High-speed Rail and the Spatial Distribution of Economic Activity: Evidence from Japan's Shinkansen

HAYAKAWA, Kazunobu
Institute of Developing Economies

KOSTER, Hans R.A.
Vrije Universiteit Amsterdam, HSE University, Tinbergen Institute, and CEPR

TABUCHI, Takatoshi
RIETI

THISSE, Jacques-François
Institute of Developing Economies, HSE University, and CEPR
High-speed rail and the spatial distribution of economic activity: Evidence from Japan’s Shinkansen

Kazunobu Hayakawa, Institute of Developing Economies
Hans R.A. Koster, Vrije Universiteit Amsterdam, HSE University, Tinbergen Institute, and CEPR
Takatoshi Tabuchi, Chuo University and RIETI
Jacques-François Thisse, Institute of Developing Economies, HSE University, and CEPR

Abstract
We investigate the effects of high-speed rail (HSR) on the location of economic activity. We set up a spatial quantitative general equilibrium model that incorporates spatial linkages between firms (including manufacturing and services), agglomeration economies, as well as commuting and migration. The model is estimated for Japan in order to investigate the impacts of the Shinkansen, i.e., the first HSR ever built. We show that traveling by train strengthens firm linkages, but is less important for commuting interactions. The Shinkansen increases welfare by about 5%. We show that extensions of the Shinkansen network may have large effects (up to a 30% increase in employment) on connected municipalities, although the effects are smaller for places with higher fixed costs. Our counterfactuals show that, without the Shinkansen, Tokyo and Osaka would be 6.3% and 4.4% larger, respectively.

Keywords: high-speed rail; employment; population; agglomeration; commuting.
JEL classification: D04; H43; R42

The RIETI Discussion Paper Series aims at widely disseminating research results in the form of professional papers, with the goal of stimulating lively discussion. The views expressed in the papers are solely those of the author(s), and neither represent those of the organization(s) to which the author(s) belong(s) nor the Research Institute of Economy, Trade and Industry.

1 This study is conducted as a part of the Project “Spatial Economic Analysis on Urban and Regional Economic Activities” undertaken at the Research Institute of Economy, Trade and Industry (RIETI). We are grateful to N. Hamaguchi, K. Kondo, Y. Saito, Y. Sekiguchi, P. Ushchev, and participants in the RIETI Workshop. In this study, we used the data on firm networks from Tokyo Shoko Research Ltd. (TSR) provided by RIETI.
1 Introduction

The economic and social consequences of investments in transport infrastructure generate heated academic and policy debates because they typically involve costly investments that are supposed to yield high payoffs. There are two major methodological issues in assessing the impact of new transport infrastructure on specific regions (Redding and Turner, 2015). The first is the chicken-and-egg problem as regions with high transport needs are likely to receive infrastructure. In this case, the construction of a new transport infrastructure is endogenous. The second issue is that effects of infrastructure on individual localities are hard to predict, because it is unclear whether infrastructure will attract new activities or displace activities to other regions. As emphasized by ‘classical’ location theory, the relative position of a location in the transportation network is key for understanding whether this location will attract new activities (Hurter and Martinich, 1989; Thomas, 2002; Behrens et al., 2007). Location theory also stresses the importance of the size of local markets for firms’ location choices. Since a bigger pool of firms should attract consumers/workers, the size of local markets should be endogenous, as in economic geography. Last, location fundamentals (i.e., first nature) may affect firms’ and workers’ spatial choices in subtle ways.

Those various difficulties explain probably why the empirical evidence on the expected benefits of large investments in transport infrastructure is mixed. In particular, it is still unclear whether and which locations benefit from being connected (or unconnected) to the transport network.

A particularly telling example of large transport infrastructure investments are investments in high-speed rail (HSR). High-speed trains usually run at a speed exceeding 250 km/h and is a competitor to the airplane on medium-distance travels (Behrens and Pels, 2012). Within 10 years China has developed the most extensive HSR network, which is now about 35 thousand km and still expanding. In Europe, there are concrete plans to open HSR lines between London and Manchester in the United Kingdom and between Warsaw and Tallinn in the Baltic. Further, the Spanish government has an ambitious plan to expand the HSR network to 7 thousand km (it is now about 3.2 thousand km). The U.S. currently has one HSR under construction between Los Angeles and San Francisco and has plans to upgrade the existing Northeast Corridor line to operate at a higher speed.

We focus on Japan’s high-speed rail: the Shinkansen, which was supposed to promote economic growth and development outside Tokyo (Sato, 2015). For four decades from its opening in 1964, the Shinkansen was the only HSR service outside of Europe and still is considered to be one of the most successful implementations of an HSR, being efficient, punctual and frequent. The Tokaido Shinkansen connecting Tokyo, Nagoya and Osaka is one of the world’s busiest HSR carrying over 150 million passengers each year. In 2010, the share of train travel is 43.7% for trips between 300
and 500 km, while it reaches almost 70% for trips between 500 and 700 km (MLIT, 2019). The total construction cost of the first HSR line in Japan, i.e., the Tokaido Shinkansen connecting Tokyo and Osaka, was 0.9 billion USD, which amounts to 1% of the Japanese GDP in 1965 (Sato, 2015). More recently, the Minister of Land, Infrastructure, Transport and Tourism of Japan reported that the estimated cost of the Chuo Shinkansen, i.e., a Maglev train connecting between Tokyo and Osaka, which is expected to be complete in 2045, is 113 billion USD, i.e., 1.8% of the GDP in 2012.

Given the large costs of building HSR lines, it is surprising that the question whether and how HSR affect the overall spatial distribution of economic activity has not been satisfactorily answered, especially in times where the opportunity cost of money is high. Indeed, there are only a few papers that investigate the impacts of HSR, but most of the evidence is reduced-form, usually showing positive effects of HSR on employment and GDP of central and suburban locations (Zheng and Kahn, 2013; Qin, 2017; Ahlfeldt and Feddersen, 2018).

In this paper, we investigate the effects of the Shinkansen on the spatial distribution of economic activity within Japan. To this end, we set up a spatial quantitative model that combines economic geography and urban economics by allowing firms to produce under both external and internal increasing returns, while goods are shipped and consumers/workers commute. More specifically, our setting display the following features. First, there are linkages between firms producing tradable and non-tradable goods/services, while commuting is costly. Second, evidence shows that the buildings share in production is about 10% (Brinkman et al., 2015; Karadi and Koren, 2017). We thus consider land as a production factor through firms’ fixed labor requirements, which proxy for the location-specific entry impediments related to land rents, policies and geography.1

Third, we also allow for endogenous and heterogeneous local productivities and fixed costs, which we assume to be a function of (endogenous) employment densities (Rosenthal and Strange, 2004, and Combes and Gobillon, 2015, on agglomeration economies; Combes et al., 2019, on urban costs). This implies that the size of firms is endogenous and location-specific. Fourth, in contrast to most papers that focus on the travel time by road, we allow workers to commute by train or car and firms to trade with each other by train or truck. Last, note also that our model is deterministic, which allows us to avoid using a law of large numbers whose application to a continuum of i.i.d. random variables requires caution (Judd, 1985).

We estimate our model using data on municipalities in Japan. We show that the model’s parameters can be identified using a recursive estimation approach. In the first step, we estimate

1It is well known that the price of non-tradable services such as maintenance often vary across locations. Furthermore, contrary to general belief, credit conditions, hence the cost of capital, are not the same within the same country (see, e.g. Degryse and Ongena, 2006, and Hollander and Verriest, 2016).
a commuting gravity equation and show that the commuting time elasticity is somewhat larger for cars than for trains (−0.046 vs. −0.022). This concurs with evidence which shows that commuting trips by train tend to be longer. In the second step, we use unique data on buyer-supplier relationships between firms so as to estimate a gravity equation for firms’ production networks. We find that only the travel time elasticity with respect to the train is negative and significant (the elasticity is −0.027). In other words, travel time by train affects trade linkages whereas that by road does not. This strongly suggest that trading goods and services among firms requires face-to-face contacts because data show that goods are shipped by trucks for more than 90% of the trips, rather than by trains (which just account for 0.9% of the trips in 2012) (see Sugiyama, 2015). Even though an HSR does not lead to a reduction in the shipping costs of goods in a narrow sense, one should keep in mind that trading goods among firms often requires face-to-face contacts, which often necessitates business trips.

The third step involves the estimation of the parameter capturing worker heterogeneity. This is followed by the estimation of density elasticities: the impact of employment density on productivity and fixed requirements, respectively. We use a familiar identification strategy using long-lagged instruments, but we go back more than 1,000 years using data on population in the 9th century. Alternatively, following Bayer and Timmins (2007), we consider an identification strategy that uses spatially-lagged exogenous characteristics of far-away locations. Irrespective of the strategy chosen, we find that the elasticity of productivity with respect to density, as well as the elasticity of fixed requirement, is about 0.05, which is in the range provided by the literature.²

Using the model’s parameters, we can estimate the counterfactual population and employment in each municipality. By exploiting data on employment, population and travel times in 1957, 1978 and 1996, we show that our model is able to back-cast the populations and employment reasonably well. We then consider two counterfactual experiments where we analyze the geographical reshuffling of activities when (i) all extension Shinkansen plans are realized and (ii) there would have been no Shinkansen. The results of these counterfactuals highlight a few important outcomes.

In the first experiment, we find that the planned Shinkansen extensions generate a substantial welfare gain. Without them, welfare in Japan would decrease by more than 5%. Furthermore, by improving the overall accessibility the Shinkansen has made Tokyo, Osaka-Kyoto and Nagoya more attractive. The effect is particularly large (11.2% increase in employment) for Nagoya because the improved connectivity magnifies the ‘hub’ effect of this city located in between the

²We are aware that we do not have quasi-experimental variation in densities to fully convincingly identify density elasticities. We therefore also show the sensitivity of our model predictions if we assume away endogenous productivities and fixed costs, or if we pick values that are borrowed from the literature. The results are hardly affected.
two largest metropolitan areas. By and large, the construction of a Shinkansen line is beneficial to connected municipalities and detrimental to unconnected municipalities. This confirms our reduced-form analysis, which suggests that opening a Shinkansen station has a positive effect on population and employment.

Our second experiment shows that removing the Shinkansen would have substantial negative welfare effects as the indirect utility would decrease by 6.5%. Tokyo and Kyoto-Osaka would be significantly larger (i.e. 6.3% and 4.4%, respectively), while Nagoya would be much smaller (about 25%). These results highlight that the relative position of municipalities within transport networks and their underlying location fundamentals are important in understanding why the effects of a large infrastructure are positive or negative.

In sum, the spatial effects of the Shinkansen are substantial and point towards the importance of the Shinkansen for business interactions.

Related literature. Ever since Redding and Turner’s meticulous survey in 2015, the literature devoted to the economic impacts of transport infrastructures has grown fast. In two thorough papers, Donaldson and Hornbeck (2016) and Donaldson (2018) highlight the positive effect of the development of railroads in the U.S. from 1870 to 1890 and in colonial India (1870 to 1930), respectively. Berger and Enflo (2017) analyze the effects of 150 years of railways on urban growth in Sweden. They find that the connection to the railway gave cities a strong increase in population in the first 20 years, but railways were much less effective in spurring population growth in the connected cities. Banerjee et al. (2020) measure the positive, but modest, impact of roads on the economic growth of Chinese cities. As for the effects of large transport infrastructure on peripheral areas, Faber (2014) and Baum-Snow et al. (2017, 2020) find that highways have led to a relative reduction in GDP among unconnected peripheral Chinese counties.

Despite the large amounts of money flowing to the construction of HSRs, the effects of large-scale railway investments are understudied. A few exceptions include the following papers. Zheng and Kahn (2013) argue that China’s HSR facilitates suburbanization and market integration. Qin (2013) finds that non-urban counties on the upgraded railway lines experienced reductions in GDP per capita following the upgrade. Ahlfeldt and Feddersen (2018), however, provide evidence that access to an HSR connecting Cologne and Frankfurt (Germany) leads to an increase in GDP by 8.5% in three counties with intermediate stops. These papers are reduced form, which is probably the reason for the seemingly contradictory results. By decreasing passenger travel time between headquarters and affiliates, the development of the HSR network in France has allowed management functions to be concentrated in headquarters (Charnoz et al., 2018). This points toward the specialization of centers and peripheries. By proposing a spatial quantitative model where we include travel times by rail and by road while investigating the effects on central and
peripheral areas, we aim to reconcile these findings within a unifying framework.

A related paper by Bernard et al. (2019) proposes a model of buyer-seller relationship formation and show that lower search and outsourcing costs lead to more buyer-seller links. Using an extension of the Shinkansen opened in 2004, they find that a reduction in travel costs by HSR has large effects through inter-firm trade. In contrast to them, our model is not only concerned with linkages between locations, but also with the location of both employment and population. We therefore consider commuting flows between locations, as they constitute a large part of traffic between close locations and influence the local employment elasticities with respect to infrastructure shocks.

Our paper is in the spirit of Monte et al. (2018). However, we differ from them in several respects. First, we combine trade in tasks or intermediate goods, like Ethier (1982), and consumption goods, like Krugman (1980). Second, unlike Monte et al., we do not consider land as a consumption good because good data are not available. Land appears here as a production factor through the value of firms’ fixed costs. Last, like Monte et al., we consider firms that produce under monopolistic competition and increasing returns, but we assume that the fixed and marginal labor requirements are location-specific and vary with the local employment density.

The remainder of the paper is organized as follows. In Section 2, we provide a short historical survey of the development of the Shinkansen network; we also discuss our data sources and investigate some reduced-form results on the effects of station openings. In Section 3, we present our model. In Section 4, we explain the estimation of the model parameters, report and discuss estimation results. Section 5 investigates the performance of our model through counterfactual experiments, while Section 6 concludes.

2 Data and context

2.1 The Shinkansen network

The Tokaido railway local line is the first railway in Japan, which was completed in 1889. It connects Tokyo and Kobe in Hyogo prefecture. The Sanyo local line is the second railway built in Japan. It connects Kobe and Moji in Fukuoka prefecture in the Kyushu island. It largely parallels the southern coast of western Honshu.

High-speed railway. In the 1930s, transport capacity along the Tokaido and Sanyo local railway lines almost reached their limit due to the demand increase in transport to Korea and China. This situation called for a new transport facility to increase the overall capacity of transporting people. Consequently, the first plan for a Shinkansen was approved by the Imperial Diet in 1940.
Hereafter, we call this plan the initial plan. This Shinkansen was supposed to run between Tokyo and Shimonoseki at a speed of 200 km/h. This HSR was based on new railway tracks, but the initial plan suggested stops at several stations located along the Tokaido and Sanyo local lines. Specifically, 18 municipalities were selected for the construction of stations. Some land acquisition and the construction of a few tunnels were completed in the early 1940s.

Owing to the high economic growth of Japan in the 1950s, there was a renewed call for the construction of a Shinkansen. The construction plan of the Tokaido Shinkansen, was approved in 1959. This plan allowed the new train to operate at a speed of 250 km/h and aimed to connect Tokyo and Osaka in less than 4 hours. It was decided that the Shinkansen would stop at some major stations of the Tokaido local line to permit the connection between the two lines. The construction was completed in 1964, when the Summer Olympics were held in Tokyo. From 1965 onwards, the Shinkansen enabled travel times between Tokyo and Shin-Osaka of 3 hours and 10 minutes. Later on, five more in-between stations were established. The maximum speed of operation gradually increased over time. In 1986, it rose to 220 km/h. A drastic speed change was achieved in 1992 by the introduction of a new train, called the Nozomi, which connected Tokyo and Shin-Osaka in 2.5 hours at an average speed of 270 km/h and stops at a few stations only. The frequency of operation also increased over time.

Soon after 1964, the Shinkansen was extended to connect other cities. The Sanyo Shinkansen connects Shin-Osaka to Hakata in Fukuoka prefecture (at the northern tip of Kyushu island). The Shinkansen plan before WWII served again as a reference in the construction of the Sanyo Shinkansen. The connection with the Sanyo local line was taken into account when choosing the location of stations. The services between Shin-Osaka and Okayama started in 1972, while the Shinkansen between Shin-Osaka and Hakata started operating in 1975. As a result, the HSR network between Tokyo and Hakata was completed and connected the two cities by around seven hours.

Other Shinkansen lines were constructed in the hope of boosting rural areas in Japan (Sato, 2015). In 1982, Omiya city in Saitama prefecture (north and next to Tokyo prefecture) was connected to Morioka city in Iwate prefecture by Tohoku Shinkansen and to Niigata city by Joetsu Shinkansen. Their routes closely followed existing local lines. Tohoku Shinkansen was extended from Morioka station to Shin-Aomori station, a northern end of mainland Japan, in 2010. In addition, Hokkaido Shinkansen was opened between Shin-Aomori and Shin-Hakodate-Hokuto in Hokkaido prefecture in 2016. It will be extended to Sapporo in the future.\footnote{Along the Tohoku Shinkansen, there are two “mini-Shinkansens,” which have a maximum operating speed of only 130 km/h. The first one is the Akita Shinkansen, which connects Morioka-city and Akita-city in Akita prefecture; it was completed in 1997. The second one is the Yamagata Shinkansen, which was completed in 1999. It operates between Fukushima-city in Fukushima prefecture and Shinjo-city in Yamagata prefecture. The crucial}
Shinkansens were also constructed between the center of mainland Japan and Kyushu island. In the former area, Hokuriku Shinkansen was completed to connect Tokyo and Nagano city. It started operating in 1997. In 2015, this Shinkansen was extended to Kanazawa city in Ishikawa prefecture. The construction of Shinkansen lines in Kyushu island (Kyushu Shinkansen) started from its southern end in Kagoshima. Its services started between Kagoshima and Shin-Yatsushiro in Kumamoto prefecture in 2004. By extending the line to Hakata (at the northern end of Kyushu island) in 2011, Kyushu Shinkansen connected all major cities on the island.

Figure 1, which provides a map of the railway network in Japan, shows that the Shinkansen network covers most of Japan, except Hokkaido where an extension to Sapporo is planned. Trains travel the fastest on the Tokaido-Sanyo line, which connect Japan’s most important cities.

Figures 2A and 2B show the average travel time by railway across Japanese municipalities in 1957 and 2013. One observes that the average travel time has been reduced from 27 hours to just over 11 hours, i.e., a reduction of 60%. Most of the travel time reductions are in and around Tokyo where there is a strong concentration of population.

In 2005, railways accounts for 25% of the total number of domestic passengers in Japan, while motor vehicles (private cars, busses, and taxis) account for 75% (and air travel for 0.1% only). Moreover, 50% of the trips by motor vehicles are mostly for commuting purposes. For medium- and long-distance travel, the train share is higher: in 2010, the share of trips by train is 43.7% between 300 and 500km and 70% between 500 and 700km. Hence, for long-distance travel, the train is by far the most preferred transport mode. The Shinkansen tends to be used for attending business meetings rather than for commuting. For example, according to the 2017 JR Tokai Media Guide, business users account for the largest share (67%) in the Tokaido Shinkansen users, followed by private travelers for sightseeing (12%). Only 0.9% use the Tokaido Shinkansen for commuting.

Highways. Express highways were planned to be built in 1943, but were not constructed during the war. After the war, the share of paved roads was only 1.2% of the road network. As the Japanese economy grew substantially in the following decades, the number of cars and trucks
increased rapidly. The need for roads for freight and passenger transportation increased substantially. The first highway in Japan was completed in 1963 between Amagasaki city in Hyogo prefecture and Ritto city in Shiga prefecture through Osaka and Kyoto. In 1965, Nagoya and Osaka were connected. In 1969, the highway between Tokyo and Nagoya was completed. In the 1970s, the highway networks were expanded to more peripheral areas, including Hokkaido, the Tohoku region, and Kyushu. According to the Road Statistics Annual Report, Ministry of Land, Infrastructure and Transport (MLIT) the length of highways totaled around 1 thousand km in 1973, around 5 thousand km in 1992, and around 9 thousand km in 2016. The average travel time by road has been reduced by about 55% since 1957.

Like Shinkansens, highways are less likely to be used for commuting. For example, according to the survey for 2012 conducted by MyVoice Communications, Inc.; only 2.5% of the highway users are commuters.

2.2 Data sources

Our analysis will be undertaken at the municipality level. There are 1,719 municipalities in Japan. Since the boundaries of the municipalities have been revised several times, we have redrawn boundaries to match those in 2015. In the analysis, we only kept municipalities on Honshu, Hokkaido, Shikoku, and Kyushu, which we refer to as Mainland Japan, that are connected to the main railway and/or highway network. We thus consider 1,658 municipalities whose average (median) population is almost 75 thousand (26 thousand).

In contrast to the literature that uses dummy variables to describe (improvements in) accessibility, we will use a network approach. That is, we use detailed information on the railway and highway networks to calculate the travel time between any two locations in a specific year. The data on the railway network is from the National Land Numerical Information (MLIT). For each railway line we know the opening date, so that we can construct the railway network in each year for which we have data. From the JTB Timetable and the JR Timetable (Kotsu Shinbunsha), we obtain information on the average speeds on railways in Japan in all the years. In 1957 the average speed was only 38 km/h, while it increased to 60 km/h in 2015. For the Shinkansen lines the average speed is 130 km/h, while for the fast Tokaido-Sanyo line it increased to 250 km/h after 2000. For each year, we calculate the distance from each municipality centroid to the nearest railway station. We assume that the speed to travel to the nearest station is 1/4 of

\footnote{This was done by using the information provided by https://uub.jp/upd/ and http://toshidata.web.fc2.com/dantai_code.html.}

\footnote{These speeds are computed by dividing the route-distance by the actual time when leaving Tokyo station for Shimonoseki station by local trains.}
the average speed on the railway network. In this way, we may assess the time people need to get to the station by car, other public transport or bicycle. Then, for each municipality pair we calculate the travel time over the network.

We also have data on the highway network since the 1960s from the National Land Numerical Information. The highway network was quickly developed and is still expanding. For the highways we obtain average speeds from the Road Traffic Census (MLIT). We also use information on the underlying road network from 2015. Unfortunately we do not have time-series data for roads other than highways. Hence, we assume that the road network has not changed during our study period (i.e., from 2000 onwards). Indeed, according to the Road Statistics Annual Report (MLIT) in Japan, the total length of highways increased by 28% from 2000 to 2015, while the increase in non-highways (e.g., national roads) was only 4%.

Importantly, we make a distinction between the travel time by commuters and by business travellers. As discussed earlier, highways are hardly used by commuters because of high tolls. Likewise, the Shinkansen is hardly used by commuters because of longer distances between stations and expensive tickets. Hence, we calculate travel time for commuting for each municipality pair while disregarding Shinkansen and highway links.

To be able to estimate the model proposed in Section 4, we further obtain data on (i) population and employment, (ii) commuting flows, (iii) production networks, (iv) wages, (v) geographic characteristics, and (vi) historical data.

(i) We obtain the municipality-level data on population from the Census of Population, Ministry of Internal Affairs and Communications (MIC) for 1955 every five years until 2005, as well as for 2008 and 2013. Municipality-level data on employment by industry are obtained from the Establishment Census (MIC) for 1957, 1972, 1978, 1981, 1986, and 1991, the Establishment and Enterprise Census (MIC) for 1996, 2001, and 2006, and the Economic Census for Business Frame, MIC and Ministry Economy, Trade and Industry (METI) for 2009 and 2014. These censuses cover all establishments in Japan. The information about each municipality’s location (i.e., longitude and latitude and shapes) is provided by the National Land Numerical Information (MLIT). The data on geographical area are drawn from Census of Population (MIC) in 2015.

(ii) We gather data on commuting flows between municipalities for 2000, 2005, 2010, and 2015, which are drawn from the Census of Population (MIC). We focus on commutes by workers who

6The value 1/4 is arbitrary. We have played around with different values, but this makes very little difference for the results.
7For each municipality pair, we also calculate the Euclidean travel time, defined by the Euclidean distance multiplied by the travel speed (which is again 1/4 of the average speed on the railway network). For each municipality pair, we then take the minimum of railway travel time and Euclidean travel time. In this way, municipalities that are close to each other, but which do not have a rail connection, will not be separated by an unrealistically long travel time.
are older than 15 years.

(iii) We obtain yearly data on production networks between 2007 and 2017 from *Tokyo Shoko Research Ltd (TSR)*. *TSR* provides information on credit reports of firms on potential suppliers and customers. The database contains information on more than a million firms, which is a representative sample of the population of firms in Japan (Bernard et al., 2019). We can identify the location of each firm at the municipality level. The *TSR* data is at the firm rather than the establishment level, which means that we only know the location of the firm’s headquarters. Hence, we focus on single-plant firms, which means that we keep 33% of the links. We will show that our results are robust to the inclusion of multi-plant firms. Each firm provides a list of the 24 most important suppliers and customers by decreasing order. However, note that for a few large firms we observe many more input suppliers. The reason is that for many small suppliers a large firm is likely to be one of their most important customers. To avoid datasets that are too large to handle, we count the number of links between each municipality and aggregate the data by municipality-pair and for 2007 – 2012 and 2013 – 2017.

(iv) Regarding wages, we use the total taxable income in a municipality divided by the number of taxpayers. Data are obtained from the *Report of Taxation Status on Municipal Taxes* (MIC). We construct wage data at the municipality level using data on wages in manufacturing at the municipality level from the *Census of Manufacture* (METI) and wages for all sectors at the prefecture level from the *Monthly Labour Survey* by the *Ministry of Health, Labour and Welfare*, as well as employment shares at the municipality level. We describe this procedure in Appendix A.1.

(v) We compile data on geographic characteristics, such as the probability on heavy earthquakes from *Headquarters for Earthquake Research Promotion*, and the average precipitation per m² from the *Japan Meteorological Agency*. Importantly, following Saiz (2010), we calculate the share of developable land in each municipality, using very fine-grained 30 by 30m data on elevation and slopes, as well as detailed information on water bodies. In Appendix A.2, we outline the exact procedure to calculate the share of developable land in each municipality.

(vi) For the identification of some of the model’s parameters, we will rely on historical data on infrastructure networks and population, going back to the 8th century. We describe the compilation of these data in Appendix A.3.

2.3 Descriptives

In Table 1, we report descriptive statistics for the commuting data for areas that are within 4 hours travelling from each other. In total we observe about 60 million commuters each year on mainland Japan. Observe that 83% of the one-way commutes are less than 30 minutes long, while
97% is less than an hour. The average travel time over all OD-pairs by train is then 155 minutes. However, if we weight by the number of commuters on each link, it is only 12 minutes. Similarly, the average travel time by road is 211 minutes, but the weighted travel time is only 17 minutes.

Table 2 shows descriptive statistics for the TSR data. There are 17,268,734 links between firms. Note that almost 60% of the links are within 30 minutes travelling, almost 75% within 60 minutes and almost 95% within 4 hours. Unsurprisingly, the decay of firm linkages is thus lower than for commuting. Note that we keep all links that are within 18 hours travelling by car or train for them to be reachable within a day travel (as there are no night trains). This applies to more than 99% of the links. The travel time by train is on average 10 hours, but if we weight this by the number of links, it is just 65 minutes. Similarly, the average travel time between municipalities is more than 14 hours, but only 102 minutes if we weight by number of links.

Table 3 reports descriptive statistics for the employment and population data between 1955 and 2013. The average population density is 1,012 per km², while it is about half this value for employment. Population and employment are highly correlated: the correlation between log population density and log employment density is 0.968. The population-weighted average travel time by train is 10.7 hours, while the average travel time by road is 14.6 hours. Note that 22% of the municipalities are within 25km of a Shinkansen station. The share of developable land is 84%. Most of Japan is close to the sea as the average distance to the coast is just over 22km.

2.4 Reduced-form results

In Appendix B we test for the reduced form effects of the opening of Shinkansen stations – proxied by a dummy indicating whether a municipality is within 25km of a Shinkansen station – on accessibility, population and employment.

First, we estimate the effects of the Shinkansen on railway accessibility by the average travel time to the population in mainland Japan by train. To address the issue of non-random opening of Shinkansen stations, (i) we include municipality fixed effects, (ii) we only keep municipalities where future stations are to be opened, and (iii) we calculate the average travel time using the current network, but based on the population distribution in 1872. We find that having a Shinkansen station within 25km leads to a reduction in average travel time of about 13%. As a
placebo check, we regress the mean travel time over the road on whether a Shinkansen station has been opened. The effect is close to zero.

Second, we investigate the effects of Shinkansen station openings on population and employment density. We again include municipality fixed effects and only keep municipalities where future stations are to be opened. We also test whether excluding the large metropolitan areas changes our results. All in all, we find a positive effect of a station openings on population and employment density which varies from 2 to 4%.

3 The model

Even though reduced-form results may be indicative of the expected effects for the areas that receive a station, a general equilibrium model is necessary to understand the overall long-run effects on the spatial distribution of economic activities within Japan. Moreover, one may question whether the reduced-form estimates can be interpreted as causal as unobserved trends are notoriously hard to control for in a non-experimental setting. We therefore set-up a quantitative general equilibrium model.

3.1 The economy

Consider an economy with a mass M of workers, a finite location space $i = 1, ..., I$ with $I \geq 2$, a homogeneous service and a continuum of horizontally differentiated varieties. The service is non-tradable and produced by using varieties. Varieties are costly traded and produced by using labor. Varieties are used as an intermediate input by the service sector and/or consumed. Specifically, denoting by $x_{ji}(\nu)$ the quantity of variety ν produced in j and used in i, we assume that $\eta x_{ji}(\nu)$ units of variety ν are used to produce the non-tradable service, while $(1 - \eta) x_{ji}(\nu)$ units are consumed by workers, with $\eta \in [0, 1]$. If $\eta = 1$, our the setting boils down to Ethier (1982) while we fall back on Krugman (1980) when $\eta = 0$.

3.2 Workers

Workers choose simultaneously a residence $i = 1, ..., I$ and a workplace $j = 1, ..., I$, that is, a location pair ij, as well as her consumption of the non-tradable service and tradable varieties. Each residence i is endowed with residential amenities $A_i > 0$. Likewise, each workplace j has work amenities $B_j > 0$.

Each worker $\omega \in [0, M]$ is characterized by her type, which is defined by the vector of match values with location pairs ij, i.e., $Z(\omega) \equiv (z_{ij}(\omega)) \in \mathbb{R}_+^{I \times I}$. The distribution of types $Z(\omega)$ is the
product measure of \(I^2 \) identical Fréchet distributions, that is,

\[
G(Z) = M \exp \left(-\sum_{i=1}^{I} \sum_{j=1}^{I} z_{ij}^{-\varepsilon} \right),
\]

(1)

where \(\varepsilon > 0 \) accounts for the dispersion of idiosyncratic tastes.

An \(\omega \)-worker who lives at \(i \) and works at \(j \) has a utility given by

\[
U_{ij}(\omega) = \frac{z_{ij}(\omega)A_iB_j}{t_{ij}} \left\{ \frac{H_i + (1 - \eta)}{\frac{1}{\sigma} \int_{\Omega_j} (x_{ji}(\nu))^{\frac{\sigma-1}{\sigma}} \, d\nu} \right\}^{\frac{1}{\sigma-1}}, \quad i = 1, \ldots, I.
\]

(2)

Thus, amenities have the nature of a horizontally differentiated good, implying that workers are heterogeneous in the quality of their match with a pair \(ij \); commuting involves an iceberg cost \(t_{ij} > 1 \) between \(i \) and \(j \) in terms of utility, which is the same across workers’ types; \(H_i > 0 \) is the consumption of the non-tradable service at \(i \); \(\Omega_j \) is the set of varieties produced in \(j \) and \(\sigma > 1 \) the elasticity of substitution between any two varieties.

The budget constraint of a \(\omega \)-worker who has chosen the pair \(ij \) is given by

\[
w_j = P_iH_i + (1 - \eta) \sum_{j=1}^{I} \int_{\Omega_j} p_{ji}(\nu)x_{ji}(\nu) \, d\nu,
\]

(3)

where \(w_j \) is the wage paid in location \(j \), \(P_i \) the price of the service at \(i \), and \(p_{ji}(\nu) \) the price of variety \(\nu \) produced in \(j \) and sold to \(i \).

Since the price of the service at \(i \) is equal to the price index of intermediate goods at this location, the indirect utility of an \(\omega \)-worker can be written as follows:

\[
V_{ij}(\omega) = z_{ij}(\omega)A_iB_j \frac{w_j}{t_{ij}P_i},
\]

(4)

where \(P_i \) is the price index of varieties at \(i \):

\[
P_i = \left(\sum_{j=1}^{I} p_{ji}^{1-\sigma} N_j \right)^{1/(1-\sigma)}, \quad i = 1, \ldots, I,
\]

(5)

\(N_j \) being the mass of firms located at \(j \).

To sum up, workers make mutually exclusive choices among a finite number of indivisible alternatives, i.e., the location pairs \(ij \).

Let

\[
S_{ij} = \left\{ Z \in \mathbb{R}_+^{I \times I} ; V_{ij}(Z) = \max_{r,s=1,\ldots,I} V_{rs}(Z) \right\}
\]

be the set of types \(z \) such that \(ij \) is (weakly) preferred to all other location pairs \(rs \) while \(\mu \) is the Lebesgue measure over \([0, M]\). Then, using (1) and (4), the share \(n_{ij} \) of workers who choose the location pair \(ij \) equals

\[
n_{ij} = \mu(Z^{-1}(S_{ij})) = \frac{A_iB_j \left[w_j/(t_{ij}P_i) \right]^\varepsilon}{\sum_{r=1}^{I} \sum_{s=1}^{I} A_rB_s \left[w_s/(t_{rs}P_r) \right]^\varepsilon}.
\]

(6)
where the last equality stems from the Fréchet distribution assumption. Other things being equal, a location \(i \) endowed with more amenities host more residents regardless of their workplaces. Likewise, a workplace \(j \) with higher amenities attract more workers regardless of their residences. By contrast, a higher commuting cost \(t_{ij} \) lowers the probability that a worker chooses the location pair \(ij \).

Workers who share the same type choose the same location pair \(ij \) and reach the same equilibrium utility level (up to a zero-measure set of workers). By contrast, workers who make the same choice but have different types do not have the same equilibrium utility level. Likewise, workers who choose different location pairs do not enjoy the same equilibrium utility level. Nevertheless, as the \(V_{ij}(\omega) \) are Fréchet-distributed, the average utility \(\bar{V} \) across all workers equals the average utility across workers who choose the location pair \(ij \) regardless of the pair \(ij \), with \(i, j \in \{1, ..., I\} \):

\[
\bar{V} \equiv \int_0^\infty \max_{r,s=1,...,I} V_{rs}(Z(\omega)) d\omega = \Gamma \left(\frac{\varepsilon - 1}{\varepsilon} \right) \left\{ \sum_{r=1}^I \sum_{s=1}^I A_r B_s \left[w_s / (t_{rs} P_r) \right] \right\}^{1/\varepsilon},
\]

where \(\Gamma(\cdot) \) is the gamma function. Since each worker is negligible, she treats \(\bar{V} \) parametrically.

Let \(L_i (M_i) \) the mass of residents (workers) in \(i \). National labor market clearing implies that the total mass of residents is equal to the total mass of workers:

\[
\sum_{i=1}^I L_i = \sum_{j=1}^I M_j = M. \tag{7}
\]

Since workers are free to choose where to live through the choice of the pair \(ij \), the population \(L_i \) in location \(i \) is endogenous. Furthermore, since workers commute, the population \(L_i \) generally differs from the volume of employment \(M_i \) in \(i \), which is also endogenous.

Conditional on the residential location \(i \), the share \(n_{ij|i} \) of workers who take a job at \(j \) is given by the gravity commuting equation:

\[
n_{ij|i} \equiv \frac{n_{ij}}{\sum_{k=1}^I n_{ik}} = \frac{B_j (w_j / t_{ij})^\varepsilon}{\sum_{k=1}^I B_k (w_k / t_{ik})^\varepsilon}, \quad j = 1, ..., I.
\]

In other words, the share \(n_{ij|i} \) depends on the wage \(w_j \) and amenities \(B_j \) at location \(j \), on the commuting cost \(t_{ij} \) between \(i \) and \(j \) (bilateral resistance), as well as the wages, amenities and commuting costs to all workplaces (multilateral resistance).

Therefore, the mass of workers in location \(j \) is given by

\[
M_j = \sum_{i=1}^I n_{ij|i} L_i = \sum_{i=1}^I \frac{B_j (w_j / t_{ij})^\varepsilon}{\sum_{k=1}^I B_k (w_k / t_{ik})^\varepsilon} L_i, \quad j = 1, ..., I. \tag{8}
\]

As a result, the employment in location \(j \) is the sum across all locations \(i \) of the \(i \)-residents who commute to \(j \). Applying Proposition B.1 of Monte et al. (2018) implies that (8) has a unique solution in \((w_1, ..., w_I) \).
Likewise, conditional on the workplace in j, the share n_{ijj} of workers who live in i is also given by the following equation:

$$n_{ijj} \equiv \frac{n_{ij}}{\sum_{r=1}^{I} n_{rj}} = \frac{A_i/(t_{ij}P_i)^{\varepsilon}}{\sum_{r=1}^{I} A_r/(t_{rj}P_r)^{\varepsilon}}.$$

Hence, the population L_i in i is equal to the sum across all locations j of the i-workers who commute to j:

$$L_i = \sum_{j=1}^{I} n_{ijj} M_j = \sum_{j=1}^{I} \frac{A_i/(t_{ij}P_i)^{\varepsilon}}{\sum_{r=1}^{I} A_r/(t_{rj}P_r)^{\varepsilon}} M_j > 0, \quad i = 1, \ldots, I. \quad (9)$$

The gravity equations (8) and (9) describe the residential and workplace choices made by workers through commuting and migration flows across locations.

3.3 Firms

The intermediate sector produces a continuum of differentiated varieties. A variety is either a good shipped to or a task performed by a technical worker who travels to a place where the variety is used. Variety ν is produced under increasing returns and monopolistic competition. Locations have different endowments that affect firms’ productivity. More specifically, producing a variety at j involves a marginal labor requirement $1/E_j > 0$ and a fixed labor requirement $F_j > 0$, which are both location-specific. In line with economic geography, shipping a variety from j to i is costly and given by the iceberg transport cost $\tau_{ji} \geq 1$, which means that τ_{ji} units of the variety must be shipped for one unit to arrive at destination. Since locations have different relative positions in the transport network, transport costs are specific to any origin-destination pair ij. In sum, firms are heterogeneous through the particular location they choose. However, firms that select the same location are homogeneous.\(^8\)

Denoting by $x_{ji}(\nu)$ the quantity of variety ν produced in j and sold to i, we assume that $\eta x_{ji}(\nu)$ units of variety ν are used to produce the non-tradable service, while $(1 - \eta) x_{ji}(\nu)$ units are consumed by workers. The non-tradable service is produced under constant returns and perfect competition. The production function of the service sector at location i is given by a CES bundle of differentiated varieties:

$$H_i = \left[\sum_{j=1}^{I} \int_{\Omega_j} (\eta x_{ji}(\nu))^{\sigma-1} \, d\nu \right]^{\frac{\sigma}{\sigma-1}}. \quad (10)$$

Since the consumption service is non-tradable, its production and consumption at $i = 1, \ldots, I$ are equal. As usual, symmetry implies that we may drop the variety label ν.

\(^8\)It is straightforward to allow for heterogeneous firms within locations.
Free entry in the intermediate sector implies zero profits. Hence, the aggregate income at \(i \) is equal to the sum of individual incomes \(w_j \) of all \(i \)-residents:

\[
Y_i \equiv \sum_{j=1}^{I} n_{ij} L_i w_j. \tag{11}
\]

Given (10) and (11), profit maximization by the final sector implies that the aggregate demand \(X_{ji}^{\text{int}} \) at \(i \) for an intermediate variety produced in \(j \) is equal to \(X_{ji}^{\text{int}} = \eta p_{ji}^{-\sigma} P_i^{\sigma-1} Y_i \). Likewise, given the budget constraint (3), utility maximization implies that consumers’ aggregate demand \(X_{ji}^{\text{fin}} \) at \(i \) for a variety produced in \(j \) is equal to \(X_{ji}^{\text{fin}} = (1 - \eta) p_{ji}^{-\sigma} P_i^{\sigma-1} Y_i \). Consequently, the total demand at location \(i \) for a variety produced in \(j \) is given by

\[
X_{ji} \equiv X_{ji}^{\text{int}} + X_{ji}^{\text{fin}} = p_{ji}^{-\sigma} P_i^{\sigma-1} Y_i. \tag{12}
\]

The expenditure share of firms located in \(i \) on varieties produced in \(j \) is then given by the gravity equation:

\[
\frac{N_j p_{ji} X_{ji}}{\sum_{k=1}^{I} N_k p_{ki} X_{ki}} = \frac{N_j p_{ji}^{1-\sigma} P_i^{\sigma-1} Y_i}{\sum_{k=1}^{I} N_k p_{ki}^{1-\sigma} P_i^{\sigma-1} Y_i} = \frac{M_j / F_j (\tau_{ij} w_j / E_j)^{1-\sigma}}{\sum_{k=1}^{I} M_k / F_k (\tau_{ik} w_k / E_k)^{1-\sigma}}. \tag{13}
\]

An intermediate firm set up in \(j \) maximizes its profit given by

\[
\Pi_j = \sum_{i=1}^{I} (p_{ji} - \tau_{ji} w_j / E_j) X_{ji} - w_j F_j, \quad j = 1, ..., I. \tag{14}
\]

Profit maximization yields the equilibrium price:

\[
p_{ji} = \frac{\sigma}{\sigma - 1} \left(\frac{w_j \tau_{ji}}{E_j} \right), \tag{15}
\]

so that (5) can be rewritten as follows:

\[
P_i^{1-\sigma} = \left(\frac{\sigma}{\sigma - 1} \right)^{1-\sigma} \sum_{j=1}^{I} \left(\frac{1}{\sigma F_j} \right) \left(\frac{w_j \tau_{ji}}{E_j} \right)^{1-\sigma} M_j, \quad i = 1, ..., I. \tag{16}
\]

It then follows from (12) and (15) that a firm’s equilibrium output at location \(j \) is given by

\[
q_j \equiv \sum_{i=1}^{I} \tau_{ji} X_{ji} = (\sigma - 1) F_j E_j. \tag{17}
\]

To produce this quantity, a firm located in \(j \) must hire \(m_j \) workers:

\[
m_j \equiv q_j / E_j + F_j = \sigma F_j. \tag{18}
\]

The mass of firms \(N_j \) in \(j \) is obtained from the labor market clearing condition at \(j \):

\[
N_j = \frac{M_j}{\sigma F_j}, \quad j = 1, ..., I - 1. \tag{19}
\]
with \(N_j = (1 - \sum_{j=1}^{J} M_j) / \sigma F_j \). Note that \(N_j > 0 \) if and only if \(M_j > 0 \).

Free entry and exit in location \(j \) imply that equilibrium profits are zero. Plugging (12) and (15) into (14) yields the equilibrium operating profit of a firm located in \(j \):

\[
\pi_j \equiv \sum_{i=1}^{I} (p_{ji} - \tau_{ji} w_j / E_j) X_{ji} = \sum_{i=1}^{I} \frac{1}{\sigma} \left(\frac{\sigma}{\sigma - 1} \tau_{ji} w_j / E_j \right)^{1-\sigma} P_i^{\sigma-1} Y_i = w_j F_j.
\tag{20}
\]

3.4 The spatial equilibrium

The spatial equilibrium is given by the equilibrium wages at each location, \((w_1^*, ..., w_I^*) \in \mathbb{R}_+^I\) with \(w_i^* = 1 \), the equilibrium income at each location, \((Y_1^*, ..., Y_I^*)\), the equilibrium population at each location, \((L_1^*, ..., L_I^*)\) with \(\Sigma_i L_i^* = 1 \), the equilibrium employment level at each location, \((M_1^*, ..., M_I^*)\) with \(\Sigma_i M_i^* = 1 \), and the equilibrium price index at each location, \((P_1^*, ..., P_I^*)\), which solve the \(5I - 3 \) equations (8), (9), (11), (16), and (20).

The solution to the above equations is such that workers maximize their utilities under their budget constraints, intermediate firms maximize their own profits, the final sector maximizes its profit, and markets clear. Since workers are heterogeneous in their preferences for amenities, those who choose the same working place need not live at the same location. However, those who live at the same place work at the same location, i.e. the location that maximizes their income. Free entry implies that intermediate firms earn zero profits. Since the final sector operates under constant returns and perfect competition, its equilibrium profit is equal to zero. Consequently, workers’ incomes are equal to wages. Since all parameters of these equilibrium conditions are strictly positive, Theorem 1(i) of Allen et al. (2015) implies that there exists a spatial equilibrium whose solutions are strictly positive.

Proposition 1. There always exists a spatial equilibrium and all variables are strictly positive. Furthermore, if \(\sigma \geq \varepsilon + 1 \), this equilibrium is unique.

Proof. The proof is given in Appendix C.

Since estimations of the elasticity of substitution \(\sigma \) among inputs is 4.7 on average (Peter and Ruane, 2018), the condition for uniqueness holds if the population is sufficiently heterogeneous.\(^9\)

Note that \(\sigma \geq \varepsilon + 1 \) is a sufficient, but not a necessary, condition for uniqueness. Therefore, an equilibrium can be unique even in the presence of agglomeration economies such as those considered in the next subsection.

\(^9\)This value may be considered as being on the high side. Miranda-Pinto and Young (2020) show that the elasticity of substitution among intermediate inputs varies a lot across sectors and is considerably higher for service sectors.
3.5 Density externalities

In line with urban economics, we recognize that the employment density in \(j \) affects the TFP \(E_j \) through agglomeration economies. More specifically, we assume that

\[
E_j = e_j \cdot \left(\frac{M_j}{L_j} \right)^\gamma .
\]

(21)

It is well documented that workers’ productivity increases with the employment density \(M_j/L_j \) where \(L_j \) is the amount of developable land in \(j \). The literature on agglomeration economies suggests that \(\gamma \approx 0.02 \) (Rosenthal and Strange, 2004; Combes et al., 2011). The constant \(e_j \) stands for location-specific fundamentals that affect workers’ productivity in \(j \).

Regarding the fixed labor requirement \(F_j \), we assume that

\[
F_j = f_j \cdot \left(\frac{M_j}{L_j} \right)^\zeta ,
\]

(22)

where the constant \(f_j \) captures location-specific fundamentals that affect firms’ entry cost at \(j \), e.g. access to the sea and low frequency of earthquakes. Furthermore, we also allow \(F_j \) to depend on the employment density. Because population and employment densities are very highly correlated in our data (\(\rho = 0.984 \)), it does not critically matter whether we include population or employment density. Hence, a higher density implies that there is more competition for land, so that land rents will go up, which we consider as being equivalent to a higher fixed labor requirement. Tighter environmental regulations and a higher rental rate of capital associated with a larger number of firms in \(j \) also amount to a higher fixed labor requirement. As a result, we expect \(\zeta > 0 \).

In Proposition 1, \(E_j \) and \(F_j \) are treated as constants. Accounting for (21) and (22) in the above subsection renders the computation of the eigenvalues determined in Appendix C far too complicated to yield clear-cut results about the uniqueness of the spatial equilibrium. Nevertheless, there exists at least one equilibrium even in the presence of density economies. Moreover, like Ahlfeldt et al. (2015), we investigate numerically whether the obtained equilibria are unique, which holds for a large range of realistic starting values.

4 Structural estimation

4.1 Estimation and identification

Our estimation procedure to identify the model’s parameters consists of five steps. First, using commuting data, we recover commuting travel time elasticities for trains and cars (\(\varphi_R \) and \(\varphi_H \)). Second, using data on production networks, we estimate a gravity equation to obtain the transport time elasticities (\(\vartheta_R \) and \(\vartheta_H \)). Third, using data on wages and a Bartik-instrument, we identify
the degree of worker heterogeneity (\(\varepsilon\)). Fourth, we recover productivities and fixed requirements \((E_j \text{ and } F_j)\). Finally, we use information on employment density \((M_j)\), productivities \((E_j)\), and the fixed requirement \((F_j)\) to estimate the density elasticities \(\gamma\) and \(\zeta\). In what follows, we discuss the moment conditions and endogeneity concerns in more detail.

4.1.1 Step 1: A gravity model for workers’ commuting

The commuting gravity equation (6) leads to the first moment condition:

\[
\mathbb{E}\left[\log(n_{ijy}M_y) - \log\bar{t}_{ijy} - \nu_{iy} - \nu_{jy}\right] = 0,
\]

where \(\bar{t}_{ijy} \equiv e^{\kappa_R \bar{d}_{R,ijy}} + e^{\kappa_H \bar{d}_{H,ijy}}\); \(\bar{d}_{R,ijy}\) and \(\bar{d}_{H,ijy}\) are travel times by train and car in which HSRs and highways are excluded; \(\nu_{iy}\) and \(\nu_{jy}\) are residence-by-year and workplace-by-year fixed effects capturing \(A_{iy}/P_{iy}^\varepsilon\) and \(B_{jy}/w_{jy}\); and \(\kappa_R \equiv -\kappa_R \varepsilon\) and \(\kappa_H \equiv -\kappa_H \varepsilon\) are parameters to be estimated.

Following Larch et al. (2019), we can count the number of connections between \(i\) and \(j\) in year \(y\) and estimate the above specification by Poisson Pseudo-Maximum Likelihood (PPML).

The inclusion of residence and workplace fixed effects implies that endogeneity is unlikely to be a major issue. However, when aiming to estimate the causal parameters \(\kappa_R\) and \(\kappa_H\), one may be concerned about reverse causality, which would imply that our estimates would be biased downwards (i.e., they would be more negative). Reverse causality would be present if areas with large commuting flows receive more infrastructure to alleviate traffic congestion. One way to address this concern is to instrument travel time by Euclidian distance. This did not lead to significantly different coefficients, which suggests that this is not a main issue. Since here we consider travel times by train and by car, we cannot instrument both variables by the Euclidian distance. To address further this issue, we estimate models where we only keep location pairs that were already connected (i) in the plans for railway and roads infrastructure laid out during World War II, (ii) by roads and railways in 1900 and (iii) by roads in 725, when Nara was the capital of Japan. Hence, in line with Faber (2014) and Banerjee et al. (2020), when there was an early direct connection by train or road, we alleviate the concern that two places are directly connected because of a high flow.

We improve on this by estimating equations where we consider only locations where Shinkansen stations have been opened. First, it is unlikely that more remote locations will receive a Shinkansen station. Second, by considering locations that are already connected, it is also unlikely that those locations have received more investments because of a higher flow.\(^{10}\) By only keeping location pairs connected by the Shinkansen, we focus mainly on central locations. Finding similar elastic-

\(^{10}\) Note that the frequency of trains between two locations may be increased when the passenger flow increases. However, frequency is not part of our measure of travel time.
ities when keeping all location pairs suggests that travel time elasticities do not much vary with the location set.

One may still be concerned that our values for κ_R and κ_H, while causal, are not ‘deep’ structural parameters in the sense that they depend on the overall provision of transport infrastructures in Japan. Note that there is always a concern in structural models that the model’s parameters will change when large changes in the economy occur. We will provide some suggestive evidence that our main results are not significantly affected when the travel time by train is substantially higher than the travel time by road on certain links, that is, links where the train is a less attractive transport mode.\(^{11}\)

4.1.2 Step 2: A gravity model for firms’ production networks

We now estimate a gravity equation for firms. To this end, we use (13) to obtain the second moment condition:

$$\mathbb{E}[\log(N_j p_{ji} X_{ji}) - \log \tau_{ijy} - v_{iy} - v_{jy}] = 0,$$

(24)

where $N_j p_{ji} X_{ji}$ denotes expenditures by firms located in i on varieties produced in j.

The TSR data provide information on the amount of trade links between i and j between 2007 and 2017, which is the proxy for expenditure on trade flows. Set $\tau_{ji} \equiv e^{\theta_R d_{R,ji} + \theta_H d_{H,ji}}$ where $\theta_R \equiv (1 - \sigma) \theta_R$ and $\theta_H \equiv (1 - \sigma) \theta_H$. The variables v_{iy} and v_{jy} are buyer-by-year and seller-by-year location fixed effects, respectively, which absorb the region-specific price index and scale parameters. To address the issue of zero flows, we estimate the above specification by PPML.

Reverse causality may be an issue when very large firms, which have many input suppliers, lobby for better infrastructure. We address reverse causality using the same approach as in Step 1 by keeping connected locations (i) in the high-speed railway plan designed in 1942 to link Tokyo to Beijing and the National Highway Plan designed in 1943, (ii) by roads and railways in 1900, (iii) by roads in 725, or (iv) by the Shinkansen network.

There are two more concerns, that is, omitted variable bias and sample selection. First, trade gravity models using international data are often plagued by omitted variable bias. For example, trade and cultural barriers are hard to quantify but are correlated with travel times. However, because we focus on one country which is culturally homogeneous and which has one main language, we may expect cultural barriers to be very low. Likewise, there are few trade barriers within Japan. The main omitted variables arguably relate to other transport modes, i.e., the possibility that people travel by airplane. However, we know that air travel is not

\[^{11}\text{Although the estimates may differ, in practice the relative ratio of commuters’ preferences for the train and car is not so important because we focus on the Shinkansen, which is hardly used by commuters. Hence, the relative ratio of travel times by train and car is barely affected in our counterfactual scenarios.}\]
important in determining trade linkages within mainland Japan. Because of the relatively high fixed requirements to get to the airport and clear security, the differences in travel times within Japan (say, whether you fly from Sapporo to Osaka or Tokyo) are marginal. Nevertheless, we will also estimate regressions where we only include location pairs that are within 400km of each other, where the share of airline trips is negligible, and show that the parameters are hardly different. Second, we should worry that our results are driven by a few large firms (say, Toyota or the SoftBank Group) that have many input suppliers. Indeed, Bernard et al. (2019) show that the distribution of in-degree links by firm is highly skewed. We will therefore estimate regressions where we only include the most important 24 input suppliers for each firm.

One may again be concerned that \(\nu_R\) depends on the overall provision of railways in Japan. We will therefore check whether \(\nu_R\) is not substantially different on links where travel time by train is relatively higher than travel time by car or truck. We further consider whether the travel time elasticities are sensitive to the inclusion of a dummy variable indicating whether a location pair is on the east and west of Japan. This variable is based on Wrona (2018) who showed that trade between East and West Japan is considerably lower than what bilateral trade costs would imply. We also include a dummy indicating whether a location pair is on the same island. We will show that \(\nu_R\) and \(\nu_H\) are insensitive to the inclusion of these variables.

4.1.3 Step 3: Identifying workers’ heterogeneity

Given estimates for \(\nu_R\) and \(\nu_H\), using the commuting gravity equation (6) allows us to recover the so-called ‘transformed’ wages that would prevail in workplace \(j\) in year \(y\):

$$
\mathbb{E} \left[M_{jy} - \sum_{i=1}^{I} \frac{\tilde{w}_{jy}/t_{ijy}}{\sum_{k=1}^{I} \tilde{w}_{ky}/t_{kijy}} L_{iy} \right] = 0,
$$

(25)

where \(\tilde{w}_{jy} \equiv B_{jy} w_{jy}\) denote the transformed wages that are the actual wages weighted by the workplace amenities \(B_{jy}\).

We are now equipped to determine the degree \(\varepsilon\) of workers’ heterogeneity. Using temporal variation in the transformed wages \(\tilde{w}_{jzy}\) in municipality \(j\) in prefecture \(z\) in year \(y\) and data on observed wages for different years, we can measure workers’ heterogeneity as follows:

$$
\mathbb{E} \left[\log \tilde{w}_{jzy} - B_{jy} - B_{zy} - \varepsilon \log w_{jzy} \right] = 0,
$$

(26)

where we decompose \(B_{jy}\) in components that are, respectively, municipality-specific and prefecture-year-specific by including corresponding fixed effects, respectively. In other words, (26) is a linear regression of the estimated transformed wages on the wages observed in the data and fixed effects.

Ahlfeldt et al. (2020) point out accurately that \(\varepsilon\) is unlikely to be causal because time-varying workplace amenities are potentially correlated to wages. A new Shinkansen line, for example,
not only affects productivity, but also improves access to recreational amenities.12 Therefore, we adopt a Bartik-style shift-share instrument to instrument for wages w_{jzy}. We use the employment shares in each municipality in 1978 and predict employment from 2001 onwards using the national employment growth in each of the 10 sectors. The idea is that national shocks to employment in different sectors (e.g., trade liberalization) are unrelated to local changes in amenities, so that we identify a causal estimate of ε.

4.1.4 Step 4: Recovering productivities and fixed requirements

Given the parameters $\hat{\theta}_R$, $\hat{\theta}_H$, $\hat{\varepsilon}$, and σ, as well as data on wages w_{jy}, using (20) – or, equivalently, (33) – and (19) and using data on the number of firms N_{jy} in j in year y, we can determine productivities E_{jy}:

$$
E \left[N_{jy} - M_{jy} \frac{\sum_{k=1}^{I} (w_{ky} \tau_{ky}/E_{ky})^{1-\sigma} N_{ky}}{\sum_{i=1}^{I} w_{jy}^{-\sigma} (\tau_{jy}/E_{jy})^{1-\sigma} Y_{iy}} \right] = 0,
$$

for $j = 1, 2, ..., I$. Since we have I equations and I unknown variables, we can use a Newton-Raphson procedure to solve for the unknown productivities E_{jy}. Finally, we can easily recover fixed requirements F_{jy} using data on employment and the number of firms through (19).

4.1.5 Step 5: Estimating density elasticities

We now come the final step, which entails the estimation of agglomeration effects. Since we have recovered productivities, we can estimate:

$$
E \left[\log E_{jy} - e_y - \gamma \log \left(\frac{M_{jy}}{L_j} \right) \right] = 0,
$$

where e_y are year fixed effects and γ is the agglomeration elasticity. Recall that M_{jy}/L_j denotes worker density based on the amount of developable land L_j in j.

It is well known that agglomeration effects cannot be distinguished from unobservable local attributes using solely the observed location decisions of workers because dense locations may be just inherently attractive (Bayer and Timmins, 2007). Hence, γ may not be causal. We first follow a large literature on agglomeration economies that relies on historical instruments (Melo et al., 2008; Combes et al., 2011). That is, we use the population density in 1872 or even go back in time more than 1,000 years by using data on population from 900 (see Appendix A.3 for details on the data). The validity of such an approach rests on the assumption that past unobserved locational features are uncorrelated to current unobserved locational endowments. Conditional on

12The direction of the bias is not entirely clear. If workplace amenities and wages are positively correlated, not controlling properly for workplace amenities will lead to an overestimate of ε. However, if amenities and wages are negatively correlated, ε will be underestimated.
a set of geographical controls and on the prefecture fixed effects, we believe that this assumption is reasonable.

Historical instruments can be criticized. We therefore also propose another strategy based on a suggestion made by Bayer and Timmins (2007) and the particular geography of Japan. Bayer and Timmins (2007) argue that a function of exogenous attributes of other locations ought to serve as an appropriate instrument for the number of workers choosing to work at \(j \). We therefore calculate the share of developable land between 100 and 250km as an instrument for density at \(j \). The share of remote developable land is unlikely to impact unobserved amenities at \(j \).

However, because of geology and because people agglomerate, we may expect that the share of developable land between 100 and 250km is positively correlated to the own share of developable land and to current employment density. One might argue that the share of distant developable land may still be correlated with geographic and geological features of location \(j \). We, therefore, add as additional controls the share of developable land at \(j \), between 0-100km, the earthquake probability, the precipitation level and the distance to the coast.

We repeat the same procedure to obtain the density elasticity \(\zeta \):

\[
\mathbb{E} \left[\log \hat{F}_{jy} - f_y - \zeta \log \left(\frac{M_{jy}}{L_j} \right) \right] = 0. \tag{29}
\]

We expect \(\zeta \) to be positive because, among other things, land prices increase with population density (Combes et al., 2019).

To the extent one still worries that \(\gamma \) and \(\zeta \) are biased and affect the results, we will also discuss results where we assume values from the literature (\(\gamma = 0.02 \) and \(\zeta = 0.05 \)), or where we assume away endogenous spillovers altogether. We show that these alternative assumptions do not materially change our conclusions.

4.2 Structural parameters

We estimate the parameters of the model using the procedure outlined above. Since data on commuting are available from 2000 onwards and data on firm production networks from 2006 and 2011, we use data on employment and population between 2000 and 2015. We assume the elasticity of intermediate input substitution \(\sigma = 4.7 \), following recent evidence provided by Peter and Ruane (2020).

We report the results of the structural parameters in Table 4. For each step, we provide a detailed discussion of the results in Appendix D, including several robustness analyses.

[Table 4 about here]

First of all, we estimate the railway and highway commuting travel time elasticities and find that the elasticity with respect to travel time by train is \(\zeta_R = -0.0222 \), while the elasticity is
about twice as high when traveling by car ($\hat{\eta}_H = -0.0461$). This implies that a ten-minute travel time increase by train reduces the number of commuters by 22%, while a ten-minute increase in travel time by car decreases the number of commuters by 46%. There are two possible explanations for this difference. First, because car is used more often for commuting, at least outside the large metropolitan areas, workers may care less about accessibility by train. More specifically, according to the Nationwide Person Trip Survey by the Ministry of Land, Infrastructure, Transport and Tourism, in Japan 20 – 50% of the commutes is by car, while at most 20% commute by train. Second, commuters may participate in alternative activities during a commute by train, and thus they may be less sensitive to a somewhat longer travel time by train. All in all, the overall commuting time elasticity is very similar to earlier studies (see Ahlfeldt et al., 2015, for Berlin and Koster, 2020, for England).13 In Appendix D.1, we show that our finding of a larger commuting time elasticity for traveling by car holds in various alternative specifications.

Moving on to the trade travel time elasticities, we find that the travel time elasticity with respect to train, $\hat{\eta}_R$, is negative and highly statistically significant, implying that the number of trade linkages decreases by 27% for a 10 minutes increase in railway travel time. By contrast, travel time by road does not affect the probability of having a linkage ($\hat{\eta}_H = 0.0013$).14 While the effect is statistically significant because of our large dataset, it is extremely small. This suggests that low travel time by train, which enables face-to-face contacts, is much more important for firms’ trade linkages than the time needed for transporting goods (transport by truck is relatively cheap within Japan). Recall that the share of trips by train for trips between 300 and 700km (which are unlikely commuting trips) exceeds 50%. Unlike in the U.S., the train is by far the most preferred transport mode in Japan for long-distance trips. The overall travel time elasticity is about one-third of the commuting time elasticity, which is in line with Monte et al. (2018). We provide additional robustness checks in Appendix D.2 and confirm that travel time elasticities are essentially unaffected.

For the workers’ heterogeneity parameter, we find that $\hat{\varepsilon} = 2.19$, which we obtain by a regression of the transformed wages \tilde{w}_{it} on wages obtained from the data (see Appendix A.1). Recall that we include municipality and prefecture-by-year fixed effects and instrument observed wages by a Bartik-style predicted employment measure based on employment shares in 1978. Our estimate of ε is on the low side as compared to the existing literature. Eaton and Kortum (2002) find $\varepsilon = 8.28$ while Ahlfeldt et al. (2015) find $\varepsilon = 6.2$ for Berlin. It is hard to compare results because the former focus on international trade flows and the latter on commuting flows.

13Specifically, if we include either railway travel time or travel time by road, we find elasticities of respectively 0.0776 and 0.0777, which is very similar to the literature.

14If we include only travel time by road like in Monte et al. (2018), we find an elasticity of about -0.02, which is comparable to them.
within one city. By contrast, for the U.S., Monte et al. (2018) find $\hat{\varepsilon} = 3.3$. Our approach better addresses endogeneity concerns, such as unobserved workplace amenities, which leads to a considerably lower estimate.\footnote{Ahlfeldt et al. (2015) recover ε by comparing the variances of log transformed wages to the variance of log observed wages. This approach would here leads to $\varepsilon = 77.79$, which is unrealistically large. This overestimate is likely to be a result of correlation between unobserved workplace amenities and wages (Ahlfeldt et al., 2020).}

The final two parameters capture density elasticities of the estimated productivities \hat{E}_{iy} and fixed requirements \hat{F}_{iy}. We obtain $\hat{\gamma}$ by a regression of estimated productivities on employment density in each municipality. To address the usual endogeneity issues, we add a set of geographical variables (e.g., earthquake probability and share of developable land). Furthermore, we instrument employment density by the population density in 900. In Appendix D.4, we also instrument for employment density by using population density in 1872 or by a spatially-lagged instrument, i.e., the share of developable land between 100 and 250km. This leads to very similar estimates. The agglomeration elasticity ($\hat{\gamma} = 0.0647$) is within the range suggested by the literature, which is typically between 0.02 and 0.07 (Rosenthal and Strange, 2004; Melo et al. 2009).

Finally, using the same identification strategy based on long-lagged instruments, we find that the elasticity of fixed requirements with respect to employment density is 0.0533. We believe that a positive value for this elasticity is reasonable for the following two reasons. First, a higher density implies that there is a higher demand for land. Since it is expensive to build taller buildings, buildings prices will increase. Second, when demand for land is higher, it is becomes more attractive to transform semi-developable land, which entails large transformation costs into land that is suitable for development. Both imply higher land rents. Note also that our estimate falls within the range estimated by Combes et al. (2019).

4.3 Overidentification checks

To investigate whether our model captures reality reasonably well, we exploit data that we did not use so far and compare them to the estimated productivities \hat{E}_{jy} and fixed requirements \hat{F}_{jy}. First, we gather data on assessed land prices for 2001, 2006, 2009 and 2014 from the Ministry of Land, Infrastructure, Transport and Tourism. We aggregate the neighborhood-level data at the municipality level. Furthermore, we obtain the municipality-level data on sales for 2011 from the Economic Census for Business Activity (MIC and METI) 2012.

In Figure 3A, we correlate buildings prices and the estimates of fixed requirements. We find a bivariate correlation between log buildings prices and our estimate of F_{jy} of 0.393, which is reasonably high. In Figure 3B, we correlate buildings prices and the price index P_{jy}, which is estimated from the model. We find a strong negative correlation of -0.654. This is consistent
with the idea that prices are higher in locations that are less accessible because there is less competition than in populated and centrally located areas (see, e.g., Handbury and Weinstein, 2015).

[Figure 3 about here]

In the lower panel of Figure 3, we consider sales per worker and correlate that with estimated productivities E_{jy} and transformed wages \tilde{w}_{jy}. In Figure 3C, we find a strong positive correlation of 0.523 between the log of sales per worker and the log of estimated productivities. Hence, sales are higher in places with a higher productivity, which makes sense. Figures 3D shows that the correlation between the log of sales per worker and the log of transformed wages is slightly lower (i.e., 0.462) because the transformed wages account for workers’ idiosyncratic preferences for workplaces. In line with this observation, we find a positive correlation of wages and transformed wages of 0.300.

5 Counterfactual analyses

5.1 Model performance

To assess the impact of large transport infrastructures, we undertake counterfactual experiments given the estimated parameters $\{\hat{\kappa}_R, \hat{\kappa}_H, \hat{\theta}_R, \hat{\theta}_H, \hat{\delta}, \hat{\gamma}, \hat{\zeta}\}$ and σ, the estimated residential amenities and workplace amenities, and the transport network in 2014. We describe the procedure to develop the counterfactual values in Appendix E.1. Given the transport networks in 1957, 1978 and 1996, we back-cast the population and employment levels in these respective years and compare these ones to the values observed in the data. We then regress the observed value in the data on the counterfactual value:

$$\log \left(\frac{L_{iy}}{L_j} \right) = \phi_0 + \phi_1 \log \left(\frac{\hat{L}_{iy}}{L_j} \right) + \epsilon_{iy},$$

where \hat{L}_{iy} is the estimated counterfactual value, ϕ_0 and ϕ_1 are parameters to be estimated, and ϵ_{iy} is an error term. Because \hat{L}_{iy} is estimated, we should incorporate uncertainty in the underlying model’s parameters when calculating standard errors. We find them by bootstrapping the whole structural estimation approach 250 times. Table 5 reports the results.

[Table 5 about here]

In Panel A of Table 5, we back-cast the counterfactual population in 1996. Unsurprisingly, we find a strong effect of the predicted population on the actual population in 1996. In column (1) we
find an elasticity of 0.89. Hence, a 1% increase in the predicted population is associated with an increase in the actual population of 0.89%. Moreover, the R^2 indicates that we can explain more than 95% of the variation in variation in population density by the counterfactual population density.

One may worry that this result is mostly driven by the location fundamentals and by the relative position of municipalities within transportation networks, e.g., because Tokyo is more centrally located. In column (2), we therefore calculate the counterfactual population for the same location fundamentals when the distance between municipalities is given by the Euclidian distance to capture their relative positions of municipalities within Japan but independently of any transport network. Unsurprisingly, the model-predicted population density is a statistically significant predictor of the population density in 1996, with an elasticity equal to 0.30, which is much lower than that associated with the counterfactual population density based on the transport network (see column (1)). In column (3), we include the counterfactual population as a control variable and find that the impact of the counterfactual population based on distances is small and statistically insignificant. The elasticity of the model-predicted population with the actual population in 1996 is again about 0.90. Hence, the predictions based on the actual transport network distance outperforms the measure based on Euclidian distance. This increases our belief that our model is able to capture relevant changes in population due to changes in the transport network.

In column (4) we further control for ‘fundamentals’ observed in the data: the population density in 1872, the share of developable land by municipality, the log of precipitation per km2, the probability of an heavy earthquake, and the distance to the coast. Moreover, we include prefecture fixed effects. The elasticity decreases somewhat to 0.82 but is still highly statistically significant.16 The results for the employment density in columns (4)-(6) display a similar pattern. By looking at the R^2, it appears that we can explain a high share of the spatial variation in employment density. The elasticity of the predicted employment is between 0.80 and 0.90. Controlling for the counterfactual employment based on Euclidian distance does not change the results.

In Panels B and C of Table 5, we verify the model performance when we go back further in time, using data on the transport network in respectively 1957 and 1978. Since we do not have good data on the secondary road network in 1957 and 1978 we exploit data on the road network

16 We also considered to control directly for other observed, but endogenous, location fundamentals, such as residential amenities, transformed wages, productivities, and the price index. Unconditional on the predicted counterfactual population, these location fundamentals have strong effects. More specifically, amenities and transformed wages are positively associated with population and employment densities; productivity is only positively related with employment density; last, the price index is negatively associated with population and employment density. However, if we include them as control variables, the elasticity of the counterfactual population density is hardly affected.
from the Meiji period. Panel B shows the results for 1978. The elasticity of the counterfactual population with respect to the observed population, as well as the counterfactual employment with respect to the observed employment is lower than in 1996, ranging from 0.51 to 0.70. This is expected because we have some measurement error in the estimated counterfactual population and employment densities due to the lower quality of data on the road network. However, the R^2 suggests that we still explain more than 90% of the variation in population and employment density. Panel C goes back to 1957 when there were no HSR and highways. The elasticity of the counterfactual population and employment is again somewhat lower, ranging from 0.33 to 0.57. This is not too surprising as exogenous location fundamentals (e.g., urban amenities) have changed considerably over the course of almost 60 years. Moreover, preferences might have changed too. However, we still explain more than 70% of the variation in the population/employment density in 1957 by using the counterfactual population/employment density, which we find reasonable.

In sum, we believe that this exercise shows that our model is capable of reproducing the historical spatial distributions of employment and population, which increases the trust that model-based predictions based on changes in travel time will also be reasonable.

5.2 Counterfactual experiments

We consider two counterfactual experiments. First, the effects of the various planned upgrades of the existing Shinkansen network. Second, the spatial distribution of economic activity in Japan without the Shinkansen. We calculate the average travel time to employment in 2014 and show in Appendix E.2 what areas are the most affected. We report the aggregate results in Table 6.

[Table 6 about here]

Experiment 1: The impact of Shinkansen extensions. The first scenario considers all planned Shinkansen lines. This includes (i) an extension from Hokuto to Sapporo, (ii) an extension to Nagasaki, a link between Kanazawa and Kyoto and, more importantly, (iii) a project to connect Tokyo and Osaka by a ‘Maglev’ with a maximum speed of 505 km/h. This HSR is expected to connect Tokyo and Nagoya in 40 minutes, and Tokyo and Osaka in 67 minutes. Compared with the existing Tokaido Shinkansen, the Maglev line will cut traveling time by half. The commercial service is scheduled to start between Tokyo and Nagoya in 2027 and between Nagoya and Osaka in 2045. Column (2) in Table 6 shows that the average travel time within Japan to employment is reduced by 12%.17

17Note that highways do not change. However, because of the reshuffling of jobs, we see a small decrease of 0.5% in the average travel time to employment by road.
We find sizable welfare effects of the new Shinkansen lines: the indirect utility increases by 5.5%. Furthermore, the overall geographical concentration of employment or population is very much unaffected, as the Entropy measure of dispersion remains about the same. Nevertheless, *the spatial redistribution of employment triggered by the Shinkansen extensions is fairly substantial*. Figure 4A reports the results for the relative change in employment due to the various extensions of the Shinkansen network. Generally, *locations close to Shinkansen stations witness an increase in employment*. For example, Nagasaki’s and Takaoka-Imizu’s employment increases by about 10%. What is more, *the construction of a Shinkansen line may be detrimental to unconnected municipalities*. For example, municipalities that do not have a station along the extensions might lose population (e.g., those between Nagoya and Tokyo) and these effects can be large (up to 20%). Generally, remote areas that are unconnected to the Shinkansen in the Hokkaido, Shikoku and Kyushu islands also lose jobs because these locations become relatively less attractive. Despite travel time reductions, the workforce size of the metropolitan areas of Tokyo is hardly affected by the extensions. This may be because land rents and other overhead costs are very high in Tokyo, which makes it less attractive to firms. On the other hand, Kyoto-Osaka and Nagoya, the second and third largest urban area in Japan, benefit from the Shinkansen extensions as its employment is predicted to increase by 5.6% and 11.2%, respectively.

The results for population are, unsurprisingly, highly correlated with employment. However, due to intermunicipal commuting, the effects are somewhat less localized. We relegate the discussion of the effects on population to Appendix E.3.

[Figure 4 about here]

To sum up, the relative accessibility of locations connected to the Shinkansen network matters for the location of employment.

Experiment 2: No Shinkansen. Our second experiment shows that *removing the Shinkansen as a whole would have substantial negative welfare effects: the indirect utility would decrease by 6.5%*. In Figure 4B, we consider the counterfactual distribution of employment and find results that are in line with the previous ones. First, we observe that many relatively remote areas, especially on Shikoku, but also Wakayama and Ishikawa prefectures on Honshu, would strongly grow in relative terms. The effects on the Tokyo and Kyoto-Osaka metropolitan areas employment is positive as Tokyo and Osaka would be 6.3% and 4.4% larger without the Shinkansen, respectively. By contrast, Nagoya would be 23% smaller. Thus, contrary to general belief, by improving the overall accessibility *the Shinkansen has made Tokyo and Osaka-Kyoto less attractive to firms but has rendered Nagoya more attractive*. This also shows that the Shinkansen has amplified the ‘hub effect’ of Nagoya. In other words, the relative position of municipalities within transport networks
and their underlying location fundamentals are important in understanding why the effects of a large infrastructure are positive or negative.

To sum up, the (relative) accessibility of locations connected to the Shinkansen network matters for the location of employment.

Robustness We discuss in Appendix E.4 a couple of robustness checks with respect to the magnitude of agglomeration economies. For example, we take estimates from the literature or entirely assume away endogenous spillover effects. We also consider a couple of robustness checks with respect to the values of F_j. It appears that the magnitude of endogenous spillovers matters little for the results. By contrast, the spatial distribution of location fundamentals is important for the effects of transportation improvements on the spatial distribution of economic activities. For example, we show that under uniform fixed requirements ($F_j = F$), small perturbations in the relative attractiveness of a location causes large changes in the spatial distribution of economic activities, which seems unrealistic. Hence, *the uneven distribution of location fundamentals is a key-factor for the geographical distribution of activities within Japan.*

6 Conclusions

This paper estimates the effects of large infrastructure investments on the geographic distribution of economic activities. As high-speed rail is on the rise in many countries because it is seen as a sustainable alternative to the airplane on medium-distance travels, we have chosen to focus on Japan which has one of the oldest HSR networks in the world, i.e., the Shinkansen. This enables us to evaluate the long-run spatial effects of infrastructure investments in high-speed rail. To achieve our goal, we develop a spatial quantitative model which combines economic geography and urban economics. More specifically, firms choose their locations and produce under both internal and external increasing returns, while workers choose where to live and where to work. We allow firm interactions to take place by train and by road. Similarly, workers can commute by train and by car. We further include location-specific fixed labor requirements for firms, which proxy for the location-specific entry impediments related to land rents, policies and geography. We then estimate the model for Japan to evaluate the effects of the Shinkansen network.

Our main findings may be summarized as follows. First, we find that travel time by train affects trade linkages whereas travel time by road does not.\footnote{Because many goods are transported by rail and trucks, while rail is hardly used for passenger travel, one may expect that the opposite to hold in the U.S.} This shows that the Shinkansen plays a key role in sustaining production networks. We further find that the agglomeration elasticity (0.065) and fixed requirement elasticity (0.053) with respect to density are within the
range suggested by the literature, although the intensity of agglomeration economies seems to be on the high side. We therefore also estimate the model without endogenous productivities and fixed requirements, which makes little difference for the results. Hence, in line with Kline and Moretti (2014), we find that agglomeration economies are a localized phenomenon that seem to cancel out in the aggregate.

Finally, we conducted counterfactual experiments in which (i) all planned Shinkansen lines are realized; and (ii) the entire Shinkansen network is removed. The planned Shinkansen extensions generate a substantial welfare gain of about 5% and raise employment in the three largest metropolitan areas, especially in Nagoya. Generally, locations close to Shinkansen stations witness increases in employment, while unconnected municipalities lose employment. This may explain why local politicians and interest groups undertake intensive lobbying for their areas to be connected to HSR. On the other hand, removing the Shinkansen implies an aggregate welfare loss of 6.5%. Maybe surprisingly, the largest metropolitan areas Tokyo and Osaka would grow by 6.3% and 4.4%, respectively. According to our model, the Shinkansen thus seems to have been successful in promoting economic growth and development outside Tokyo, which was its initial objective (Sato, 2015).

Overall, our paper illustrates that business interactions are key in understanding the geographic distribution of economic activity. To be precise, HSR plays a pivotal role in sustaining these interactions and has sizable effects on the geographic distribution of economic activity.

References

Tables

Table 1 – Descriptive statistics for commuting data

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>sd</td>
<td>min</td>
<td>max</td>
</tr>
<tr>
<td>Number of commuters</td>
<td>169.3</td>
<td>4,680</td>
<td>0</td>
<td>1,083,738</td>
</tr>
<tr>
<td>Travel time by train (min)</td>
<td>135.1</td>
<td>54.33</td>
<td>0</td>
<td>240.0</td>
</tr>
<tr>
<td>Travel time by road (min)</td>
<td>144.0</td>
<td>57.37</td>
<td>0</td>
<td>240.0</td>
</tr>
<tr>
<td>Euclidian distance (km)</td>
<td>96.11</td>
<td>51.71</td>
<td>1.583</td>
<td>289.9</td>
</tr>
<tr>
<td>Location were connected via the network in 1942</td>
<td>0.102</td>
<td>0.303</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Location were connected via the network in 1900</td>
<td>0.753</td>
<td>0.431</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Locations were connected via the network in 725</td>
<td>0.142</td>
<td>0.349</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Locations are connected via the Shinkansen <25km</td>
<td>0.231</td>
<td>0.422</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Locations are connected via a Shinkansen station</td>
<td>0.00511</td>
<td>0.0713</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Year of observation</td>
<td>2,008</td>
<td>5.576</td>
<td>2,000</td>
<td>2,015</td>
</tr>
</tbody>
</table>

Notes: We exclude pairs that are further than 4 hours travelling apart. The number of observations is 1,359,732. Travel times for commuters are calculated excluding highways and Shinkansen links.

Table 2 – Descriptive statistics for TSR data

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>sd</td>
<td>min</td>
<td>max</td>
</tr>
<tr>
<td>Total links</td>
<td>2.9845</td>
<td>185.1476</td>
<td>0.0000</td>
<td>123,481.0000</td>
</tr>
<tr>
<td>Travel time by train (min)</td>
<td>584.4054</td>
<td>476.2187</td>
<td>0.0000</td>
<td>2,627.8936</td>
</tr>
<tr>
<td>Travel time by road (min)</td>
<td>876.1269</td>
<td>650.9868</td>
<td>0.0000</td>
<td>2,999.9722</td>
</tr>
<tr>
<td>Euclidian distance (km)</td>
<td>551.1685</td>
<td>369.6981</td>
<td>0.0000</td>
<td>1,865.8590</td>
</tr>
<tr>
<td>Location were connected via the network in 1942</td>
<td>0.0656</td>
<td>0.2476</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>Location were connected via the network in 1900</td>
<td>0.6805</td>
<td>0.4663</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>Locations were connected via the network in 725</td>
<td>0.0910</td>
<td>0.2875</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>Locations are connected via a Shinkansen station</td>
<td>0.1096</td>
<td>0.3124</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>Year of observation</td>
<td>2,009.9981</td>
<td>3.0000</td>
<td>2,007.0000</td>
<td>2,013.0000</td>
</tr>
</tbody>
</table>

Notes: The number of observations is 5,786,196.
Table 3 – Descriptive statistics for employment data

<table>
<thead>
<tr>
<th></th>
<th>(1) mean</th>
<th>(2) sd</th>
<th>(3) min</th>
<th>(4) max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population (per km²)</td>
<td>1,011.6697</td>
<td>2,374.5034</td>
<td>2.3387</td>
<td>31,839.7871</td>
</tr>
<tr>
<td>Employment (per km²)</td>
<td>541.9056</td>
<td>3,325.6310</td>
<td>0.3621</td>
<td>94,036.5469</td>
</tr>
<tr>
<td>Average travel time by train (in m)</td>
<td>641.7021</td>
<td>468.6621</td>
<td>209.7487</td>
<td>7,168.4692</td>
</tr>
<tr>
<td>Average travel time by road (in m)</td>
<td>875.6658</td>
<td>525.0900</td>
<td>348.6505</td>
<td>3,540.6694</td>
</tr>
<tr>
<td>Shinkansen station <25km</td>
<td>0.2217</td>
<td>0.4154</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>(Future) Shinkansen line is crossing municipality</td>
<td>0.2328</td>
<td>0.4226</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>Share of developable land in municipality</td>
<td>0.8428</td>
<td>0.1539</td>
<td>0.1906</td>
<td>1.0000</td>
</tr>
<tr>
<td>Probability on earthquake in 30 years with Shindo Scale >5</td>
<td>0.4887</td>
<td>0.3131</td>
<td>0.0028</td>
<td>0.9958</td>
</tr>
<tr>
<td>Distance to coastline (km)</td>
<td>22.4047</td>
<td>18.4838</td>
<td>0.3137</td>
<td>85.4455</td>
</tr>
<tr>
<td>Precipitation density (km²)</td>
<td>2,345.4396</td>
<td>480.5130</td>
<td>110.2040</td>
<td>4,065.1467</td>
</tr>
<tr>
<td>Total area size (km²)</td>
<td>220.8229</td>
<td>251.0133</td>
<td>3.4747</td>
<td>2,179.9980</td>
</tr>
<tr>
<td>Year of observation</td>
<td>1,990.0909</td>
<td>16.5284</td>
<td>1,957.0000</td>
<td>2,014.0000</td>
</tr>
</tbody>
</table>

Notes: The number of observations is 18,238.

Table 4 – Structural parameters

<table>
<thead>
<tr>
<th></th>
<th>Baseline results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Commuting railway travel time elasticity, $\hat{\kappa}_R = \hat{\kappa}_R \hat{\varepsilon}$</td>
<td>-0.0222***</td>
</tr>
<tr>
<td></td>
<td>(0.0031)</td>
</tr>
<tr>
<td>Commuting road travel time elasticity, $\hat{\kappa}_H = \hat{\kappa}_H \hat{\varepsilon}$</td>
<td>-0.0461***</td>
</tr>
<tr>
<td></td>
<td>(0.0024)</td>
</tr>
<tr>
<td>Trade railway travel time elasticity, $\hat{\vartheta}_R = \hat{\vartheta}_R \sigma$</td>
<td>-0.0269***</td>
</tr>
<tr>
<td></td>
<td>(0.0018)</td>
</tr>
<tr>
<td>Trade road travel time elasticity, $\hat{\vartheta}_H = \hat{\vartheta}_H \sigma$</td>
<td>0.0013**</td>
</tr>
<tr>
<td></td>
<td>(0.0006)</td>
</tr>
<tr>
<td>Worker heterogeneity, $\hat{\varepsilon}$</td>
<td>2.1854***</td>
</tr>
<tr>
<td></td>
<td>(0.7465)</td>
</tr>
<tr>
<td>Productivity density elasticity, $\hat{\gamma}$</td>
<td>0.0647***</td>
</tr>
<tr>
<td></td>
<td>(0.0102)</td>
</tr>
<tr>
<td>Fixed requirement density elasticity, $\hat{\zeta}$</td>
<td>0.0533***</td>
</tr>
<tr>
<td></td>
<td>(0.0062)</td>
</tr>
</tbody>
</table>

Fixed parameter:

- Elasticity of substitution, σ | 4.7000

- Number of location pairs | 2,748,964
- Number of locations | 1,658

Notes: Standard errors are bootstrapped (250 replications) by work locations and in parentheses; *** $p < 0.01$, ** $p < 0.5$, * $p < 0.10$.

37
Table 5 – Model performance: back-casting population and employment

<table>
<thead>
<tr>
<th>Panel A: 1996</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Euclidian</td>
<td>+ Euclidian</td>
<td>+ Controls</td>
<td>Baseline</td>
<td>Euclidian</td>
<td>+ Euclidian</td>
<td>+ Controls</td>
</tr>
<tr>
<td></td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
</tr>
<tr>
<td>Counterfactual population density (log), log(L_C^2 / L_j)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8917***</td>
<td>0.9009***</td>
<td>0.8248***</td>
<td></td>
<td>0.8880***</td>
<td>0.8526***</td>
<td>0.7989***</td>
<td></td>
</tr>
<tr>
<td>Distance-based counterfactual population density (log)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.2967***</td>
<td>-0.0067</td>
<td>0.0000</td>
<td></td>
<td>0.2352**</td>
<td>0.0225</td>
<td>0.0319**</td>
<td></td>
</tr>
<tr>
<td>Counterfactual employment density (log), log(M_C^2 / L_j)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0825</td>
<td>0.0176</td>
<td>0.0164</td>
<td></td>
<td>0.1030</td>
<td>0.0179</td>
<td>0.0148</td>
<td></td>
</tr>
<tr>
<td>Distance-based counterfactual employment density (log)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0172</td>
<td>0.0192</td>
<td>0.0295</td>
<td></td>
<td>0.0956</td>
<td>0.0296</td>
<td>0.0179</td>
<td></td>
</tr>
<tr>
<td>Municipality controls (5)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Prefecture fixed effects</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of observations</td>
<td>1,658</td>
<td>1,658</td>
<td>1,658</td>
<td>1,658</td>
<td>1,658</td>
<td>1,658</td>
<td>1,658</td>
<td>1,658</td>
</tr>
<tr>
<td>R^2</td>
<td>0.9588</td>
<td>0.8671</td>
<td>0.9590</td>
<td>0.9653</td>
<td>0.9591</td>
<td>0.8886</td>
<td>0.9591</td>
<td>0.9650</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: 1978</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Euclidian</td>
<td>+ Euclidian</td>
<td>+ Controls</td>
<td>Baseline</td>
<td>Euclidian</td>
<td>+ Euclidian</td>
<td>+ Controls</td>
</tr>
<tr>
<td></td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
</tr>
<tr>
<td>Counterfactual population density (log), log(L_C^2 / L_j)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6520***</td>
<td>0.6498***</td>
<td>0.5104***</td>
<td></td>
<td>0.7006***</td>
<td>0.6377***</td>
<td>0.5843***</td>
<td></td>
</tr>
<tr>
<td>Distance-based counterfactual population density (log)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05069</td>
<td>0.0681</td>
<td>0.0624</td>
<td></td>
<td>0.00792</td>
<td>0.0028</td>
<td>0.0076</td>
<td></td>
</tr>
<tr>
<td>Counterfactual employment density (log), log(M_C^2 / L_j)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.2681***</td>
<td>0.0017</td>
<td>-0.0313</td>
<td></td>
<td>0.2177**</td>
<td>0.0429</td>
<td>0.0086</td>
<td></td>
</tr>
<tr>
<td>Distance-based counterfactual employment density (log)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0750</td>
<td>0.0192</td>
<td>0.0295</td>
<td></td>
<td>0.0956</td>
<td>0.0296</td>
<td>0.0179</td>
<td></td>
</tr>
<tr>
<td>Municipality controls (5)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Prefecture fixed effects</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of observations</td>
<td>1,658</td>
<td>1,658</td>
<td>1,658</td>
<td>1,658</td>
<td>1,658</td>
<td>1,658</td>
<td>1,658</td>
<td>1,658</td>
</tr>
<tr>
<td>R^2</td>
<td>0.9135</td>
<td>0.8501</td>
<td>0.9172</td>
<td>0.9322</td>
<td>0.9082</td>
<td>0.8503</td>
<td>0.9108</td>
<td>0.9224</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel C: 1957</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Euclidian</td>
<td>+ Euclidian</td>
<td>+ Controls</td>
<td>Baseline</td>
<td>Euclidian</td>
<td>+ Euclidian</td>
<td>+ Controls</td>
</tr>
<tr>
<td></td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
</tr>
<tr>
<td>Counterfactual population density (log), log(L_C^2 / L_j)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.4536***</td>
<td>0.4333***</td>
<td>0.3364***</td>
<td></td>
<td>0.5736***</td>
<td>0.5064***</td>
<td>0.4523***</td>
<td></td>
</tr>
<tr>
<td>Distance-based counterfactual population density (log)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0505</td>
<td>0.0628</td>
<td>0.0526</td>
<td></td>
<td>0.0814</td>
<td>0.0682</td>
<td>0.0631</td>
<td></td>
</tr>
<tr>
<td>Counterfactual employment density (log), log(M_C^2 / L_j)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.2028***</td>
<td>0.0165</td>
<td>-0.0475</td>
<td></td>
<td>0.1885**</td>
<td>0.0471*</td>
<td>0.0279</td>
<td></td>
</tr>
<tr>
<td>Distance-based counterfactual employment density (log)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0548</td>
<td>0.0163</td>
<td>0.0296</td>
<td></td>
<td>0.0830</td>
<td>0.0253</td>
<td>0.0242</td>
<td></td>
</tr>
<tr>
<td>Municipality controls (5)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Prefecture fixed effects</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of observations</td>
<td>1,658</td>
<td>1,658</td>
<td>1,658</td>
<td>1,658</td>
<td>1,658</td>
<td>1,658</td>
<td>1,658</td>
<td>1,658</td>
</tr>
<tr>
<td>R^2</td>
<td>0.7835</td>
<td>0.7467</td>
<td>0.7840</td>
<td>0.8384</td>
<td>0.7326</td>
<td>0.6955</td>
<td>0.7328</td>
<td>0.7758</td>
</tr>
</tbody>
</table>

Notes: The dependent variable in columns (1)-(3) is the population in each municipality, while it is employment in columns (4)-(6). Estimated location fundamentals include the log of residential amenities, B_j^2014, the log of productivity, A_j^2014, the log of transformed wages, ω_j^2014, and the log of the price index, P_j^2014. Municipality controls include the population density in 1872, the share of developable land in the own municipality, the log of precipitation per km², the probability of an heavy earthquake (with the Shindo Scale above 5), and distance to the coast in km. *** $p < 0.01$, ** $p < 0.5$, * $p < 0.10$.

38
<table>
<thead>
<tr>
<th></th>
<th>Baseline in 2014</th>
<th>Shinkansen Extensions</th>
<th>No Shinkansen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Average travel time to employment by train (min)</td>
<td>434.6</td>
<td>383.9</td>
<td>813.5</td>
</tr>
<tr>
<td></td>
<td>(8.86)</td>
<td>(7.46)</td>
<td>(15.72)</td>
</tr>
<tr>
<td>Average travel time to employment by road (min)</td>
<td>722.5</td>
<td>718.9</td>
<td>730.4</td>
</tr>
<tr>
<td></td>
<td>(13.80)</td>
<td>(12.83)</td>
<td>(14.40)</td>
</tr>
<tr>
<td>Welfare, \hat{V}</td>
<td>1.0000</td>
<td>1.0550</td>
<td>0.9347</td>
</tr>
<tr>
<td></td>
<td>(—)</td>
<td>(0.0080)</td>
<td>(0.0105)</td>
</tr>
<tr>
<td>Employment dispersion</td>
<td>6.0771</td>
<td>6.0652</td>
<td>6.0775</td>
</tr>
<tr>
<td></td>
<td>(0.0853)</td>
<td>(0.0834)</td>
<td>(0.1048)</td>
</tr>
<tr>
<td></td>
<td>(0.0808)</td>
<td>(0.0795)</td>
<td>(0.1100)</td>
</tr>
</tbody>
</table>

Notes: Standard errors are bootstrapped (250 replications) by municipality and in parentheses. Employment dispersion is measured by $-\sum_i^{I} \frac{M_i}{\sum_j^{I} M_j} \log \frac{M_i}{\sum_j^{I} M_j}$ and population dispersion by $-\sum_i^{I} \frac{L_i}{\sum_j^{I} L_j} \log \frac{L_i}{\sum_j^{I} L_j}$.
Figure 1 – Overview of Japan’s Railway Network
(a) Average travel time in 1957
(b) Average travel time in 2014

Figure 2 – Railway accessibility

(a) Real estate prices and the fixed requirement
(b) Real estate prices and the price index

(c) Sales per worker and productivity
(d) Sales per worker and transformed wages

Figure 3 – Over-identification checks
Figure 4 – Counterfactual experiments: spatial distribution of employment

(a) Extension of the Shinkansen network

(b) No Shinkansen
Appendix A. Data appendix

A.1 Wages

Data on wages at the municipality level are only available for the manufacturing sector, going back to 1979. However, we compiled a panel dataset at the municipality level of wages including all industrial sectors.\(^{19}\) We therefore first digitize hardcopy wage data on 47 prefectures for 8 industrial sectors, including manufacturing. Furthermore, we digitize hardcopy data on employment at the municipality level since 1979 for 8 industrial sectors. Using data at the prefecture level, we estimate the following regression:

\[
 w_{zy} = \psi_y + \psi^M_y w_M^{zy} + \sum_{g=1}^{G} \psi^g_{yg} e_{zyg} + \epsilon_{zy},
\]

where \(w_{zy}\) is the yearly wage observed in prefecture \(z\) in year \(y\), \(w_M^{zt}\) is the manufacturing wage, \(e_{zyg}\) are employment shares in sectors \(g = 1, \ldots, G\), \(\psi_y, \psi^M_y, \psi^g_{yg}\) are coefficients to be estimated, and \(\epsilon_{zy}\) denotes an error term. Hence, the above specification yields year-specific regressions of wages on manufacturing wages and employment shares.

[Table A.1 about here]

In Table A.1 we show the results of these regressions. There appears to be a strong correlation (almost 0.893) between manufacturing wages and overall wages at the prefecture level. We find that the elasticity of manufacturing wages with respect to overall wages is about 0.3. Employment in financial services leads to markedly higher wages: a 10 percentage point increase in the share of workers in the financial services is associated with a wage increase of about 80%. For consumer services, the effect is consistently negative with wages that are about 10% lower for a 10 percentage point increase in the share of workers in consumer services.

To calculate wages at the municipality level, we use the estimated parameters \(\hat{\psi}_y, \hat{\psi}^M_y, \hat{\psi}^g_{yg}\), together with the manufacturing wages and employment shares at the municipality level available in the data. Figure A.1 shows the average annual wages calculated at the municipality level.

[Figure A.1 about here]

Generally, we see higher wages in denser areas like Osaka and Tokyo. We find a correlation of log wages with log employment density of 0.57, which seems to be reasonable.

\(^{19}\)The industrial sectors included are Construction, Electricity Production, Real Estate, Finance, Manufacturing, Mining, Retail, Consumer Services, and Transportation.
A.2 Undevelopable land

We construct a new measure of developable land for Japan based on land use maps and elevation data. We obtain information on lakes and water bodies from OpenStreetMap. Using these data, we only keep land in each municipality. Furthermore, we obtain information on elevation from the AlosWorld3D project, which provides elevation at a 30m by 30m resolution. We calculate the slopes of each grid cell and remove all grid cells that have slopes above 50% as Saiz (2010) shows that these are essentially undevelopable. Furthermore, we remove all land that is above 2000m above sea level, for which it is unlikely that there are permanent settlements.

Figure A.2 shows a map of undevelopable land for Japan. One may observe that the large cities (Tokyo, Osaka, Nagoya) are located in relatively flat areas with high shares of developable land. However, most of inland Japan is severely geographically constrained: we find that 20% of Japan is undevelopable. Still, in some municipalities, the share of undevelopable land is much higher and can be as high as 80% (e.g., in mountainous areas in Central Japan). The overall share of 80% developable land is considerably higher than other estimates of ‘inhabitable land’, which would be 33% according to the Social Indicators by Prefecture from the Statistics Bureau. Inhabitable land excludes forests, lakes and other water bodies and does not use information on slopes. However, forests are technically developable, although they are often protected. Furthermore, although slopes exceeding 20% could be developed, it is very costly to do so. Hence, we think our estimate of undevelopable land is best interpreted as a lower bound estimate of the amount of undevelopable land in Japan.\(^\text{20}\)

A.3 Historical data

We use historical road networks and historical infrastructure plans. First, we have a hardcopy map on the Seven-Circuit Road Network in the 7\(^\text{th}\) century.\(^\text{21}\) This road network was developed to connect the initial capital cities (i.e., Nara and Kyoto) with many other cities in Japan. Second, we use hardcopy maps of the National Road Plan developed by the Home Ministry in 1943. The total length of highways was planned to be 5,490 km.\(^\text{22}\) The planned network was motivated

\(^{20}\)Note that we use the amount of developable land area to calculate employment and population densities. If we were to use inhabitable land, this means that we would find high densities in remote areas with large patches of forests. We think it is unlikely that these areas benefit strongly from agglomeration economies. This provides another argument to use our measure of developable land.

\(^{21}\)As for the route, see the map available at https://www.mlit.go.jp/road/michi-re/1-1.htm.

\(^{22}\)As for the route, see the map available at https://www.mlit.go.jp/road/michi-re/4-2.htm.
by the transportation of military supplies. Third, we refer to the actual routes of roads and railways in 1900 obtained from the *National Land Numerical Information* (MLIT). We manually georeference these historic transport maps as to be able to link the data to current municipal data.

The data on the local population, except for Hokkaido, in 900 are taken from Kito (1996). Kito (1996) estimated the number of provincial population by using the information on the area of rice fields, which is available in *Wamyo Ruijusho*, a Japanese dictionary completed in 938. Although the estimates of population are available for 68 provinces in 900, the provincial boundaries are obviously different from current municipal boundaries. We address this issue by distributing the population in each province according to the share of land of each municipality in the corresponding province. By using the information on the number of archaeological remains, Takada (2017) estimated the population size in Hokkaido around the 9th century as 37,000. This number is distributed to each municipality in Hokkaido based on its land share. The local population in 1872, including that of Hokkaido, is obtained from Kito (1996), which is based on the *National Table on Family Registration* compiled by the Home Ministry.

Appendix B. Reduced-form results

B.1 Effects of the Shinkansen on accessibility

Methodology. We first investigate the impact of the opening of Shinkansen stations on railway accessibility. Accessibility is measured by calculating the average travel time to the population in mainland Japan by train and car. We regress this on a dummy indicating whether a municipality is within 25km of a Shinkansen station. Accessibility in municipality i in year y is defined as follows:

$$\log A_{iy} = \alpha_0 S_{iy} + \alpha_i + \alpha_y + \epsilon_{iy},$$

where α_0 is the parameter of interest, α_i are municipality fixed effects, α_y are year fixed effects, while ϵ_{iy} is a residual that is assumed to be uncorrelated to the dummy S_{iy}. Since we include municipality fixed effects, we may identify the impact of openings Shinkansen stations on changes in population accessibility. However, because the opening of Shinkansen stations is not necessarily random and mostly occurs in places that receive other infrastructure investments related to highways, α_0 may still be biased. Moreover, in absence of those infrastructure investments, places that have received infrastructure may have disproportionately attracted population anyway. To address this point, we also calculate A_{iy} by using the population distribution in 1872. Moreover, as a placebo check, we regress Shinkansen stations on accessibility changes related to highways.

23Bernard *et al.* (2019) use a similar cut-off.
Results. We report the results in Table B.1. In column (1) we only include prefecture and year fixed effects and control for area size. We find that a Shinkansen station within 25 km is associated with an average travel time reduction of $(e^{-0.1336} - 1) = 12.7\%$. This effect seems to be slightly stronger once we include municipality fixed effects (column (2)). In column (3) we further add linear and quadratic municipality-specific time trends. The effect is then slightly smaller.

One may argue that flexible time trends are unlikely to fully address the non-random placement of Shinkansen stations. In column (4), we therefore only keep municipalities in which a Shinkansen station has been or will be opened within 25 km. In this way, we only use temporal variation in accessibility and the opening of stations. This does not influence the results: a Shinkansen station is associated with a decrease in average travel time of 13.7\%. Column (5) excludes future stations that may be opened on new lines, while column (6) excludes the prefectures in which Japan’s largest cities are located (Tokyo-Yokohama, Osaka, Nagoya). This does not change the results. One may argue that the measure of travel time is also affected by changes in population that may be unrelated to changes in accessibility. For example, if Tokyo grows for other reasons, one might find an association between travel time reductions and the opening of Shinkansen stations in Tokyo. In column (7), we therefore take as dependent variable the mean travel time based on the population in 1872. The coefficient is now slightly lower, which may indicate that population responds to an improvement in accessibility.

As a placebo check we regress the mean travel time over the road on whether a Shinkansen station has been opened. We find a much lower effect on travel time by road of just 1.85\%. We believe that this may pick up the indirect responses of population to the opening of Shinkansen stations. Indeed, when we calculate the change in mean travel time by road using the 1872 population, the coefficient is close to zero and highly statistically insignificant.

Event study. In Figure B.1 we undertake an event study to the accessibility changes due to the opening of the Shinkansen station. We replicate the specification listed in column (4) of Table B.1, but we now include interaction terms of the Shinkansen station year with 3-year interval dummies.

Unsurprisingly, we find a huge drop in mean travel time by train when a Shinkansen station is opened. Note that we already found a small drop in travel time before the opening of a station, which indicates that Shinkansen stations are opened in areas that already attracted population. The drop in travel times before the Shinkansen station may also be due to other
railway infrastructure investments. In any case, the travel time improvement is still about 13%, which is very substantial and very much in line with the results reported in Table B.1.

B.2 Effects of the Shinkansen on population and employment

Methodology. Let us now move to the reduced form results for the impact of Shinkansen station openings on population and employment. Denote population or employment density in municipality i in year y by D_{iy}. We then have:

$$\log D_{iy} = \beta_0 S_{iy} + \beta_i + \beta_y + \epsilon_{iy},$$

where β_0 is the coefficient of interest, β_i are municipality fixed effects and β_y are year fixed effects. Similar issues as in the previous subsection may plague a causal interpretation of β_0. More specifically, we find evidence in Figure 1 that Shinkansen stations may have been built in areas that grow for other reasons, thus implying that β_0 is biased. We follow a similar approach as in the previous regressions where we included quadratic municipality-specific time trends. Moreover, we only select areas that eventually received a station. The latter selection controls for the fact that station areas may have different trends in population density compared to areas that do not host a Shinkansen station. To further address the issue that our results are explained by the opening of stations in large metropolitan areas, we estimate specifications where we exclude the largest metropolitan areas, including Tokyo-Yokohama, Osaka, and Nagoya.

Results. We report the results in Table B.2. In Panel A, we give the results for population density, while in Panel B we give the results for employment density. Column (1) is a somewhat naive specification where we just include prefecture fixed effects and geographical controls. The coefficient seems to indicate a very large effect of a Shinkansen station on population and employment densities. However, a more likely interpretation is that stations have been opened in denser locations. When we include municipality fixed effects, the coefficients become considerably lower. In column (3) we further improve on this specification by including quadratic municipality-specific trends. A Shinkansen station is then associated with an increase in population density of 9.1%. The effect on employment density seems considerably lower, although the coefficient is somewhat imprecise.

[Table B.2 about here]

In column (4) of Table B.2, we only keep locations that have received a Shinkansen station within 25km or for which an opening has been planned. We find a positive effect on population density of 4.1%, while the effect on employment density is 3.3%. The coefficient becomes slightly higher, although not statistically significantly different, once we only include locations where an
actual station is opened in our study period. In column (6) we test whether excluding the large metropolitan areas changes our results. The coefficients are not materially different. A Shinkansen station seems to increase population density by 3.5%, while it increases employment density by 2%. The latter effect is too imprecise to be statistically significant at conventional levels, which also implies that the effect is not significantly different from the effect on population density.

Event studies. One may also wonder whether pre-trends in population and employment densities exist regarding the opening of Shinkansen stations. We therefore undertake an event study whose results are reported in Figures B.2a and B.2b. For both population and employment there seems to be a short-run increase in density of about 5% within 3 years of the opening of a Shinkansen station. The effect turns to be statistically insignificant afterwards. Infrastructure investments seem to mainly imply long-run effects as after 12.5 years, the coefficient becomes somewhat larger and is statistically significant. The effect stabilizes after about 25 years at around 15 – 20%. Hence, this event-study emphasizes the long-run nature of infrastructure investments. Although households and firms are far from perfectly mobile, the effects are expected to be mostly important after many years.

[Figure B.2 about here]

Appendix C. Uniqueness of the equilibrium

Since \(s_{ij} \) in (13) is the mass of workers who choose the pair \(ij \), the mass \(M_j \) of workers in \(j \) is such that

\[
M_j \beta_j^{-1} \omega_{j}^{-\varepsilon} = \Gamma \left(\frac{\varepsilon - 1}{\varepsilon} \right)^{\varepsilon} \bar{V}^{-\varepsilon} \sum_{i=1}^{I} \alpha_i (t_{ij} P_i)^{-\varepsilon}, \quad j = 1, \ldots, I - 1, \tag{30}
\]

which is equivalent to (8). Likewise, (9) is equivalent to

\[
L_i \alpha_i^{-1} P_i^\varepsilon = \Gamma \left(\frac{\varepsilon - 1}{\varepsilon} \right)^{\varepsilon} \bar{V}^{-\varepsilon} \sum_{j=1}^{I} \beta_j (w_j / t_{ij})^\varepsilon, \quad i = 1, \ldots, I - 1, \tag{31}
\]

Using (6), (11) can be rewritten as follows:

\[
\alpha_i^{-1} Y_i P_i^\varepsilon = \Gamma \left(\frac{\varepsilon - 1}{\varepsilon} \right)^{\varepsilon} \bar{V}^{-\varepsilon} \sum_{k=1}^{I} \beta_k \frac{w_{k}^{1+\varepsilon} / t_{ik^\varepsilon}}{t_{ik}}, \quad i = 1, \ldots, I, \tag{32}
\]

while (20) is equivalent to

\[
w_i \sigma P_i^{1-\sigma} F_i = \sum_{j=1}^{I} \frac{1}{\sigma} \left(\frac{\sigma}{\sigma - 1} \tau_{ij} \right)^{1-\sigma}, \quad i = 1, \ldots, I. \tag{33}
\]
Building on Allen et al. (2015), we determine the matrices of the exponents of the left- and right-hand side of the equilibrium conditions (30), (31), (16), (32), and (33) with respect to the variables $w_i^*, L_i^*, M_i^*, Y_i^*$, and P_i^*:

$$L = \begin{pmatrix}
-\varepsilon & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & \varepsilon \\
0 & 0 & 0 & 0 & 1 - \sigma \\
0 & 1 & 0 & 0 & \varepsilon \\
\sigma & 0 & 0 & 0 & 0
\end{pmatrix}, \quad R = \begin{pmatrix}
0 & 0 & 0 & 0 & -\varepsilon \\
\varepsilon & 0 & 0 & 0 & 0 \\
1 - \sigma & 0 & 0 & 1 & 0 \\
1 + \varepsilon & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & \sigma - 1
\end{pmatrix}.$$

Let us define the following matrix:

$$|LR^{-1}| = \begin{pmatrix}
0 & 0 & \frac{\varepsilon}{\sigma - 1} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{\varepsilon}{\sigma} \\
1 & 0 & 0 & 0 & \frac{\varepsilon + 1}{\sigma} - 1 \\
0 & 0 & 0 & 0 & \frac{\varepsilon + 1}{\sigma} \\
0 & 0 & \frac{\varepsilon}{\sigma - 1} - 1 & 1 & 0
\end{pmatrix}.$$

The eigenvalues of this matrix are given by:

$$\left\{ \pm 1, \pm \sqrt{\frac{\varepsilon(\varepsilon + 1)}{\sigma(\sigma - 1)}}, 0 \right\}.$$

If the largest eigenvalue is smaller than or equal to 1, Theorem 1(ii) of Allen et al. (2015) implies that the spatial equilibrium is unique. This condition is equivalent to $\sigma \geq \varepsilon + 1$.

Appendix D. Structural estimation

D.1 The commuting gravity equation

We report results for different specifications of the commuting gravity equation in Table D.1. We begin by taking into account all location pairs that are within four-hour travelling. We find that a ten-minute travel time increase by train reduces the number of commuters by 22%. The impact of road infrastructure is about twice as strong: a ten-minute increase in travel time by car decreases the number of commuters by 46%. This confirms the following two observations. First, **more people commute by car to the workplace**, which suggests that travel time by car matters more when deciding where to live and work. More specifically, according to the *Nationwide Person Trip Survey* by the Ministry of Land, Infrastructure, Transport and Tourism, in Japan 20 – 50% of the commutes is by car, while maximally 20% by train. However, this share is considerably larger in metropolitan areas. Second, commutes by train tend to be somewhat longer, so that the
commuting decay is less strong, possibly because people can participate in other activities while travelling (see the *Road Traffic OD Survey* by the *Ministry of Land, Infrastructure, Transport and Tourism*). If we include either railway travel time or travel time by road, we find a commuting time elasticity of about 0.077, which is very similar to the literature (see Ahlfeldt et al., 2015 for Berlin, and Koster, 2020 for England).

[Table D.1 about here]

In the remaining columns of Table 4 we provide robustness checks for the baseline effects. First, we show in column (2) that, when focusing on locations within two hours travel, the results are hardly affected. Hence, excluding location pairs that are far from each other does not affect the results. One may also be concerned that a high share of zero flows thwarts our estimates. This does not seem to be the case: when we exclude zero flows in column (3), the coefficients are virtually the same compared to column (1).

In the remaining columns we address the issue of possible reverse causality. In column (4) we keep location pairs that were connected in a 1943 highway and the initial plan for a high-speed railway line to connect Tokyo to Shimonoseki and further to Beijing. This railway line was mainly to increase transporting passengers and cargo. Similarly, we obtained data on the 1943 National Highway Plan. We observe that this does not impact much our results, even though we only keep about 10% of the location pairs.

In column (5) we keep location pairs that are connected either by road or by railway in 1900. Since both networks were already quite developed, we keep most location pairs and the results are of course very similar. In column (6) we use the road network in the 7th century, which was centered around the capital Nara. We keep about 14% of the location pairs, but results are very similar.

We find very similar coefficients in column (7), where we only keep municipalities that have a Shinkansen station and, hence, are linked by the Shinkansen network. We thus keep only about 7 thousand location pairs. Since the Shinkansen is hardly used for commuting, this specification addresses the issue that infrastructure investments may depend on commuting flows.

One may be concerned that the values obtained for α_R and α_H, while causal, are not ‘deep’ structural parameters in the sense that they depend on the overall availability of transport modes in Japan. To investigate the robustness of our estimate, we then test whether α_R is different in areas where travel time by train is substantially higher than travel time by road. Column (8) shows that, when travel time by train is relatively long compared to travel time by road, people are less sensitive to travel time by train. This makes sense because fewer people will take the train. Although the estimates may differ, in practice the relative ratio of commuters’ preferences
for the train and car is not so important because we focus on the Shinkansen, which is hardly used by commuters. Hence, the relative ratio of travel time by train and car is basically unaffected in the different counterfactual scenarios we analyze in Section 5.

In the final column of Table D.1 we add two controls, one capturing whether a location pair has to cross the east-west ‘border’ as defined by Wrona (2018), and a dummy indicating whether the location pair is on the same island. We find that the travel time elasticities are virtually the same as the baseline specification. Interestingly, we find a strong negative effect of the east-west ‘border’ suggesting that fewer people commute between east and west Japan. However, this may also capture the fact that people do not commute much between prefectures. Surprisingly, we find a negative coefficient of being on the same island. Because there are only a few location pairs that are on different islands for which the travel time is less than 3 hours, the standard error is very large. A notable exception are the twin cities of Kitakyushu on Kyushu and Shimonoseki on Honshu; there is quite a high commuting flow between those cities. This may explain the negative effect. In any case, we think it is reassuring that the travel time elasticities are essentially the same when including these controls.

D.2 The gravity equation for firms’ production networks

In Table D.2 we report gravity models for firms’ production networks. The dependent variable is then the number of firm linkages for a given location pair. Column (1) is the baseline specification, which shows that there is a reasonably strong decay for railway travel time, suggesting that the number of linkages reduces by 27% for a 10 minute increase in railway travel time. However, travel time by road does hardly affect the probability of having a linkage. Although the estimate is statistically significant (because of a large dataset), it is very small. This suggests that what matters for firms’ trade relationships is not necessarily a lower travel time for shipping goods (which are relatively cheap to transport within Japan), but a low travel time by train enabling face-to-face interactions. In 2017, the total distance of domestic passenger transport in Japan amounted to approximately 605 billion passenger-kilometers, with railway transport accounting for 72.3% of the transport distance, while motor vehicles only account for 11.3% (and air travel for 16.4%). Hence, for long-distance travel, the train is by far the most preferred transport mode. If we include either railway travel time or travel time by road, we find travel time elasticities of about −0.025, which is in line with Monte et al. (2018).

[Table D.2 about here]

In column (3) we show that our results are not driven by the selection of single-plant firms for which we know the exact location. If we also include multi-plant firms (for which we only
know the headquarter location), the results are very similar. In column (2) we show that our elasticities are not so much affected by air travel – a possible omitted variable – by excluding links that are further than 400km apart. For shorter distances, it is unlikely that people will travel by airplane. We now find a road travel time elasticity that is slightly negative (−0.0043), which is still considerably smaller than the elasticity for railway travel.

Column (4) focuses on linkages where the seller is a manufacturing firm. We find similar elasticities, although the elasticity with respect to the travel time by train is slightly lower. By contrast, if we focus on linkages where the seller is a service firm, we find a travel time elasticity that is slightly higher as compared to the baseline specification. We confirm a small positive travel time elasticity for road travel, which suggests that accessibility by roads is not considered to be very important in trading networks among service firms.

In the remaining columns, we investigate whether reverse causality is an issue by focusing on location pairs there were linked by highways or railways in the initial plans of 1942/1943 (column (6)), the network in 1900 (column (7)), as well as the road network in the 7th century (column (8)). Although the number of observations is greatly reduced, we have similar findings. Thus, it is mostly railway travel time that matters, while travel time by road remains unimportant. In column (9), we only focus on municipalities that hosted a Shinkansen station. In column (10), we find results similar to the baseline, except that the travel time elasticity for railways is now somewhat stronger.

A concern may be that, as explained earlier, \(\hat{\theta}_R \) may depend on the overall provision of railways in Japan. In column (10), we show that \(\hat{\theta}_R \) is somewhat smaller once the travel time by train is relatively long as compared to the travel time by car or truck. However, although statistically significant, the magnitude is again small. For example, when the travel time by train is 50% of the travel time by road, we find \(\hat{\theta}_R = -0.0320 \), while \(\hat{\theta}_R = -0.0219 \) if the travel time by train is twice the travel time by car. As this difference is rather small, in what follows, we assume that \(\theta_R \) is independent of relative travel times.

Column (11) includes two additional controls: a dummy indicating whether a location pair has to cross the east-west ‘border’ and whether they are on the same island. First of all, the travel time elasticities are once again very robust and hardly affected by the inclusion of these variables. The signs of the included variables have the expected signs, but are far from being statistically significant. The order of magnitude is comparable to the lower bound estimates of Wrona (2018), although one should bear in mind that our data do not refer to trade flows only, but also include interactions between business services firms.
D.3 Estimating the heterogeneity parameter

In Table D.3 we report results of regressions to recover the heterogeneity parameter ε (recall that we rely on wage data between 2001 and 2014).

[Table D.3 about here]

Column (1) displays the baseline specification. We include municipality and prefecture-by-year fixed effects and instrument wages by a Bartik-style predicted employment measure, based on employment shares in 1978. We find that the heterogeneity parameter is $\varepsilon = 2.19$. The first-stage (which is available upon request) reveals that the predicted employment has a positive effect on wages: a standard deviation increase in predicted employment is associated with a wage increase of 22%. The instrument is sufficiently strong, as the first-stage F-statistic is 12.

Our estimate of ε is on the low side as compared to the existing literature. Eaton and Kortum (2002) find an estimate of 8.28, but it is based on international trade flows rather than on intra-national commuting flows. Hence, their estimate is arguably not directly comparable to ours. Ahlfeldt et al. (2015), who rely on commuting flows within a city (i.e., Berlin), find an estimate of ε of about 6.2. However, they recover ε by comparing the variances of the log of transformed wages to the variance of the log observed wages. In this way, however, one may find a strong overestimate of ε because the variances may also relate to each other due to unobserved workplace amenities (Ahlfeldt et al., 2020). If we were to recover ε by comparing variances, we would find that $\varepsilon = 77.79$, which is clearly unrealistically high. Our approach addresses these endogeneity concerns in a probably better way, which leads to a lower, but more realistic, estimate.

In the remaining columns of Table D.3 we investigate the robustness of this estimate. Column (2) includes a squared term of predicted employment in order to investigate whether non-linearity in the instrument may improve the power of our estimate. This appears to have very limited effects, as the estimate is only slightly higher and the standard error only marginally lower.

In column (3) we include year fixed effects instead of the more detailed prefecture-by-year fixed effects. We find that the estimate about doubles in size. When we include more detailed fixed effects in column (4) the estimate is about 50% of the baseline estimate.\(^\text{24}\)

Column (5) directly controls for employment shares in different sectors to focus on variations in calculated wages that are due to manufacturing wages (see Appendix A.2). This makes little difference to the estimate, as the estimate is now only a little higher.

In the last column of Table D.3 we change the base year on which the Bartik-style instrument is based. In the previous specifications, we use the employment shares in 1978, which is before

\(^{24}\text{More specifically, we include minryoku-by-year fixed effects, where Minryoku are considered as commuting areas. Hence, these are considerably smaller than prefectures.}\)
the study period and therefore limits the possibility that trends in wages are correlated to initial employment shares. However, if we choose 1996 for the base year, we find that the estimated heterogeneity parameter is very close to the baseline estimate.

D.4 Density elasticities

In Table D.4 we report results with respect to agglomeration economies. We obtain the agglomeration elasticity by a regression of the estimated productivities E_{iy} on employment density in each municipality in each year.

In column (1) we report a somewhat naive estimate of productivities on employment density. We find an elasticity of 0.0661, which is on the high side but falls in the interval (0.02 and 0.07) found in the literature (Rosenthal and Strange, 2004; Melo et al., 2009). When we include geography controls capturing the effects of climate (average precipitation), earthquakes, distance to the coast, and the share of developable land (see Appendix A.1), the agglomeration elasticity is somewhat higher. This is likely because some of the most dense areas are located in earthquake-prone areas. Indeed, earthquakes seem to reduce productivity.

The main concern in interpreting the estimated parameter that aims to capture agglomeration economies is that endogenous productivity of workers may be correlated to unobserved amenities (Combes et al., 2011). These amenities attract workers and lead to higher densities, but do not make them more productive. This will imply that γ may be biased upwards. A standard way to deal with this endogeneity issue is to instrument for employment density with long lags of population density. The idea is that what drove the location choices of people 150 years ago is different from what drives locations choices today. In columns (3) and (4) in Table D.4, we therefore use population density from 1872 (the Meiji period). If we consider the first stage results in Table D.5, we see that this is a strong instrument for current employment density (the Kleibergen-Paap F-statistic is 580 or higher). One percent increase in population density in 1872 is associated with an increase in current employment density of about 0.6%. Going back to Table D.4, we find that the agglomeration elasticity is about 0.065. When we include geographical controls, we find a very similar estimate. This is reassuring: if omitted variable bias would still be important, we would expect to see larger changes when we include additional controls (as in the OLS estimates).
Using long-lagged instruments is more convincing once we go back further in time, as it is then more likely that location choices are made because of other reasons. We therefore use data on population from 900 in columns (5) and (6), so we go back more than 1,000 years. When looking at the first-stage estimates, we find similar elasticities of historical population densities with current employment densities, ranging from 0.52 – 0.63. Note, however, that the first-stage R^2 is about one-third lower compared to that found when using population density in 1872. In columns (5) and (6) of Table D.4, we find very similar results. The estimate in column (6) is our preferred estimate, which implies that doubling employment density is associated with a 3.8% increase in productivity.

Finally, to the extent long-lagged instruments fail to be convincing, we also consider an alternative approach based on spatially-lagged instruments. That is, following Bayer and Timmins (2007) we use the exogenous characteristics of distant locations to instrument for current employment density. More specifically, we calculate the share of developable land between 100 and 250km, which is beyond commuting distance. Moreover, the share of developable land far away is unlikely to influence amenities in one’s own municipality. Furthermore, we add the share of developable land 0-100km as an additional control variable, as well as the share of developable land in each municipality. The first-stage estimates in Table D.5 show that the instrument is sufficiently strong: a 1 percentage point increase in the share of developable land between 100 and 250km is associated with an increase in employment density of 4.3 – 7.6%. This effect is highly statistically significant. Going back to Table D.4, in column (7) we find an elasticity of 0.087. In column (8) we add geographic controls. We find a somewhat higher, and probably unrealistically high, point estimate of 0.136, but it is quite imprecisely estimated. To sum up, while this instrumental variable strategy should lead to similar estimates, we prefer the use of historical long-lagged instruments because the resulting coefficients are more precise and more in the range of what one would expect based on the literature.

We repeat a similar set of specifications but now aim to investigate the effect of density on F_{iy}. We expect a positive density elasticity because a higher density implies that there is an increased demand for land. Building taller buildings is expensive, while it is costly to transform remaining semi-developable land into land that is suitable for development.

In columns (1) and (2) we find an elasticity of fixed requirement with respect to density of 0.1. However, once we properly instrument for employment density using long-lagged historical population density from 1872 (columns (3) and (4)) or population density from 900 (columns (5) and (6)), we find an elasticity of about 0.05. We consider again the coefficient reported in column (6) to be the preferred specification. Columns (7) and (8) instrument for employment density using the share of developable land between 100 and 250km. We find a very similar agglomeration elasticity, although it is somewhat less precise.
We have argued in Section 3.5 that employment density may affect E_{iy} and F_{iy}. Since population density and employment density are very highly correlated ($\rho = 0.984$), replacing employment density by population density leads to almost the same elasticities as those reported in Tables D.4 and D.5. We may also calculate density by adding up employment and population. This does not materially influence the results either.25 We therefore decided to focus on the effects of employment density.

Appendix E. Counterfactual analyses

E.1 Counterfactuals – iterative procedure

Since we have obtained the parameters $\{\hat{\kappa}_R, \hat{\kappa}_H, \hat{\theta}_R, \hat{\theta}_H, \hat{\varepsilon}, \hat{\gamma}, \hat{\zeta}\}$, the elasticity of substitution $\sigma = 4.7$, the wages w_i, the residential amenities \hat{A}_i and workplace amenities \hat{B}_j, we can undertake counterfactuals. We choose the following starting values: $M_j^C = M_j$, $L_i^C = L_i$, $N_j^C = N_j$, $P_i^C = P_i$, $E_j^C = E_j$, and $F_j^C = F_j$, where C refers to counterfactual values. We adopt the following iterative procedure.

1. Given $\{\hat{\kappa}_R, \hat{\kappa}_H\}$, calculate counterfactual commuting times t_{ij}^C.
2. Given $\{\hat{\theta}_R, \hat{\theta}_H\}$, calculate counterfactual travel times for firms τ_{ij}^C.
3. Given t_{ij}^C, \hat{A}_i, P_i^C, M_j^C and $\hat{\varepsilon}$, solve for the counterfactual population L_i^C in each location i by using (9).
4. Given t_{ij}^C, \hat{B}_j, w_j^C, L_i^C and $\hat{\varepsilon}$, solve for the counterfactual employment M_j^C in each location j by using (8).
5. Given M_j^C, σ and F_j^C, calculate the number of firms in each location N_j^C.
6. Update the price index P_i^C by using (5).
7. Update the wages w_j^C by using (33) and the transformed wages $\tilde{w}_j^C = B_j \mathbb{E}(w_j^C)^{\hat{\gamma}}$ is the average workplace amenities, where \mathbb{E} is the expectation operator.
8. Update the productivities E_j^C by using (21) and $\hat{\gamma}$.
9. Update the fixed requirements F_j^C by using (22) and $\hat{\zeta}$.
10. Repeat steps (3)-(9) to reach new equilibrium values M_j^C and L_i^C and N_j^C when the differences $M_{j,i+1}^C - M_{j,i}^C$, $L_{i,j+1}^C - L_{i,j}^C$ and $N_{j,i+1}^C - N_{j,i}^C$ are sufficiently small.

25Results are available upon request.
We make sure that this counterfactual procedure is able to replicate the population and employment values in 2014 – our base year.

E.2 Counterfactual experiments: travel time changes

In Figure E.1 we show that reductions in travel time by train for different counterfactual experiments. We calculate the average travel time by rail or road using the employment distribution in 2014 observed in the data. In the first experiment, we analyze the extension of the Shinkansen network. There are particularly large travel time changes in Nagasaki (see Figure E.1a), which is now directly connected to the Shinkansen network. Moreover, we see reductions in travel time of up to 15% in Osaka, Nagoya and Tokyo metropolitan areas. As for Sapporo, the average travel time is reduced by 11%.

[Figure E.1 about here]

In Figure E.1b we consider travel time changes if the Shinkansen would not have been built. The island of Kyushu would be much affected and would witness a travel time increase of up to 200%. The same holds along other corridors of the Shinkansen network (e.g., Osaka-Hiroshima and Tokyo-Sendai-Aomori) where travel time changes are substantial.

E.3 Counterfactual experiments: population changes

In Figure E.2 we plot changes in population for different counterfactual scenarios.

[Figure E.2 about here]

In Figure E.2a we show population changes when the extensions of the Shinkansen network are implemented. In particular, cities connected to the Shinkansen witness substantial changes in population. For example, Nagasaki’s population increases by about 10%. The population of large metropolitan areas of Tokyo, Osaka and Nagoya change by –0.3%, 0.6% and 9.8%, respectively. Although the Shinkansen extensions have a strong impact on the population distribution, the overall concentration of population is essentially unaffected (the Herfindahl-Hirschmann Index increases from 0.00633 to 0.00634). Figure E.2b focuses on the effects when we remove all Shinkansen links. This has large effects on the population distribution within Japan. First of all, the concentration of population increases by 1.9%. Furthermore, we observe that Tokyo would be 5.5% larger, while, Kyoto-Osaka would be 14% larger and Nagoya 30% smaller. We may thus safely conclude that the Shinkansen had large effects on the urban geography of Japan.
E.4 Agglomeration economies and fixed requirements

One may be concerned that the estimates of agglomeration economies are biased if the historic instruments used are correlated with current spatial unobservables. We therefore re-estimate the counterfactual experiments while taking estimates for the density elasticities γ and ζ from the literature. Following Rosenthal and Strange (2002) and Combes et al. (2019), we choose $\gamma = 0.02$ and $\zeta = 0.05$. We find very similar effects in the counterfactual experiments. Welfare increases by about 5.5% when extensions are built and decreases by 6.6% if the Shinkansen would be removed. Overall concentration of employment is essentially unaffected. These findings are in line with Kline and Moretti (2014) who conclude that agglomeration are a ‘localized market failure that cancels out in the aggregate’. Even at the local level, the effects are very comparable. For example, in the counterfactual where all Shinkansen lines would be removed, Tokyo would increase by 6.0%, Osaka by 3.7% and Nagoya decrease by 21.3%. In the original case, this was 6.3%, 4.4% and -23%, respectively. With less pronounced benefits of agglomeration, the effects are just slightly smaller.

[Table E.1 about here]

In columns (4)-(6) of Table E.1 we consider the results when assuming away endogenous spillovers, implying that $\gamma = \zeta = 0$. Again, we find that in the aggregate the results are essentially the same as in the baseline setting, while the effects on the spatial employment distribution are virtually unaffected. The reason may be that in our baseline estimates, $\gamma \approx \zeta$. Hence, the benefits of clustering are essentially offset by the additional costs, which is also the case when $\gamma = \zeta = 0$. All in all, we may conclude that endogenous spillovers are not fundamental in explaining our results.

In Table E.2 we investigate the robustness of the results when we assume a different spatial distribution of fixed requirements. We report results in Table E.2.

[Table E.2 about here]

In columns (1)-(3) we investigate the results of the experiments when we lower the fixed requirements in the three largest metropolitan areas to just 10% of their values observed in the data. Unsurprisingly, in the baseline scenario, Tokyo would be considerably larger and now house almost 50% of the Japanese population, instead of about one-third. Kyoto-Osaka and Nagoya would more than double in size with such low fixed requirements. Regarding the effects of the Shinkansen, we find that the effects of removing Shinkansen on Tokyo and Nagoya would be about 50% smaller, while the effects on Osaka would be considerably larger. Hence, it is the changes in relative accessibility and location fundamentals that matter when analyzing the effects of transportation improvements.
In column (4)-(6) we investigate the results in the case where fixed requirements would be equal across Japan. Surprisingly, the size of metropolitan areas is not much affected. On the other hand, the effects of the Shinkansen are quite different. For example, when the Shinkansen extensions are implemented, Tokyo would grow by an astonishing 18%. Similarly, if the Shinkansen were to be removed, Tokyo would grow by a staggering 25.5%. This shows that with uniform location fundamentals, small perturbations in the relative attractiveness of a location (measured by the relative accessibility to all other locations) may cause large changes. Hence, it is not the existence of fixed requirements per se that anchors the spatial distribution of economic activities, but the differences across fixed requirements.
Table A.1 – Calculating Wages
(Dependent variable: the average wage at the prefecture level)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) OLS</td>
<td>(2) OLS</td>
<td>(3) OLS</td>
<td>(4) OLS</td>
<td>(5) OLS</td>
<td>(6) OLS</td>
<td>(7) OLS</td>
<td>(8) OLS</td>
<td>(9) OLS</td>
</tr>
<tr>
<td>Manufacturing wage (log)</td>
<td>0.2380*</td>
<td>0.3267***</td>
<td>0.3973***</td>
<td>0.4348***</td>
<td>0.4500***</td>
<td>0.3740***</td>
<td>0.4083***</td>
<td>0.2989***</td>
<td>0.2146***</td>
</tr>
<tr>
<td></td>
<td>(0.1230)</td>
<td>(0.1086)</td>
<td>(0.1196)</td>
<td>(0.1250)</td>
<td>(0.1133)</td>
<td>(0.0796)</td>
<td>(0.0806)</td>
<td>(0.0717)</td>
<td>(0.0647)</td>
</tr>
<tr>
<td>Share construction workers</td>
<td>-2.1358*</td>
<td>-2.7058**</td>
<td>-1.0596</td>
<td>-1.4324</td>
<td>0.4353</td>
<td>-0.2360</td>
<td>-0.3830</td>
<td>-0.8728</td>
<td>-0.8281</td>
</tr>
<tr>
<td></td>
<td>(1.2297)</td>
<td>(1.2723)</td>
<td>(1.2956)</td>
<td>(1.1525)</td>
<td>(1.2938)</td>
<td>(1.0700)</td>
<td>(0.8919)</td>
<td>(0.5804)</td>
<td>(0.5057)</td>
</tr>
<tr>
<td>Share workers in electricity</td>
<td>11.3916</td>
<td>13.0345*</td>
<td>7.9297</td>
<td>6.5816</td>
<td>-4.4572</td>
<td>-5.1545</td>
<td>-1.7843</td>
<td>-2.3662</td>
<td>-0.5150</td>
</tr>
<tr>
<td>and real estate</td>
<td>(2.6889)</td>
<td>(2.4597)</td>
<td>(2.9309)</td>
<td>(2.2331)</td>
<td>(2.0944)</td>
<td>(1.9118)</td>
<td>(2.4899)</td>
<td>(2.1552)</td>
<td>(1.7403)</td>
</tr>
<tr>
<td>Share workers in mining</td>
<td>39.4181</td>
<td>18.3458</td>
<td>18.8571</td>
<td>10.7510</td>
<td>-0.2813</td>
<td>-10.3284</td>
<td>-0.2088</td>
<td>0.6528</td>
<td>-1.1953</td>
</tr>
<tr>
<td>Share workers in retail</td>
<td>-0.2501</td>
<td>0.4745</td>
<td>0.2561</td>
<td>0.4115</td>
<td>1.2294*</td>
<td>0.0251</td>
<td>0.4391</td>
<td>0.2213</td>
<td>0.3302</td>
</tr>
<tr>
<td>(0.7356)</td>
<td>(0.5698)</td>
<td>(0.6476)</td>
<td>(0.6593)</td>
<td>(0.6206)</td>
<td>(0.4932)</td>
<td>(0.5259)</td>
<td>(0.3853)</td>
<td>(0.3661)</td>
<td></td>
</tr>
<tr>
<td>Share workers in consumer services</td>
<td>-0.8369**</td>
<td>-0.9293***</td>
<td>-1.2054***</td>
<td>-0.5693</td>
<td>-1.3374***</td>
<td>-1.0721***</td>
<td>-1.4677***</td>
<td>-1.9226**</td>
<td>-1.1941***</td>
</tr>
<tr>
<td>and logistics</td>
<td>(0.3681)</td>
<td>(0.3288)</td>
<td>(0.4413)</td>
<td>(0.4249)</td>
<td>(0.4696)</td>
<td>(0.4777)</td>
<td>(0.4622)</td>
<td>(0.3957)</td>
<td>(0.3960)</td>
</tr>
<tr>
<td>Share workers in transport</td>
<td>3.1862***</td>
<td>2.3755***</td>
<td>2.9780***</td>
<td>-0.4233</td>
<td>-1.2968</td>
<td>1.1954</td>
<td>-0.7263</td>
<td>0.6543</td>
<td>1.1197</td>
</tr>
<tr>
<td>(0.7486)</td>
<td>(0.6469)</td>
<td>(0.7581)</td>
<td>(1.1206)</td>
<td>(1.4353)</td>
<td>(1.2218)</td>
<td>(1.3213)</td>
<td>(0.9416)</td>
<td>(0.7223)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.8016</td>
<td>0.8665</td>
<td>0.8307</td>
<td>0.7966</td>
<td>0.7875</td>
<td>0.8457</td>
<td>0.8491</td>
<td>0.8639</td>
<td>0.8766</td>
</tr>
</tbody>
</table>

Notes: The omitted category is the share of workers in manufacturing. Robust standard errors are in parentheses; *** \(p < 0.01 \), ** \(p < 0.5 \), * \(p < 0.10 \).
Table B.1 – Reduced-form accessibility effects

<table>
<thead>
<tr>
<th>Model</th>
<th>Dependent variable: Mean travel time by rail</th>
<th>Other dependent variables: Mean travel time by rail, 1872 population</th>
<th>Mean travel time by road, 1872 population</th>
<th>Mean travel time by road, 1872 population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ Municipality fixed effects</td>
<td>+ Municipality trends</td>
<td>Shinkansen locations</td>
<td>Shinkansen locations <2030</td>
</tr>
<tr>
<td>(1)</td>
<td>OLS</td>
<td>(2)</td>
<td>OLS</td>
<td>(3)</td>
</tr>
<tr>
<td>Shinkansen station <25km</td>
<td>-0.1224*** (0.0046)</td>
<td>-0.1704*** (0.0056)</td>
<td>-0.1328*** (0.0075)</td>
<td>-0.1478*** (0.0068)</td>
</tr>
<tr>
<td>Geographical controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Municipality fixed effects</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Prefecture fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of observations</td>
<td>18,238</td>
<td>18,238</td>
<td>18,238</td>
<td>8,910</td>
</tr>
<tr>
<td>R^2</td>
<td>0.9514</td>
<td>0.9783</td>
<td>0.9867</td>
<td>0.9717</td>
</tr>
</tbody>
</table>

Notes: Accessibility is the average travel time by train to the population in mainland Japan. (Time-invariant) geographical control variables include the mean elevation as well as its standard deviation, the area size of the municipality, January and July temperature, the probability on an earthquake, as well as the total precipitation per m². Clustered standard errors at the municipality level are in parentheses; *** $p < 0.01$, ** $p < 0.5$, * $p < 0.10$.
Table B.2 – Reduced-form effects on population and employment density

Panel A: Population

<table>
<thead>
<tr>
<th>Dependent variable: the log of population density</th>
<th>+ Municipality fixed effects</th>
<th>+ Municipality trends</th>
<th>Shinkansen locations</th>
<th>Shinkansen locations <2030</th>
<th>Exclude large metro areas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
</tr>
<tr>
<td>Shinkansen station <25km</td>
<td>0.389***</td>
<td>0.2205***</td>
<td>0.0872***</td>
<td>0.0404**</td>
<td>0.0670***</td>
</tr>
<tr>
<td></td>
<td>(0.0402)</td>
<td>(0.0178)</td>
<td>(0.0097)</td>
<td>(0.0175)</td>
<td>(0.0137)</td>
</tr>
<tr>
<td>Geographical controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Municipality fixed effects</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Prefecture fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of observations</td>
<td>18,238</td>
<td>18,238</td>
<td>18,238</td>
<td>8,910</td>
<td>6,897</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.804</td>
<td>0.9807</td>
<td>0.9968</td>
<td>0.9777</td>
<td>0.9765</td>
</tr>
</tbody>
</table>

Panel B: Employment

<table>
<thead>
<tr>
<th>Dependent variable: the log of employment density</th>
<th>+ Municipality fixed effects</th>
<th>+ Municipality trends</th>
<th>Shinkansen locations</th>
<th>Shinkansen locations <2030</th>
<th>Exclude large metro areas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
</tr>
<tr>
<td>Shinkansen station <25km</td>
<td>0.475***</td>
<td>0.2103***</td>
<td>0.0191</td>
<td>0.0324</td>
<td>0.0413**</td>
</tr>
<tr>
<td></td>
<td>(0.0462)</td>
<td>(0.0217)</td>
<td>(0.0137)</td>
<td>(0.0211)</td>
<td>(0.0172)</td>
</tr>
<tr>
<td>Geographical controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Municipality fixed effects</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Prefecture fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of observations</td>
<td>18,238</td>
<td>18,238</td>
<td>18,238</td>
<td>8,910</td>
<td>6,897</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.766</td>
<td>0.9733</td>
<td>0.9918</td>
<td>0.9742</td>
<td>0.9662</td>
</tr>
</tbody>
</table>

Notes: Accessibility is the average travel time by train to the population in mainland Japan. (Time-invariant) geographical control variables include the mean elevation as well as its standard deviation, the area size of the municipality, January and July temperature, the probability on an earthquake, as well as the total precipitation per m². Clustered standard errors at the municipality level are in parentheses; *** \(p < 0.01 \), ** \(p < 0.5 \), * \(p < 0.10 \).
Table D.1 – Commuting gravity models
(Dependent variable: the number of links)

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Travel time</th>
<th>Number of</th>
<th>Connected in</th>
<th>Connected in</th>
<th>Connected in</th>
<th>Connected by</th>
<th>Relative</th>
<th>+ East-west</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><120 min</td>
<td>commuters >0</td>
<td>1942 plan</td>
<td>Meiji period</td>
<td>18th century</td>
<td>Shinkansen</td>
<td>travel time</td>
<td>border</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PPML</td>
<td>PPML</td>
<td>PPML</td>
<td>PPML</td>
<td>PPML</td>
<td>PPML</td>
<td>PPML</td>
<td>PPML</td>
</tr>
<tr>
<td>Travel time by train (min), (\hat{\kappa}_R)</td>
<td>-0.0223***</td>
<td>-0.0257***</td>
<td>-0.0223***</td>
<td>-0.0218***</td>
<td>-0.0240***</td>
<td>-0.0642***</td>
<td>-0.0240***</td>
<td>-0.0642***</td>
<td>-0.0220***</td>
</tr>
<tr>
<td></td>
<td>(0.0031)</td>
<td>(0.0029)</td>
<td>(0.0031)</td>
<td>(0.0034)</td>
<td>(0.0069)</td>
<td>(0.0068)</td>
<td>(0.0069)</td>
<td>(0.0068)</td>
<td>(0.0031)</td>
</tr>
<tr>
<td>Travel time by road (min), (\hat{\kappa}_H)</td>
<td>-0.0461***</td>
<td>-0.0457***</td>
<td>-0.0458***</td>
<td>-0.0454***</td>
<td>-0.0476***</td>
<td>-0.0290***</td>
<td>-0.0476***</td>
<td>-0.0290***</td>
<td>-0.0462***</td>
</tr>
<tr>
<td></td>
<td>(0.0024)</td>
<td>(0.0024)</td>
<td>(0.0024)</td>
<td>(0.0026)</td>
<td>(0.0050)</td>
<td>(0.0030)</td>
<td>(0.0050)</td>
<td>(0.0030)</td>
<td>(0.0024)</td>
</tr>
<tr>
<td>Travel time by train (min) \times travel time by train & 0.0231*** & & & & & & & 0.0231***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>travel time by road & & & & & & & & & (0.0035)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East-west ‘border’ & & & & & & & & & -0.7988***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>& & & & & & & & & (0.2685)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On same island & & & & & & & & & -2.0188***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>& & & & & & & & & (0.7236)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential location fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Work location fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of observations</td>
<td>1,359,215</td>
<td>483,180</td>
<td>479,978</td>
<td>128,052</td>
<td>1,012,783</td>
<td>186,174</td>
<td>295,947</td>
<td>1,359,215</td>
<td>1,359,215</td>
</tr>
<tr>
<td>Pseudo (R^2)</td>
<td>0.956</td>
<td>0.956</td>
<td>0.956</td>
<td>0.956</td>
<td>0.956</td>
<td>0.956</td>
<td>0.956</td>
<td>0.956</td>
<td>0.956</td>
</tr>
</tbody>
</table>

Notes: We use the number of links between municipalities as dependent variable. Municipalities that are within 25km of a Shinkansen station are considered to be connected to the Shinkansen network. Standard errors are bootstrapped (250 replications) by home locations and in parentheses; *** \(p < 0.01 \), ** \(p < 0.5 \), * \(p < 0.10 \).
Table D.2 – Gravity models of production networks
(Independent variable: the number of links)

<table>
<thead>
<tr>
<th></th>
<th>Baseline PPML</th>
<th>All PPML</th>
<th>Euclidian distance < 400km PPML</th>
<th>Manufacturing firms PPML</th>
<th>Business services firm PPML</th>
<th>Connected in 1942 plan PPML</th>
<th>Connected in Meiji period PPML</th>
<th>Connected in 18th century Shinkansen travel time PPML</th>
<th>Connected by border PPML</th>
<th>Relative travel time PPML</th>
<th>East-west border PPML</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel time by train (min) (\hat{\kappa}_R)</td>
<td>-0.0269***</td>
<td>-0.0244***</td>
<td>-0.0283***</td>
<td>-0.0191***</td>
<td>-0.0273***</td>
<td>-0.0290***</td>
<td>-0.0268***</td>
<td>-0.0405***</td>
<td>-0.0534***</td>
<td>-0.0355***</td>
<td>-0.0274***</td>
</tr>
<tr>
<td></td>
<td>(0.0018)</td>
<td>(0.0033)</td>
<td>(0.0016)</td>
<td>(0.0012)</td>
<td>(0.0050)</td>
<td>(0.0039)</td>
<td>(0.0018)</td>
<td>(0.0019)</td>
<td>(0.0036)</td>
<td>(0.0035)</td>
<td>(0.0017)</td>
</tr>
<tr>
<td>Travel time by road (min) (\hat{\kappa}_H)</td>
<td>0.0013**</td>
<td>0.0019**</td>
<td>-0.0043***</td>
<td>0.00003</td>
<td>0.0029***</td>
<td>0.0013</td>
<td>0.0014**</td>
<td>0.0046***</td>
<td>0.0086***</td>
<td>0.0035***</td>
<td>0.0016***</td>
</tr>
<tr>
<td></td>
<td>(0.0006)</td>
<td>(0.0009)</td>
<td>(0.0011)</td>
<td>(0.0004)</td>
<td>(0.0014)</td>
<td>(0.0011)</td>
<td>(0.0006)</td>
<td>(0.0010)</td>
<td>(0.0015)</td>
<td>(0.0009)</td>
<td>(0.0005)</td>
</tr>
<tr>
<td>Travel time by train (min) (\times) travel time by road</td>
<td>0.0068***</td>
<td>(0.0018)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: We use the number of links between municipalities as dependent variable. Municipalities that are within 25km of a Shinkansen station are considered to be connected to the Shinkansen network. Standard errors are bootstrapped (250 replications) by sellers locations and in parentheses; *** \(p < 0.01 \), ** \(p < 0.5 \), * \(p < 0.1 \).
Table D.3 – Estimating the heterogeneity parameter, ε

(Dependent variable: the log of transformed wages, $\tilde{\omega}_{it}$)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Year Instrument (f.e.)</th>
<th>Minryoku Instrument (f.e.)</th>
<th>Employment Shares</th>
<th>Base Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>(1) 2SLS</td>
<td>(2) 2SLS</td>
<td>(3) 2SLS</td>
<td>(6) 2SLS</td>
</tr>
<tr>
<td>Flexible Year Minoryoku Employment Base year</td>
<td>(4) 2SLS</td>
<td>(5) 2SLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wage (log), ε</td>
<td>2.1854*** (0.7465)</td>
<td>2.2686*** (0.6573)</td>
<td>5.6219*** (1.1041)</td>
<td>1.3280 (1.5987)</td>
</tr>
</tbody>
</table>

Employment shares in sectors included (7) | No | No | No | No | Yes | No |
Municipality fixed effects | Yes | Yes | Yes | Yes | Yes | Yes |
Prefecture \times year fixed effects | Yes | Yes | No | No | Yes | Yes |
Minryoku \times year fixed effects | No | No | No | Yes | No | No |
Year fixed effects | Yes | Yes | Yes | Yes | Yes | Yes |

Number of observations | 6,632 | 6,632 | 6,632 | 6,632 | 6,632 | 6,632 |
Kleibergen-Paap F-statistic | 12.08 | 17.87 | 17.25 | 8.66 | 13.61 | 12.43 |

Notes: We instrument wages with the predicted employment in each municipality in each year. In column (2) we add a squared term of predicted employment as an additional instrument. Bootstrapped standard errors (250 replications) are clustered at the municipality level and in parentheses; *** $p < 0.01$, ** $p < 0.5$, * $p < 0.10$.

Table D.4 – Productivity density elasticity, γ

(Dependent variable: the log of productivity, A_{it})

<table>
<thead>
<tr>
<th>No Instruments</th>
<th>Population in 1872</th>
<th>Population in 900</th>
<th>Developable Land, 100-250km</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) OLS</td>
<td>(2) 2SLS</td>
<td>(3) 2SLS</td>
<td>(4) 2SLS</td>
</tr>
<tr>
<td>Employment density (log), γ</td>
<td>0.0661*** (0.0054)</td>
<td>0.0889*** (0.0067)</td>
<td>0.0645*** (0.0087)</td>
</tr>
<tr>
<td>Share developable land, 0-100km</td>
<td>0.0647*** (0.0102)</td>
<td>0.1557*** (0.0095)</td>
<td>0.0553*** (0.0109)</td>
</tr>
<tr>
<td>Geographical variables (4)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of observations</td>
<td>6,632</td>
<td>6,632</td>
<td>6,616</td>
</tr>
<tr>
<td>R^2</td>
<td>0.0464</td>
<td>0.0758</td>
<td></td>
</tr>
<tr>
<td>Kleibergen-Paap F-statistic</td>
<td>768.6</td>
<td>587.5</td>
<td>677.9</td>
</tr>
<tr>
<td>(7) 2SLS</td>
<td>(8) 2SLS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Geographical variables include the share of developable land in the own municipality, the log of precipitation per km2, the probability of an heavy earthquake (with the Shindo Scale above 5), and distance to the coast in km. We also include the share of developable land in the own municipality in column (7). Standard errors are bootstrapped (250 replications) by sellers locations and in parentheses; *** $p < 0.01$, ** $p < 0.5$, * $p < 0.10$.

A23
Table D.5 – First-stage estimates

(*Dependent variable: the log of employment density*)

<table>
<thead>
<tr>
<th></th>
<th>Population in 1872 (log)</th>
<th>Population in 900 (log)</th>
<th>Developable land, 100-250km (log)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>2SLS</td>
<td>2SLS</td>
</tr>
<tr>
<td>Population density in 1872</td>
<td>0.6601*** (0.0242)</td>
<td>0.6037*** (0.0245)</td>
<td></td>
</tr>
<tr>
<td>Population density in 900</td>
<td>0.6286*** (0.0238)</td>
<td>0.5299*** (0.0238)</td>
<td></td>
</tr>
<tr>
<td>Share developable land, 100-250km</td>
<td>7.9524*** (0.5904)</td>
<td>4.2777*** (0.5282)</td>
<td></td>
</tr>
<tr>
<td>Share developable land, 0-100km</td>
<td>1.0226*** (0.2760)</td>
<td>4.0219*** (0.3905)</td>
<td></td>
</tr>
<tr>
<td>Geographical variables (4)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of observations</td>
<td>6,632</td>
<td>6,632</td>
<td>6,616</td>
</tr>
<tr>
<td>R^2</td>
<td>0.3091</td>
<td>0.6250</td>
<td>0.2016</td>
</tr>
</tbody>
</table>

Notes: Geographical variables include the share of developable land in the own municipality, the log of precipitation per km2, the probability of a heavy earthquake (with the Shindo Scale above 5), and distance to the coast in km. We also include the share of developable land in the own municipality in column (7). Standard errors are bootstrapped (250 replications) by sellers locations and in parentheses; *** p < 0.01, ** p < 0.5, * p < 0.10.

Table D.6 – Fixed requirement density elasticity, ζ

(*Dependent variable: the log of the fixed requirement, \hat{F}_{it}*)

<table>
<thead>
<tr>
<th></th>
<th>No instruments</th>
<th>Population in 1872</th>
<th>Population in 900</th>
<th>Developable land, 100-250km</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>2SLS</td>
<td>2SLS</td>
<td>2SLS</td>
</tr>
<tr>
<td>Employment density (log)</td>
<td>0.1016*** (0.0032)</td>
<td>0.0974*** (0.0039)</td>
<td>0.0442*** (0.0048)</td>
<td>0.0533*** (0.0062)</td>
</tr>
<tr>
<td>Share developable land, 0-100km</td>
<td>0.5498*** (0.0463)</td>
<td>0.3498*** (0.0463)</td>
<td>0.0566*** (0.0070)</td>
<td>0.0360* (0.0214)</td>
</tr>
<tr>
<td>Geographical variables (4)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of observations</td>
<td>6,632</td>
<td>6,632</td>
<td>6,616</td>
<td>6,616</td>
</tr>
<tr>
<td>R^2</td>
<td>0.4090</td>
<td>0.4665</td>
<td>768.6</td>
<td>587.5</td>
</tr>
</tbody>
</table>

Notes: Geographical variables include the share of developable land in the own municipality, the log of precipitation per km2, the probability of a heavy earthquake (with the Shindo Scale above 5), and distance to the coast in km. We also include the share of developable land in the own municipality in column (7). Standard errors are bootstrapped (250 replications) by sellers locations and in parentheses; *** p < 0.01, ** p < 0.5, * p < 0.10.
Table E.1 – Counterfactual experiments – agglomeration economies

<table>
<thead>
<tr>
<th>Agglomeration economies from literature</th>
<th>No agglomeration economies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline in 2014</td>
<td>Shinkansen</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Average travel time to employment by train (min)</td>
<td>434.8</td>
</tr>
<tr>
<td></td>
<td>(9.87)</td>
</tr>
<tr>
<td>Average travel time to employment by road (min)</td>
<td>722.7</td>
</tr>
<tr>
<td></td>
<td>(15.01)</td>
</tr>
<tr>
<td>Welfare, (\hat{V})</td>
<td>1.0000</td>
</tr>
<tr>
<td></td>
<td>(—)</td>
</tr>
<tr>
<td></td>
<td>(0.0791)</td>
</tr>
<tr>
<td></td>
<td>(0.0740)</td>
</tr>
</tbody>
</table>

Notes: Standard errors are bootstrapped (250 replications) by municipality and in parentheses. Employment dispersion is measured by \(- \sum_{i}^{I} \frac{M_i}{\sum_{j}^{J} M_j} \log \frac{M_i}{\sum_{j}^{J} M_j}\) and population dispersion by \(- \sum_{i}^{I} \frac{L_i}{\sum_{j}^{J} L_j} \log \frac{L_i}{\sum_{j}^{J} L_j}\).

Table E.2 – Counterfactual experiments – the fixed requirement

<table>
<thead>
<tr>
<th>Low fixed requirement in metro areas</th>
<th>Uniform fixed requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline in 2014</td>
<td>Shinkansen</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Average travel time to employment by train (min)</td>
<td>406.4</td>
</tr>
<tr>
<td></td>
<td>(10.97)</td>
</tr>
<tr>
<td>Average travel time to employment by road (min)</td>
<td>689.5</td>
</tr>
<tr>
<td>Welfare, (\hat{V})</td>
<td>1.0000</td>
</tr>
<tr>
<td></td>
<td>(—)</td>
</tr>
<tr>
<td>Employment dispersion</td>
<td>5.5293</td>
</tr>
<tr>
<td></td>
<td>(0.2188)</td>
</tr>
<tr>
<td>Population dispersion</td>
<td>5.9456</td>
</tr>
<tr>
<td></td>
<td>(0.1664)</td>
</tr>
</tbody>
</table>

Notes: Standard errors are bootstrapped (250 replications) by municipality and in parentheses. Employment dispersion is measured by \(- \sum_{i}^{I} \frac{M_i}{\sum_{j}^{J} M_j} \log \frac{M_i}{\sum_{j}^{J} M_j}\) and population dispersion by \(- \sum_{i}^{I} \frac{L_i}{\sum_{j}^{J} L_j} \log \frac{L_i}{\sum_{j}^{J} L_j}\).
Figure A.1 – Annual wages 2001-2011 at the municipality level
Figure A.2 – Developable land in Japan

Figure B.1 – Event studies to the impact of an HSR station on travel time

Notes: The dotted lines denote 95% confidence intervals based on standard errors clustered at the municipality level.
Figure B.2 – Event studies to the impact of a Shinkansen station

Notes: The dotted lines denote 95% confidence intervals based on standard errors clustered at the municipality level.

Figure E.1 – Counterfactual experiments: average travel times

(A) Extension of the Shinkansen network

(B) No Shinkansen
(a) Extension of the Shinkansen network

(b) No Shinkansen

Figure E.2 – Counterfactual experiments: the spatial distribution of population