦𝑖𝑖  is a set of dummies for Monday through Saturday, 𝑜𝑜𝑖𝑖  is a prefecture-level fixed 

effect, and 𝜀𝜀𝑖𝑖𝑖𝑖  is an error term. I run the regression above for each wave to consider the 

possibility that people’s responses to the risk of infection change over the three waves. 𝐸𝐸𝑀𝑀𝑖𝑖𝑖𝑖 is 

included in the regression only for the first wave because the state of emergency was declared 

only for that wave during our sample period.9 In the second wave, I add the summer vacation 

dummy that equals one for August 12 to 14.    

 The results shown in Columns (1) to (3) in Panel A of Table 2 provide clear evidence for 

the voluntary lockdown. They show that the coefficients for 𝜋𝜋𝑖𝑖𝑖𝑖−1 are positive and significant 

for all three waves that indicates that people were more likely to stay at home as the risk of 

infection increased. The coefficients for 𝜋𝜋𝑖𝑖𝑖𝑖 are the largest for the first wave (9,151), followed 

by the second and third waves (2,269 and 1,000, respectively). For example, an increase in new 

cases by 1 in 100,000 susceptible people increases the stay-at-home ratio by 9.151% (=

9,151 × 1/100,000 × 100) in the first wave. The high response to the risk of infection in the 

first wave may be at least partly due to the cash handout of 100,000 yen (about 940 US dollars) 

per person that the government distributed from May to August 2020 in most prefectures.10  

Next, I examine whether an increase in the stay-at-home ratio contributes to containing 

the spread of the virus by regressing the transmission rate on the stay-at-home ratio with the data 

for the whole sample period as follows: 

 

𝛽𝛽𝑖𝑖𝑖𝑖 = 𝑐𝑐1𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖𝑖𝑖−7 + 𝑐𝑐2𝑗𝑗𝑊𝑊𝑆𝑆𝑎𝑎𝑝𝑝𝑗𝑗 + 𝑐𝑐3𝑗𝑗𝑊𝑊𝑆𝑆𝑎𝑎𝑝𝑝𝑗𝑗 × 𝑇𝑇𝑖𝑖𝑇𝑇𝑝𝑝𝑖𝑖 + 𝑐𝑐4𝐸𝐸𝑀𝑀𝑖𝑖𝑖𝑖−7 + 𝑊𝑊𝑝𝑝𝑝𝑝𝑊𝑊𝑊𝑊𝑆𝑆𝑦𝑦𝑖𝑖 + 𝑜𝑜𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 (2) 

                                                      
9 The state of emergency was declared again on January 8, 2021 for Tokyo and three surrounding 
prefectures, and on January 13, 2021 for other seven prefectures.  
10 Shoji et al. (2020) provide evidence that income opportunity costs as well as poor information 
access are obstacles to social distancing. 
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I take the 7-day lag of 𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦 to consider the incubation, detection, and reporting periods. I add 

the three wave dummies (𝑊𝑊𝑆𝑆𝑎𝑎𝑝𝑝𝑗𝑗), time trend (𝑇𝑇𝑖𝑖𝑇𝑇𝑝𝑝𝑖𝑖), and their interaction to the explanatory 

variables to consider the gradual behavioral changes such as wearing a mask, keeping a social 

distance, and washing hands. 

 Panel B of Table 2 shows that the coefficient for 𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖𝑖𝑖−7 is negative and significant. 

An increase in 𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖𝑖𝑖 by one percentage point decreases 𝛽𝛽𝑖𝑖𝑖𝑖 by 0.213 percentage points. The 

coefficients of the interaction of 𝑊𝑊𝑆𝑆𝑎𝑎𝑝𝑝 and 𝑇𝑇𝑖𝑖𝑇𝑇𝑝𝑝 are negative for the first and second waves. 

This suggests that people gradually learned the best practices to avoid the infection. On the other 

hand, the coefficient of the interaction for the third wave is positive, although small. This may be 

because the rate of infection kept rising during the observation period of the third wave.   

Third, I investigate the effect of staying at home on the rate of change in consumption 

from the previous year using the monthly data of sales at department stores and supermarkets, 

𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖𝑖𝑖. Specifically, I run the following fixed-effect regression: 

 

𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖𝑖𝑖 = 𝑆𝑆1𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖𝑖𝑖 + 𝑆𝑆2𝐸𝐸𝑀𝑀𝑖𝑖𝑖𝑖 + 𝑜𝑜𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 (3) 

 

Here, subscript 𝑇𝑇  denotes the month, and 𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖𝑖𝑖  and 𝐸𝐸𝑀𝑀𝑖𝑖𝑖𝑖  are monthly averages of the 

daily variables, 𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖𝑖𝑖 and 𝐸𝐸𝑀𝑀𝑖𝑖𝑖𝑖, respectively. Panel C of Table 2 shows that the coefficient for 

𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖𝑖𝑖 is negative and significant. An increase in 𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖𝑖𝑖 by one percentage point decreases 

𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖𝑖𝑖 by 0.228 percentage points. The coefficient for 𝐸𝐸𝑀𝑀𝑖𝑖𝑖𝑖 is also negative and significant 

that indicates the request of the government to close stores had a direct and negative impact on 

sales after controlling for the stay-at-home ratio. 
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4. Model 

The reduced-form evidence shows that people were more likely to stay at home as the 

risk of infection rose and that this voluntary lockdown mitigated the spread of the virus and 

decreased consumption. I formalize this idea by extending an epidemiological and 

macroeconomic model (SIR-Macro model) to incorporate voluntary and request-based 

lockdowns. First, I present a model with only a voluntary lockdown and then add a request-based 

lockdown.  

 

4.1 Setup 

Goods 

Following Kaplan, Moll, and Violante (2020), I assume that there are three types of goods: 

social goods (type s) produced by firms and consumed outside of the home, regular goods (type 

r) produced by firms and consumed at home, and home goods (type h) produced by individuals 

and consumed at home. Only social goods involve the risk of infection. Both social and regular 

goods are sold in markets, while home goods are not. Typical examples of social, regular, and 

home goods are restaurants, food, and home cooking, respectively. 

 

Firms 

There is a continuum of competitive and representative firms of a sufficiently large mass 

that potentially produce either type s or r goods. For each type of s and r goods, a representative 

firm produces one unit of goods with one unit of labor. Profit maximization of each type of firm 

leads to the prices of type r and s goods equal to the wage rate, which I normalize to one.  

 

Individuals 
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There is a continuum of competitive individuals of unit measure. Individuals are classified 

into three groups according to their health status: susceptible (S), infectious (I), and recovered (R). 

Following the SIR model, I assume the following system of difference equations: 

 

𝑆𝑆𝑖𝑖+1 = 𝑆𝑆𝑖𝑖 − 𝛽𝛽𝑖𝑖𝑆𝑆𝑖𝑖𝐼𝐼𝑖𝑖 (4) 

 

𝐼𝐼𝑖𝑖+1 = 𝐼𝐼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑆𝑆𝑖𝑖𝐼𝐼𝑖𝑖 − 𝛾𝛾𝐼𝐼𝑖𝑖 (5) 

 

𝑅𝑅𝑖𝑖+1 = 𝑅𝑅𝑖𝑖 + 𝛾𝛾𝐼𝐼𝑖𝑖 (6) 

 

For simplicity, I assume no death, so that the population does not change. The parameters 

𝛽𝛽𝑖𝑖 and 𝛾𝛾 denote the transmission rate and the recovery rate, respectively. While a simple SIR 

model assumes that 𝛽𝛽𝑖𝑖  is constant over time, I make it endogenous and time-variant by 

incorporating the individuals’ behavior as the following: 

An individual is endowed with one unit of time. They can produce one unit of type h goods 

for their own consumption using one unit of time. Thus, the opportunity cost of consuming one 

unit of home consumption goods is equal to the wage rate, that is, one.  

Individuals are heterogeneous in their preference for or disutility from going out, which I 

denote by 𝜀𝜀. The 𝜀𝜀 is distributed according to the cumulative density function, 𝐹𝐹(𝜀𝜀). Further, 

𝜀𝜀 can take negative values that represent disutility. Type-𝜀𝜀 individual’s lifetime utility is: 

 

𝐸𝐸1�(1 − 𝜌𝜌)𝑖𝑖−1𝑜𝑜(𝐶𝐶𝑖𝑖𝑖𝑖 ,𝐶𝐶𝑟𝑟𝑖𝑖,𝐶𝐶ℎ𝑖𝑖,𝐻𝐻𝑖𝑖; 𝜀𝜀)
∞

𝑖𝑖=1

 

 

Here, 𝑜𝑜(𝐶𝐶𝑖𝑖𝑖𝑖,𝐶𝐶𝑟𝑟𝑖𝑖 ,𝐶𝐶ℎ𝑖𝑖,𝐻𝐻𝑖𝑖; 𝜀𝜀)  is the period utility of type-𝜀𝜀  household that depends on the 
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consumption of social goods (𝐶𝐶𝑖𝑖𝑖𝑖), regular goods (𝐶𝐶𝑟𝑟𝑖𝑖), and home goods (𝐶𝐶ℎ𝑖𝑖), their health status 

(𝐻𝐻𝑖𝑖), and their time-invariant preference for going out (𝜀𝜀). Health status, 𝐻𝐻𝑖𝑖, represents the status 

of being either susceptible (𝑆𝑆), infectious (𝐼𝐼), or recovered (𝑅𝑅). Following Eichenbaum, Rebelo, 

and Trabandt (2020a), I assume that there is no way for agents to pool the risk associated with 

infection. Therefore, they maximize their lifetime utility under the temporal budget constraint:  

 

𝐶𝐶𝑆𝑆𝑖𝑖 + 𝐶𝐶𝑅𝑅𝑖𝑖 + 𝐶𝐶𝐻𝐻𝑖𝑖 = 1. (7) 

 

To derive the budget constraint (7), I use the equilibrium conditions that the prices of all goods 

are equal to the wage rate of one. 

I specify the period utility as  

  

𝑜𝑜(𝐶𝐶𝑖𝑖𝑖𝑖,𝐶𝐶𝑟𝑟𝑖𝑖 ,𝐶𝐶ℎ𝑖𝑖,𝐻𝐻𝑖𝑖; 𝜀𝜀) = 𝑎𝑎(𝐶𝐶𝑖𝑖𝑖𝑖 ,𝐶𝐶𝑟𝑟𝑖𝑖,𝐶𝐶ℎ𝑖𝑖) + 𝜀𝜀𝟏𝟏(𝑐𝑐𝑖𝑖𝑖𝑖 > 0) − 𝐷𝐷𝟏𝟏(𝐻𝐻𝑖𝑖 = 𝐼𝐼). (8) 

 

Here, 𝐷𝐷 > 0 denotes the disutility from the infection, and 𝟏𝟏(∙ ) denotes an indicator function 

that equals one if the conditions in the parentheses are met. 𝑎𝑎(∙,∙,∙)  is a well-behaved utility 

function from the consumption mix of (𝐶𝐶𝑖𝑖𝑖𝑖,𝐶𝐶𝑟𝑟𝑖𝑖 ,𝐶𝐶ℎ𝑖𝑖). Individuals go out and get 𝜀𝜀 (or incur −𝜀𝜀) 

to consume type-s goods. 

 

4.2 Optimization of individuals  

I solve for the maximization of individuals in each health status.  

 

A. Recovered individuals 

A recovered individual’s problem can be written in the recursive form as:  
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𝑉𝑉𝑅𝑅(𝜀𝜀) = max
𝐶𝐶𝑠𝑠,𝐶𝐶𝑟𝑟,𝐶𝐶ℎ

𝑎𝑎(𝐶𝐶𝑖𝑖,𝐶𝐶𝑟𝑟,𝐶𝐶ℎ) + 𝜀𝜀𝟏𝟏(𝑐𝑐𝑖𝑖 > 0) + (1 − 𝜌𝜌)𝑉𝑉𝑅𝑅(𝜀𝜀) 

under the budget constraint (7). To solve the problem, suppose, first, that the individual chooses 

𝑐𝑐𝑖𝑖∗ > 0  and let (𝑐𝑐𝑖𝑖∗, 𝑐𝑐𝑟𝑟∗, 𝑐𝑐ℎ∗)  and 𝑎𝑎∗  denote the optimal consumption mix and the associated 

period utility, respectively. Then, 𝑉𝑉𝑅𝑅(𝜀𝜀) = (𝑎𝑎∗ + 𝜀𝜀)/𝜌𝜌. Next, suppose that the individual chooses 

𝑐𝑐𝑖𝑖∗ = 0  and let (0, 𝑐𝑐�̅�𝑟 , 𝑐𝑐ℎ̅)  and �̅�𝑎  denote their optimal consumption mix and the associated 

period utility, respectively. Then, 𝑉𝑉𝑅𝑅(𝜀𝜀) = �̅�𝑎/𝜌𝜌 . I assume that 𝜀𝜀 > �̅�𝑎 − 𝑎𝑎∗ for all 𝜀𝜀. Therefore, 

all the recovered individuals choose 𝑐𝑐𝑖𝑖∗ > 0. Their lifetime utility is: 

𝑉𝑉𝑅𝑅(𝜀𝜀) =
𝑎𝑎∗ + 𝜀𝜀
𝜌𝜌

(9) 

 

B. Infectious individuals 

A fraction 𝜂𝜂 of infectious individuals are isolated. The parameter 𝜂𝜂 is a measure of the 

effectiveness of the test-trace-isolation. An uninsulated infectious individual’s problem is:  

𝑉𝑉𝑁𝑁𝑁𝑁(𝜀𝜀) = max
𝐶𝐶𝑠𝑠,𝐶𝐶𝑟𝑟,𝐶𝐶ℎ

𝑎𝑎(𝐶𝐶𝑖𝑖,𝐶𝐶𝑟𝑟,𝐶𝐶ℎ) + 𝜀𝜀𝟏𝟏(𝑐𝑐𝑖𝑖 > 0) − 𝐷𝐷 + (1 − 𝜌𝜌)�𝛾𝛾𝑉𝑉𝑅𝑅(𝜀𝜀) + (1 − 𝛾𝛾)𝑉𝑉𝑁𝑁𝑁𝑁(𝜀𝜀)� 

under the budget constraint (7). Under the maintained assumption that 𝜀𝜀 > �̅�𝑎 − 𝑎𝑎∗, their optimal 

consumption mix is the same as the recovered individual, and the associated maximized lifetime 

utility is: 

𝑉𝑉𝑁𝑁𝑁𝑁(𝜀𝜀) =
𝑎𝑎∗ + 𝜀𝜀 − 𝐷𝐷 + (1 − 𝜌𝜌)𝛾𝛾𝑉𝑉𝑅𝑅(𝜀𝜀)

𝜌𝜌 + 𝛾𝛾 − 𝜌𝜌𝛾𝛾
(10) 

 

Infectious and isolated people are not allowed to consume type-s goods. Therefore, an 

isolated infectious individual’s problem is: 

𝑉𝑉𝑁𝑁𝑁𝑁(𝜀𝜀) = max
𝐶𝐶𝑟𝑟,𝐶𝐶ℎ

𝑎𝑎(0,𝐶𝐶𝑟𝑟,𝐶𝐶ℎ) −𝐷𝐷 + (1 − 𝜌𝜌)�𝛾𝛾𝑉𝑉𝑅𝑅(𝜀𝜀) + (1 − 𝛾𝛾)𝑉𝑉𝑁𝑁𝑁𝑁(𝜀𝜀)� 

under the budget constraint (7). Their lifetime utility is: 
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𝑉𝑉𝑁𝑁𝑁𝑁(𝜀𝜀) =
�̅�𝑎 − 𝐷𝐷 + (1 − 𝜌𝜌)𝛾𝛾𝑉𝑉𝑅𝑅(𝜀𝜀)

𝜌𝜌 + 𝛾𝛾 − 𝜌𝜌𝛾𝛾
(11) 

 

C. Susceptible individuals 

I assume that susceptible individuals take the risk of infection as given. Let 𝜋𝜋𝑖𝑖 =

−(𝑆𝑆𝑖𝑖+1 − 𝑆𝑆𝑖𝑖)/𝑆𝑆𝑖𝑖 denote the risk of infection for susceptible individuals when they go out and 

consume type-s goods. A type-𝜀𝜀 susceptible individual’s problem is:  

𝑉𝑉𝑖𝑖𝑆𝑆(𝜀𝜀) = max
𝐶𝐶𝑠𝑠𝑠𝑠,𝐶𝐶𝑟𝑟𝑠𝑠,𝐶𝐶ℎ𝑠𝑠

 𝑎𝑎(𝐶𝐶𝑖𝑖𝑖𝑖,𝐶𝐶𝑟𝑟𝑖𝑖 ,𝐶𝐶ℎ𝑖𝑖) + �(1 − 𝜌𝜌) �(1 − 𝜋𝜋𝑖𝑖)𝑉𝑉𝑖𝑖+1𝑆𝑆 (𝜀𝜀) + 𝜋𝜋𝑖𝑖𝑉𝑉𝑁𝑁� + 𝜀𝜀�𝟏𝟏(𝑐𝑐𝑖𝑖𝑖𝑖 > 0)

+ (1 − 𝜌𝜌)𝑉𝑉𝑖𝑖+1𝑆𝑆 (𝜀𝜀)𝟏𝟏(𝑐𝑐𝑖𝑖𝑖𝑖 = 0) 

 

under the budget constraint (7). Here 𝑉𝑉𝑁𝑁 

is the expected value of the infectious individual: 

𝑉𝑉𝑁𝑁(𝜀𝜀) = 𝜂𝜂𝑉𝑉𝑁𝑁𝑁𝑁(𝜀𝜀) + (1 − 𝜂𝜂)𝑉𝑉𝑁𝑁𝑁𝑁(𝜀𝜀) =
𝜂𝜂�̅�𝑎 + (1 − 𝜂𝜂)(𝑎𝑎∗ + 𝜀𝜀) − 𝐷𝐷 + (1 − 𝜌𝜌)𝛾𝛾𝑉𝑉𝑅𝑅(𝜀𝜀)

𝜌𝜌 + 𝛾𝛾 − 𝜌𝜌𝛾𝛾
(12) 

 

The optimal consumption mix is 

(𝐶𝐶𝑖𝑖,𝐶𝐶𝑟𝑟,𝐶𝐶ℎ) = �
(𝑐𝑐𝑖𝑖∗, 𝑐𝑐𝑟𝑟∗, 𝑐𝑐ℎ∗),   𝑖𝑖𝑜𝑜 𝜀𝜀 > 𝛼𝛼0 + 𝛼𝛼1𝑖𝑖(𝜀𝜀)𝜋𝜋𝑖𝑖

(0, 𝑐𝑐�̅�𝑟 , 𝑐𝑐ℎ̅),                      𝑜𝑜𝑡𝑡ℎ𝑤𝑤𝑝𝑝𝑤𝑤𝑖𝑖𝑠𝑠𝑝𝑝 (13) 

  

Here, 𝛼𝛼0 = �̅�𝑎 − 𝑎𝑎∗  and 𝛼𝛼1𝑖𝑖(𝜀𝜀) = (1 − 𝜌𝜌)�𝑉𝑉𝑖𝑖+1𝑆𝑆 (𝜀𝜀) − 𝑉𝑉𝑁𝑁(𝜀𝜀)� . Equation (13) shows that 

whether a susceptible individual goes out to consume type-s goods or not depends on the risk of 

infection, 𝜋𝜋𝑖𝑖.  

 

4.3 Equilibrium  

In equilibrium, (1) each person solves their maximization problem given the risk of 

infection, (2) the goods and labor markets clear, and (3) the risk of infection that individuals take 
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as given is consistent with the risk of infection that is derived from the aggregation of individual 

behaviors. I have already incorporated the equilibrium prices into the budget constraint (7). Here 

I describe how aggregate output of market goods and the risk of infection evolves. 

Let 𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖 denote the share of individuals who stay at home. 𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖 is composed of the 

susceptible individuals who choose (0, 𝑐𝑐�̅�𝑟 , 𝑐𝑐ℎ̅) at period 𝑡𝑡 and isolated infectious individuals. 

Therefore, denoting the ratio of susceptible individuals who stay at home by 𝑝𝑝𝑖𝑖, 𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖 can be 

written as: 

𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑆𝑆𝑖𝑖 + 𝜂𝜂𝐼𝐼𝑖𝑖 (14) 

 

The aggregate output of market goods, 𝑌𝑌𝑖𝑖 , is equal to the aggregate consumption of 

market goods, which is the sum of social and regular goods:  

 

𝑌𝑌𝑖𝑖 = 𝐶𝐶𝑖𝑖 = (1 − 𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖)(𝑐𝑐𝑖𝑖∗ + 𝑐𝑐𝑟𝑟∗) + 𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖𝑐𝑐�̅�𝑟 = (𝑐𝑐𝑖𝑖∗ + 𝑐𝑐𝑟𝑟∗) + (𝑐𝑐�̅�𝑟 − 𝑐𝑐𝑖𝑖∗ − 𝑐𝑐𝑟𝑟∗)𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖 (15) 

 

The transmission rate, 𝛽𝛽𝑖𝑖, represents the ratio of susceptible individuals that an infectious 

individual infects over a unit of time (i.e., a day). It depends on the multiple of the number of 

susceptible individuals who go out and the number of uninsulated infectious people. Furthermore, 

following Kaplan, Moll, and Violante (2020), I assume that individuals gradually change their 

behavior to avoid being infected such as wearing face masks at an exogenous rate over time as 

represented by 𝜔𝜔(𝑡𝑡). In sum, 

   

𝛽𝛽𝑖𝑖 = max {�̅�𝛽(1− 𝑝𝑝𝑖𝑖)(1− 𝜂𝜂) −𝜔𝜔(𝑡𝑡), 0} (16) 

 

Here,  �̅�𝛽 is the basic transmission rate. I impose the nonnegativity condition on 𝛽𝛽𝑖𝑖. Substituting 
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Equation (16) into Equations (4)-(6) yields the dynamics of 𝑆𝑆𝑖𝑖, which, in turn, yields 𝜋𝜋𝑖𝑖 = 1 −

𝑆𝑆𝑖𝑖+1/𝑆𝑆𝑖𝑖. In Appendix, I describe my algorithm for computing the equilibrium.  

 

4.4 Request-based lockdown 

I extend the basic model above by supposing that the government declares the state of 

emergency under which it requests people to stay at home during some span of time. I model this 

request as a change in the susceptible households’ preference for going out. Specifically, the 

susceptible households maximize  

𝑉𝑉𝑖𝑖𝑆𝑆(𝜀𝜀) = max
𝐶𝐶𝑠𝑠𝑠𝑠,𝐶𝐶𝑟𝑟𝑠𝑠,𝐶𝐶ℎ𝑠𝑠

 𝑎𝑎(𝐶𝐶𝑖𝑖𝑖𝑖 ,𝐶𝐶𝑟𝑟𝑖𝑖 ,𝐶𝐶ℎ𝑖𝑖)

+ �(1 − 𝜌𝜌) �(1 − 𝜋𝜋𝑖𝑖)𝑉𝑉𝑖𝑖+1𝑆𝑆 (𝜀𝜀) + 𝜋𝜋𝑖𝑖𝑉𝑉𝑁𝑁(𝜀𝜀)� + 𝜀𝜀 − 𝑝𝑝𝑖𝑖�𝟏𝟏(𝑐𝑐𝑖𝑖𝑖𝑖 > 0) + (1

− 𝜌𝜌)𝑉𝑉𝑖𝑖+1𝑆𝑆 (𝜀𝜀)𝟏𝟏(𝑐𝑐𝑖𝑖𝑖𝑖 = 0) 

 

Here, 

𝑝𝑝𝑖𝑖 = � 𝑝𝑝 𝑜𝑜𝑜𝑜𝑎𝑎 𝑝𝑝𝑠𝑠𝑡𝑡𝑆𝑆𝑎𝑎𝑡𝑡 ≤ 𝑝𝑝 < 𝑝𝑝𝑝𝑝𝑜𝑜𝑊𝑊
0                      𝑜𝑜𝑡𝑡ℎ𝑝𝑝𝑎𝑎𝑤𝑤𝑖𝑖𝑠𝑠𝑝𝑝

 

 

This maximization leads to 

(𝐶𝐶𝑖𝑖,𝐶𝐶𝑟𝑟,𝐶𝐶ℎ) = �
(𝑐𝑐𝑖𝑖∗, 𝑐𝑐𝑟𝑟∗, 𝑐𝑐ℎ∗),   𝑖𝑖𝑜𝑜 𝜀𝜀 > 𝑝𝑝𝑖𝑖 + 𝛼𝛼0 + 𝛼𝛼1𝑖𝑖(𝜀𝜀)𝜋𝜋𝑖𝑖

(0, 𝑐𝑐�̅�𝑟 , 𝑐𝑐ℎ̅),                              𝑜𝑜𝑡𝑡ℎ𝑤𝑤𝑝𝑝𝑤𝑤𝑖𝑖𝑠𝑠𝑝𝑝 (17) 

  

Consequently, the ratio of susceptible individuals who stay at home depends on the 

intensity of the request-based lockdown. Denoting the ratio of susceptible individuals who stay at 

home by 𝑝𝑝′𝑖𝑖, 𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖 and 𝛽𝛽𝑖𝑖 with the request-based lockdown are the following: 

𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖 = 𝑝𝑝𝑖𝑖′𝑆𝑆𝑖𝑖 + 𝜂𝜂𝐼𝐼𝑖𝑖 (18) 

and 
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𝛽𝛽𝑖𝑖 = max {�̅�𝛽(1− 𝑝𝑝𝑖𝑖′)(1− 𝜂𝜂) −𝜔𝜔(𝑡𝑡), 0} (19) 

 

The aggregate consumption of market goods is given by Equation (15).  

 

4.5 Specification 

I need to specify the functions 𝑎𝑎(𝐶𝐶𝑖𝑖𝑖𝑖,𝐶𝐶𝑟𝑟𝑖𝑖 ,𝐶𝐶ℎ𝑖𝑖) , 𝐹𝐹(𝜀𝜀) , and 𝜔𝜔(𝑡𝑡) . First, I specify the 

period utility function from consumption, 𝑎𝑎(𝐶𝐶𝑖𝑖𝑖𝑖 ,𝐶𝐶𝑟𝑟𝑖𝑖 ,𝐶𝐶ℎ𝑖𝑖), as the following nested CES function: 

  

𝑎𝑎(𝐶𝐶𝑖𝑖𝑖𝑖,𝐶𝐶𝑟𝑟𝑖𝑖 ,𝐶𝐶ℎ𝑖𝑖) = �(𝜃𝜃ℎ𝐶𝐶ℎ𝑖𝑖𝜎𝜎 + (1 − 𝜃𝜃ℎ)𝐶𝐶𝑖𝑖𝑖𝑖𝜎𝜎 )
𝜓𝜓
𝜎𝜎 + 𝜃𝜃𝑟𝑟𝐶𝐶𝑟𝑟𝑖𝑖

𝜓𝜓�
1
𝜓𝜓

  , 𝜎𝜎,𝜓𝜓 ≤ 1 (20) 

 

Next, I specify 𝐹𝐹(𝜀𝜀) as the uniform distribution over [𝑏𝑏, 𝑏𝑏 + 1]. Further, considering 

that the measured stay-at-home ratio is the change from the pre-epidemic period, I impose the 

restriction that the ratio of susceptible people who stay at home is zero if and only if 𝜋𝜋𝑖𝑖 = 0 and 

𝑝𝑝𝑖𝑖 = 0. Thus, from Equation (17), I set 𝑏𝑏 = �̅�𝑎 − 𝑎𝑎∗. 

Third, I specify the learning curve 𝜔𝜔(𝑡𝑡) as the following logistic curve as in Griliches 

(1967) and Kaplan, Moll, and Violante (2020): 

𝜔𝜔(𝑡𝑡) =
𝜔𝜔1�̅�𝛽

𝑝𝑝−𝜒𝜒(𝑖𝑖−𝑖𝑖0) + 1
(21) 

 

This specification indicates that 𝛽𝛽𝑖𝑖 eventually decreases by 𝜔𝜔1 × 100%.  

 

5. Parameterization 

The unit of time is a day. To set the epidemiological parameters, I follow Moll (2020). 

Specifically, I set the basic reproduction number to 2.5 and the duration of the infection period to 
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7. These two numbers lead to �̅�𝛽 = 2.5/7 and 𝛾𝛾 = 1/7. The initial conditions of (𝑆𝑆𝑖𝑖 , 𝐼𝐼𝑖𝑖,𝑅𝑅𝑖𝑖) are 

set to the average values of March11, 2020 across prefectures in Japan. 

To set the economic parameters, I first set the discount rate to 𝜌𝜌 = 0.05/365. Next, I set 

the elasticity of substitution among the three types of goods. Aguiar and Hurst (2007) estimate an 

elasticity of substitution between time and goods in home production at roughly 1.8. Based on 

this evidence, Kapla, Moll, and Violante (2020) set the elasticity of substitution between social 

and home goods to 2. Following them, I set 1/(1 − 𝜎𝜎) = 2  that leads to 𝜎𝜎 = 0.5 . I set the 

elasticity of substitution between social and home goods and regular goods is close to one (i.e., 

Cobb-Douglas). Specifically, I set 𝜓𝜓 = 0.1.  

I set the share parameters 𝜃𝜃ℎ  and 𝜃𝜃𝑟𝑟  based on the share of each type of goods. 

According to the 2016 Survey on Time Use and Leisure Activities published by the Statistics 

Bureau of Japan, the time spent on housework, caring or nursing, childcare, and shopping is 107 

minutes per day, while the time spent on the secondary activities is 418 minutes per day.11 I take 

the ratio of the former to the latter to set the target of 𝑐𝑐ℎ = 0.32. To determine the share of social 

goods, I rely on the 2019 Family Income and Expenditure Survey published by the Statistics 

Bureau of Japan. According to the survey, the share of services excluding utilities, communication, 

and rents to total goods and services is 0.26 for all households. Thus, I set the target to 𝑐𝑐𝑖𝑖/(𝑐𝑐𝑖𝑖 +

𝑐𝑐𝑟𝑟) = 0.26. These two restrictions lead to 𝜃𝜃ℎ = 0.57 and 𝜃𝜃𝑟𝑟 = 0.95. 

 Using these numbers, I calculate the rate of change in aggregate consumption of market 

goods in response to an increase in the stay-at-home ratio by one point, 𝑐𝑐�̅�𝑟/(𝑐𝑐𝑖𝑖∗ + 𝑐𝑐𝑟𝑟∗) − 1 that is 

based on Equation (15), to be -0.244. This is comparable to the regression coefficient for  

𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖𝑖𝑖 in Equation (3) (-0.238). 

                                                      
11 The secondary activities comprise commuting to and from work or school, work, schoolwork, 
housework, caring or nursing, childcare, and shopping.  
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For the disutility from infection, 𝐷𝐷 , I use the regression results from Equation (1). 

Specifically, I assume that 𝛼𝛼1𝑖𝑖(𝜀𝜀) = (1 − 𝜌𝜌)(𝑉𝑉𝑖𝑖+1𝑆𝑆 (𝜀𝜀) − 𝑉𝑉𝑁𝑁(𝜀𝜀)) ≈ 𝑏𝑏1  holds for the individual 

with the mean 𝜀𝜀, that is, 𝜀𝜀̅ = �̅�𝑎 − 𝑎𝑎∗ + 0.5 . To use this relationship, I approximate 𝑉𝑉𝑖𝑖+1𝑆𝑆  as the 

value in the pre-and post-epidemic steady states where 𝜋𝜋𝑖𝑖 = 0. That is, 𝑉𝑉𝑖𝑖+1𝑆𝑆 (𝜀𝜀)̅ ≈ (𝑎𝑎∗ + 𝜀𝜀)̅/𝜌𝜌. 

Then, using this approximation and Equation (13), I obtain 

(1 − 𝜌𝜌)�
𝑎𝑎∗ + 𝜀𝜀̅
𝜌𝜌

− 𝑉𝑉𝑁𝑁(𝜀𝜀)̅� = 𝑏𝑏1  

Substituting 𝜀𝜀 ̅ into Equation (12) and rearranging yield 𝐷𝐷 = 𝜂𝜂(�̅�𝑎 − 𝑎𝑎∗ − 𝜀𝜀)̅ + (𝜌𝜌 + 𝛾𝛾 −

𝜌𝜌𝛾𝛾)/(1 − 𝜌𝜌)𝑏𝑏1. Depending on the estimates of 𝑏𝑏1 for the first, second, and third waves, I obtain 

three different values for 𝐷𝐷. I use the largest one obtained from the estimate of the first wave 

𝐷𝐷 = 1308.3 as the baseline and use the other two (324.3 and 142.8) to check the sensitivity of 

the baseline results. The baseline, middle, and low values of 𝐷𝐷 correspond to 5.8, 1.4, and 0.6 

times, respectively, of the period utility of the susceptible individual with mean 𝜀𝜀 in the pre- and 

post-pandemic steady states (that is, 𝑎𝑎∗ + 𝜀𝜀̅ = 227.5). 

To set the parameters 𝜔𝜔1,𝜒𝜒,  and 𝑡𝑡0  in Equation (26), I follow Kaplan, Moll, and 

Violante (2020). Specifically, I set 𝜒𝜒 = 2/30, 𝜔𝜔1 = 0.2, and 𝑡𝑡0 = 120.  

To set the share of isolation among infectious individuals, 𝜂𝜂, I use the regression result 

of Equation (2). Specifically, because 𝑆𝑆𝑖𝑖 ≈ 1  and 𝐼𝐼𝑖𝑖 ≈ 0 , Equations (2) and (18) lead to 

𝜕𝜕𝛽𝛽𝑠𝑠
𝜕𝜕𝑆𝑆𝑖𝑖𝜕𝜕𝑦𝑦𝑠𝑠

≈ 𝜕𝜕𝛽𝛽𝑠𝑠
𝜕𝜕𝑝𝑝𝑠𝑠′

= −�̅�𝛽(1 − 𝜂𝜂) = 𝑐𝑐1.12 Substituting the estimated coefficient of 𝑐𝑐1 and �̅�𝛽 = 2.5/7 

yields 𝜂𝜂 = 0.4036.  

Finally, to set the severity of the request-based lockdown, 𝑝𝑝 , I use the estimated 

coefficient of 𝐸𝐸𝑀𝑀𝑖𝑖𝑖𝑖 in the regression of Equation (1). Specifically, I set the lockdown severity to 

𝑝𝑝 = 0.323 so that the difference in the peak levels of the simulated 𝐼𝐼𝑖𝑖 between with and without 

                                                      
12 The max operator in Equation (18) turns out to be unbinding for the parameters I set.  
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the request-based lockdown is the coefficient (0.14), For the sake of the sensitivity analysis, I 

alternatively set 𝑝𝑝 = 0.108, one third of the baseline value. I set the start and end dates of the 

request-based lockdown following the state-of-emergency during the first wave in Tokyo (from 

April 7 to May 24, 2020, which correspond to 𝑝𝑝𝑠𝑠𝑡𝑡𝑆𝑆𝑎𝑎𝑡𝑡 = 27  and 𝑝𝑝𝑝𝑝𝑜𝑜𝑊𝑊 = 27 + 47) . Table 3 

summarizes the parameters.  

 

6. Numerical Experiments 

6.1 Voluntary and Request-based Lockdowns 

First, I examine the effects of voluntary and request-based lockdowns separately. Below 

I compute no voluntary lockdown cases by setting 𝛼𝛼1𝑖𝑖(𝜀𝜀) = 0 in Equation (13) or (17), so that 

all susceptible individuals choose (𝑐𝑐𝑖𝑖∗, 𝑐𝑐𝑟𝑟∗, 𝑐𝑐ℎ∗) for all 𝑡𝑡 except for the request-based lockdown 

period. Figure 5 illustrates the epidemiological and economic dynamics in the case where only 

the voluntary lockdown in considered.13 It shows that the risk of infection (𝜋𝜋𝑖𝑖) and the stay-at-

home ratio (𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖) closely comoves with each other. Below I focus on the share of infectious 

individuals, 𝐼𝐼𝑖𝑖, and the rate of change in consumption, 𝐶𝐶𝑖𝑖. Table 4 summarize all the results for 

the numerical experiments. 

 Figure 6 depicts 𝐼𝐼𝑖𝑖 and the rate of change in 𝐶𝐶𝑖𝑖 with no, only the voluntary, and only 

the request-based lockdowns. In Case 1, that is, without a voluntary or request-based lockdown, 

𝐼𝐼𝑖𝑖 reaches 0.543% at the maximum while the decrease in 𝐶𝐶𝑖𝑖 is negligible (-0.1% at the bottom). 

The latter result is because only insulated infectious individuals reduce consumption of social 

goods. 

In Case 2, that is, with only the request-based lockdown, the peak level of 𝐼𝐼𝑖𝑖 decreases 

to 0.033%, that is 6.0% of the peak level of 𝐼𝐼𝑖𝑖 in Case 1. The request-based lockdown delays the 

                                                      
13 This is Case 3 in Table 4. 
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day when 𝐼𝐼𝑖𝑖 reaches the peak by 46 days as well (from day 179 to day 225). Meanwhile, 𝐶𝐶𝑖𝑖 

decreases by 7.9% at the bottom although 𝐶𝐶𝑖𝑖 recovers quickly after the end of the request-based 

lockdown.  

In Case 3, that is, with only the voluntary lockdown, the peak level of 𝐼𝐼𝑖𝑖 decreases to 

0.015, that is 2.8% of that in Case 1 and smaller than that in Case 2. The voluntary lockdown 

advances the day when 𝐼𝐼𝑖𝑖 reaches the peak by 72 days as compared to Case 1 (from day 179 to 

day 107). Thus, the effect of the voluntary lockdown on 𝐼𝐼𝑖𝑖 is substantial and larger than the 

request-based lockdown. Moreover, its effect on 𝐶𝐶𝑖𝑖 is also sizable: 𝐶𝐶𝑖𝑖 decreases to -4.9% at the 

bottom. Although this is smaller than its counterpart of the request-based lockdown, the former is 

more persistent than the latter: with the voluntary lockdown, 𝐶𝐶𝑖𝑖 recovers to the 99.5% of the pre-

pandemic level on day 350.  

 

6.2 Interaction of Voluntary and Request-based Lockdowns 

Next, I examine the interactions of voluntary and request-based lockdowns. In Case 4 of 

Table 4, I consider both the voluntary and request-based lockdowns. Figure 7 depict 𝐼𝐼𝑖𝑖 and 𝐶𝐶𝑖𝑖 

in Cases 3 (with only the voluntary lockdown) and 4 (with both the voluntary and request-based 

lockdown). In Case 4, the peak level of 𝐼𝐼𝑖𝑖 is 0.007%, that is only 1.2% of that in Case 1 and 

lower than that in Case 3. The request-based lockdown delays the day when 𝐼𝐼𝑖𝑖 reaches the peak 

by 43 days as compared to Case 3 (from day 107 to day 150). While the peak level of 𝐼𝐼𝑖𝑖 in Case 

4 is significantly lower than that in Case 3, the decrease in 𝐶𝐶𝑖𝑖 is larger in Case 4 (-8.4%) than in 

Cases 3 (-4.9%). 

 These results show that the interaction of the voluntary and request-based lockdowns 

play a substantial role in the low share of infectious individuals and the large decrease in 

consumption. However, comparing the actual data from the first wave with the numerical 
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experiment in Case 4, I find that the actual 𝐼𝐼𝑖𝑖  peaked at a slightly lower level (0.005% vs. 

0.007%) and quicker (on day 49 vs. day 150) than the simulated 𝐼𝐼𝑖𝑖 in Case 4. There are two 

possible reasons for these discrepancies. First, the observed number of infectious people might be 

underreported because of the insufficient capacity of the testing and public health system in Japan. 

Second, people may have responded to the risk of infection by changing their behavior in some 

way other than staying at home, such as wearing a face mask and washing hands, while I have 

assumed that such behavioral changes occurred gradually and irrespectively of the risk of 

infection. Moreover, the actual 𝐶𝐶𝑖𝑖  (depicted in Figure 4) decreased more than the simulated 

counterpart in the first wave. This discrepancy may be due to the simplifying assumptions of the 

model.14 Specifically, the model does not incorporate the direct effect of the state of emergency 

such as the requests for complete or early closures of retail shops, restaurants, bars, sports gyms, 

and so on. The model further abstracts from motives for savings including the precautionary ones, 

and a decrease in labor supply in high-risk workplaces and the resultant decline in income. 

 

6.3 Effects of Request-based Lockdown on Lifetime Utility 

In this subsection, I explore how request-based lockdowns affect susceptible individuals’ 

lifetime utility. For this aim, I compute the rates of change in period-1 lifetime utility, 𝑉𝑉1𝑆𝑆(𝜀𝜀), of 

susceptible individuals from the lifetime utility in the pre- (and post-) steady state: (𝑎𝑎∗ + 𝜀𝜀)/𝜌𝜌, 

which I denote by Δ𝑉𝑉1𝑆𝑆(𝜀𝜀). This measure of welfare is based on the assumption that the request-

based lockdown reduces the utility from consuming social goods by 𝑝𝑝 during the request-based 

lockdown. To exclude such direct effects and focus on the effects of the change in the consumption 

                                                      
14 Another possible reason for this discrepancy is that the actual data I used do not capture internet 
shopping and hence underestimate real consumption. However, this data problem does not seem to 
be serious; according to the System of National Accounts, real private consumption excluding 
imputed housing rents, which includes internet shopping, also decreased substantially in the second 
quarter in 2020 (-14.0% from the second quarter in 2019). 
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mix, I also compute an alternative measure. Specifically, I add 𝑝𝑝 back and recalculate the lifetime 

utility given the individual’s choice of the consumption mix, which I denote by 𝑉𝑉�1𝑆𝑆(𝜀𝜀). To derive  

𝑉𝑉�1𝑆𝑆(𝜀𝜀), I calculate the following: 

 

𝑉𝑉�𝑖𝑖𝑆𝑆 = 𝑎𝑎(𝐶𝐶𝑖𝑖𝑖𝑖,𝐶𝐶𝑟𝑟𝑖𝑖 ,𝐶𝐶ℎ𝑖𝑖) + �(1 − 𝜌𝜌) �(1 − 𝜋𝜋𝑖𝑖)𝑉𝑉�𝑖𝑖+1𝑆𝑆 + 𝜋𝜋𝑖𝑖𝑉𝑉𝑁𝑁�+ 𝜀𝜀�𝟏𝟏(𝐶𝐶𝑖𝑖𝑖𝑖 > 0)

+(1− 𝜌𝜌)𝑉𝑉�𝑖𝑖+1𝑆𝑆 𝟏𝟏(𝐶𝐶𝑖𝑖𝑖𝑖 = 0) (22)
 

 

Here, (𝐶𝐶𝑖𝑖𝑖𝑖,𝐶𝐶𝑟𝑟𝑖𝑖,𝐶𝐶ℎ𝑖𝑖)  is the optimal mix of consumption derived from Equation (17). Then I 

compute the rate of change in 𝑉𝑉�1𝑆𝑆(𝜀𝜀) from the lifetime utility in the pre- (and post-) steady state: 

(𝑎𝑎∗ + 𝜀𝜀)/𝜌𝜌 , which I denote by Δ𝑉𝑉�1𝑆𝑆(𝜀𝜀) . Below I use both Δ𝑉𝑉1𝑆𝑆(𝜀𝜀)  and Δ𝑉𝑉�1𝑆𝑆(𝜀𝜀)  as two 

alternative measures of the lifetime utility of susceptible individuals. 

First, I examine the effect of the request-based lockdown on the two measures of welfare 

in the absence of a voluntary lockdown. Panel A of Figure 8 depicts Δ𝑉𝑉1𝑆𝑆(𝜀𝜀) and Δ𝑉𝑉�1𝑆𝑆(𝜀𝜀) in 

Case 1 (without a request-based or voluntary lockdown) and Case 2 (with only the request-based 

lockdown) against the percentile of 𝜀𝜀. It shows that the request-based lockdown substantially 

increases the welfare in terms of both measures for all susceptible individuals. This is because the 

lockdown reduces the externality associated with the consumption of social goods, which is 

consistent with the preceding studies on externalities associated with individual choices of 

consumption (and work) and effects of lockdowns.15  

Next, I examine the effect of the request-based lockdown on the two measures of welfare 

in the presence of the voluntary lockdown. Panel B of Figure 8 depicts Δ𝑉𝑉1𝑆𝑆(𝜀𝜀) and Δ𝑉𝑉�1𝑆𝑆(𝜀𝜀) in 

Case 3 (with only the voluntary lockdown) and Case 4 (with both the voluntary and the request-

based lockdown). It shows first that in terms of Δ𝑉𝑉1𝑆𝑆(𝜀𝜀), welfare gains are concentrated at the 

                                                      
15 See Section 2. 
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susceptible individuals with middle 𝜀𝜀, who stay at home. On the other hand, they are slightly 

negative for those with high 𝜀𝜀, who either stop going out due to the request or go out despite the 

request. For those individuals, the cost of the lockdown (𝑝𝑝) slightly outweighs the benefit from 

the reduced risk of infection. Panel B further shows that in terms of Δ𝑉𝑉�1𝑆𝑆(𝜀𝜀), most susceptible 

individuals obtain welfare gains because the request-based lockdown reduces the risk of infection. 

Notably, however, in terms of both measures, there are some susceptible individuals who incur 

welfare losses from the request-based lockdown. Such individuals are among those with middle 

𝜀𝜀, who stops going out due to the request. For them, the losses from the change in the consumption 

mix outweigh the benefits from the reduced risk of infection. 

 

6.4 Sensitivity Analyses 

In this subsection, I examine to what extent the baseline results so far depend on the 

parameters I set. Specifically, I examine the sensitivity of the results to the intensities of the 

voluntary and request-based lockdowns. 

 

6.4.1 Intensity of Voluntary Lockdown 

So far, I have set the intensity of the voluntary lockdown, represented by the disutility 

from the disease, 𝐷𝐷 , based on the estimation result from the first wave, which is the highest 

among the three waves. Here, I alternatively set the middle and small values for 𝐷𝐷 based on the 

results from the second and third waves, respectively, and examine their effects on 𝐼𝐼𝑖𝑖 and 𝐶𝐶𝑖𝑖. 

Here I assume no request-based lockdown.  

In Table 4, Cases 5 and 6 summarize the results for the middle and low intensities of the 

voluntary lockdowns while Case 3 shows the results for the baseline (i.e., high) intensity case. 

Figure 9 depicts 𝐼𝐼𝑖𝑖 and 𝐶𝐶𝑖𝑖 for the baseline (high), middle, and low intensities of the voluntary 
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lockdown. We assume no request-based lockdown in Case 3, 5 or 6. As the intensity of the 

voluntary lockdown is smaller, the peak level of 𝐼𝐼𝑖𝑖 is higher (0.015%, 0.048%, and 0.087% for 

the baseline (high), middle, and low intensities, respectively). However, even in the weak intensity 

case, the peak 𝐼𝐼𝑖𝑖 is 16.1% of that without no lockdown (0.543% in Case 1). Thus, a voluntary 

lockdown seems to be one of the key factors that account for the actual low peak levels of 𝐼𝐼𝑖𝑖 in 

Japan (0.005% and 0.007% in the first and second waves).16 Meanwhile, the bottom rate of the 

change in 𝐶𝐶𝑖𝑖 is smaller as the intensity is smaller (-4.9, -3.8, and -3.0%, for the baseline (high), 

middle, and low intensities, respectively) because the sensitivity of consuming social goods to the 

risk of infection becomes smaller. 

 

6.4.2 Intensity of Request-based Lockdown 

Next, I examine how the results depend on the intensity of a request-based lockdown. 

Specifically, I assume the one-third of the baseline intensity, 𝑝𝑝  (0.108). Here I assume the 

baseline intensity of the voluntary lockdown. Case 7 in Table 4 summarizes the results. 

Panel A of Figure 10 shows 𝐼𝐼𝑖𝑖 and 𝐶𝐶𝑖𝑖 in Cases 7 (with the voluntary and weak request-

based lockdowns) and 4 (with the voluntary and baseline (i.e., strong) request-based lockdowns). 

In Case 7, the peak level of 𝐼𝐼𝑖𝑖 is 0.012%, which is higher than that in Case 4 by 0.006 percentage 

points, although the weak request-based lockdown avoids an increase in 𝐼𝐼𝑖𝑖 after the end of the 

request, On the other hand, the bottom level of 𝐶𝐶𝑖𝑖 is lower than that in Case 3 (-4.7% and -8.4% 

in Cases 8 and 4, respectively). The weak request-based lockdown increases the share of 

infectious individuals and restrain the decrease in consumption as compared to the baseline (i.e., 

strong) request-based lockdown.  

                                                      
16 Although the peak level of 𝐼𝐼𝑖𝑖 in the third wave has not yet been seen when I write this manuscript, 
𝐼𝐼𝑖𝑖 reaches 0.016% on December 27, 2020, which is still lower than, but comparable with, the peak 
level of 𝐼𝐼𝑖𝑖 in Case 6 (0.087%). 
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Panel B of Figure 10 depicts Δ𝑉𝑉1𝑆𝑆(𝜀𝜀) and Δ𝑉𝑉�1𝑆𝑆(𝜀𝜀) in Cases 3 (with only the voluntary 

lockdown) and 7. It shows that in terms of Δ𝑉𝑉1𝑆𝑆(𝜀𝜀), no susceptible individual obtains welfare 

gains from the weak request lockdown. It further shows that in terms of Δ𝑉𝑉�1𝑆𝑆(𝜀𝜀), most susceptible 

individuals obtain welfare gains that are positive but smaller than in the baseline (strong) request-

based lockdown case (Case 4). Furthermore, there are more susceptible individuals who incur 

welfare losses in terms of both measures than in Case 4.  

 

7. Conclusion 

Based on the empirical evidence from Japan, I extend an epidemiological and economic 

model: the SIR-Macro model. In this model, I incorporate a voluntary lockdown, that is, the 

tendency to stay at home in response to the risk of infection. I further incorporate a request-based 

lockdown, that is, the government’s request to stay at home without legal enforcements. Our 

numerical experiments show that the interaction of these two types of lockdowns plays an 

important role in the low share of infectious individuals and the large decrease in consumption in 

Japan. Moreover, the welfare gains of a request-based lockdown greatly differ across susceptible 

individuals and can be negative for some in the presence of a volunteer lockdown. Although I 

focus on Japan, the model I develop is relevant for some other countries as well because voluntary 

and request-based lockdowns are not limited to Japan.  

I have made various simplifying assumptions in the model to focus on the role of 

voluntary and request-based lockdowns. A richer model that incorporates the risk of infection in 

the workplace, precautionary saving motives, and heterogeneous and uncertain risk of infection, 

among others, will help to give sharper quantitative estimates on the effects of voluntary and 

request-based lockdowns. 
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Table1. Descriptive Statistics. 
Panel A. First Wave: March 11, 2020–May 31, 2020. 

VARIABLES N mean p50 sd min max
Effecitve reproduction number (ERt) 100 1.395 1.151 0.854 0.371 3.106
Transmission rate (beta) 100 0.199 0.164 0.122 0.053 0.444
Infectious (I, % of population) 114 0.00161 0.000758 0.00168 1.62E-05 0.0049
Infectious (I, day when maximum reached) (49)
Susceptible (S, % of population) 114 100 100 0.00331 99.99 100
Recovered (R, % of population) 114 0.00181 0.000376 0.00253 0 0.00739
Stay at home ratio (Stay) 114 0.2 0.181 0.12 -0.0213 0.511
Stay at home ratio (Stay, moving average) 108 0.204 0.187 0.106 0.00898 0.407  

 
Panel B. Second Wave: July 1, 2020-September 31, 2020. 

VARIABLES N mean p50 sd min max
Effecitve reproduction number (ERt) 92 1.465 1.148 0.634 0.624 2.571
Transmission rate (beta) 92 0.209 0.164 0.0905 0.0892 0.367
Infectious (I, % of population) 92 0.00358 0.00303 0.0022 0.000303 0.0074
Infectious (I, day when maximum reached) (41)
Susceptible (S, % of population) 92 99.98 99.97 0.0106 99.96 99.99
Recovered (R, % of population) 92 0.0199 0.0177 0.01 0.00826 0.0357
Stay at home ratio (Stay) 90 0.127 0.11 0.0704 -0.234 0.331
Stay at home ratio (Stay, moving average) 84 0.128 0.129 0.0198 0.0856 0.185  
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Panel C. Third Wave: October 1, 2020–December 27, 2020. 

VARIABLES N mean p50 sd min max
Effecitve reproduction number (ERt) 88 1.407 1.335 0.298 1.046 2.121
Transmission rate (beta) 88 0.201 0.191 0.0426 0.15 0.303
Infectious (I, % of population) 88 0.00663 0.00511 0.00443 0.00206 0.016
Susceptible (S, % of population) 88 99.94 99.95 0.0185 99.9 99.96
Recovered (R, % of population) 88 0.0519 0.0466 0.0142 0.036 0.0852
Stay at home ratio (Stay) 77 0.0885 0.0736 0.0349 0.0533 0.184
Stay at home ratio (Stay, moving average) 77 0.0888 0.0897 0.0107 0.0697 0.11  

 
Notes. The table shows the descriptive statistics of the average numbers across 47 prefectures. For Tokyo and Kanagawa Prefectures, the first wave 
began on February 8, 2020. The effective reproduction number is estimated following Cori (2013) and the transmission rate is estimated by  𝛽𝛽𝑖𝑖𝑖𝑖 =
𝛾𝛾𝐸𝐸𝑅𝑅𝑖𝑖𝑖𝑖/𝑆𝑆𝑖𝑖𝑖𝑖 that is based on the assumption that the recovery rate is 𝛾𝛾 = 1/7 following Moll (2020). The peak days of the infectious ratios are April 
29, 2020 (49 days from March 11) and August 11, 2020 (41 days from October 1) for the first and second waves, respectively. (𝐼𝐼𝑖𝑖𝑖𝑖 ,𝑆𝑆𝑖𝑖𝑖𝑖 ,𝑅𝑅𝑖𝑖𝑖𝑖) are 
estimated using data from Toyo Keizai Online (2020), and 𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖 is from Mizuno (2020). 
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Table 2. Regression Results 
Panel A. Stay-at-home Ratio 

Wave 1st wave 2nd wave 3rd wave
Infection Risk 9,151*** 2,269*** 1,000***

(-11.80) (-9.140) (-10.19)
Emergency Dummy 0.140***

-59.19
Summer Vacation Dummy -0.197***

(-35.09)
Weekday dummies yes yes yes
Observations 3,568 4,230 3,619
R-squared 0.658 0.44 0.451
Number of prefcode 47 47 47
model FE FE FE
t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1  
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Panel B. Transmission Rate (𝛽𝛽𝑖𝑖) 

Stay(t-7) -0.213***
(-7.803)

Wave1xTime -0.00298***
(-13.50)

Wave2xTIme -0.00294***
(-27.79)

Wave3xTime 0.00034***
(3.20)

Wave1 65.65***
(13.52)

Wave2 65.01***
(27.79)

Wave3 -7.492***
(-3.200)

Emergency Dummy (t-7) -0.108***
(-13.04)

Summer Vacation Dummy (t-7) -0.0894***
(-6.147)

Weekday dummies yes
Observations 9,548
R-squared 0.185
Number of prefcode 47
model FE
t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1  
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Panel C. Year-on-year Change in Sales at Department Stores and Supermarkets 

stay -0.228***
(-4.519)

em -0.133***
(-6.224)

Constant 0.00416
(0.721)

Observations 470
R-squared 0.45
Number of pref 47
Prefecture FE yes
t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1  
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Table 3. Parameters 

Epidemiological
Basic transmission rate betabar 2.5/7 Moll(2020): Basic reproduction number =2.5; average duration of infectious period=7
Recovery rate gamma 1/7 Moll(2020):  Average duration of infectious period=7
Initial (S, I, R) S 1 2.909*10-6 Average value across prefectures as of March 11, 2020.

I 1 0.9999968 Average value across prefectures as of March 11, 2020.
R 1 0 Average value across prefectures as of March 11, 2020.

Countermeasures
Share of isolation of infectious eta 0.4036 Coefficient of Stay in the regression of estimated beta 
Requeset-based Lockdown (baseline: strong) l 0.323 Coefficient of state-of-emergency dummy in the regression of Stay  for 1st wave
Requeset-based Lockdown (weak) l 0.108 one-third of the baseline
Lockdown Start lstart 27 Start of the state of emergency in Tokyo (April 7, 2020) from day 1 (March 11, 2020)
Lockdown End lend 27+47 End of the state of emergency in Tokyo (May 24, 2020) from day 1 (March 11, 2020)
Behavioral
Learning speed chi 2/30 Kaplan, Moll and Violante (2020)
Upper bound of learning/basic transmission rate omega1 0.2 Kaplan, Moll and Violante (2020)
Days at which learning srart t0 120 Kaplan, Moll and Violante (2020)
Preference
Discount rate (per day) rho 0.05/365
Elasticity of substitution between social and home goods 1/(1-sigma) 2 Kaplan, Moll and Violante (2020)
Elasticity of substitution between social/home and regular goods 1/(1-psi) 1/0.9 Close to Cobb-Douglas
Share of home good in total consmption ch 0.32 Share of time spent on housework, caring or nursing, child care and shopping
Share of social goods in sum of social and regular goods cs/(cs+cr) 0.26 Share of services excluding utilities, communication, and rents
→Share paramter of home goods in social/home aggregate theta_h 0.57
→Share paramter of regular goods relative to social/home goods theta_r 0.95
Disutility of infection (baseline: high) D 1308.3 Coefficient of infection risk in the regression of the stay-at-home ratio for 1st wave
Disutility of infection (middle) D 324.3 Coefficient of infection risk in the regression of the stay-at-home ratio for 2nd wave
Disutility of infection (small) D 142.8 Coefficient of infection risk in the regression of the stay-at-home ratio for 3rd wave  
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Table 4. Summary of Numerical Experiments 

Case  Infectious Stay at home Consumption
Voluntary Requested Peak Peak Peak  relative Peak Bottom

(%) Day to Case 1 (%) (%)  (% Change)
A. Baseline
  Case 1 no no 0.543 179 100.0% 0.3 -0.1
  Case 2 no yes 0.033 225 6.0% 32.3 -7.9
  Case 3 yes no 0.015 107 2.8% 20.1 -4.9
  Case 4 yes yes 0.007 150 1.2% 34.2 -8.4
B. Sensitivity Analyses

Case 5 yes (middle) no 0.048 122 8.8% 15.6 -3.8
Case 6 yes (low) no 0.087 133 16.1% 12.5 -3.0
Case 7 yes yes (low) 0.012 120 2.3% 19.2 -4.7

Lockdown
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Figure 1. Rate of Change in GDP, Total Deaths Per Million, and Stringency Index 
Panel A. Rate of Change in GDP and Total Deaths Per Million 

 
Panel B. Rate of Change in GDP and Stringency Index 

 
Notes. The rates of change in GDP are from International Financial Statistics published by 
International Monetary Fund and the System of National Accounts published by Cabinet Office 
of Japan. They are the value in the third quarter of 2020 from the previous year. Total deaths per 
million are from Roser et al., (2020). They are numbers as of September 30, 2020. The stringency 
indexes are from Hale et al. (2020b). They are the averages from January 1 to September 30, 2020. 
The number of countries in the sample is 42. 
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Figure 2. New Cases and Stay-at-home Ratios in Four Prefectures 

 
 
Note. Green line shows the number of new cases (left axis) and the red line shows the stay-at-
home ratios (%, right axis). Both series are moving averages over the past 7 days. The sources of 
the new cases and the stay-at-home ratios are Toyo Keizai Online (2020) and Mizuno (2020), 
respectively.  
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Figure 3. Epidemiological Dynamics in Japan. 

 
Note. The graphs show the simple averages across 47 prefectures in Japan. Effective reproduction 
number is the author’s estimates following Cori et al., (2013). The vertical lines show the period 
of the state of emergency in Tokyo. 
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Figure 4. Year-on-year Changes (%) in Sales at Department Stores and Supermarkets and Stay-
at-home Ratios (%) in 2020. 

 
Note. The blue line shows year-on-year changes in sales at department stores and supermarkets 
(%, left axis) and the red line shows stay-at-home ratios (%, right axis) in 2020. Both series are 
simple averages across prefectures for each month. The source of year-on-year changes in sales 
at department stores and supermarkets is the Monthly Report on the Current Survey of Commerce 
published by the Ministry of Economy, Trade, and Industry and that of the stay-at-home ratios is 
Mizuno (2020). 
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Figure 5. Epidemiological and Economic Dynamics with the Voluntary Lockdown 

 
 
These figues show the eepidemiological and economic dynamics with only the voluntary 
lockdown (Case 3 in Table 4). 
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Figure 6. 𝐼𝐼𝑖𝑖 and 𝐶𝐶𝑖𝑖: Request-based and Voluntary Lockdowns 

 
 
 
Note. These figures show 𝐼𝐼𝑖𝑖 (%, in the left panel) and the rate of change in 𝐶𝐶𝑖𝑖 (%, in the right 
panel) for the cases with no, voluntary, and request-based lockdowns (Cases 1,2, and 3, 
respectively in Table 4). 
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Figure 7. 𝐼𝐼𝑖𝑖 and 𝐶𝐶𝑖𝑖: Request-based Lockdown in the Presence of Voluntary Lockdowns 

 
 
Note. These figures show 𝐼𝐼𝑖𝑖 (%, in the left panel) and rate of change in 𝐶𝐶𝑖𝑖 (%, in the right panel) 
for the cases with and without the request-based lockdown (Cases 3 and 4, respectively in Table 
4). The voluntary lockdown is considered in both cases. 
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Figure 8. Rate of Change in Lifetime Utility from the Pre-epidemic Steady State 
Panel A. Without the Voluntary Lockdown 

 
Panel B. With the Voluntary Lockdown 

 
 

These figures show Δ𝑉𝑉1𝑆𝑆(𝜀𝜀) (%) and Δ𝑉𝑉�1𝑆𝑆(𝜀𝜀) (%) in the cases with and without the request-
based lockdown. In Panel A, the voluntary lockdown is not considered (Cases 1 and 2 in Table 4), 
and in Panel B, it is (Cases 3 and 4 in Table 4). 
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Figure 9. Different Intensities of Voluntary Lockdowns 

 
 
Note. These figures show 𝐼𝐼𝑖𝑖 (%, in the left panel) and the rate of change in 𝐶𝐶𝑖𝑖 (%, in the right 
panel) for the cases with high (Wave 1), middle (Wave 2), and low (Wave 3) intensities of 
voluntary lockdowns (Cases 3, 5, and 6, respectively, in Table 4). No request-based lockdown is 
considered. 
  

0
.0

2
.0

4
.0

6
.0

8
%

0 100 200 300 400 500
day

High Middle
Low

Infectious (I) (%)

-5
-4

-3
-2

-1
0

%

0 100 200 300 400 500
day

High Middle
Low

Change in Consumption (C) (%)

Different Intensities of Voluntary Lockdowns



49 
 

Figure 10. Weak Request-based Lockdowns 
Panel A. 𝐼𝐼𝑖𝑖 and 𝐶𝐶𝑖𝑖 with Weak and Strong (Baseline) Request-based Lockdowns 

 
Panel B. Rate of Change in Lifetime Utility from the Pre-epidemic Steady State 

 
Note. Panel A shows 𝐼𝐼𝑖𝑖 (%, in the left panel) and the rate of change in 𝐶𝐶𝑖𝑖 (%, in the right panel) 
for the cases with the weak and strong (i.e., baseline) request-based lockdowns (Cases 7 and 4, 

respectively, in Table 4). Panel B shows Δ𝑉𝑉1𝑆𝑆(𝜀𝜀) and Δ𝑉𝑉�1𝑆𝑆(𝜀𝜀) in the cases with and without the 
weak request-based lockdown while the voluntary lockdown is considered in both cases (Cases 7 
and 3, respectively, in Table 4).  
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Appendix. Solution Method 

 
I follow the following 7 steps to solve for the model.  

1. Given 𝑆𝑆1, set an initial guess of {𝑆𝑆𝑖𝑖}𝑖𝑖=2𝑇𝑇 . 
2. Compute {𝜋𝜋𝑖𝑖}𝑖𝑖=1𝑇𝑇 , where 𝜋𝜋𝑖𝑖 = 1 − 𝑆𝑆𝑖𝑖+1/𝑆𝑆𝑖𝑖.  
3. Because 𝜋𝜋𝑖𝑖 → 0 as 𝑡𝑡 → ∞, set 𝑉𝑉𝑇𝑇+1 

𝑆𝑆 = (𝑎𝑎∗ + 𝜀𝜀)/𝜌𝜌, and solve for a susceptible individual’s 
period-T problem given 𝜋𝜋𝑇𝑇 (Equation 17). 

4. Given {𝜋𝜋𝑖𝑖}𝑖𝑖=1𝑇𝑇−1, solve for susceptible individuals’ problem backwardly from period T-1 to 1 
(Equation 17).  

5. Based on Steps 3 and 4, compute {𝛽𝛽�𝑖𝑖}𝑖𝑖=1𝑇𝑇  (Equation 19), {(�̃�𝑆𝑖𝑖, 𝐼𝐼𝑖𝑖,𝑅𝑅�𝑖𝑖)}𝑖𝑖=2𝑇𝑇  (Equations 4, 5, 
and 6, respectively), and {𝜋𝜋�𝑖𝑖}𝑖𝑖=1𝑇𝑇 , where 𝜋𝜋�𝑖𝑖 = 1 − �̃�𝑆𝑖𝑖+1/�̃�𝑆𝑖𝑖. 

6. If the maximum absolute difference in {𝜋𝜋�𝑖𝑖}𝑖𝑖=1𝑇𝑇  in Step 5 and {𝜋𝜋𝑖𝑖}𝑖𝑖=1𝑇𝑇 in Step 2 is larger than 
the tolerance level 𝜈𝜈, then, replace {𝑆𝑆𝑖𝑖}𝑖𝑖=2𝑇𝑇  with {𝑆𝑆𝑖𝑖′}𝑖𝑖=2𝑇𝑇 , where𝑆𝑆𝑖𝑖′ = 𝜅𝜅�̃�𝑆𝑖𝑖 + (1 − 𝜅𝜅)𝑆𝑆𝑖𝑖, and 
iterate Steps 2 to 5. Otherwise, stop the iteration. 

7. Solve for {𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑖𝑖}𝑖𝑖=2𝑇𝑇 , and {𝐶𝐶𝑖𝑖}𝑖𝑖=1𝑇𝑇  (Equations 18, and 15, respectively). 
I set 𝑇𝑇 = 2000, 𝜈𝜈 = 10−7, and 𝜅𝜅 = 0.1. 
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