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Abstract 

In this study, we investigate the flow of money among bank accounts possessed by firms in a single region by 

employing an exhaustive list of all the bank transfers in a regional bank in Japan, to clarify how the network of 

money flow is related to the economic activities of the firms. The network statistics and structures are examined 

and shown to be similar to those of a nationwide production network. Specifically, the bowtie analysis indicates 

what we refer to as a "walnut" structure with core and upstream/downstream components. To quantify the location 

of an individual account in the network, we used the Hodge decomposition method and found that the Hodge 

potential of the account has a significant correlation to its position in the bowtie structure as well as to its net flow 

of incoming and outgoing money and links, namely the net demand/supply of individual accounts. In addition, 

we used non-negative matrix factorization to identify important factors underlying the entire flow of money; it 

can be interpreted that these factors are associated with regional economic activities. One factor has a feature 

whereby the remittance source is localized to the largest city in the region, while the destination is scattered. The 

other factors correspond to the economic activities specific to different local places. This study serves as a basis 

for further investigation on the relationship between money flow and economic activities of firms. 
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1 Introduction

Determining how money flows among economic entities is an important aspect
of understanding the underlying economic activities. For example, the so-called
flow of funds accounts record the financial transactions and the resulting credits
and liabilities among households, firms, banks, and the government (see, e.g.,
[1]). Another example is the input-output table, which describes the purchase
and sale relationships among producers and consumers within an economy and
clarifies the flows of final and intermediate goods and services with respect
to industrial sectors and product outputs (e.g., [2]). These data are used in
macroscopic studies, such as those of industrial sectors and aggregated economic
entities.

Recent years have witnessed the increasing emergence of microscopic data.
For example, one can study a nationwide production network, i.e., how in-
dividual firms transfer money among one another as suppliers and customers
for transactions of goods and services (see [3] and the references therein). In
contrast to the macroscopic studies mentioned above, microscopic studies can
uncover the heterogeneous structure of the network and its role in economic
activities, how the activities are subject to shocks due to natural disasters [4]
and pandemics [5], and so forth. However, microscopic data are not exhaustive;
although they may cover most active firms, not all the suppliers and customers
are recorded. Such records are based on a survey in which a firm nominates a
selected number of important customers and suppliers. In addition, the transac-
tion amounts are often lacking; hence, the network is directed but only binary.
More importantly, microscopic and macroscopic data are compiled and updated
annually or quarterly at most (see [3, 6] and the references therein).

To uncover how economic entities such as firms perform economic activities
in a real economy, we should ideally study how money flows among firms by
using real-time data of bank transfers with exhaustive lists of accounts and
transfers. Also, investigating money flows among accounts will help to tackle
real-world problems including the prediction of the economic impact of COVID-
19, the defaults of firms, and the bank accounts that could be involved in illegal
activities. However, these problems have been addressed without utilizing the
information about the network of money flow [7]. The prediction accuracy will
be improved by taking into account the network as well as other features. To
the best of our knowledge, such a study has not been conducted thus far, simply
because such data are not available for academic purposes. The present study
precisely performs such an analysis of a Japanese bank’s dataset. The bank is
a regional bank, which has a high market share with respect to the loans and
deposits in a prefecture, particularly supporting financial transactions among
the manufacturing firms located there (according to a disclosure issued by the
bank).

The objective of this study is to investigate economic activities via bank
transfers among firms’ accounts by selecting all the transfers related to the firms
to uncover how money flows behind the economic activities. More specifically,
we examine the network and flow structures, especially the so-called bowtie
structure, to locate the position of individual accounts upstream and down-
stream of the entire flow. We quantify the location using the method of Hodge
decomposition of the flow. Furthermore, we examine geographical information
of bank transfers in order to see how geographical relations between remittance
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source and destination are represented by a small number of components of
areas.

2 Data

Our dataset comprises all the bank transfers that are sent from or received by
the bank accounts in a regional bank. The regional bank is Shiga Bank, Ltd.,
the largest bank in a prefecture in Japan, which is mid-sized in terms of its
population (more than a million) and economic activity. All the accounts are
anonymous for obvious reasons, while several attributes such as geographical
locations are given to the accounts owned by firms under the anonymity. Here-
after, we refer to it simply as Bank A for brevity. The period covered in our
study is from March 1, 2017, to July 31, 2019, i.e., a period of 29 months or 883
days.

During this period, there were 23 million transfers among 1.7 million bank
accounts involving a total of 17.4 trillion yen (roughly 160 billion USD or 140
billion Euros). Let us denote a transfer from account i to account j by i → j.
To focus only on the firms’ accounts in Bank A, we filtered the data such that
(i) both i and j are the accounts of Bank A, (ii) both i and j are owned by
firms excluding households, and (iii) self-loops i → i are deleted. Point (ii) is
important for our purpose, because our concern here is how money flows and
circulates among firms’ accounts, which is considered to be closely related to
the firms’ economic activities. The resulting data are summarized in Table 1
(see the rightmost column).

Table 1: Bank accounts and transfers: summary

Number/Amount Entire data
Within Bank A

all firms

#Accounts 1.71 M 642,411 30,613
#Transfers 23.06 M 12,847,963 2,409,619

#Links 3.13 M 1,470,107 280,864
Transfer (Yen) 17.43 T 5.26 T 2.15 T

For a transfer i→ j, the column “Entire data” includes the cases in which
either i or j is not an account of Bank A. The column “Within Bank A”
corresponds to the case in which both i and j are accounts of Bank A. “firms”
implies that both the source and the target of a link are firm accounts. M and
T denote million and trillion, respectively.

Note that multiple transfers i → j can exist for a given pair of i and j,
because of frequent transfers. One can quantify the strength of the directional
relationship between a pair of accounts either by the flow of transfers or by their
frequency. To do so, we aggregate multiple transfers, if present, into a single
link i→ j with two types of weights, namely flow fij and frequency gij (see the
illustration in Fig. 1). Hereafter, we use the term link for aggregated transfers.

The number of accounts or nodes in the network is N = 30, 613, while the
number of links is M = 280, 864 after the aggregation (see Table 1).
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Figure 1: Construction of bank-transfer network by aggregation. How
bank transfers are aggregated into links. i made three transfers (1, 2, and 4)
in an arbitrary unit of money to j, while j made one transfer (1) to i during a
certain period. Flow fij is defined by the total flow of transfers along i → j.
Frequency gij is the frequency of these transfers.

The summary statistics of the links’ flows fij and frequencies gij for all
the pairs of accounts i and j are presented in Table 2. One can observe that
the distributions for flow and frequency have large skewness, implying that a
considerable fraction of the money flow is due to a large amount transferred by
a small number of flows.

Table 2: Summary statistics for links’ flows and frequencies

Stats. Flow (Yen) Frequency

Min. 1 1
Max. 3.00× 1010 2,616

Median 0.20× 106 3
Avg. 7.65× 106 8.58
Std. 1.53× 108 19.92

Skewness 92.5 37.8
Kurtosis 1.25× 104 3.49× 103

Summary statistics of the links’ flows and frequencies for all the pairs of
accounts, where links are aggregated transfers as defined in the main text and
Fig. 1.

3 Results and Discussion

3.1 Network of firms’ accounts and links of transfers

First, let us summarize the network structure comprising firms’ accounts as
nodes and aggregated transfers as links. We remark that transfers are aggre-
gated into links as shown in Fig. 1. The degree is the number of transfers
received by or sent from an account. The number of incoming and outgoing
links of an account is called the in-degree and out-degree, respectively. Fig. 2
shows the distributions of the in-degree and out-degree as complementary cumu-
lative distributions. By noting that the total number of accounts is N = 30, 613,
we can see that a small fraction of accounts has a considerable degree, i.e., a
thousand or more links, while most accounts have a limited number of links.
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Figure 2: Degree distributions for the bank transfer network. Comple-
mentary cumulative distributions for in-degree and out-degree, which refer to
the number of incoming and outgoing links, respectively, of each account.

Such hubs are presumably entities associated with the local government or the
public sector in the region.

Because each node has an in-degree and out-degree, we can examine how
they are correlated. Fig. 3 shows the scatter plot for the in-degree and out-
degree of each account. We can observe a tendency for a positive correlation
between the degrees (Pearson’s r = 0.303 (p < 10−6); Kendall’s τ = 0.164
(p < 10−6)). We also observe that there are accounts that have many more
incoming links than outgoing ones (and vice versa), which can be respectively
considered as “sinks” and “sources” with respect to the money flow. If household
accounts were included, one would have a larger number of sinks corresponding
to the situation that income and saving are likely larger than expenditure and
dissaving, but such sinks are not present here.

We can observe each link’s weights, flow fij , and frequency gij (see Fig. 1).
Fig. 4 shows the complementary cumulative distribution for the flow along each
link. The distribution is highly skewed; there exist a small number of links that
have a large amount of flow exceeding a billion yen — likely important channels
with large flows of money. Quantitatively, 0.1% of the links have flows larger
than a billion yen.

Fig. 5 shows the complementary cumulative distribution for the frequency
along each link. The steps at 30 and 60 on the horizontal axis are considered
to correspond to transfers performed once or twice in each month (recall that
the entire period includes 29 months). We can see that 0.1% of the links have
frequencies of 500 or more corresponding to daily transfers on weekdays.
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Figure 3: Scatter plot for in-degree and out-degree of each account.
Each account as a node, represented as a point, has incoming links and outgoing
links, the numbers of which are represented by the horizontal and vertical axes,
respectively. The diagonal line represents the locations where the in-degree and
out-degree are equal.
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Figure 4: Distribution for the flows of links. Complementary cumula-
tive distributions for the amount of money defined by fij between each pair of
accounts i and j (see Fig. 1).
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Figure 5: Distribution for the frequencies of transfers. Complementary
cumulative distributions for the frequency defined by gij between each pair
of accounts i and j (see Fig. 1). We can observe that there are frequency
steps around 30 and 60 (vertical dotted lines), which are presumed as periodic
transfers performed once or twice in each month (recall that the entire period
includes 29 months).
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3.2 Community analysis

Communities or clusters in a network are tightly knit groups with high intra-
group density and low inter-group connectivity [8]. Community analysis is useful
for understanding how a network has such heterogeneous structures. We adopt
the widely used Infomap method [9, 10] to detect communities in our data.

The results are presented in Table 3. “Level” indicates the level of communi-
ties in a hierarchical tree of communities that are detected recursively (see [10]).
The number of communities indicates how many communities are detected at
the corresponding level. The label “irr. comm.” denotes irreducible communi-
ties that cannot be decomposed further to the next level of smaller communities
in the hierarchical decomposition. For example, 143 of 164 communities at the
first level are irreducible ones, whereas the rest of them are decomposed into
2,327 smaller communities at the next level, and so forth.

Table 3: Numbers of communities, irreducible communities, and ac-
counts at each level of community analysis using Infomap

Level #comm. #irr. comm. #accounts Ration(%)

1 164 143 355 0.012
2 2,327 2,264 28,948 94.5
3 215 215 1,310 0.043

Total — 2,621 30,613 100.0

Each level corresponds to the hierarchical level in the Infomap community
analysis [10]. A community at a level can be decomposed at the next lower
level (from top to bottom). If a community cannot be decomposed further, it
is called an irreducible community. The numbers of irreducible communities
are listed in the third column. The fourth column lists the numbers of
accounts belonging to these irreducible communities at each level.

We find that most of the communities are at the second level because of
the number of accounts, and that most of the accounts (94.5%) belong to the
second-level communities. In our previous study [11] on the application of hier-
archical community analysis using Infomap to a large-scale production network,
we showed that a relatively shallow hierarchy can be observed at the fifth level
as the lowest level; in particular, most firms are included at the second level,
exactly as we find here. This is reasonable, because our data on bank transfers
among firms’ accounts should reflect a regional fraction of the entire production
network on a nationwide scale. The finding here is interesting, because this im-
plies a self-similar structure of the production network meaning that a partial
system has a similar network property to the global system.

Fig. 6 shows the distribution of the sizes of irreducible communities at the
lowest level that includes all the accounts. The size of a community is simply
the number of nodes included in the community. The result indicates that
the size of the communities is highly skewed over a few orders of magnitude.
We note that there exist more than 10 communities with sizes exceeding 100,
which correspond to important clusters of economic activities that depend on
geographical sub-regions and industrial sectors. We shall discuss this issue in
our analysis of non-negative matrix factorization later.
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Figure 6: Distributions of the sizes of irreducible communities. Rank-
size plot for the sizes of irreducible communities detected using the Infomap
method at all the levels, where the ranks are in descending order of the size
with the lowest rank equal to the total number of irreducible communities (see
Table 3). The size of a community is simply the number of nodes included in
the community.
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3.3 Bowtie structure

With respect to the flow of money, the accounts can be located in a classification
of the so-called bowtie structure, which was first adopted in the study of the
Internet [12]. In the context of economics and finance, the method has been
applied to business relationship networks [13] and credit default swap network
[14], for example. Nodes in a directed network can be classified into a giant
strongly connected component (GSCC), its upstream side as the IN component,
its downstream side as the OUT component, and the rest of the nodes that do
not belong to any of GSCC, IN, and OUT. In general, they can be defined as
follows.

GWCC Giant weakly connected component: the largest connected component
when viewed as an undirected graph. At least one undirected path exists
for an arbitrary pair of nodes in the component.

GSCC Giant strongly connected component: the largest connected component
when viewed as a directed graph. At least one directed path exists for an
arbitrary pair of nodes in the component.

IN Nodes from which the GSCC is reached via directed paths.

OUT Nodes that are reachable from the GSCC via directed paths.

TE “Tendrils”: the rest of GWCC

Therefore, we have the components such that

GWCC = GSCC + IN + OUT + TE (1)

For our data of the entire network with N = 30, 613 nodes and M =
280, 864 links, the GWCC component comprises 30,225 (99.0%) nodes and
280,598 (99.9%) links. The components of GSCC, IN, and OUT are summa-
rized in Table 4. As can be seen, nearly 40% of the accounts are inside GSCC.
Further, 15% of the accounts are in the upstream portion or IN, whereas 37%
are in the downstream portion or OUT. These figures are very similar to those
observed in the production network in Japan in a previous study [11].

The set of three components of GSCC, IN, and OUT is usually referred to as
a “bowtie”; however, we find that the entire shape does not look like a “bowtie”
but like a “walnut” in the sense that IN and OUT are two mutually disjoint thin
skins enveloping the core of GSCC rather than two wings elongating from the
center of a bowtie. In fact, by examining the shortest-path lengths from GSCC
to IN or OUT, we can see that the accounts in the IN and OUT components
are just a few steps away from GSCC as shown in Table 5. This feature is also
similar to the production network on a nationwide scale (see the walnut structure
in [11]); however, is different from many social and technological networks such
as the Internet, where the maximum distances from GSCC to IN or OUT are
usually very long (see the original paper [12]).

Let us remark that generally speaking, even if a network has a walnut shape
in its bowtie structure, a subgraph can have a totally different shape. To illus-
trate, let us consider the production network which was studied in our previous
paper on walnut shape [11]. The production network comprising of a million
firms has such a walnut structure. Extract a subgraph for the firms in the indus-
trial sector of construction. While the entire network’s IN/OUT are typically 2
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or 3-steps from its SCC, the subgraph’s IN/OUT are 6-steps or even more from
its SCC, implying that the latter has a “bowtie” rather than a “walnut” shape.
This fact tells us that the sector of construction has a relatively elongated line
of production, presumably comprising of major companies with their families of
subcontractors, sub-sub contractors, and so forth. In the present case, the firms
are located in a prefecture, so the money flow among them can be considered as
a subgraph of the nation-wide network of production. It is a non-trivial question
whether such a subgraph has a bowtie structure similar to the entire network
or not.

Table 4: Bowtie or “walnut” structure: size of each component.

Component #accounts Ratio(%)

GSCC 11,543 38.2%
IN 4,508 14.9%

OUT 11,270 37.3%
TE 2,904 9.6%

total 30,225 100%

“Ratio” refers to the ratio of the number of firms to the total number of
accounts in GWCC.

Table 5: “Walnut” structure: shortest distance from GSCC to
IN/OUT.

IN to GSCC OUT from GSCC
Distance #accounts Ratio(%) Distance #accounts Ratio(%)

1 4,346 96.41% 1 11,051 98.06%
2 144 3.19% 2 208 1.85%
3 8 0.18% 3 11 0.10%
4 10 0.22% 4 0 0.00%

Total 4,508 100% Total 11,270 100%

The left half lists the number of accounts in the IN component connected to
the GSCC accounts with the shortest distances within 4 at most. The right
half represents the OUT component similarly.

3.4 Hodge decomposition: upstream/downstream flow

Our analysis of the bowtie structure implies that the nodes in IN and OUT are
located in the upstream and downstream sides in the flow of money. The Hodge
decomposition of the flow in a network is a mathematical method of ranking
nodes according to their locations upstream or downstream of the flow [15]. This
method, also known as the Helmholtz–Hodge–Kodaira decomposition, has been
used to find such a structure in complex networks (see, e.g., neural networks
[16] and economic networks [17, 18, 19]).

First, we recapitulate the method in a manner suitable for our purpose here.
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Figure 7: Walnut structure: a schematic view. The so-called bowtie struc-
ture reveals that GSCC includes nearly 40% of all the nodes or accounts, while
the IN and OUT components include 15% and 37%, respectively (see Table 4 for
the details). The prominent features are as follows. (i) The shortest distances
to IN and OUT from GSCC are quite small, typically 1 or 2, and 4 at most
(Table 5); hence, the ties are not elongated like a “bowtie” but rather like a
“walnut” skin. (ii) The nodes in the components of IN and OUT are connected
to the nodes scattered widely in GSCC. See also the study of a supplier-customer
network [11] with similar features.

Let Aij denote adjacency matrix of our directed network of bank transfers, i.e.,

Aij =

{
1 if there is a link of transfer from account i to j,

0 otherwise.
(2)

Recall that the numbers of accounts and links are N and M , respectively. We
excluded all the self-loops, implying that Aii = 0. Each link has a flow, denoted
by F̃ij , either of the total amount of transfers, fij , or the frequency of transfers,
gij (see Fig. 1), i.e.,

F̃ij =

{
fij or gij if Aij = 1,

0 otherwise.
(3)

Note that there may be a pair of accounts such that Aij = Aji = 1 and F̃ij , F̃ji >
0. Next, we shall take the frequency of transfers, gij , by assuming that it
represents the strength of the link.

Let us define a “net flow” Fij by

Fij = F̃ij − F̃ji (4)

and a “net weight” wij by
wij = Aij +Aji. (5)

Note that wij is symmetric, i.e., wij = wji, and non-negative, i.e., wij ≥ 0 for
any pair of i and j. We remark that Eq. (5) is simply a convention to consider
the effect of mutual links between i and j. One could multiply Eq. (5) by 0.5
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or an arbitrary positive number, which does not change the result significantly
for a large network.

Now, the Hodge decomposition is given by

Fij = F
(c)
ij + F

(g)
ij , (6)

where the circular flow F
(c)
ij satisfies∑

j

F
(c)
ij = 0, (7)

which implies that the circular flow is divergence-free. The gradient flow F
(g)
ij

can be expressed as

F
(g)
ij = wij(φi − φj), (8)

i.e., the difference of “potentials”. In this manner, the weight wij serves to make
the gradient flow possible only where a link exists. We refer to the quantity φi
as the Hodge potential. If φi is relatively large, the account i is located in the
upstream side of the entire network, while a small φi implies that i is located
in the downstream side of the entire network.

Eqs. (6)–(8) can be solved as follows. First, we combine them into the
following equation for the Hodge potentials (φ1, · · · , φN )(≡ φ):∑

j

Lijφj =
∑
j

Fij , (9)

for i = 1, . . . , N . Here, Lij is the so-called graph Laplacian and defined by

Lij = δij
∑
k

wik − wij , (10)

where δij is the Kronecker delta.
It is straightforward to show that the matrix L = (Lij) has only one zero

mode (eigenvector with zero eigenvalue), i.e., φ = (1, 1, · · · , 1)/
√
N . The pres-

ence of this zero mode simply corresponds to the arbitrariness in the origin of φ.
We can show that all the other eigenvalues are positive (see, e.g., [20]). There-
fore, Eq. (9) can be solved for the potentials by fixing the potentials’ origin. We
assume that the average value of φ is zero, i.e.,

∑
i φi = 0.

We note that the Hodge decomposition described above plays an essential
role in deciphering structure of the entire network, as well as the position and
the role of each nodes in it. In studying the nodes, one may think of simply
evaluating the cumulative out-flows and use it in place of the Hodge potential.
This, however, misses the whole point of studying the network: Let us think of
two nodes in the IN component, who have the same total out-flow. If we use
the total out-flow as a measure of their locations, they are at an equal level,
regardless of to whom they are connected: even if one is connected to a GSCC
node close to the IN side and the other is connected to a GSCC node close to
the OUT side. This also applies to those GSCC nodes in a reverse way: in
evaluating the location of those GSCC nodes it is important to whom in the
IN?OUT component they are connected. The Hodge decomposition solves this
problem at once, as it is based on the network structure. Those IN nodes will
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Figure 8: Distribution of the Hodge potentials of individual accounts.
Distributions as histograms of φi in each component of the bowtie or walnut
structure Fig. 7. The horizontal axis represents the value of φi of an individ-
ual node or account, while the vertical axis represents the frequency in the
histogram. The black line corresponds to GSCC or the core. The blue and
red lines, respectively, correspond to the IN and OUT components or upstream
and downstream with respect to the core. The green line corresponds to TE
(tendrils) or the rest of the nodes.

be given appropriate Hodge potential in relation with their connection to those
GSCC nodes, who again are given appropriate Hodge potential with view of
all the other edges of the entire network. (See Appendix A for some intuitive
explanation and simple examples.)

The Hodge potentials obtained for the entire network of GWCC are shown
in Fig. 8 as the distribution for the potentials of all the accounts in GWCC. By
noting that the average is zero by definition, we can see that it is a bimodal
distribution with two peaks at positive and negative values, while there are
a number of potential values close to zero (peaks around zero). The nodes
in TE (tendrils) can be considered to have locations that are not particularly
relevant to upstream or downstream; we can expect that these nodes mostly
have potentials close to zero, as shown by the green line, i.e., the result after
deleting all the nodes contained in TE’s. We can see that these TE do not
contribute to large absolute values of the Hodge potentials.

It can be expected that there is a correlation between the value of the Hodge
potential and the net amount of demand or supply of money for each node. We
can measure the net amount of demand/supply by examining the in-degree and
out-degree of the node, or alternatively, the in-flow and out-flow of money. Fig. 9
and Fig. 10 show the results. We find that if the potential is positive, the node
is located in the upstream side, and its net degree and flow are negative. If the
potential is negative, the node is located in the downstream side, and its net
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Figure 9: Hodge potential and net degree for each node. Each point
represents a node or an account. The net degree is defined by the difference
between the in-degree and the out-degree of the node. If the net degree is
positive, the node has more incoming links than outgoing ones and vice versa.

degree and flow are positive.
This finding can be interpreted as follows. Consider a supplier in the pro-

duction network, which supplies its products to a number of customers. The
supplier has a bank account (or possibly multiple accounts) that receives money
from the customers’ accounts as the supplier’s sales. If the supplier is in the up-
stream side of the supplier-customer relationship, it is likely that the account is
located in the downstream side of the money flows in this study. As the supplier
not only makes sales but also incurs costs, typically labor costs, there must be
an outgoing flow from its account to be linked with households and other non-
commercial entities, which are not included in the present study. Consequently,
the supplier’s account has a positive net degree and flow, while its Hodge po-
tential is likely negative. A similar argument would hold for customers in an
opposite way. In other words, our finding is a direct observation of how the flow
of money reflects the economic activities among the firms’ accounts.

3.5 Non-negative matrix factorization (NMF): decompo-
sition of geographical structures of bank transfers

In this section, we focus on the geographical information of bank transfers. Each
bank account has an address. We obtain the latitudes and longitudes of the bank
accounts by using geocoding. Consequently, a bank transfer between two bank
accounts has two coordinates of its remittance source and destination. Can
geographical relations between source and destination be represented by only
a small number of components of areas? We construct a non-negative matrix
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Figure 10: Hodge potential and net flow for each node. This figure is
similar to Fig. 9 except for the vertical axis, which represents the net flow. The
net flow is defined by the difference between the incoming amount of money and
the outgoing one.

defined from the frequencies between the geographical areas, and we adopt NMF
to find such components of geographical structures of the bank transfers.

NMF constructs an approximate factorization of a non-negative matrix [21].
Applications of NMF to real dataset give a small number of components whose
linear sums can approximate elements of the dataset. For example, NMF is use-
ful for processing facial images because it produces parts-based representations
of such images [22]. To obtain the basic components whose linear sums can ap-
proximate bank transfers, we apply NMF to a non-negative matrix V = (Vmn)
defined as follows. We set a square area including the prefecture and split it
into K×K smaller squares in a lattice pattern, where K = 100. Let Rpq be the
(p, q) small square area for 1 ≤ p, q ≤ K. We consider the frequencies of bank
transfers between two small square areas. Let α(p1, q1, p2, q2) be the frequency
of bank transfers from (p1, q1) to (p2, q2) for 1 ≤ p1, q1, p2, q2 ≤ K, i.e., using
the frequency gij of transfers from account i to account j,

α(p1, q1, p2, q2) =
∑

{(i,j)|(xi,yi)∈Rp1q1
,(xj ,yj)∈Rp2q2

}

gij , (11)

where (xi, yi) is the coordinate of the address of account i. The non-negative
matrix V of size K2 ×K2 is defined by

Vmn = log(max{1, α(p1, q1, p2, q2)}), (12)

where m = p1 + (q1 − 1)K and n = p2 + (q2 − 1)K. For practical purposes, we
convert the frequencies into their logarithmic values to reduce the influence of
outstanding values.
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NMF gives the approximate factorization

V ≈WH (13)

for some integer d, where W and H are non-negative matrices of size K2 × d
and d × K2, respectively. We assume that the approximation is based on the
following minimization in which a loss function is given by the Frobenius norm:

argmin
W≥0,H≥0

1

2

∑
m,n

(Vmn − (WH)mn)2, (14)

where W ≥ 0, H ≥ 0 means non-negativity. Technically, we solve Eq. (14) nu-
merically with the initialization of W , H by using nonnegative double singular
value decomposition (see the review [23] and references therein). The minimiza-
tion yields local minima in general, but our numerical solutions under different
random seeds gave essentially the same decomposition.

We let d = 10 from prior knowledge that the number of local communities
in the prefecture is around 10. Since the mth row of V corresponds to bank
transfers from (p, q) form = p+(q−1)K, the rows ofH constitute a basis of bank
transfers for the given sources. Similarly, since the mth column corresponds to
bank transfers to (p, q) for m = p + (q − 1)K, the columns of W constitute a
basis of bank transfers for the given destinations. We can regard Eq. (13) as the
approximation of V by the sum of products of these basis vectors. By letting
wm be the mth column vector and hm be the mth row vector, we have

V ≈
d∑

m=1

wmhm. (15)

The logarithms of the frequencies of bank transfers in the target area that are
represented by V are decomposed into matrices wmhm for m = 1, . . . , d.

A basis vector v, which is a column vector wm of W or a row vector hm of
H, can be converted to a K ×K matrix D(v), 1 ≤ p, q ≤ K, on the geograph-
ical square area because an entry of V corresponds to the frequency of bank
transfers between two small square areas. In other words, D(v) is represented
as a heatmap in the geographical area and Fig. 11 shows a heatmap of a basis
vector. Since basis vectors seem to indicate geographically localized structures,
to quantify such structures, we consider a circular area for a basis vector so that
the sum of entries of the basis vector included in the circular area is maximized.
Let rpq be the coordinate of the center of Rpq and let Cpq be a circular area
whose radius is 5 km and center is rpq. Note that the radius 5 km is determined
in consideration of overlappings of circles but it is not essential because the cir-
cule is not related to NMF and is used only for quantifications of geographically
localized structures. For a K ×K matrix E = (Epq) and a circular area C, we
define

β(C,E) =

∑
{(p,q)|rpq∈C}Epq∑
{(p,q)|1≤p,q≤K}Epq

. (16)

The proportion γ(v) is calculated by

C ′(v) = arg max
{Cpq|1≤p,q≤K}

β(Cpq, D(v)) (17)

γ(v) = max
{Cpq|1≤p,q≤K}

β(Cpq, D(v)). (18)
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Figure 11: Normalized basis vector obtained by NMF. The circular
area has the largest sum of entries of the basis vector included in the
circular area. A normalized basis vector such that the sum of entries is one is
converted into a heatmap whose lattice pattern corresponds to Rpq. The radius
of the circular area is 5 km. The circular area is C ′(v) for some basis vector v,
i.e., it is located at a position such that β(·, D(v)) is maximized.

The proportion γ and the circular area C ′ of a basis vector are shown in Fig. 11.
The panels (A) and (B) in Fig. 12 show the proportions γ of all the basis

vectors of sources and destinations. The proportions are more than 23% except
for one basis vector in both panels of the source and destination; therefore, most
basis vectors of bank transfers are localized geographically. Since the positions
of the circular areas are around the centers of cities, geographically localized
properties are thought to reflect the economic activity in local areas.

Fig. 12 suggests that the basis vectors of the source and destination are
similar to each other. To clarify this, Fig. 13 shows a matrix of cosine similarities
between a basis vector of the source and a basis vector of the destination, where
the cosine similarity of wm and hn is calculated by

wm · hn
‖wm‖‖hn‖

, (19)

where wm · hn is the inner product of wm and hn and ‖ · ‖ is the Euclidean
norm of a vector. All the diagonal entries except for one are almost 1’s, i.e., the
mth basis vector hm is similar to the mth basis vector wm except for m = 7.
These basis vectors correspond to basis vectors having geographically localized
properties in Fig. 12, and the similarities of pairs of basis vectors imply that
both incoming and outgoing bank transfers for a local area have similar patterns.
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Figure 12: Circular areas corresponding to the basis vectors and pro-
portions of the vector entries included in the circular areas. (A) is
drawn from wm, i.e., the basis vectors for sources, and the proportions γ(wm),
while (B) is drawn from hm, i.e., the basis vectors for destinations, and the
proportions γ(hm) for m = 1, . . . , d.
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Figure 13: Cosine similarities between basis vectors. The vertical axis
represents the indices of hs, i.e., the sth row vector of H, and the horizontal
axis represents the indices of wt, i.e., the tth column vector of W . The index of
the top left square is (s, t) = (0, 0).
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We can also interpret the seventh basis vectors of the source and destination
that do not have similarities. The seventh basis vector of the source is localized
to the largest city in the prefecture and the seventh basis vector of the destina-
tion is scattered throughout the prefecture. This means that the pair of these
basis vectors corresponds to bank transfers from the largest city to the local
areas. Therefore, Eq. (15) for our data gives decompositions that describe bank
transfers in local areas and bank transfers between the largest city and local
areas.

Finally, we state the results of NMF with different values of d. To investigate
the changes in the basis vectors that occur according to d, we apply NMF to V
with d = 5, . . . , 15. In all the cases, most of the basis vectors are geographically
localized and form source and destination pairs that are similar to each other and
correspond to bank transfers in local areas. All the basis vectors are localized
for d less than 7, and there is a pair of basis vectors corresponding to bank
transfers between the largest city and local areas for d greater than or equal to
7. For all the values of d that we have examined, the basis vectors correspond
to either bank transfers in local areas or bank transfers between the largest city
and other local areas.

Geographical visualization of all the components of NMF can be found in
Appendix B.

4 Conclusion

We studied an exhaustive list of bank accounts of firms and remittances from
source to destination within a regional bank with a high market share of loans
and deposits in a prefecture of Japan. By studying such a network of money
flow, we could uncover how firms conduct the underlying economic activities
as suppliers and customers from the upstream side to the downstream side of
the money flow. We aggregated the remittances that occurred for each pair
of accounts as a link during the period from March 2017 to July 2019 (i.e.,
approximately two and a half years), which comprises 30K nodes and 0.28M
links. We found that the statistical features of the network are actually similar
to those of a production network on a nationwide scale in Japan [3], but with
greater emphasis on the regional aspects.

The bowtie analysis revealed what we refer to as a “walnut” structure in
which the core and upstream/downstream components are tightly connected
within the shortest distances, typically at a few steps. By quantifying the loca-
tion of the individual account of a firm using the method of Hodge decomposi-
tion, we found that the Hodge potential of each node can describe the location
in the entire flow of money from the upstream side to the downstream side, well
characterized by the values of the potential. In particular, there is a significant
correlation between the Hodge potentials and the net flows of incoming and
outgoing money and links as well as the potentials and the walnut structure.
This implies that we can characterize the net demand/supply of each node and
decompose the flows into those due to the difference in potentials as well as
divergence-free flows.

In addition, the network structure uncovered in this study can be used in
predicting the default of firms. Particularly, because the financial information
of small and medium-sized enterprises is often difficult to access, the credit risk
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management of banks will be improved by utilizing the information obtained
from the network. Information on the network structure will be also useful in
promoting the regional economy because the hubs of the GSCC can be firms
playing a key role in the region. Studying the network of money flow can enable
the prediction of what arises following an economic shock, which is essential in
economic policymaking.

Furthermore, by using non-negative matrix factorization, we uncovered the
fact that the entire flow can be considered as a combination of several significant
factors. One factor has a feature whereby the remittance source is localized to
the largest city in the region, while the destination is scattered. The other
factors correspond to the economic activities specific to different local places,
which can be interpreted as local activities of the economy.

We can consider several points that remain to be studied separately from the
present work. While we aggregated the entire period in this paper, it would be
interesting to determine how the network changes with time by examining the
time-stamps recorded in every remittance. At time scales of days, weeks, and
months, it is quite likely that there are intra-day, weekly, and seasonal patterns
of activities. More interestingly, under mild changes in the booms and busts
of the regional economy on a relatively long time scale, the economic agents
might change their behaviors possibly by changing peers in the transactions.
Alternatively, under sudden changes due to natural disasters or pandemics, the
agents can change their usual patterns abruptly. In other words, these are
important aspects of a temporally changing network.

In addition, further investigation of the aspect of money flow amounts is
warranted in the sense that the dominant driving force likely comes from “giant
players” who demand or supply a large amount of money. Moreover, it would
be interesting to select them in a subgraph by choosing only links with flow
amounts that are larger than a certain threshold. These topics will be studied
in our future work.
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Figure A.1: A simple example.

Figure A.2: The illustration of the gradient flow network, given on the most
right-hand side of Fig. A.1.

A Hodge Decomposition

As is explained above, Hodge decomposition plays an essential role in studying
the network structure, by allowing the researchers to quantitatively order the
nodes according to their connectivity to other nodes.

One way to understand it to study some simple examples. One of the most
simple but nontrivial one is illustrated in Fig. A.1. The network illustrated on
the most left-hand-side (“Original Flow”) is made of the three nodes with the
given flow. The flows are decomposed to “Circular flow” and “Gradient Flow”
as are illustrated. Sum of the two flows are equal to the original flow: For
example, from the node no.1 to the node no.2, circular flow is −1/3 (as it is
+1/3 in the other direction) and the gradient flow is +4/3, which adds up to 1,
the value of the original flow. Also, the gradient flow satisfies the property (7).
Furthermore, the gradient flow satisfies Eq.(8) with all the weights equal to one
(wij = 1) and the Hodge potential (φi) = (+2/3,−2/3, 0). Fig. A.1 shows the
visualization of this network with the use of the Hodge potential (φi) as vertical
coordinate. In this illustration it is straightforward to see that gradient flows
are equal to the difference of the Hodge potentials of the relevant nodes.

Fig. A.3 and Fig. A.4 are simple and more illustrative examples, where all
flows are of strength 1 as in the first example. In both Figures, on the left panel
is the visualization of the whole network by using the spring-charge method, and
on the right panel is the visualization of the same network with the horizontal
coordinate determined by the Hodge potential and the horizontal coordinate
determined by the spring-charge method.

In Fig. A.3, the nodes are placed in a left-right symmetric manner on the
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Figure A.3: A sample network. On the left-hand side is visualization by the
charge-spring visualization and on the right-hand-side is the visualization of the
same network with the horizontal coordinates determined by the Hodge poten-
tial and the horizontal coordinate determined by the spring-charge method.

Figure A.4: Another sample network, visualized in the same manner as in
Fig. A.3.

left panel, although the links do not have the same symmetry. The nodes no.1
and no.3 are placed in same vertical position. If one used the total out-flow as
a measure of the rank, they would be placed just like this, as both of them have
the total out-flow equal to three. The right panel, however, shows a different
picture: Nodes no.1 and no.3 are placed at different heights, due to the difference
in their Hodge potential, which again is due to the difference in the way they
are connected to other nodes.

The example in Fig. A.3 shows the power of the Hodge decomposition in a
different manner: On the left-panel, we do not see any symmetry and the roles
of the nodes are not apparent. On the contrary, the right panels shows the
left-right symmetry except for the node no.6. Nodes no.1 and no.5 plays very
similar role in this network, the only difference being that no.1 is connected to
no.6. Same is true for the nodes no.4 and no.3. Without the use of the Hodge
decomposition this fact is rather difficult to see.

As seen in these examples, the Hodge potential plays an important role in
clarifying the whole structure of the network.
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B NMF Components and Geographical Loca-
tions

In Section 3.5, we constructed a non-negative matrix defined from the frequen-
cies between the geographical areas, and applied NMF (non-negative matrix
factorization) to find components of geographical structures of the bank trans-
fers. It would be helpful to show how the resulting components are located
geographically by actually displaying in the map of Shiga prefecture and its
neighboring region of Kyoto.

Recall from (12) that Vmn represents the strength of remittance from area m
to n, where the strength was defined by the logarithm of frequency of remittance.
NMF decomposes the matrix as (13), or explicitly

Vmn ≈
d∑

k=1

WmkHkn, (B.1)

where d was the number of components. d is much smaller than the dimension
of the matrix Vmn in row and column, each being K2, namely the square of the
number of mesh in each direction. Our results correspond to d = 10.

For each k = 1, 2, . . . , d, the column vector W·k represents how remittance
takes place in its source in the component of k, while the row vector Hk· rep-
resents how remittance takes place in its destination in the k-th component.
It is then possible to visualize source and destination for each component in a
geographical map by plotting these basis vectors.

Fig. B.1 (a) to (d) depict all the components for k = 1, 2, . . . , d. Each pair
in a rectangle displays the pair of source and destination, W·k and Hk·. From
Fig. B.1 (a) to (c), we can observe that the source and destination are mostly
concentrated in a particular area shown by a circle. Examination of cities in
the prefecture tells us that those concentrated area correspond to cities, which
are annotated with city names in the plots. For example, the bottom pair in
Fig. B.1 (a) shows that the source and destination are located in the Otsu city,
the most populated city in the prefecture. Therefore, each of these compo-
nents represents remittance inside the corresponding city and their surrounding
regional area.

On the other hand, Fig. B.1 (d) is the remaining component, which shows
that the source is concentrated in the Otsu city, while the destination is scattered
all over the cities of the prefecture and also over the area of Kyoto city in the
neighboring prefecture of Kyoto. This component is quite different from the
other ones in the asymmetric role of source and destination. Recall that the
cosine similarities between basis vectors in Fig. 13 precisely shows these facts.

We also show the same plot of Fig. 12 over the same map in Fig. B.2 for the
benefit of the readers.
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(a) Three components taken from the d = 10 components.

Figure B.1: Source and desination of each component
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(b) Three components taken from the d = 10 components.

Figure B.1: Source and desination of each component (Continued)
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(c) Three components taken from the d = 10 components.

Figure B.1: Source and desination of each component (Continued)
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(d) One component taken from the d = 10 components.

Figure B.1: Source and desination of each component (Continued)

Figure B.2: Fig. 12 is depicted in a geographical map. There are d = 10 circles
corresponding to the components. Each number in a circle represents how each
basic vector is concentrated to the circle in the components of the vector (in
percentage).
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