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1. Introduction

In rapidly evolving, highly competitive consumer market environments, marketers are

faced with a countless number of factors affecting business. These factors often veer away

from conventional rules of thumb or theory and can be mutually interacting. Marketers

and researchers face the challenge of detecting the meaningful relationships between such

factors and predicting the possible performance of brands. This challenge represents a sig-

nificant marketing mix problem caused by the proliferation of viable media and competing

brands. Traditionally, consumers’ consideration of a consumer goods purchase began with

exposure to TV advertising. However, penetration via a variety of media and channels has

increased the number of “touch points” between customers and firms (Winer 2001). As a

result, the proliferation of touch points has intensified competition across brands, creating

an increasingly complex marketing mix.

Recently, to untangle the growing complexity of the customer decision process, prac-

titioners have increasingly begun to refer to the customer journey framework (Edelman

and Singer 2015, Lemon and Verhoef 2016). The customer journey represents a transition

of the customer state or a sequence of touch points that finally converges into conversion

(in many cases, a purchase or sale). Several quantitative models have been proposed to

untangle this complexity: Anderl et al. (2016) applied a Markov graphical model for indi-

vidual customers’ history of contacts with touch points, and De Haan et al. (2015) applied

an advanced regression to the aggregated data. Nevertheless, these methods fail to cover

all relevant information because they focus on the customer journey within a set of touch

points of the focal brand. Consequently, they ignore the effects of the touch points of mul-

tiple brands that are mutually competitive. To investigate how customers choose a certain

brand, a customer journey map should be extended to include active competitors’ touch

points.

The first difficulty in extending the customer journey map lies in collecting the data

on competitors’ touch points. Fortunately, particularly for consumer packaged goods, syn-

dicated data are often available that include information on the touch points of multiple

competitive brands. In this study, we use the data offered by a leading marketing research

company in Japan, INTAGE Inc. These data are a compilation of touch point information

or marketing variables based on consumer exposure to TV advertising, visits to brand

websites through search engine queries, and purchase actions with retailers.
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The second difficulty in the mapping process lies in identifying the effects of touch points

of multiple brands on their overall performance and the mutual relationships between those

brands. For this purpose, the most suitable method used in marketing science may be

multivariate time-series analyses, which have been intensively applied to assess the long-

term effectiveness of the marketing mix. This method includes a variety of models such as

the vector auto-regressive model (Pauwels 2007), dynamic linear model (Ataman and Mela

2010), varying parameter model (Sriram et al. 2007), and the Kalman filter (Kolsarici and

Vakratsas 2016).

However, even these methods face challenges in handling competitive customer journeys

because of the limited number of parameters tractable for the model. Extant multivariate

time-series models are applied to cases with only three to five competitive brands and a

few marketing variables, although most consumer goods markets are composed of many

more brands and touch points. For simplicity, we first consider the within-brand effects of

each brand. Even in this case, a number of possible effects need to be measured, which are

classified as follows:

(1) Own-brand effect: A brand’s activity at each touch point could affect its own per-

formance, which is of primary importance to marketers.

(2) Own-brand feedback: A brand’s past performance could affect its activity at each

touch point, for instance, through budget constraints based on past performance,

(3) Own-brand synergy: A brand’s activity could affect its another activity, which is

likely to occur if positive (or negative) synergy leads to joint (or disjointed) implementation

of these activities.

(4) Own-brand inertia: A brand’s activity or performance might depend on its past

state; for instance, brand loyalty (positive inertia) or variety-seeking (negative inertia).

(Guadagni and Little 1983).

For a market with m brands, each with n touch points and one performance measure,

a simple linear model would require the estimation of at least m× n parameters for (1)

and (2) each, m× (m− 1)× n parameters for (3) and (m + 1)× n parameters for (4) (in

total, (m + 1)2×n parameters). If m = 10 and n = 5, which seems to be a realistic setting,

at least 360 parameters should be estimated. To measure the synergistic effects between

activities more directly, some interaction terms would be required(Naik and Ramon 2003,

Naik and Peters 2009), further increasing the number of parameters.
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Additionally, marketers are interested in how competitors interrupt their own customers’

journeys and the effect of this on a brand’s performance. Thus, the following effects should

be considered:

(1) Cross-brand effect: A brand’s activity at each touch point could affect the perfor-

mance of its competitors. The most popular notion regarding this effect is the influence of

cross-elasticity of prices on other brands’ sales.

(2) Cross-brand feedback: A brand’s past performance could affect its competitors’

activities at touch points since competitors monitor each other’s performance to plan

strategic actions.

(3) Cross-brand reaction: A brand’s activity at a touch point could increase (or decrease)

a competitor’s’ retaliatory activities (or accommodation),

(4) Cross-brand dependence: A brand’s past performance could directly affect the per-

formance of its competitors, whose effect could be negative (or positive) if the brands are

substitutional (or complementary),

Incorporating cross-brand relationships into the model would increase the number of

parameters disproportionately. To measure both own- and cross-brand effects via a linear

model, we estimate ((m+1)×n)2 parameters (for the above numerical example, (6×10)2 =

3,600 parameters in total). Adding time-lag or nonlinear effects increases the number

further, exceeding the limitation of parameters tractable for ordinary multivariate time-

series analyses. To avoid such an explosive increase in parameters, researchers have often

imposed strong restrictions on variables and their relationships based on their experience

or research tradition. Otherwise, researchers employ exploratory analyses to reduce the

dimensionality of given multivariate data, such as principal component analysis (PCA).

However, as discussed later, ordinary PCA often fails to treat time-series data with time-lag

effects in a proper way.

Alternatively, we propose a novel method called complex Hilbert principal component

analysis (CHPCA) (Aoyama et al. 2010, 2017) to depict a customer journey map with

own and competitors’ touch points. CHPCA was developed originally in econophysics as

an extension of PCA to uncover temporal comovements among variables observed in the

macro economy (Kichikawa et al. 2020) or foreign exchange markets (Vodenska et al. 2016).

CHPCA can handle enormously high-dimensional time-series data without any strong
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assumptions concerning the phenomenon of interest. This method provides information on

almost all own- and cross-brand effects, except own-brand inertia and cross-brand effects.

Although this method is advantageous in capturing a number of effects among multiple

brands and touch points, can it capture other aspects that the existing models satisfy?

Ataman and Mela (2010) evaluate alternative multivariate time-series models to determine

whether they satisfy the following conditions:

• Endogeneity: Recently, this issue has been increasingly emphasized because it is widely

recognized that many marketing actions are not independent of future performance. Sup-

pose customers who are more likely to purchase are targeted in advertising campaigns.

With no consideration for endogeneity in advertising, the effects of endogeneity on a pur-

chase would be overestimated.

• Performance feedback: As already discussed in relation to own-brand feedback, con-

sideration for performance feedback effects may lead to a more accurate assessment of the

customer journey.

• Competitive reactions: This concept is discussed above as cross-brand reaction and

has been studied by a variety of data and analytical methods (Steenkamp et al. 2005).

CHPCA satisfies the first condition (endogeneity) since the model treats all variables as

comoving variables. Additionally, the model satisfies the second condition (feedback from

past outcomes), except for the cross-brand condition and the third condition (competitive

reactions) as part of possible comovements.

Another advantage of CHPCA is its practicality. Practitioners can solve real problems

under time and effort constraints. First, as with ordinal PCA, users of CHPCA may not

need any prior knowledge or assumptions regarding the phenomenon. If using random

rotation simulation (RRS), significant eigenmodes (principal components in PCA) can be

selected automatically in a theoretically justifiable manner. Second, the results of CHPCA

are easily interpreted on the complex plane corresponding to each eigenmode following

stylized procedures. Conveniently, the information obtained is integrated and visualized

by a synchronized network with Hodge decomposition. Finally, this method provides a

skeleton of a customer journey map using aggregate marketing data, which is available

for consumer packaged goods markets. The model also provides information on customer

profile heterogeneity.



6

In addition, we recommend CHPCA for conducting exploratory analyses. Similar to the

division of roles between exploratory and confirmatory factor analyses, CHPCA can be

complementary to traditional multivariate time-series analyses. CHPCA is used to generate

hypotheses on possible causality among a huge number of variables while multivariate

time-series analyses are used to rigorously test hypotheses. If a few critical relationships

are detected as a result of the analysis using CHPCA, we can apply quasi-experimental

methods such as a regression discontinuity design (Hartmann et al. 2011) or a propensity

score method (Mizuno and Hoshino 2006), which have been used to prove causality in

observational data.

The remainder of this paper is organized as follows: In section 2, we describe the data for

the beer market in Japan. We propose the application of CHPCA to detect the customer

journey in section 3 and the procedure for depicting the map via a synchronization network

in section 4. The procedure to detect customer heterogeneity and the results are reported

in section 5. In section 6, we conclude our paper with a discussion on the policy and

managerial implications, the remaining problems, and avenues for further research.

2. Data
2.1. Data Collection

In this paper, we analyze the comovement of consumer purchases (quantities and prices

paid) of beer and related marketing communication activities. The reason for our focus

on this market is that it is a typical monopolistic-competitive market, where a few firms

compete with differentiated brands using a full range of marketing instruments such as

TV advertising, web/mobile marketing, price promotion, etc., attracting attentions of eco-

nomic policymakers and marketers. Hence, we use INTAGE Single-source Panel (i-SSP)

data, which is the most comprehensive consumer database commercially operated in Japan

measuring daily purchases of a wide variety of consumer package goods and consumer

marketing communication activities (exposure to TV ads, visits to web sites via mobile

device/PC, and search activities via mobile device/PC. For the current analysis, we use

these data for 365 days from April 1, 2013 to March 31, 2014 (inclusive). The abbreviation

and description of each time series is shown in Table 1.

https://www.overleaf.com/project/5ecc5fdae0d84e0001f5bc3f

These data initially capture individual-level behaviors of the panel. For this analysis,

however, we aggregated the data over all customers due to the limited size of the data.
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Abbreviation Description

P Price per unit quantity (yen/m`)

Q Quantity purchased (m`)

Visit Visit to brand web site via mobile device or PC (seconds)

TVAd Exposure to TV advertising (seconds)

Search Search frequency via mobile device or PC (times)

Table 1 Abbreviation and the description of the five kinds of time-series

The potential heterogeneity among customers is represented as the location of a few-

dimensional space (see section 5). The purchase data are documented at the store-keeping

unit (SKU) level while the advertising and other communication variables are documented

at the brand level. In general, one brand is composed of multiple SKUs. When merging

the two types of data, the purchase data are summed across SKUs by their corresponding

brand.

There are 163 beer brands from 14 firms in the original data. We selected the top 18

brands according to the total quantity in the data during the stated period: Fig. 1 is the

rank-size plot of some of the top brands. The top 18 brands selected for the current analysis

are those beyond the thin vertical line, Total Quantity > 1× 104. As is apparent in this

plot, these brands form a distinctive top group with a large gap between this group and

the followers. Furthermore, this top group roughly obeys the power-law indicated by the

thin dashed line, with [Rank] ∝ [Total Quantity]−1.109.

The data for the top 18 brands cover 64.9% of all the sales. Fig. 2 shows the daily total

quantities for both all brands (in light gray) and the selected 18 brands (in dark gray).

Periodic peaks apparent in this plot occur at weekends when quantity rises on Saturdays

and peaks on Sundays. The high peak structure at the end of the period; that is, at the

end of March 2014, is explained by the VAT hike from 5% to 8% on April 1, 2014.1

The brands are shown with codes, the first letter of which corresponds to the firm, and

the second letter (digit) corresponds to the brand: For example, the code “A1” means that

the product is from firm ‘A’ and the brand ‘1’. With five types of data for each brand as

listed in Table 1, we have 18×5 = 90 time series altogether. However as no communication

1 We have data beyond this day for another several months. However, we decided to take this one-year period to
avoid bias from seasonal dependence and the strong influence from the increase in quantity (and the downfall on and
after April 1, 2014).
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Figure 1 Rank-size plot of the top selling brands.

2013/04 2013/05 2013/06 2013/07 2013/08 2013/09 2013/10 2013/11 2013/12 2014/01 2014/02 2014/03 2014/04
0

1

2

3

4

5

6

7

2013/04 2013/05 2013/06 2013/07 2013/08 2013/09 2013/10 2013/11 2013/12 2014/01 2014/02 2014/03 2014/04

Days

Q
ua
nt
it
y
(×
10
5 )

Figure 2 Daily total quantities. Light gray: all brands, Dark gray: Selected 18 brands. Apparent periodic peaks

correspond to Sundays.

activity was observed for some brands, we set the threshold to 51 days: we used only the

time-series data with 51 or more days of entry (more than or equal to once a week). With

this threshold, we have 65 time series for purchases and related communication activities,

which are listed in Table 2.
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Rank Code Total Sales P Q Visit TVAd Search

1 D2 1.00× 107 365 365 158 328 209

2 A4 7.52× 106 365 365 25 287 163

3 B1 7.32× 106 365 365 164 306 153

4 C3 6.59× 106 365 365 29 173 76

5 B3 4.09× 106 354 354 363 354 73

6 A3 3.99× 106 357 357 29 249 34

7 A1 3.47× 106 360 360 63 185 117

8 B5 3.08× 106 365 365 62 274 19

9 D3 2.94× 106 339 339 3 0 0

10 D1 2.27× 106 355 355 284 334 270

11 B4 2.03× 106 258 258 0 0 0

12 A6 1.82× 106 330 330 0 0 0

13 B2 1.80× 106 298 298 172 228 41

14 C1 1.76× 106 341 341 82 219 168

15 A2 1.70× 106 304 304 5 111 5

16 C2 1.53× 106 342 342 39 216 25

17 A5 1.46× 106 276 276 0 0 0

18 C4 1.42× 106 198 198 0 0 0

Table 2 Top-selling 18 brands and availability of data in days.
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Rank Code P Q Visit TVAd Search

1 D2 0.287(0.011) 27483.0(14758.6) 18.9(66.6) 4770.1(6042.2) 1.92(3.59)

2 A4 0.294(0.014) 20596.9(14640.2) — 4164.6(6126.4) 1.30(3.07)

3 B1 0.494(0.026) 20052.2(13850.3) 75.1(291.5) 4004.4(6704.8) 2.15(5.15)

4 C3 0.287(0.015) 18064.9(13970.4) — 1271.7(3159.3) 0.54(1.76)

5 B3 0.295(0.023) 11192.3(10534.8) 175.6(365.3) 4792.1(5725.9) 0.50(1.92)

6 A3 0.350(0.025) 10926.4(11359.7) — 2964.1(4648.4) —

7 A1 0.506(0.035) 9499.7(8786.6) 9.5(38.5) 4232.1(7763.3) 1.10(2.56)

8 B5 0.301(0.023) 8424.9(8117.4) 19.3(118.3) 2861.0(3955.7) —

9 D3 0.285(0.020) 8060.4(8510.2) — — —

10 D1 0.567(0.039) 6205.9(5934.8) 73.7(184.8) 10051.1(10428.0) 3.81(6.15)

11 B4 0.296(0.018) 5573.2(8665.4) — — —

12 A6 0.304(0.024) 4975.0(6037.5) — — —

13 B2 0.362(0.028) 4943.8(6515.0) 46.2(115.2) 1769.2(3712.4) —

14 C1 0.555(0.046) 4823.9(5755.2) 10.6(42.9) 2486.8(4732.9) 1.46(3.41)

15 A2 0.362(0.039) 4665.9(6790.5) — 1359.0(4166.9) —

16 C2 0.508(0.041) 4202.3(5325.6) — 2019.6(5922.4) —

17 A5 0.298(0.021) 3995.4(6606.3) — — —

18 C4 0.296(0.028) 3884.6(6819.0) — — —

Table 3 Descriptive statistics for the top-selling 18 brands: means and standard deviations (in parentheses).

The symbol ”—” corresponds to discarded data because of sparsity (see text).

2.2. Descriptive Statistics

Table 3 summarizes the means and standard deviations for the time series. Symbol ”—”

implies too sparse data due to no communication activity. We observe that these time series

are highly volatile in temporal change. We then use the standard method of subtracting the

mean and dividing it by the standard deviation. Let us denote the resulting time series by

xα(ti) where α= 1, · · · ,N(= 65) is the label for the time series, and ti = 1, · · · ,365 denotes

the number of days. The mean and standard deviation of xα(ti) are 0 and 1 respectively,

for which we apply our methodology explained in the next section.

We depict, as a sample of xα(ti), the five types of time series for the top brand “D2” (α=

1, · · · ,5) in Fig. 3. Price per unit quantity (P) is mostly stable but has spikes of increasing

or decreasing price change. Quantity (Q) has volatility due to growing and sluggish sales.

The frequency of brand visits via web site or mobile device (Visit) have tranquility with

sudden and short activities. The frequency of TV advertising (TVAd) exposure has weak

periodic behavior presumably due to the TV advertising activities of the brand’s firm and
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Figure 3 Sample of time-series xi(t) for the top brand “D2” for the five kinds of time-series, namely, P, Q,

Visit, TVAd, and search from top to bottom.

corresponding exposure to customers. The frequency of brand searches via PC or mobile

device (Search) have continuous activities with bursts.

3. Complex Hilbert Principal Component Analysis (CHPCA)
3.1. Method

Any set of real world time-series data contains information on the behavior of individual

time series and the inter correlations in the time series. In this paper, we are interested in

inter correlations in the time series. To identify the structure and dynamics of the customer
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journey, we extract information on the inter correlation between price, sales, and other

media approaches. Such comovement in the data set involves time lead and delay. Some

time series follow other time series because of direct and indirect causal relationships. Here,

our aim is to set up a methodology suitable for detecting inter relationships with time

delay.

Principal component analysis (PCA) fulfills our goal partially. For this method, we

calculate correlations between time series and identify the eigenmodes of the correlation

matrix, which are independent comovements in the system. The larger the eigenvalue,

the more significant the presence of the eigenmode. Some of the eigenmodes, however,

are simply the result of random movements in the system. To identify which modes are

significant real comovements, people often apply random matrix theory, which predicts the

eigenvalues from the random time series. This method has several shortcomings.

(i) When seeking comovements with time lead/delay, the time series is shifted relative

to other time series to maximize the absolute value of the correlation coefficient. This is

feasible for two time series but not so for a large number of time series. With 100 time

series, for example, pair wise calculation is required for nearly 5,000 pairs. Then, there is

the problem of combining them to obtain system-wide comovements.

(ii) Random matrix theory (RMT) is practical on that the length of the time series (T )

and the number of the time series (N) are both infinite with their ratio (T/N) kept finite,

and all the time series has trivial auto correlation, none of which may be satisfied by the

real data.

To overcome these difficulties, we use CHPCA and rotational random simulation RRS.

The former was originally introduced in Rasmusson et al. (1981), Barnett (1983), Horel

(1984), Stein et al. (2011), and Hannachi et al. (2007) using the Hilbert transformation

developed in Hilbert (1912), Gabor (1946), Granger and Hatanaka (1964), Bendat and

Piersol (2011), Feldman (2011), among others. The approach has been successfully applied

in several areas of natural science and economics (Ikeda et al. (2013b), Ikeda et al. (2013a),

Kichikawa et al. (2020), Vodenska et al. (2016)). We further introduced improvements on

CHPCA by Aoyama et al. (2017).

In CHPCA, we complexify each of the time series’ Hilbert transformation as an imag-

inary part and then calculate the complex correlation matrix. We provide a pedagogical
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explanation of the merits of this method. The Hilbert transformation, simply put, trans-

forms each of the Fourier components in the manner cosωt→− sinωt and sinωt→ cosωt.

Therefore, the complexification converts cosωt to e−iωt and sinωt to i e−iωt; clockwise rota-

tion on its complex plane. Furthermore, the Hilbert transformation converts

cosω(t+ t0) = cosωt cosωt0− sinωt sin t0→ e−iω(t+t0). (1)

We denote the complex time series obtained from xα(t) and standarized (so that its means

is equal to zero and its standard deviation is equal to one) as zα(t). Complex correlation

coefficients (CCC) are defined as inner products of one (complex and normalized) time

series (zα(t)) with another;2

Cαβ :=
∑
t

zα(t)z∗β(t). (2)

If the time series α and β are made of Fourier components of the same ω but with time

constants tα and tβ, the CCC has a phase factor proportional to tα− tβ, the time-difference

between the two time series. If the time series contain multiple Fourier components, the

phase of the CCC gives a nonlinear mean of the time differences of each combination of the

Fourier components. Thus, analysis of the resulting complex correlation matrix enables us

to obtain a view of comovements with system time-lag. By definition, this is one calculation

that avoids any pairwise optimization analysis required by PCA. The eigenmode en of the

complex correlation matrix C = {Cαβ} is defined by the following:

Cen = λnen, (3)

where the subscript n is defined as the eigenvalues λn in descending order, λ1 ≥ λ2 ≥ · · · ≥

λN . The eigenvalues satisfy an identity

N∑
n=1

λn =N. (4)

The time series are expanded in terms of the eigenmodes:

x(t) =
N∑
n=1

sn(t)en, (5)

2 Hereafter, ·∗ denotes the complex conjugate of ·.
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where the coefficient sn(t) is called the mode signal, satisfying

λn =
T∑
t=1

|sn(t)|2. (6)

In this sense, the eigenvalue λn is the strength of the presence of the corresponding eigen-

mode en.

To avoid using the RMT, we employ RRS, introduced by Arai and Iyetomi (2013). This

is done by (1) “‘rotating” each time series in time-direction (by attaching its end to the

beginning) randomly, thus destroying the inter correlation between the time series while

preserving the autocorrelation; (2) calculating the CCC and its eigenvalues several times

(104 ∼ 105 times typically); (3) comparing each distribution of the eigenvalues and the

actual eigenvalue from the largest in descending order: identifying the eigenmodes whose

eigenvalue is larger than that of the one obtained in the step (3) as significant modes. This

methodology overcomes the shortcoming of the RRS by allowing us to deal with data with

nontrivial auto correlation and T and N not so large.

In this sense, the methodology of CHPCA with RRS is ideal for our purpose, which is

to identify the customer journey in our data.

3.2. Results

The eigenvalue distribution is shown in Fig. 4, where the ordinate is the cumulative eigen-

value

L(n) :=
n∑
k=1

λn. (7)

The green dots are for CHPCA and blue for PCA. As explained, the eigenvalue shows the

rate of the presence of the corresponding eigenmode in the data. Therefore, this plot shows

that CHPCA identifies the eigenmode more easily than PCA. This is natural since PCA

misses movements with lead/lag.

The result of the RRS analysis of 104 times the RRS simulation is summarized in Fig. 5

for the eigenvalues n = 1,2,3 from top to bottom. In each plot, the actual eigenvalue is

shown by the thick vertical ticks. The distribution shown in gray is the distribution of the

corresponding RRS eigenvalues, whose mean is shown by the short vertical line, and the

2σ range is shown by the horizontal error bars. Since the eigenvalues #1 and 2 are well

above the 2σ range and #3 is not, we find that the top two eigenmodes are significant,

inter-correlating comovements.
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Figure 5 The eigenvalues (thick ticks) with the corresponding RRS eigenvalue distributions (shaded

bell-shapes) and their 2σ ranges (horizontal bars) for eigenvalues n= 1,2,3. The eigenvalues #1 and #2 are

above the RRS 2σ range and, therefore, are significant. The eigenvalues #3 and below are not.
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Since the largest two eigenvalues are

λ1 = 4.845, λ2 = 3.416, (8)

respectively, these top eigenmodes take the share of
√

(λ1 +λ2)/65' 0.3565; that is,, 35.7%

of the data are due to comovements.

The top and the second eigenvector components are shown in Fig. 6, where each com-

ponent is shown by a marker specified by the brand code at its top and the style shown in

the legend. The horizontal axis is its phase, and the vertical axis its absolute value. The

arbitrary overall phase in the eigenvector en is chosen so that the components representing

purchase quantities are toward the right-hand side of the plots. By the definition of the

complexification, the phase corresponds to the time-variation; the components on the left

move first, and the components to the right follow. We have changed the phase of prices by

π to be consistent with the common knowledge that when the price goes down, quantity

goes up. In these plots, we also show the significance level of the absolute values of the

components by the gray bands. Components with less absolute values have less significance

in the respective eigenmode. To clarify this significance level, we add a random time series

to the original data set and measure its absolute value in the first and second eigenvectors.

Repeating this simulation 100 times, we identify the distribution of the absolute value. The

shaded gray area bounded by a solid horizontal line is 2σ range. Therefore, the compo-

nents above the gray zones are the components with significant presence in the respective

comovements.

The comovement of touch points across brands represented in Fig. 6 may still be too

complicated for marketers to interpret. Thus, we offer an additional method to reduce

information obtained from CHPCA focusing on synchronization of multiple time series.
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4. Hodge Decomposition and Synchronization Network
4.1. Method

The complex correlation coefficient, Cαβ, represents how strongly a pair of α and β are

correlated possibly with lead and lag. The strength of the correlation is given by the

magnitude

ραβ := |Cαβ| , (9)

and the lead and lag can be measured by the phase

θαβ := argCαβ . (10)

Note that α leads β if θαβ < 0, and α lags β if θαβ > 0 because we defined the direction of

time by e−iωt (see Eq.(1)).

If we consider all the pairs in the complex correlation Cαβ, we have a complete graph in

which every node α is connected to all the other nodes. It is difficult to understand how

individual α leads or lags others in a more systematic way. To overcome this difficulty,

we select comoving pairs with strong correlation in the following way, and then use the

so-called Hodge decomposition of a flow on a directed and weighted network, which we call

synchronization network.

First, we select pairs of α and β with

• comovement: 0< θαβ <π/2,

• significant correlation: ραβ >ρ∗ where ρ∗ is a threshold given below.

In the first condition, we consider only the region 0< θαβ < π/2, because the correlation

matrix satisfies the Hermite conjugate relation; that is, Cβα =C∗
αβ, so that the pairs in the

region −π/2< θαβ < 0 are always in the region 0< θαβ <π/2. In the second condition, we

determine the threshold ρ∗ as follows. If ρ∗ is too large, the number of pairs satisfying the

condition is too small and, eventually, the graph becomes disconnected; if ρ∗ is too small,

the graph is almost fully connected. In both cases, it would be difficult to understand the

lead/lag relation. Therefore, we select ρ∗ that connects the graph at its largest value. The

resulting graph includes 65 nodes and 1,391 edges.

Second, we use a mathematical method of ranking nodes according to their location in

terms of upstream and downstream flow in a directed network to identify which nodes are

leading and lagging in the entire relation. In our case, a flow is said to be present from α

to β if 0< θβα <π/2 and ρβα = ραβ >ρ∗ with the amount of flow or weight, ραβ.
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We briefly recapitulate the method (see Jiang et al. (2011) for example), which is called

Hodge decomposition. Denote the adjacency matrix of the binary and weighted network by

Aαβ =

1 if there is a directed edge from α to β,

0 otherwise,
(11)

and

Bαβ =

fαβ if there is a directed edge with a flow,

0 otherwise,
(12)

where fαβ is a flow from α to β, and it is assumed that fαβ > 0. Note that there can be

such a pair of nodes that has both Aαβ = 1 and Aβα = 1 and also that has both fαβ > 0

and fβα > 0.

Then, the net flow from α to β is defined by

Fαβ =Bαβ −Bβα . (13)

Let us also define the net weight between α and β by

Wαβ =Aαβ +Aβα . (14)

Note that Fαβ is anti-symmetric while Wαβ is symmetric.

Hodge decomposition is given by

Fαβ =Wαβ (φα−φβ) +F
(loop)
αβ , (15)

where F
(loop)
αβ is a loop flow; that is, divergence-free:∑

β

F
(loop)
αβ = 0 (16)

by definition. φα is called Hodge potential of node α.

Rewriting Eq. (16), we have for each α= 1, · · · ,N ,∑
β

Lαβ φβ =
∑
β

Fαβ , (17)

Here, Lαβ is the so-called graph Laplacian defined by

Lαβ = δαβ
∑
γ

Wαγ −Wαβ , (18)
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where δαβ = 1 if α= β and δαβ = 0 otherwise. Given Fαβ and Wαβ, Eqs. (17) are simulta-

neous linear equations to determine the Hodge potential φα of all the nodes α.

Note that simultaneous linear equations (17) are not independent of each other. In fact,

the summation over α of (17) is zero, as is easily shown, corresponding to the fact that

there is a freedom to fix the origin of potential. It is not difficult to prove that if the

network is weakly connected; that is, connected when considered an undirected graph, the

potential can be determined uniquely up to the choice of the origin (Iyetomi et al. 2020).

In the following, we use the convention that the mean is zero:∑
α

φα = 0 . (19)

Thus, if we delete the loop flow, the remaining flow can be represented by a flow caused

by the difference in potential between a pair of nodes. The Hodge potentials, therefore, can

reveal which nodes are located in upstream or downstream sides in the relative relationship

of the directed network. We emphasize that such information cannot be obtained simply

by looking at the pairwise correlation among nodes because the entire connectivity of all

the links is required to discard the loop flow and to determine the potentials.

4.2. Results and Interpretation

Fig. 7 shows a layout of the synchronization network. The vertical position of each node

corresponds to its Hodge potential as a constraint in the force-directed algorithm of the

graph layout. Upstream (leading) nodes are located toward the top while downstream

(lagging) nodes are toward the bottom.

To depict a customer journey map covering all competitive brands, Hodge potentials

are used to constitute the fundamental time sequence of the exposures to touch points

(TV Ad, web/mobile site visit, search, price, and quantity) for each brand. In Fig.8, the

time is passing from top to bottom along the vertical axis. The distance of this axis can

be expressed in a time scale such that the distance of one corresponds to 1.55 days. The

horizontal axis is nominal, where 18 brands are arrayed in an arbitrary order. For instance,

for Brand 1, just after its price decreases and the search behavior increases, both of which

occur almost simultaneously, the purchase quantity (sales) increases followed by an increase

in exposure to web/mobile sites and TV advertising.

First, we trace the time sequence of touch points within each brand. For more than half

of the brands (11 out of 18), a decrease (increase) in price leads to an increase (decrease)
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Figure 7 The synchronization network’s graph layout. The vertical position of each node corresponds to its

Hodge potential as a constraint in the force-directed algorithm of the graph layout. Upstream (leading) nodes are

located toward the top while downstream (lagging) nodes are toward the bottom. The node no.9 is not drawn as

it has only one link and is not relevant to this visualization.

in quantity to a certain extent. For some brands, a change in price occurs almost simulta-

neously with a change in quantity. These two cases are consistent with standard economic

theory. On the other hand, for Brands 15 and 18, an increase (decrease) in quantity leads to

a decrease (increase) in price. This phenomenon seems to be an anomaly as a pricing effect

while it could be explained as an outcome of rational behavior; for instance, it could emerge

when the demand is expanded by attracting new customers with lower willingness-to-pay

(Kwon et al. 2018).

The increased exposures to TV advertising lag behind the increased purchases for seven

of the 13 brands that executed TV advertising in the observed period. This may sug-

gest that TV advertising by firms is a reaction to an increase in demand, not as an

upfront investment or, in the latter case, after a significant time lag. The time sequence of

web/mobile site visits or searches is less consistent across brands than price or TV adver-

tising. A possible reason is that visiting these touch points is less controllable for firms,

reflecting the idiosyncratic nature of individual brands. In that sense, this inconsistency
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Figure 8 The fundamental sequence of touch points, price information, and purchases for each brand. The

vertical axis represents the Hodge potential, whose value is larger as it leads than others. Horizontally, brands are

arrayed in an arbitrary order. If the positions of two time series are closer, they are comoving almost

simultaneously with each other.

shows the advantage of our approach that analyzes the observed data purely empirically

without any strong assumptions.

Second, we can compare the Hodge potentials horizontally between brands, which indi-

cates synchronization (comoving almost simultaneously) of touch points between different

brands of a firm or even between firms. For instance, as Fig.8 shows, a price cut and

sales increase for Brands 1, 2 and 3, which are the main brands of Firm 1, tend to be

synchronized. That is, Firm 1 might coordinate price promotion consistently among their

own brands compared to rivals. These variables seem to be synchronized also between

Firms 1 and 3, suggesting that these firms are mutually competing more intensively. As

the potentials show that these firms tend to change prices before sales, their main weapon

for competitive reaction is price promotion.

It is noteworthy that the potentials for purchase quantity are relatively concentrated

within the narrow band for most brands, implying that beer consumption is highly syn-

chronized as a whole. The reason is easily explained by the established knowledge that

typical beer consumption increases during higher temperatures or special occasions such as

weekends or holidays. A more interesting finding is the existence of a few brands (Brands

8 and 9 of Firm 2) outside the band. These brands are interpreted as satisfying some niche
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demand in the market. Firm 2 seems to be differentiated since its pricing behavior is not

necessarily synchronized with Firms 1 and 3 as a whole. Another prominent feature of

this firm is that customers visited its web/mobile site more frequently while they seldom

visited the sites of Firms 1 and 3 (or there may not be a competitor). Customers may visit

Firm 2’s site after making a purchase or exposure to TV advertising. On the other hand,

customers seem to visit the site in advance. Such differences might be due to variations in

marketing strategies.

5. Customer Profile

We found in Sec. 3 that there are two significant eigenmodes in the aggregate behavior

of customers; the remaining N − 2 modes can be discarded as “noise.” We are interested

to see how the individual behavior of customers can be represented in terms of these two

significant eigenmodes. Such representation can provide deeper insight into how the two

significant eigenmodes can be interpreted by examining individual customer’s profiles such

as their gender, age, income, other attributes, and their preferences for specific brands.

Let us denote individual customer’s time series by xp,α(t) (p= 1, . . . , P ) where the index

p denotes individual customers, and P is the total number of customers in our data;

P = 1,738. α= 1, . . . ,N is the same index as used in Sec. 3 with N = 65.

We first complexify xp,α(t) into complex time series, denoted by zp,α(t), and standardize

(subtract mean and normalize by standard deviation) it precisely in the same way as we

did in Sec. 3. Thus, we have

ẑp,α(t) =
zp,α(t)−〈zp,α〉

σp,α
. (20)

If xp,α(t) is identically equal to zero during all of time t for some α (e.g., a customer was

not exposed to any advertising), we use the convention that ẑp,α(t) = 0.

Then, we project the time series to a space spanned by two significant eigenvectors (we

term it customer space hereafter); that is,

an,p(t) =

N∑
α=1

(en)∗α ẑp,α(t), (21)

for the two significant modes n= 1,2 where (en)α is the α-th component of the eigenmode

en. To locate each customer in a space spanned by the two eigenmodes, we calculate the

temporal mean of the squared magnitude of the projected time series an,p(t), namely,

Xn,p =
1

T

∑
t

|an,p(t)|2 , (22)
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Figure 9 Individual customer’s projected representation for the two significant modes. See Eq. (22) for the

representation.

which gives us two-dimensional coordinates for each customer p.

Fig. 9 shows the resulting spatial representation of Eq. (22) for all the P customers.

Recalling (6) in Sec. 3, each coordinate’s value Xn,p can be compared with the eigenvalues

λ1 and λ2, which are numerically given by Eq. (8). We observe that there are customers

whose positions are consistent with Eq. (8) in the sense that X1,p/X2,p ∼ λ1/λ2. There are,

however, more diversified customers in the two-dimensional space. Such diversification tells

us that the location of each customer might be related to the heterogeneity in customer

behavior.

To assess how the customer space is associated with each customer’s profile, we conduct

regression analysis where either of the coordinates in the customer space, X1,p or X2,p,

is used as a criterion variable, and multiple variables representing customer profiles are

used as explanatory variables, which are all available in our data set. First, we select age

(nine-point scale from age 20 to 24 to age 60 or older), gender (0 for male, 1 for female),

marital status (0 for unmarried, 1 for the married), personal income (nine-point scale),

and household income (five-point scale) by preliminary analysis. Second, to capture each

customer’s beer preference, total purchase frequency and quantity (ml) over all brands are
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Model 1.1 Model 1.2 Model 2.1 Model 2.2

Criterion Variable: coord. for 1st eigen mode: X1,p coord. for 2nd eigen mode: X2,p

Explanatory Variables: coef. s.e. coef. s.e. coef. s.e. coef. s.e.

Intercept .9050 .0045 aa .9050 .0044 aa 1.0720 .0058 aa 1.0720 .0058 aa

Age .0164 .0048 aa .0159 .0047 aa .0347 .0061 aa .0352 .0061 aa

Gender .0033 .0059 .0040 .0059 .0036 .0077 .0036 .0077

Marrital Status .0013 .0050 .0007 .0049 .0030 .0064 .0018 .0064

Personal Income .0071 .0065 .0084 .0065 −.0099 .0084 −.0092 .0084

Houshold Income −.0011 .0055 −.0034 .0055 −.0067 .0071 −.0078 .0072

Total Purchase (freq.) .0351 .0055 aa .0331 .0056 aa .0257 .0070 aa .0273 .0073 aa

Total Purchase (m`) .0139 .0055 b — — .0165 .0071 b — —

Brand Purchase – A1 .0091 .0047 c −.0007 .0060 c

A2 .0028 .0045 .0082 .0058

A3 .0035 .0045 .0066 .0058

A4 .0031 .0047 .0086 .0061

A5 .0059 .0045 .0107 .0058

A6 −.0005 .0047 .0007 .0060

B1 .0044 .0046 .0008 .0059

B2 .0046 .0045 −.0013 .0058

B3 −.0058 .0045 −.0048 .0059

B4 −.0002 .0045 .0070 .0058

B5 .0117 .0047 b .0092 .0061

C1 −.0073 .0046 −.0033 .0060

C2 −.0006 .0045 −.0037 .0059

C3 .0035 .0046 .0162 .0059 aa

C4 .0067 .0045 .0073 .0059

D1 .0168 .0046 aa .0031 .0059

D2 −.0014 .0048 −.0048 .0062

D3 .0170 .0045 aa .0104 .0058

R2 .0650 .0870 .0484 .0870

Adjusted R2 .0612 .0742 .0445 .0742

Table 4 Regression of coordinates of customer space to customer profiles. (aa: p < .001; a: p < .01; b: p < .05;

c: p < .10)

added to the predictors. As the results of Model 1.1 and 2.1 of Table 4 show, the estimated

coefficients are significant only for age (0.1% significant), total purchase frequency (0.1%

significant), and quantity (5% significant) for both X1,p or X2,p. The values of R2 indicate

that most of the variations are not explained by the above predictors.
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Alternatively, we replace total purchase quantity with each brand’s purchase quantities

to capture individual differences in brand-level preference. The results are presented for

Model 1.2 and 2.2 in Table 4. Compared to the above models, the coefficients for age and

total purchase frequency are consistently significant while the adjusted R2s are slightly

increased, implying separating total purchase quantity into purchase quantity for brands

may marginally improve the model fit. The coefficients of a few brands are significant from

the 0.1% to 10% level for X1,p and X2,p. Thus, locations in the customer space could be

explained to some extent by age, purchase frequency at the category level, and purchases

of some remarkable brands. However, it should be noted that most of the variations in the

customer space remain unexplained. In other words, the individual locations in a customer

space might reflect an infinite number of factors, only some of which could be measured

via customer surveys or purchase history tracking. Hence, our proposed projection method

contributes to the evaluation of individual deviations from a representative customer jour-

ney.

6. Conclusion

The expansion of digital media and distribution channels that serve customers is rendering

the so-called customer journey across possible touch points increasingly complex to define.

Most methods used for this purpose are problematic and ignore the existence of compet-

ing brands, even in cases where most customers consider multiple alternative brands by

searching or shopping. One of the main reasons for the weak methods is the difficulty

in collecting data on rivals. Another difficulty is applying the existing methods, such as

multivariate time series analysis, as the number of brands and touch points increases. The

number of parameters is evident for a case with 18 brands and 5 touch points. However,

without strong assumptions to reduce parameters drastically, applying such methods is

difficult. CHPCA overcomes this limitation without any strong assumptions. Furthermore,

CHPCA’s supplemental methods, synchronization network and Hodge decomposition, can

be used to summarize and visualize the results to be more interpretable.

This study shows that a set of our proposed methods could be used to effectively depict

customer journey maps embedded in enormously high-dimensional time-series data. From

the data with 18 brands and 5 variables, we detect principal sequences of exposures to

touch points by individual brands and their interactions without any assumptions or prior
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knowledge. The application of our method to the beer market in Japan derives some

interesting findings. First, for most brands on the market, a change in price leads to a

change in purchase quantity followed by a change in exposure to TV advertising. Simply

put, customers notice a price change in a store, buy a product, and are then exposed to

TV ads later. The timing of visiting other touch points (brand web/mobile sites, search

engines) is not consistent between brands. Second, we find synchronization across brands,

in particular within each firm, rather than across firms. It suggests that individual firms

are heterogeneous, each adopting a distinctive coherent marketing strategy.

The second point has an important implication for economic policy. Synchronization

of marketing strategy between firms indicates that their behavior could be competitive

if prices are decreasing but be collusive if prices are increasing. The latter case should

attract a strong interest of anti-trust agencies. Our result might deny this possibility,

while it suggests another difficulty in economic policy making. If corporate behaviors are

heterogeneous than expected, policymakers must allow for such heterogeneity in evaluating

the effectiveness of planned policies in advance.

For marketers, the above-mentioned information is instructive to improve their market-

ing strategies. If TV advertising reaches customers later than their purchase, the timing

of ad insertion should be reconsidered. On the other hand, if the ad campaign intends to

reinforce customer loyalty, the marketing strategy could be successful. Our method reveals

which brands could be real rivals without any prejudice. With this information, marketers

can investigate the dynamics of competition or substitution for their brand.

Some marketing researchers might be concerned with the way our method deals with

brand loyalty or own-brand inertia (Guadagni and Little 1983) and the long-term effect of

advertising or the ad stock (Nerlove and Arrow 1962). Both are popular topics in marketing

modeling. Regarding brand loyalty, the effect of brand loyalty is implicitly embedded in

the comovement of touch points. How to explicitly quantify the effect may be a possible

challenge for us. Regarding ad stock, we have already incorporated the ad stock with

exponentially-distributed weights with some alternative parameters. As the result was not

sensitive to such modification, we tentatively conclude that accounting for advertising

long-term effects in our method is not prioritized.

From our viewpoint, a more serious limitation of our method is that it offers some critical

information for policymakers or marketers but not exact numerical indications to enable
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better marketing actions. As an extension of our method, therefore, it is important to

proceed to sensitivity analysis/simulations using the synchronization structure discussed

in this paper. A fluctuation-dissipation approach (Iyetomi et al. (2011)) may be useful,

assuming that the impact of external stimuli does not change the correlation structure

but simply excites some of the structure. In other words, this approach deals with small

perturbations on the existing structure, which is, in general, true when promoting specific

brands. Research in this direction, therefore, would be fruitful.

Finally, we confirm that our method would not necessarily outperform existing methods

such as multivariate time-series analysis in every aspect. If the number of brands and

variables is limited to a certain range, and if sufficiently reliable knowledge is available for

selecting parameters, such existing methods may be highly productive. Additionally, other

methods based on statistics and machine learning already prepare a number of powerful

tools for a wider range of problems. In rapidly evolving markets, however, marketers must

grasp the critical relationships of a number of time series without enough prior knowledge,

and from scratch. In this situation, we believe our method is useful and should be added

to the business analytics toolbox.
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APPENDIX: The eigenmodes 1 and 2: detail

We list the components of the first eigenmode with absolute value above the 2σ range in

Fig. 5 and Fig. 6 and, similarly, for the second eigenmode in Fig. 7 and Fig. 8.



33

Brand Variable Phase Abs.

A1 TVAd 2.22 0.21

A1 WebV 2.57 0.07

A1 MobV 2.85 0.10

A1 Q 4.91 0.12

A1 P 5.09 0.08

A2 WebV 2.90 0.14

A2 TVAd 2.93 0.09

A2 MobV 3.08 0.08

A2 P 5.57 0.07

A3 MobV 2.59 0.18

A3 WebV 2.8 0.20

A3 TVAd 2.93 0.08

A3 Q 4.83 0.09

A3 P 5.32 0.08

A4 TVAd 0.44 0.08

A4 Q 5.29 0.07

A6 P 3.88 0.10

A6 Q 5.49 0.11

A7 P 4.85 0.11

A7 Q 5.99 0.14

B1 WebV 1.82 0.07

B1 TVAd 2.12 0.08

B1 Q 5.41 0.09

B1 P 5.83 0.07

B2 Q 3.90 0.08

B2 TVAd 4.81 0.08

B3 WebS 3.27 0.07

B3 TVAd 5.39 0.14

B4 Q 4.91 0.09

Table 5 List of components in the first

eigenmode with absolute value above the 2σ range

(to be continued to Fig. 6)

Brabd Variable Phase Abs.

B5 WebV 3.52 0.08

B5 TVAd 4.18 0.15

B5 P 4.21 0.08

B5 Q 5.03 0.07

C1 WebV 3.62 0.07

C1 TVAd 4.57 0.11

C1 Q 5.33 0.08

C2 MobS 1.86 0.10

C2 MobV 1.86 0.10

C2 Q 5.63 0.11

C2 P 6.26 0.10

C3 TVAd 5.50 0.12

C3 Q 5.89 0.25

C3 P 6.16 0.27

C4 Q 0.96 0.11

C4 WebS 2.89 0.07

C4 WebV 3.37 0.09

C4 TVAd 4.68 0.11

C4 P 6.12 0.11

C5 Q 2.88 0.22

C5 P 6.01 0.33

D1 Q 5.24 0.09

D1 P 5.47 0.11

D1 TVAd 5.84 0.15

D1 WebS 6.07 0.07

D2 MobV 3.05 0.06

D2 WebV 3.54 0.07

D2 WebS 5.04 0.08

D2 P 5.52 0.09

D2 Q 5.70 0.09

D3 TVAd 3.87 0.19

D3 Q 4.77 0.07

Table 6 -continued from Fig. 5
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Brand Variable Phase Abs.

A1 TVAd 5.49 0.10

A1 Q 5.70 0.17

A1 P 5.84 0.09

A2 TVAd 4.52 0.09

A2 Q 5.73 0.11

A3 MobS 4.77 0.07

A3 TVAd 5.2 0.08

A3 Q 5.54 0.18

A3 P 5.92 0.08

A3 MobV 6.06 0.07

A4 WebS 4.09 0.08

A4 TVAd 4.76 0.13

A4 WebV 5.24 0.12

A4 Q 5.80 0.20

A4 P 6.11 0.14

A6 P 0.73 0.06

A7 Q 4.92 0.12

B1 P 5.19 0.10

B1 WebS 5.28 0.07

B1 Q 5.36 0.18

B1 TVAd 5.53 0.08

B2 Q 4.06 0.16

B2 WebS 5.02 0.07

B2 P 5.27 0.09

B2 TVAd 5.64 0.11

B3 WebV 2.91 0.08

B3 TVAd 5.21 0.09

B4 Q 5.15 0.19

B4 P 5.46 0.12

Table 7 List of components in the second

eigenmode with absolute value above the 2σ range

(to be continued to Fig. 8)

Brand Variable Phase Abs.

B5 Q 5.07 0.11

B5 P 5.36 0.10

B5 TVAd 5.63 0.10

C1 WebV 2.02 0.07

C1 TVAd 5.08 0.19

C1 WebS 5.25 0.07

C1 Q 5.96 0.12

C1 P 6.28 0.08

C2 TVAd 5.22 0.12

C2 P 5.37 0.08

C2 Q 5.49 0.13

C3 Q 3.18 0.12

C3 P 3.38 0.18

C3 TVAd 3.69 0.12

C3 WebV 5.2 0.08

C4 TVAd 4.47 0.09

C4 WebV 5.14 0.07

C4 Q 5.34 0.22

C5 P 3.10 0.18

C5 Q 5.99 0.23

D1 Q 5.52 0.19

D1 WebS 5.74 0.07

D1 P 5.81 0.14

D2 WebS 5.34 0.08

D2 Q 5.34 0.18

D2 P 5.39 0.12

D2 TVAd 5.58 0.12

D3 TVAd 0.29 0.12

D3 P 5.14 0.08

D3 Q 5.81 0.21

Table 8 -continued from Fig. 7
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