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(a) GDP (b) GDP growth rate

Figure 1: Time series of GDP and GDP growth rates in Japan from 1994Q1 to 2021Q2. The GDP time series are
taken from the OECD database. The GDP growth rate gt is defined as the log difference of the GDP time series, that
is, gt := log(GDPt)− log(GDPt−1).

1 Introduction

Recent macroeconomic studies (e.g., Gabaix (2011)) argue that microeconomic shocks to firms can

drive aggregate fluctuations. This idea is called the granular hypothesis, which states that if firm sizes are

highly heterogeneous, microeconomic shocks to giant firms are non-negligible even at the aggregate level.

Indeed, high heterogeneity in firm sizes is a stylized fact; for example, in Japan, firms with sales less than

1 billion yen account for 96.8% of all firms,1 while the sales of Toyota, the largest firm in Japan, are 12.2

trillion yen. Theoretically, previous studies (e.g., Acemoglu et al. (2012); Acemoglu et al. (2017); Baqaee

and Farhi (2019)) analyze the coefficients of the expansion of aggregate output Z := f(ε) around its steady

state:

Z =
∑
i

∂f(ε)

∂εi

∣∣
ε=0

εi +
1

2

∑
i,j

∂2f(ε)

∂εi∂εj

∣∣
ε=0

εiεj + higher-order terms (1)

where ε := (εi, ..., εn) are microeconomic shocks to n firms and f is a mapping from microeconomic shocks

to aggregate output. In particular, the coefficients in Eq.(1) are closely related to the firm size and thus

highly heterogeneous across firms. For this reason, Eq.(1) and the heterogeneity of firm size are viewed as a

foundation for the granular view of macroeconomic fluctuations.

However, previous studies do not fully characterize the distribution of aggregate output implied by

Eq.(1). Does the distribution of aggregate output converge to a Gaussian distribution as the number of firms

increases? What are the variance and tail probability of aggregate output, given Eq.(1) and the empirical

heterogeneity of firm sizes? Are the variance and tail probability of aggregate output large enough to explain

their empirical counterparts (see Figure 1 and Figure 2)? To answer these questions, we need to study not

only the coefficients in Eq.(1) but also the distribution of aggregate output.

1Source: Economic Census for Business Activity in 2016.
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(a) Histogram of the GDP growth rate (b) QQ plot of the GDP growth rate

Figure 2: Histogram and QQ plot. The GDP growth rate is the same as in Figure Figure 1.

This paper characterizes the distribution of aggregate output in Eq.(1) and tests the empirical validity

of the granular hypothesis. Starting with Eq.(1), I characterize the variance and (the upper bound of) tail

probability of aggregate output in terms of the heterogeneity of firm size. I show that the size of the largest

firm is the key to the distribution of aggregate output. I provide an explicit formula of how the variance

and tail probability of aggregate output depend on the size of the largest firm. Then, I apply this result

to Japanese firm-level data to quantify micro-originated aggregate fluctuations. I find that the aggregate

variance induced by microeconomic shocks is non-negligible, while the tail probability of aggregate output

induced by microeconomic shocks is negligible. That is, the empirical heterogeneity of firm size in Japan is

not large enough to cause a large deviation in aggregate output.

My theoretical analysis consists of two parts: Sections 3 and 4. Section 3 considers the first-order terms

in Eq.(1), where the coefficients are given by Domar weights w := (w1, ..., wn).2 I start with the result in

Gabaix (2011), which states that the aggregate variance decays slowly as n→∞ if the firm size distribution

has a Pareto tail.3 My first question is: why does this slow decay occur? I show that the existence of

the largest firm causes this slow decay. More precisely, I show that the fraction of the aggregate variance

attributable to the largest firm (i.e., ‖w‖2∞/‖w‖22, where ‖w‖∞ and ‖w‖2 are `∞ and `2-norms of w) does

not converge to 0 as n → ∞. That is, the largest firm accounts for a significant fraction of the aggregate

variance, even when the number of firms considered is large. In particular, I show that the slow decay rate

of the aggregate variance is equivalent to that of the (squared) Domar weight of the largest firm.

The result that ‖w‖2∞/‖w‖22 6→ 0 as n → ∞ has another implication for the central limit theorem

(CLT) for aggregate output. I use Theorem 1(c) in Acemoglu et al. (2012): if ‖w‖2∞/‖w‖22 6→ 0 as n→∞,

the CLT does not hold. Combining it with my result, I show that if the firm size distribution has a Pareto

2Firm i’s Domar weight, wi, is defined by firm i’s sales divided by GDP.

3The Pareto tail of the firm size distribution is called Zipf’s law. See, for example, Axtell (2001) and Gabaix (2009). For the
mechanism of Zipf’s law and related topics, see, for example, Sornette (2006) and Saichev et al. (2009).
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tail, the CLT does not hold. The key logic is again the size of the largest firm. If the firm size distribution

has a Pareto law, the largest firm is still dominant at the limit of n → ∞. Thus, a shock to the largest firm

cannot be cancelled out by shocks to other firms.

Moreover, the size of the largest firm is the key to the tail probability of aggregate output. I show that

if ‖w‖2∞/‖w‖22 is positive, the tail probability of aggregate output deviates from a Gaussian tail and has a

fatter tail. In particular, the tail probability of aggregate output is essentially equivalent to the probability of

a large shock hitting the largest firm. Intuitively, this result means that a large deviation in aggregate output

is driven by a single large shock to the largest firm.

Section 4 considers the second-order terms in Eq.(1). In particular, I use Corollary 1 in Baqaee and

Farhi (2019) as an example of the second-order terms. I show that, as in the first-order terms, the two norms

of the Domar weights (i.e., ‖w‖∞ and ‖w‖2) characterize the distribution of aggregate output. The aggregate
variance is proportional to ‖w‖22, and the tail probability of aggregate output is controlled by ‖w‖∞. The

logic is similar to the case of the first-order terms. Owing to its size, a shock to the largest firm dominates

shocks to other firms. Thus, the tail probability of aggregate output is essentially equal to the probability of

a large shock hitting the largest firm. I show that in both of the first and second-order terms, the size of the

largest firm determines the distribution of aggregate output.

Finally, I test the empirical validity of the granular hypothesis by applying the results given in Sections

3 and 4 to Japanese firm-level data. I calculate the empirical values of ‖w‖∞ and ‖w‖2 and test whether

the variance and tail probability of aggregate output induced by microeconomic shocks are large enough to

explain the empirical counterparts, that is, those of the GDP growth rate. My findings are twofold. First,

the aggregate variance induced by microeconomic shocks is non-negligible. That is, the contribution of

microeconomic shocks to the aggregate variance is economically significant, as suggested by the granular

hypothesis. Second, under the assumption that microeconomic shocks follows a Laplace distribution,4 the

tail probability of aggregate output induced by microeconomic shocks is negligible. To summarize, given

the empirical heterogeneity of firm size, microeconomic shocks would cause only small fluctuations, and

not large deviations, in aggregate output.

Related literature

This paper belongs to the literature on the micro origin of macroeconomic fluctuations (see Carvalho

(2014) and Carvalho and Tahbaz-Salehi (2019) for a survey). This literature has two fundamental papers:

Gabaix (2011) analyzes the decay rate of the aggregate variance and shows that if the firm size distribution has

4 This assumption is also used in the empirical exercise in Acemoglu et al. (2017). In empirical literature, it is well known that the
distribution of the growth rate of firm size is close to a Laplace distribution (e.g., Coad (2009); Dosi et al. (2017);Bottazzi and
Secchi (2006); Arata (2019)). Since the firm-level TFP is usually estimated from firms’ sales revenue (i.e., TFPR), we can assume
that the distribution of TFP growth rates inherits the Laplace shape of the distribution of the growth rate of firm size.
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a Pareto tail, the aggregate variance decays slowly as n→∞. Acemoglu et al. (2012) analyze the granular

hypothesis by explicitly considering input-output linkages and provide a condition for the convergence of the

distribution of the aggregate output to Gaussian.

I generalizes their results in Section 3. As mentioned above, the ratio ‖w‖2∞/‖w‖22 does not converge

to 0 but to some positive constant if the firm size distribution has a Pareto tail. Since the aggregate variance

is proportional to ‖w‖22, my analysis reveals that the slow decay of the aggregate variance in Gabaix (2011)

is caused by that of ‖w‖∞ (i.e., the Domar weight of the largest firm). The asymptotic behavior of the ratio

‖w‖2∞/‖w‖22 is also crucial in Acemoglu et al. (2012). Combining Theorem 1(c) in Acemoglu et al. (2012),

my analysis shows that the CLT fails due to the emergence of an extremely large firm, which is expected

from the Pareto distribution of firm size.

Subsequent papers extend Gabaix (2011) and Acemoglu et al. (2012) in various directions.5 My paper

is closely related to Acemoglu et al. (2017), which focuses on the tail probability of aggregate output

instead of the aggregate variance. As seen in Figure 2, the distribution tail of aggregate output deviates

from a Gaussian.6 To explain this empirical fact, Acemoglu et al. (2017) shows that in the tail region, the

convergence to Gaussian becomes very slow if the firm size distribution has a Pareto tail. I analyze the same

problem but fix n to a constant;7 that is, I give non-asymptotic results of the tail probability of aggregate

output. This is a preferred approach in an empirical analysis because the number of firms in data is fixed and

finite. Indeed, using Japanese firm-level data, I find that the tail probability of aggregate output induced by

microeconomic shocks is negligible. In contrast to the conclusion in Acemoglu et al. (2017), microeconomic

shocks cannot explain the observed large deviation in aggregate output.

As another important extension, Baqaee and Farhi (2019) analyze the second-order terms in Eq.(1)

and provide an analytical expression of their coefficients. In Section 4, I use Corollary 1 in Baqaee and

Farhi (2019) and complement their result by giving the upper bounds of the variance and tail probability of

aggregate output. I show that, as in the case of the first-order terms, the two norms of the Domar weights

5Some studies extend the model to an inefficient economy with exogenous wedges (Jones (2011); Jones (2013); Baqaee and Farhi
(2020b)). In particular, Bigio and La’o (2020), Su (2019), Luo (2020), Altinoglu (2020), and Reischer (2019)) analyze inefficiencies
related to financial frictions. As an application, Liu (2019) analyzes the effect of policy intervention in an inefficient economy.
Another extension considers the extensive margin, including the firm’s entry/exit and rewiring the input-output linkages (Grassi
(2017); Baqaee (2018); Acemoglu and Tahbaz-Salehi (2020); Baqaee and Farhi (2020a); Burstein et al. (2020); Acemoglu and
Azar (2020); Taschereau-Dumouchel (2020); Oberfield (2018); Elliott et al. (2020); Tintelnot et al. (2019); Huneeus (2018)).
For example, Baqaee (2018) and Baqaee and Farhi (2020a) show that an extensive margin amplifies the propagation effect of
microeconomic shocks in an input-output network.

6The departure from the Gaussian has been documented in empirical literature. To approximate the distribution of the GDP growth
rate, Fagiolo et al. (2008) use an exponential power distribution, and Cúrdia et al. (2014) and Clark and Ravazzolo (2015) use
student’s t distribution. In another literature, Adrian et al. (2019) focus on the evolution of the GDP growth rate distribution, in
which a skewed student’s t distribution is used.

7For the difference from Acemoglu et al. (2017), see also footnote 13.
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(i.e., ‖w‖∞ and ‖w‖2) characterize the distribution of aggregate output. My analysis shows that the same

logic as in the case of the first-order terms holds: the Pareto distribution of firm size leads to the emergence

of an extremely large firm, and a shock to such a firm dominates shocks to other firms.

My paper is also related to the empirical literature on the granular hypothesis. Carvalho (2010),

Carvalho and Gabaix (2013), and Stella (2015) calculate the granular residual, which is defined as the

variation of the sizes of large firms, and finds the high correlation between the granular residual and the

GDP growth rate. Di Giovanni and Levchenko (2012), Di Giovanni et al. (2014), Di Giovanni et al. (2019),

and Yeh (2019) decompose the variance of aggregate output into common aggregate shocks and individual

shocks and show that individual shocks are an important source of the aggregate variance. Foerster et al.

(2011), Atalay (2017), and Atalay et al. (2018) filter the time series of aggregate data with a structural

factor model and extract underlying microeconomic shocks. Some recent studies (Magerman et al. (2017);

Herskovic et al. (2020); Miranda-Pinto (2021)) analyze a firm/sector-level input-output network to measure

the relevance of the granular hypothesis. My analysis introduces another method to this literature. Given the

empirical values of ‖w‖∞ and ‖w‖2 in an economy, my analysis shows how to calculate the variance and

tail probability of aggregate output induced by microeconomic shocks. Thus, by comparing them to their

empirical counterparts, one can test the empirical relevance of the granular hypothesis.

Outline of this paper

This paper is organized as follows. In Section 2, I review a multi-sector model, which forms the basis

of the analysis. In Section 3, I study the distribution of aggregate output when it is given by the first-order

terms in Eq.(1). In Section 4, I study the distribution of aggregate output when it is given by the second-order

terms in Eq.(1). In Section 5, I apply these results to Japanese firm-level data. In Section 6, I conclude the

paper. In the Appendix, I provide the proofs of the propositions.

Notation∑
i denotes

∑n
i=1. C and c denote constants, which may change from line to line. σ2

X denotes the

variance of the random variable X . For a sequence (Xn), I write Xn
a.s.→ (

P→, d→)X if (Xn) converges

almost surely (in probability, in distribution) to a random variable X as n → ∞. I write Xn ∼ anX if

Xn/an
d→ X . I write that Xn increases or decreases (or decays) at the rate of an if Xn ∼ anX for some

random variable X , which is independent of n.

2 Multi-Sector Model

I review a multi-sector model and its coefficients in Eq.(1). Consider a static economy that consists of

n competitive firms. Each firm produces a distinct product using labor and intermediate goods from other
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firms. Specifically, firm i produces output yi by employing constant returns to scale production technology:

yi = zifi(xi1, ..., xin, li)

where zi is the productivity shock to firm i, and xij and li are the amounts of good j and labor used in

the production of firm i, respectively. Without loss of generality, assume that zi = 1 for all i at the steady

state. Let εi := log(zi) and let si be the sales revenue of firm i. Suppose that the economy is inhabited by

a representative household endowed with one unit of labor. The representative household supplies its labor

inelastically and maximizes their utility u(c1, ..., cn), which is homogeneous of degree 1. Finally, assume

that the economy is in a competitive equilibrium. Let Z := log(GDP/GDP), where GDP is the GDP at the

steady state. Let wi denote the Domar weight of firm i, that is, wi := si/GDP, where si is i’s sales.

Under this setting, Hulten’s theorem (Hulten (1978)) states that the coefficient of the first-order terms

in Eq.(1) is given by
∂f(ε)

∂εi

∣∣
ε=0

= wi

Thus, the Domar weights are the sufficient statistics for aggregate fluctuations.

The model in Acemoglu et al. (2012) and Acemoglu et al. (2017) gives a concrete example of Hulten’s

theorem. Assume further a log utility function and Cobb-Douglas production function with a common labor

share b across all firms. Then, the coefficient of the first-order terms in Eq.(1) is given by

wi =
si

b
∑

i si
, (2)

and the higher-order terms are equal to 0. This result implies that aggregate output is the weighted sum of

productivity shocks with weight w1, ..., wn.

Extending this model to CES production technology, Baqaee and Farhi (2019) studies the higher-order

terms in Eq.(1). In particular, Corollary 1 in Baqaee and Farhi (2019) gives the coefficient of the second-order

terms in a simplified setting. More precisely, if productivity shocks ε1, ..., εn are factor-augmented ones, and

the elasticity of substitution is common across all firms (denoted by θ), then
∂2f(ε)

∂εi∂εj

∣∣
ε=0

= (θ − 1)w∗i (1{i=j} − w∗j ) (3)

where w∗i is i’s labor cost divided by GDP and can be seen as the Domar weight in this economy.8 Similar

to Hulten’s theorem, w∗i is a sufficient statistic for aggregate fluctuations. In Sections 3 and 4, I study the

distribution of Z with the coefficients given by Eq.(2) and Eq.(3), respectively.

3 First-Order Terms

Consider the first-order terms in Eq.(1). Throughout this section, I define Z as follows:

Z :=
∑
i

wiεi, (4)

8Note that the sum of w∗i is equal to 1, which is independent of ε1, ..., εn.
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wherew1, ...wn are the Domar weights and ε1, ..., εn are iid microeconomic shocks with mean 0 and variance

σ2
ε . First, I consider the variance of Z in Section 3.1. I show that the asymptotic behavior of the variance of

Z is determined by that of the largest wi. Second, I consider the tail probability of Z in Section 3.2. I give

the upper bound of the tail probability of Z with the number of firms fixed.

3.1 Variance

3.1.1 Size of the largest firm

Suppose that Eq.(2) holds and sales s1, ..., sn are independently drawn from a common distribution. Let

σ2
Z denote the variance of Z. Since microeconomic shocks are iid random variables, σ2

Z can be represented

as follows:

σ2
Z := σ2

ε ‖w‖22 =
σ2
ε

b2

∑
i s

2
i

(
∑

i si)
2

where ‖w‖22 :=
∑

iw
2
i .

How does σ2
Z depend on the heterogeneity of s1, ..., sn? For example, consider the homogeneous case,

where si is equal to some constant for all i. In this case,

σ2
Z =

σ2
ε

b2
1

n

that is, σ2
Z decays at the rate of n−1. Because each term in Eq.(4) has the same weight, microeconomic

shocks cancel each other out, resulting in the rapid decay of σ2
Z . In contrast, when s1, ..., sn are highly

heterogeneous, Gabaix (2011) obtains the following result:

Theorem 3.1 (Proposition 2 in Gabaix (2011)). Let α ≥ 1. Suppose that there exists some positive x∗ such

that

P (si > x) = Kx−α for x ≥ x∗,

whereK is a positive constant. Then,

σ2
Z ∼

vα

n2−2/α
σ2
ε for 1 < α < 2

∼ c

n
σ2
ε for α > 2

where vα is a non-degenerate random variable, independent of n.9

Theorem 3.1 implies that when the heterogeneity is low (i.e., α ≥ 2), σ2
Z decays at the same rate as in

the homogeneous case. That is, because of the low heterogeneity, microeconomic shocks cancel each other

out as in the homogeneous case. In contrast, for high heterogeneity (i.e., α < 2), this averaging effect ceases

to work, and σ2
Z decays more slowly than n−1.

9The derivation of the decay rate for α = 1, 2 requires careful consideration. However, in an empirical analysis, α is estimated to be
in the range of 1 < α < 2, and the cases of α = 1, 2 can be interpreted as the limiting cases. Hence, I remove the cases of α = 1, 2

here.
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Why does the averaging effect cease to work for α < 2 ? I now show that this is due to the existence of

the largest firm. Let us consider the fraction of the variance attributable to shocks to the largest firm.

Definition 3.1. Let σ2
max denote the variance contribution from shocks to the largest firm:

σ2
max :=

σ2
ε

b2
s2

max

(
∑

i si)
2

(5)

where smax := maxi(s1, ..., sn).

In the homogeneous case, σ2
max is equal to

σ2
ε
b2

1
n2 . Since the decay rate of σ2

Z is equal to n−1, this means

that σ2
max decays more rapidly than σ2

Z . Thus, the contribution of σ2
max to σ2

Z is negligible for a sufficiently

large n.

Note that in the homogeneous case, the decay rate of σ2
max is determined solely by the increasing rate

of (
∑

i si)
2 because s2

max is constant. When sales are heterogeneous, the decay rate of σ2
max also depends

on the increasing rate of s2
max.10 I give two examples to show that the increasing rate of s2

max depends on the

distribution tail of s2
1, ..., s

2
n. Example 3.1 (Example 3.2) considers the light-tailed (heavy-tailed) distribution

for s2
1, ..., s

2
n.

Example 3.1. Suppose that the distribution of s2
i has an exponential tail:11 for all i,

P (s2
i > x) = e−x for x > 0.

Since s1, ..., sn are independent of each other,

P (s2
max ≤ x) = P (s2

1 ≤ x, ..., s2
n ≤ x) = (1− e−x)n

and its density function dn(x) is given by dn(x) = n(1− e−x)n−1e−x. By taking the derivative of dn and

setting it to 0, one obtains that the mode of dn is equal to log n. Thus, the typical value of s2
max increases at

the rate of log n. More formally, for x ∈ R,

P (s2
max − log n ≤ x) = Pn(s2

i ≤ x+ log n)

= (1− n−1e−x)n → exp(−e−x) as n→∞
Thus, s2

max − log n converges in distribution to a non-degenerate random variable, independent of n.

10One can show that s2max →∞ a.s. Indeed, for each n ∈ N and x ∈ R,

P (s2max ≤ x) = P (s21 ≤ x, ..., s2n ≤ x) = Pn(s21 ≤ x)

Thus, if P (s21 ≤ x) < 1 for all x < ∞, then P (s2max ≤ x) → 0 for all x < ∞. This means that s2max
P→ ∞. Since s2max is

non-decreasing as n→∞, one obtains s2max
a.s.→∞.

11This case is closely related to the one in which the distribution of si is Gaussian. If si follows a standard Gaussian distribution, we
obtain by Mills’ ratio (see Example 3.3)

P (s2i > x) = P (si >
√
x) ≤ e−x/2

for a large x. The tail probability of s2i is upper bounded by the exponential tail. Thus, the case considered here corresponds to the
case in which the heterogeneity of firm size is low.
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Compare the increasing rates of s2
max and

∑
i s

2
i when the distribution of s2

i has an exponential tail.

Since the law of large numbers implies that
∑

i s
2
i increases at the rate of n, s2

max increases very slowly

compared to
∑

i s
2
i . Intuitively, when the distribution of s2

i has an exponential tail, the sizes of s2
1, ..., s

2
n are

similar to each other. Since there is no extremely large one among s2
1, ..., s

2
n, the increasing rate of s2

max is

very slow.

Example 3.2. Suppose that the distribution of s2
i has a Pareto tail: for s2

i ≥ 1 and k > 0,

P (s2
i > x) = x−k

As in Example 3.1, one has

P (s2
max ≤ x) = (1− x−k)n

I use a relation between exponential and Pareto tails. By letting y := log x, one gets

P (log s2
i > y) = P (s2

i > x) = x−k = e−k log x = e−ky

This shows that when the distribution of s2
i has a Pareto tail, the distribution of log s2

i has an exponential tail.

By using the same argument as in Example 3.1, one can show that k log s2
max increases at the rate of log n.

Thus, s2
max increases at the rate of n1/k. More formally, for x ≥ 0,

P (n−1/ks2
max ≤ x) = P (s2

max ≤ n1/kx)

= (1− n−1x−k)n → exp(−x−k)

Thus, n−1/ks2
max converges in distribution to a non-degenerate random variable, independent of n.

Example 3.2 shows that s2
max increases at the rate of n1/k. This rapid increase is caused by the high

heterogeneity of s2
1, ..., s

2
n described by the Pareto tail. When the distribution of s2

i has a Pareto tail, an

extremely large s2
i emerges one after another as n→∞. Thus, s2

max increases rapidly as n→∞.

Let us return to σ2
max. By focusing on the asymptotic behavior of s2

max discussed in Examples 3.1 and

3.2, I show the decay rate of σ2
max. As discussed below, the following results are the key to the understanding

of the slow decay of σ2
Z found by Gabaix (2011).

Proposition 3.2. Suppose that there exists x∗ such that for x > x∗,

P (s2
i > x) = Ke−αx,

whereK and α are positive constants. Then

σ2
max ∼ c

log n

n2

where c is a constant, independent of n.

Proof. See the Appendix.

Proposition 3.3. Suppose that there exist x∗ such that for x > x∗,

P (si > x) = Kx−α

10



whereK is a constant and α > 1.12 Then

σ2
max ∼ c

uα/2

n2−2/α

where c is a constant and uα/2 is a non-degenerate random variable, independent of n.

Proof. See the Appendix.

We are now in a position to compare the decay rates of σ2
max and σ2

Z . Propositions 3.2, 3.3 and Theorem

3.1 are summarized as follows:

Decay rate of (σ2
Z , σ

2
max) =


(n−1, n−2 log n) for a light tail

(n−1, n−2+2/α) for a Pareto tail with α > 2

(n−2+2/α, n−2+2/α) for a Pareto tail with 1 < α < 2

(6)

First, consider the case of the light-tailed distribution. As discussed in Example 3.1, the sizes of firm sales

are similar to each other: the largest firm is not extremely large in size. Thus, the variance contribution of the

largest firm is negligible as n → ∞, that is, σ2
max decays more rapidly than σ2

Z . A similar intuition applies

to the case of a Pareto tail with exponent α > 2. Although the heterogeneity of firm sales is higher than that

of the light-tailed case, it cannot prevent the averaging effect. Since the averaging effect is dominant, σ2
max

decays more rapidly than σ2
Z .

In contrast to these two cases, both σ2
Z and σ2

max decay at the same rate in the case of a Pareto tail with

exponent 1 < α < 2. This means that σ2
max is of the same order of magnitude as σ2

Z , that is, the contribution

of the largest firm to the aggregate variance is not negligible even for a large n. Intuitively, because of the

high heterogeneity of firm sales, s2
max increases rapidly as n → ∞. Owing to this rapid increase, σ2

max

decays at a slower rate than n−1. Since σ2
max is a part of σ2

Z , σ2
Z cannot decay more rapidly than σ2

max. Thus,

σ2
Z decay at the same rate as σ2

max, which is slower than n−1.

3.1.2 Sum and maximum

To further analyze the relation between σ2
Z and σ2

max, I study the ratio of σ2
max to σ2

Z .

Definition 3.2.

rmax :=
σ2

max

σ2
Z

=
‖w‖2∞
‖w‖22

=
s2

max∑
i s

2
i

The ratio rmax represents the fraction of the variance of Z attributable to shocks to the largest firm. For

example, consider the homogeneous case, in which all of firm sales are equal to some constant. In this case,

rmax is equal to 1/n, which converges to 0 as n→∞. In other words, the fraction of the largest firm in the

variance of Z becomes negligible for a large n. The next proposition shows that this property holds under a

more general condition.

12For later purpose, the condition is represented in terms of the tail probability of si instead of s2i .
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Proposition 3.4. Suppose that a random variable si has a finite second moment: Es2
i <∞. Then,

rmax
a.s.→ 0

Proof. See the Appendix.

Distributions with a finite second moment include both light-tailed and Pareto distributions with expo-

nent α > 2 in Eq.(6). For these distributions, rmax converges to 0, consistent with the fact that σ2
max decays

more rapidly than σ2
Z .

In contrast, the next result shows that for distributions with a Pareto tail with α < 2, rmax does not

converge to 0. In other words, σ2
max accounts for a significant part of σ2

Z even for a large n.

Proposition 3.5. Suppose that there exists x∗ such that for x > x∗,

P (si > x) = Kx−α,

where K is a constant and 0 < α < 2. Then, rmax converges in distribution to a non-degenerate random

variable as n→∞. In particular, if α = 1 (i.e. Zipf’s law), then

lim
n→∞

Ermax ≥
1

2

Proof. See the Appendix.

This proposition shows that when Zipf’s law holds, σ2
max accounts for more than half of σ2

Z . This result

is the key to the understanding of Eq.(6). Since σ2
max accounts for a significant fraction of σ2

Z even for a

large n, σ2
Z decays at the same rate as σ2

max. In addition, Proposition 3.3 shows that σ2
max decays at a slower

rate than n−1 for a Pareto tail with α < 2. Thus, σ2
Z decays at a slower rate than n−1. This is the mechanism

behind the finding by Gabaix (2011). I conclude that when sales are highly heterogeneous, the size of the

largest firm is crucial for the variance of Z.

3.2 Tail probability

Let us return to Eq.(4). For simplicity, I assume that the weights are rearranged in decreasing order

(e.g., w1 is the largest weight). I assume that weights are given, that is, the randomness of Z comes only

from microeconomic shocks. Motivated by Proposition 3.5, I assume that the weights satisfy the condition

limn→∞ ‖w‖2∞/‖w‖22 > 0. I study the implication of this condition for the tail probability of Z.

3.2.1 Failure of the CLT

Recall that σ2
Z is a decreasing function ofn by Theorem 3.1. This implies thatZ converges in probability

to 0 as n→∞. For clarity, I formalize this result as follows.

Proposition 3.6. Suppose that σ2
Z → 0. Then,

Z
P→ 0

12



Proof. Let Bn := {Zn > δ} for arbitrary positive number δ. Since σ2
Z → 0, PBn → 0 as n →∞. Thus,

Z converges in probability to 0.

Note that σ2
Z → 0 holds in all cases considered in Proposition 3.1. That is, even when the weights are

highly heterogeneous, Z converges to 0 as n→∞.

However, this does not mean that Z converges to 0 as predicted by the CLT. Indeed, Theorem 1 (c)

in Acemoglu et al. (2012) shows that if limn→∞ ‖w‖2∞/‖w‖22 > 0, normalized Z does not converge to a

Gaussian distribution.

Theorem 3.7 (Theorem 1(c) in Acemoglu et al. (2012)). Suppose that ε1, ..., εn are not Gaussian random

variables and that limn→∞ ‖w‖2∞/‖w‖22 > 0. Then, 1
‖w‖2σεZ does not converge to a Gaussian distribution.

This theorem illustrates the challenge of characterizing the distribution of Z under the condition

limn→∞ ‖w‖2∞/‖w‖22 > 0. One cannot approximate the distribution of Z by a Gaussian distribution, and

to the best of my knowledge, there is no convergence result for the distribution of Z. In the following, I

characterize the distribution of Z with an arbitrary fixed n.13 In particular, I show that the tail probability of

Z is determined by the largest weight (i.e., ‖w‖∞).

3.2.2 Light-tailed distribution

In general, the distribution of Z in Eq.(4) with fixed n depends on the underlying distribution of

microeconomic shocks. Here, I consider a light-tailed distribution as the distribution of microeconomic

shocks. More precisely, I assume that the moment generating function of εi exists:

Eeλεi <∞ for some λ > 0.

This condition means that the tail probability P (εi > x) vanishes (at least) exponentially fast as x → ∞.

Throughout this paper, I assume that the distribution of microeconomic shocks is symmetric, and thus, the

condition also implies a rapid decrease in the left tail.

As the first example of the light-tailed distribution, consider a Gaussian distribution:

13 My analysis of the tail probability of Z is related to Acemoglu et al. (2017), who propose the macroeconomic tail probability
defined by

Rn(τn) :=
logP (Z < −τnσZ)

log Φ(−τn)

where Φ is the standard Gaussian distribution and τn → ∞ as n → ∞. Rn(τn) measures how rapid the tail probability of Z
decays, compared to that of a standard Gaussian random variable. Note that Rn(τn) considers two limits: n → ∞ and τn → ∞.
In contrast, I analyze P (Z ≤ −x) directly with a fixed n. This approach has two advantages. First, a Gaussian distribution is not
needed as a reference. As discussed in Proposition 3.5 and Theorem 3.7, Z does not converge to a Gaussian distribution as n→∞.
Thus, the Gaussian distribution is no longer an appropriate reference in my case. Second, by fixing n, it is not necessary to choose
the increasing rate of τn as n → ∞. In general, since Rn(τn) depends on the increasing rate, the choice of the increasing rate
causes another difficulty. By fixing n, I can focus on the limit of x→∞ only (i.e., the tail probability).
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Example 3.3. Suppose that ε1, ..., εn are iid Gaussian random variables with variance σ2
ε . The invariance

property of a Gaussian distribution yields that Z is Gaussian with σ2
Z = ‖w‖22σ2

ε . Mills’ ratio (e.g.,

Proposition 2.1.2 in Vershynin (2020)) shows that if X is a standardized Gaussian random variable,

P (X ≥ x) ≤ 1√
2π
e−x

2/2 for x ≥ 1.

Since Z is symmetric, I obtain

P (Z ≤ −x) ≤ 1√
2π

exp

(
− x2

2‖w‖22σ2
ε

)
for x ≥ ‖w‖2σε.

Example 3.3 shows that if microeconomic shocks are Gaussian, Z shows a Gaussian decay in the tail

region, which is controlled by ‖w‖22. Note that this decay is the same as that predicted by the CLT. As shown

below, the Gaussian decay can be considered as a benchmark for the tail probability of Z.

Next, let us consider the tail probability of Z when the distribution tail of microeconomic shocks can

be fatter than the Gaussian tail. I assume that the distribution tail of microeconomic shocks is exponentially

upper bounded so that the moment generating function of εi exists. This case includes Example 3.3 as a

special case.

Proposition 3.8. Suppose that there exists x∗ ≥ 0 such that for all x ≥ x∗,

P (εi ≤ −x) ≤ K exp(−βx)

whereK and β are positive constants. Then, for all x ≥ 0,

P (Z ≤ −x) ≤ exp

(
−cmin

(
x2

‖w‖22
,

x

‖w‖∞

))
where c is a non-negative constant, independent of n.

Proposition 3.8 shows two decay rates: Gaussian decay for a small x (i.e., for x ≤ ‖w‖22/‖w‖∞) and

exponential decay for a large x (i.e., for x ≥ ‖w‖22/‖w‖∞). If ‖w‖∞ is very small compared to ‖w‖22,
the region of Gaussian decay covers almost all x ≥ 0. In contrast, suppose that the heterogeneity of the

weights is high and that rmax does not converge to 0, as in Proposition 3.5. Since ‖w‖22/‖w‖∞ ≤ 1/r2
max

for ‖w‖∞ ≤ 1, Proposition 3.8 implies that the tail probability of Z deviates from Gaussian. Note that the

tail probability of Z is controlled by the weight of the largest firm (i.e., ‖w‖∞). In particular, the exponential

decay is the same as that of P (w1ε1 < −x), that is, the tail probability of the component of the largest firm

(up to a constant c). This suggests that the tail probability of Z is driven mainly by shocks to the largest firm.

This finding is consistent with the interpretation given in Section 3.1: because of the high heterogeneity

of firm size, the largest firm is dominant in an economy and determines the distribution properties of

aggregate output even when the number of firms is large. The analysis in Section 3.2.3 below shows that this

interpretation still holds when we consider the distribution of microeconomic shocks with a tail fatter than

exponential.
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3.2.3 Subexponential distribution

Section 3.2.2 considers the light-tailed distribution, which has a finite moment generating function.

Here, I consider the distribution whose tail is fatter than exponential so that the moment generating function

does not exist. More precisely, I assume that for all λ ∈ R,

Eeλε not exist.

An example of distributions satisfying this condition is a Pareto distribution. As shown below, the

Pareto distribution has an important property regarding the tail probability of the sum of independent

random variables.

Example 3.4. LetX1, X2 be iid random variables on R+ such that P (Xi > x) := x−β for β > 0. Consider

the tail probability of X1 +X2, which can be decomposed into three parts using a criterion function h(x):

P (X1 +X2 > x) =P (X1 +X2 > x,X1 ≤ h(x)) + P (X1 +X2 > x,X2 ≤ h(x))

+ P (X1 +X2 > x,X1 > h(x), X2 > h(x))
(7)

Here, I take h(x) := 1
2x

2/3. Note that h(x) is small compared to x, especially when x is large. I analyze

which term on the right-hand side of Eq.(7) is the main contributor to the tail probability of the sum.

Consider the third term on the right-hand side of Eq.(7), which represents the probability that both X1

and X2 are large enough to exceed h(x) and their sum exceeds x. This event is unlikely to occur for a large

value of x:

P (X1 +X2 > x,X1 > h(x), X2 > h(x)) ≤ P 2(X1 > h(x)) = o(P (X1 > x))

This probability decays more rapidly than the probability that X1 exceeds x. Intuitively, when the sum

exceeds a large value, it is unlikely that both X1 and X2 are large.

Next, consider the first term on the right-hand side of Eq.(7). The definition of h yields

P (X1 +X2 > x,X1 ≤ h(x)) ≤ P (X2 > x− h(x)) = x−β
(

1− 1

2
x−

1
3

)−β
∼ P (X1 > x)

Since X1 and X2 are iid random variables, I obtain the same upper bound for the second term.

Thus, by combining these inequalities, I obtain

lim sup
x→∞

P (X1 +X2 > x)

P (X1 > x)
≤ 2 (8)

The opposite direction of Eq.(8) is obvious from the non-negativeness of X1, X2. Thus, I obtain

P (X1 +X2 > x) ∼ 2P (X1 > x) as x→∞ (9)
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Eq.(9) has a more straightforward interpretation. Note that for any positive integer n,14

P (max(X1, ..., Xn) > x) ∼ nP (X > x) as x→∞,

where X1, ..., Xn are n iid. random variables with the same distribution as X . Thus, Eq.(9) means that the

probability of the sum exceeding x is asymptotically equal to the probability of the maximum exceeding x:

P (X1 +X2 > x) ∼ P (max(X1, X2) > x) as x→∞. (10)

In other words, when the sum exceeds a large value x, (at least) one of its components exceeds x. We can

ignore the probability that the sum exceeds x while both components are small, which corresponds to the

third term on the right-hand side of Eq.(7). This property enables us to approximate the tail probability of

the sum using the tail probability of its component.

The property in Eq.(10) is at the heart of the analysis of the tail probability of Z. Indeed, Eq.(10) can be

generalized to the case of the weighted sum of iid random variables onRwhose distribution is heavy-tailed.15

That is, the tail probability of Z is asymptotically equivalent to that of the maximum of the components

(i.e., maxi(wiεi)). In the following, I use this property for the calculation of the tail probability of Z. In

addition, by specifying the distribution of microeconomic shocks, I clarify the role of the weights in the tail

probability of Z.

As examples of heavy-tailed distributions, I consider Pareto and Weibull tails. More precisely, I say

that the distribution has a Pareto tail if for x ≥ x∗,

P (εi ≤ −x) = Kx−β, β > 0 (11)

where β and K are some positive constants. Similarly, I say that the distribution has a Weibull tail if for

x ≥ x∗,

P (εi ≤ −x) = Ke−βx
τ
, β > 0, 0 < τ < 1, (12)

where β and K are some positive constants. The shape parameter τ controls the heaviness of the tail. In

particular, the Weibull tail becomes arbitrarily close to an exponential tail as τ → 1. Thus, the exponential

tail can be considered as the limit of the Weibull tail.

Proposition 3.9. Suppose that the weight of the largest firm, w1, is strictly larger than any other weight.

14Let F (x) := P (X ≤ x). Then,

P (max(X1, ..., Xn) > x) = (1− Fn(x))

= (1− F (x))(1 + F (x) + F 2(x) + ...+ F (n−1)(x)) ∼ n(1− F (x)), as x→∞.

15For details, see Appendix 7.1.4.
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(i) If the distribution of microeconomic shocks has a Pareto tail, then

P (Z ≤ −x) ∼
∑
i

(
wi
w1

)β
P (w1ε1 ≤ −x) as x→∞.

(ii) If the distribution of microeconomic shocks has a Weibull tail, then

P (Z ≤ −x) ∼ P (w1ε1 ≤ −x) as x→∞.

Proof. See the Appendix.

The first result in Proposition 3.9 shows that the contribution of each component wiεi to the tail

probability of Z is determined by the multiplier (wi/w1)β . As expected, the smaller the weight, the smaller

the impact on the tail probability of Z. Furthermore, the tail probability of Z depends on the tail exponent

of the distribution tail of microeconomic shocks. In particular, as β becomes larger (i.e. the tail becomes

lighter), only components with large weights contribute to the tail probability of Z.

The second result in Proposition 3.9 has a stronger implication. When the distribution ofmicroeconomic

shocks has a Weibull tail, only the component with the largest weight contributes significantly to the tail

probability of Z. Compare this finding with Proposition 3.8. Since the exponential tail can be seen as the

limit of the Weibull tail, Propositions 3.9 and 3.8 provides a unified view of how the heterogeneity of firm

size are related to the tail probability of Z: when the distribution of microeconomic shocks is close to a

Laplace, only the size of the largest firm matters for the tail probability of Z.

4 Second-Order Terms

Let us consider the second-order terms in Eq.(1), that is, Z is given by

Z :=
∑
i,j

bijεiεj

where bij ∈ R is a constant and ε1, ..., εn are iid microeconomic shocks. In particular, I use Corollary 1 in

Baqaee and Farhi (2019) (see Eq.(3)):

bij :=
(θ − 1)

2
w∗i (1{i=j} − w∗j ).

The following analysis characterizes the variance and tail probability of Z in terms of ‖w∗‖∞ and ‖w∗‖2.
Before proceeding to the analysis, let us introduce some notations. LetB := (bij) be ann×n symmetric

matrix. Let ‖B‖HS and ‖B‖ denote the Hilbert-Schmidt norm and the operator norm of B, respectively:

‖B‖HS :=

∑
ij

|bij |2
1/2

, ‖B‖ := sup

{
‖Bv‖2
‖v‖2

: v ∈ Rn, v 6= 0

}
One can show that they can be represented as ‖B‖HS = (

∑
i µ

2
i )

1/2 and ‖B‖ := max(|µ1|, ..., |µn|), where
(µ1, ..., µn) are the eigenvalues of B. Let tr(B) denote the trace of B. The independence of microeconomic
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shocks yields that the mean of Z is given by

EZ =
∑
ij

bijE[εiεj ] = σ2
ε tr(B)

I start with an example in which microeconomic shocks follow a Gaussian distribution. In contrast to

the case considered in Section 3, the distribution of Z is no longer Gaussian, as described below.

Example 4.1. Suppose that microeconomic shocks ε1, ..., εn are iid Gaussian random variables with mean

0 and variance σ2
ε . Let Xi := εi/σε so that X is a vector of standard Gaussian random variables. By

setting A := −B, I consider XTAX instead of XTBX . Indeed, Var(XTBX) = Var(XTAX) and

P (XTBX − E[XTBX] < −x) = P (XTAX − E[XTAX] > x). Note also that ‖A‖ = ‖B‖ and

‖A‖HS = ‖B‖HS.
First, I diagonalize matrix A. Since A is a real symmetric matrix, there are an orthogonal matrix P and

a diagonal matrix D such that A = P TDP . Thus, by letting Y := PX , I have

XTAX =
∑
i

µi,AY
2
i

where µi,A is an eigenvalue of A. Since X follows a standard multivariate Gaussian distribution, Y1, ..., Yn

are independent standard Gaussian random variables. Thus, the right-hand side of the above equation

represents the weighted sum of independent χ2 random variables with weight µi,A. Since the mean of

XTAX is given by tr(A), I have

XTAX − E[XTAX] =
∑
i

µi,A(Y 2
i − 1) (13)

This representation by Eq.(13) yields the variance of Z. Indeed,

Var(XTAX) =
∑
i

µ2
i,AVar(Y 2

i ) = 2
∑
i

µ2
i,A = 2‖A‖2HS

Since εi = σεXi,

σ2
Z = 2σ4

ε ‖B‖2HS (14)

For the tail probability, I apply Chernoff’s method to Eq.(13). Note that the moment generating function

of each summand in Eq.(13) is upper bounded as follows:

logEeλ(Y 2
i −1) =

1

2
(− log(1− 2λ)− 2λ) ≤ λ2

1− 2λ

for all λ < 1/2. Thus, the independence of Y1, ..., Yn yields

logEeλ(XTAX−E[XTAX]) =
∑
i

1

2
(− log(1− 2µi,Aλ)− 2µi,Aλ) ≤ λ2‖A‖2HS

1− 2λ‖A‖

for all λ ∈ (0, 1
2‖A‖). By applying Lemma 7.4 with v = 2‖A‖2HS and c = 2‖A‖ and using εi = σεXi, I have

P (Z − EZ < −x) ≤ exp

(
− x2

4(σ4
ε ‖B‖2HS + σ2

ε ‖B‖x)

)
for all x > 0. (15)

Since (a+ b) ≤ 2 max(a, b) for a, b ≥ 0, Eq.(15) can be written as

P (Z − EZ < −x) ≤ exp

(
−cmin

(
x2

σ4
ε ‖B‖2HS

,
x

σ2
ε ‖B‖

))
(16)
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where c is some absolute constant.

Eq.(16) shows that the tail probability of Z deviates from a Gaussian in the tail region, even when

Gaussian microeconomic shocks are considered. Intuitively, the quadratic form transforms the light tail of

the distribution of microeconomic shocks into a fatter tail of the distribution of Z. Eq.(16) also shows that

that the tail probability is characterized by ‖B‖ and that the deviation from the Gaussian in the tail region

matters only when ‖B‖2HS/‖B‖ does not converge to 0 as n→∞.

Eq.(16) is reminiscent of the upper bound for the tail probability of Z in Proposition 3.8. Indeed, ‖w‖2
and ‖w‖∞ in Proposition 3.8 are replaced by ‖B‖HS and ‖B‖ in Example 4.1. This correspondence becomes

further apparent by the next lemma.

Lemma 4.1. Let B := {bij} and bij := (θ−1)
2 w∗i (1{i=j} − w∗j ). Then,

‖B‖ ≤ |θ − 1|
2
‖w∗‖∞

c‖w∗‖2 ≤ ‖B‖HS ≤ C‖w∗‖2
for some constants c and C.

Proof. See the Appendix.

Lemma 4.1 implies that if ‖w∗‖2 converges to 0 as n→∞, the convergence rate of ‖B‖HS is the same

as that of ‖w∗‖2. Since the variance of Z is determined by ‖B‖HS, we can apply the same reasoning as

in Section 3: If the distribution of w∗1, ..., w∗n has a Pareto tail, the convergence rate of the variance of Z

becomes slow, and its slow rate is due to the asymptotic behavior of the largest w∗i .

For the tail probability of Z, by using Lemma 4.1, Eq.(16) can be rewritten as

P (Z − EZ ≤ −x) ≤ exp

(
−cmin

(
x2

σ4
ε ‖w∗‖22

,
x

σ2
ε ‖w∗‖∞

))
(17)

Thus, the same interpretation given after Proposition 3.8 can be applied here. That is, Z − EZ exhibits

Gaussian decay for a small x and exponential decay for a large x. If ‖w∗‖∞ is very small compared to

‖w∗‖22, the region of Gaussian decay covers almost all x. On the other hand, since ‖w∗‖∞ ≤ 1, one has
‖w∗‖2∞
‖w∗‖22

≤ ‖w
∗‖∞

‖w∗‖22
.

Thus, if ‖w∗‖2∞/‖w∗‖22 does not converge to 0 (as in Proposition 3.5), there exists a region in which the

probability of Z deviates from the Gaussian decay. In addition, the deviation is controlled by ‖w∗‖∞.

These implications can be extended to a more general condition. First, I give the result about the

convergence rate of the variance of Z.

Proposition 4.2. Suppose that ε1, ..., εn are iid random variables with mean 0 and finite fourth moment.

Then,

σ2
Z = (m4 − 3m2

2)
∑
i

B2
i,i + 2m2

2‖B‖2HS
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wherem2 := E(ε2i ) andm4 := E(ε4i ). In particular, if bij := (θ−1)
2 w∗i (1{i=j} −w∗j ), then the convergence

rate of σZ is equal to that of ‖w∗‖2.

Proof. See the Appendix.

This proposition means that, similar to the case discussed in Section 3, the order of σZ is equal to that

of ‖w∗‖2. Thus, if ‖w∗‖2 decays slowly as n→∞, σZ decays slowly as well.

For the tail probability of Z, I consider the Laplace distribution as the underlying distribution of

microeconomic shocks.

Proposition 4.3. Let B := {bij} and bij := (θ−1)
2 w∗i (1{i=j} − w∗j ). Suppose that ε1, ..., εn are iid random

variables with a common Laplace distribution with mean 0. Then,

P (Z − EZ ≤ −x) ≤ exp

(
−cmin

(
x2

‖w∗‖22
,

(
x

‖w∗‖∞

) 1
2

))
where c is a constant, independent of n.

Proof. See the Appendix.

As in Section 3.2.2, the tail probability of Z shows Gaussian decay in the central region but deviates

from Gaussian in the tail region. In the case of the Laplace distribution, the boundary separating the two

regions is given by (‖w∗‖42/‖w∗‖∞)1/3. Since ‖w∗‖∞ < 1, I have
‖w∗‖42
‖w∗‖∞

≤ ‖w
∗‖42

‖w∗‖4∞
Thus, as long as the ratio ‖w∗‖2∞/‖w∗‖22 converges to some non-zero value (as in Proposition 3.5), there

exists a region in which the tail probability of Z deviates from a Gaussian.

My analysis in this section provides a unified view about the role of granularity, which is consistent

with that in Section 3. That is, ‖w∗‖∞, ‖w∗‖2, and their ratio are sufficient statistics for the variance and tail

probability of aggregate output. When the ratio does not converge to 0 (i.e., the largest firm dominates the

economy), the aggregate variance decays slowly, and the tail probability of aggregate output deviates from

Gaussian. The size of the largest firm characterizes the distribution properties of aggregate output. Given

these theoretical results, the next question is to ask whether the size of the largest firm is sufficiently large

to generate substantial variance and tail probability of aggregate output. In the next section, I answer this

question using Japanese firm-level data.

5 Empirical Analysis

I apply the results obtained in Sections 3 and 4 to Japanese firm-level data. In Section 5.1, I analyze the

time series of the quarterly GDP in Japan. In Section 5.2, I give the summary statistics of Japanese firm-level

data. In Section 5.3, given the empirical granularity in Japan, I compare the variance and tail probability of

aggregate output induced by microeconomic shocks to their empirical counterparts.
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5.1 Aggregate output

I analyze the seasonally adjusted quarterly GDP time series from 1994Q1 to 2021Q2, which is taken

from the OECD database. I denote by gt the log-difference of the GDP time series (referred to as the GDP

growth rate in the following), that is, gt := log(GDPt) − log(GDPt−1). Figure 1 shows the times series

of the GDP and its growth rate over the sample period. The summary statistics of the GDP growth rate are

given in Table 1.16

n mean meadian s.d. s.d.(mad) min max
110 1.73E-03 2.38E-03 0.01374 0.00803 -0.0830 0.0527

Table 1: Summary statistics of the GDP growth rate. In the table, s.d. (mad) represents the estimate of the standard
deviation by the median absolute deviation (i.e., 1.4826×med(|gt −med(gt)|)). This is a consistent estimator when
samples follow a Gaussian.

Next, I analyze the distribution property of the GDP growth rate. Figure 2 shows the histogram (left

panel) and QQ plot (right panel) of the GDP growth rate. If the GDP growth rate is independently drawn

from a Gaussian distribution, the QQ plot would lies on the straight line in the right panel. The observed

departure from the straight line suggests that the GDP growth rate does not follow a Gaussian distribution,

especially in the left-tail region.17 In other words, the probability of a large negative deviation is higher than

predicted by a Gaussian distribution.

Finally, I estimate the left-tail probability of the GDP growth rate, that is, P̂ (gt < −x). I use two

methods widely used in extreme value theory: approximation by the generalized extreme value (GEV)

distribution and the method of peaks over threshold (POT). The main idea is the use of the limiting theory of

extremes: for the GEV approximation, it tells us that properly normalized extremes converges to a generalized

extreme value distribution as n→∞, and for the POT method, it tells us that extremes over a high threshold

converges to a generalized Pareto distribution as n→∞.18

Both estimates of the left-tail probability are given inFigure 3, inwhich the empirical counter cumulative

distribution function (CCDF) is also plotted for comparison. This figure shows that both estimates fit well

with the empirical CCDF and that their differences are small. Thus, I use the GEV approximation as a

main estimate in the following. This estimate suggests that the GDP growth rate has a significant left-tail

16As a measure of scale, sample standard deviation is greatly influenced by outliers. As seen in Figure 2, the empirical GDP growth
rates have several large deviations, which can overestimate its standard deviation. To mitigate this concern, I use s.d. (mad) as an
alternative measure of scale, which is less dependent on outliers, although the GDP growth rate does not seem to follow Gaussian.
The large deviations observed in the samples are used to estimate of the tail probability.

17I perform normality tests: Kolmogorov-Smirnov (D = 0.480), Anderson-Darling (A = 5.12), Cramer-von Mises (W = 0.867),
Shapiro-Wilk tests (W = 0.776), where the test statistics are in parentheses. For all the normality tests, the null hypothesis is
rejected at the 1% level.

18For details, see Appendix 7.2.
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Figure 3: Estimation of the left-tail probability. The horizontal axis is the absolute value of the negative GDP growth
rate, that is, |gt|. The tail estimates by GEV and POT methods and the empirical CCDF are plotted.

probability; for example, P̂ (gt < −0.02) is 3.27%. In Section 5.3, I test whether microeconomic shocks

can explain this left-tail probability of the GDP growth rate.

5.2 Firm-level data

To measure the empirical granularity, I use firm-level data in Japan in 2017 provided by Tokyo Shoko

Research (TSR). This data contains more than one million firms including listed and unlisted firms across all

sectors. I exclude firms in sectors of agriculture & forestry, fisheries, finance & insurance, medical & health

care, or public service sectors. I also exclude firms whose sales are not available or 0. The total number of

firms in my sample is reduced to 1, 066, 653.

The summary statistics of annual sales revenue are given in Table 2. As is well known in the literature,
firms’ sales are highly heterogenous and closely follow a Pareto tail. Figure 4 shows the empirical CCDF

of sales in the log-log plot, which is close to the straight line in the tail region. I estimate the slope of this

straight line (i.e., the exponent α of the Pareto tail) by Hill’s estimate. The estimate is α̂ = 1.24(0.055),

which suggests that Zipf’s law holds approximately in my sample.

n mean meadian s.d. s.d.(mad) min max
1066653 1143 80 28346 96 0.001 12201443

Table 2: Summary statistics of annual sales revenue. The unit of sales in the table is 1 million yen.

Using firms’ sales, I calculate Domar’s weights and their norms, which are given in Table 3. I set

GDP = 545.897 trillion yen (GDP in 2017 in Japan) and labor share = 0.2.19 For later purpose, I also give

19According to Financial Statements Statistics of Corporations by Industry conducted by the Ministry of Finance, the sample average
of the labor share in sales fluctuates within the range of [0.1, 0.2] over time. To obtain the upper bound of the micro-originated
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Figure 4: CCDF of firms’ sale. The exponent of Pareto’s tail is estimated to be α̂ = 1.24(0.055), where the standard
error is in parentheses.

√∑
iB

2
i,i and ‖B‖HS in Table 3. Recall that these norms are sufficient statistics for the variance and tail

probability of aggregate output as discussed in Section 3 and Section 4. Given these norms representing

the granularity of the Japanese economy, I test in Section 5.3 below whether microeconomics shocks drive

substantial aggregate fluctuations.

‖w‖∞ ‖w‖2 ‖w∗‖∞ ‖w∗‖2
√∑

iB
2
i,i ‖B‖HS

0.0224 0.0537 0.00447 0.0107 0.00536 0.00536

Table 3: Norms of firms’ sales. In the calculation, GDP is set to 546 trillion yen (GDP in 2017 in Japan), and the labor
share is set to 0.2.

5.3 Empirical validity of the granular hypothesis

Given the empirical aggregate fluctuations (Section 5.1) and firm-level statistics (Section 5.2) in Japan,

we can quantitatively test the granular hypothesis. First, I calculate the empirical counterpart to rmax in

Proposition 3.5. I find that r̂max = ‖w‖2∞/‖w‖22 = 0.173; that is, 17.3% of the micro-originated aggregate

variance is attributable to the contribution of the largest firm. This implies that the CLT fails because of the

high presence of the largest firm, consistent with the granular hypothesis.

Next, I calculate the variance and tail probability of aggregate output induced bymicroeconomic shocks.

Following Gabaix (2011), I assume that the standard deviation of annual productivity shocks is equal to

12%. Since the GDP growth rates given in Section 5.1 are on quarterly basis, I use σε = 6% by assuming

that the annual growth rate is the sum of the iid quarterly growth rates. For labor-augmented productivity

aggregate fluctuations, I set the labor share in sales equal to 0.2 in my exercise.
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shocks (i.e., for the results in Section 4), I assume that σε = 30%.20

5.3.1 Case of the first-order terms

Consider the aggregate variance when Z is given by Eq.(4). By using the norm in Table 3, I obtain

σZ = σε‖w‖2 = 0.32%.

Compared with the empirical counterpart given in Table 1, this result suggests that microeconomic shocks

are an important source of the aggregate variance. Thus, in terms of the aggregate variance, my empirical

analysis supports the granular hypothesis.

Let us consider the tail probability of aggregate output. I consider two distributions for the underlying

distribution of microeconomic shocks: Gaussian distribution, for which I apply Mills’ ratio, and Laplace

distribution, or more precisely, a Weibull distribution whose parameter τ is arbitrarily close to 1.21 I

apply Proposition 3.9 by viewing the Laplace distribution as the limit of τ . The parameter of the Laplace

distribution is chosen such that the variance of microeconomic shocks is equal to σε. Thus, the tail probability

of aggregate output can be approximated as follows:

P (Z ≤ −x) ≤ 1√
2π

exp

(
− x2

2‖w‖22σ2
ε

)
for Gaussian

P (Z ≤ −x) ∼ P (w1ε1 ≤ −x) =
1

2
exp

(
−
√

2x

σε‖w‖∞

)
for Laplace

By substituting the empirical values of ‖w‖∞ and ‖w‖2 in Table 3 into the above formulae, I plot

them along with the estimated tail probability of the GDP growth rate in the left panel of Figure 5. The tail
probability predicted by microeconomic shocks is negligible compared with the empirical estimate of the tail

probability. For example, the GEV estimate of the probability that the GDP growth rate is less than −2.0%

is 3.27%, while the tail probability predicted by microeconomic shocks is less than 0.01%. This means that

the empirical granularity (especially the size of the largest firm) is too low to cause a large deviation in the

GDP growth rate. Thus, in terms of the tail probability of aggregate output, my empirical analysis does not

support the granular hypothesis.

20This value for σε is chosen so that the labor-augmented productivity shocks would generate a 6% standard deviation of sales growth
rate, that is, 30% × 0.2 = 6%, where 0.2 is the labor share in my exercise. Although the value of 30% seems to overestimate
the variation of microeconomic shocks, the following empirical analysis shows that the contribution of microeconomic shocks
to aggregate fluctuations is small. Our empirical analysis can be considered as giving the upper bound for the contribution of
microeconomic shocks to aggregate fluctuations.

21For the assumption of a Laplace distribution, see footnote 4.
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(a) first-order terms (b) second-order terms

Figure 5: Tail probability. Panel (a) shows the tail probabilities predicted by microeconomic shocks when Z is defined
by Eq.(4). Panel (a) also shows the empirical CCDF and GEV estimate of the GDP growth rate, which are the same as
in Figure 3. Panel (b) shows the tail probabilities predicted by microeconomic shocks when Z is defined as in Section
4. Others are same as in Panel (a).

5.3.2 Case of the second-order terms

Let us consider the aggregate variance when Z is as in Section 4. By using the norms given in Table 3,
I obtain

σZ =

√
(m4 − 3m2

2)
∑
i

B2
i,i + 2m2

2‖B‖2HS = 0.108%

where I assume m4 − 3m2
2 = 3m2

2 = 3σ4
ε . 22 As in Section 5.3.1, microeconomic shocks are a source of

aggregate fluctuations in terms of the aggregate variance. However, the magnitude of the aggregate variance

caused by the second-order terms is small compared to the result in Section 5.3.1. This result suggests that

the first-order approximation (i.e. Hulten’s theorem) to aggregate output works well in this setting.

Next, consider the tail probability of Z. I consider Gaussian and Laplace distributions. In the former

case, I use Example 4.1. In the latter case, I use an approximation method similar to Example 4.1. Let Xi

be a standard Laplace random variable (i.e.,Xi := εi/σε) and let A = −B. The diagonalization of A yields

XTAX − E[XTAX] =
∑
i

µi,A(Y 2
i − 1)

where Yi is a linear combination of X1, ..., Xn. Note that Y1, ..., Yn are linearly independent but not

necessarily independent of each other. I assume here that Yi is a standard independent Laplace random

variable.23 Under this assumption, Proposition 3.9 yields that the tail probability ofZ is approximately equal

22This assumption holds true when microeconomic shocks follow a Laplace distribution. In contrast, when they follow a Gaussian
distribution,m4 − 3m2

2 is equal to 0.

23Since the true Yi is a combination of X1, ..., Xn, the averaging effect dampens the tail probability of true Yi, compared to the
Laplace distribution. That is, this assumption would generate a higher tail probability of Z. Thus, the assumption is considered
conservative because even under this assumption, the tail probability of Z predicted by microeconomic shocks turns out to be
negligible.

25



to P (µ1,A(Y 2
1 − 1) > x/σ2

ε ). Note that

P (Y 2
i > y) = P (Yi >

√
y or Yi < −

√
y) = e−

√
2y

1
2 .

Thus, by substituting y = x
σ2
ε ‖A‖

+ 1 into this equation, I can approximate the tail probability of Z. To

summarize, I use the following approximation:

P (Z − EZ ≤ −x) ≤ exp

(
− x2

4(σ4
ε ‖B‖2HS + σ2

ε ‖B‖x)

)
for Gaussian

P (Z − EZ ≤ −x) ∼ exp

(
−

√
2x

σ2
ε ‖B‖

+ 2

)
for Laplace

Finally, I use the upper bound of ‖B‖ ≤ |θ−1|
2 ‖w

∗‖∞.

Substituting the empirical values into these approximations, I plot them in the right panel of Figure 5.
As in Section 5.3.1, the tail probability induced by microeconomic shocks is negligible compared with

the estimated tail probability of the GDP growth rate. Thus, given the empirical granularity in Japan,

microeconomic shocks would only generate small fluctuations, and not a large deviation, in aggregate

output. In other words, the empirical granularity (especially the size of the largest firm) in Japan is not large

enough to explain the observed large deviation in the GDP growth rate.

6 Conclusion

The literature on the granular hypothesis provides new insights into the analysis of aggregate fluctuations.

It shows that not only exogenous aggregate shocks but microeconomic shocks can be a source of aggregate

fluctuations. Recent studies have proposed many models to analyze how microeconomic shocks are related

to aggregate output. Given these developments, it is important to assess the empirical relevance of the

granular hypothesis.

This paper focuses on the distribution properties of aggregate fluctuations. My analysis shows that

when the firm size distribution has a Pareto tail, shocks to the largest firm dominate those to other firms. For

this reason, the CLT fails, and the size of the largest firm is the key variable to the aggregate variance and

tail probability of aggregate output. Then, by using firm-level data in Japan, I test whether the empirical

granularity (and the size of the largest firm) is large enough to generate the substantial variance and tail

probability of aggregate output. I find that it is sufficiently large to increase the aggregate variance but not

large enough to contribute to the tail probability of aggregate output. That is, microeconomic shocks would

generate only small fluctuations, and not a large deviation, in aggregate output.

Note that my analysis assumes that an economy is efficient and that there is no extensive margin. If these

assumptions are relaxed, the micro-originated aggregate fluctuations may be further amplified. For the first

assumption, an extension to an inefficient economy is intensively studied in the literature. By introducing

wedges (or markup), Bigio and La’o (2020) and Baqaee and Farhi (2020b) analyze how microeconomic
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shocks propagate in an input-output network. For the second assumption, some recent papers (Grassi

(2017); Baqaee (2018);Baqaee and Farhi (2020a)) tackle this problem by endogenizing network formation.

Although their models are much more complicated, if Eq.(1) holds true, my analysis can be applied similarly.

The characterization of the distribution properties implied by these models would contribute to a better

understanding of the role of granularity in aggregate fluctuations.

7 Appendix

In Section 7.1, I give the proofs of the propositions in the main text. In Section 7.2, I explain the

estimation of the tail probability of the GDP growth rate.

7.1 Proof

7.1.1 Proof of Propositions 3.2 and 3.3

I follow the proof in Gabaix (2011). However, unlike it, I use the extreme value theory (e.g., Embrechts

et al. (1997); Resnick (1987); De Haan and Ferreira (2006)).

Proof of Proposition 3.2. Consider a random variable given by

n2(log n)−1‖w‖2∞ =
1

b2
(log n)−1s2

max

(n−1
∑

i si)
2
.

First, since Esi < ∞ by the assumption, (n−1
∑

i si)
2 converges to (Esi)

2 a.s. as n → ∞ by the strong

law of large numbers. Second, by using the same argument as in Example 3.1, one gets

α(s2
max − α−1 log(Kn))

d→ u

where u is a non-degenerate random variable. Thus, (log n)−1s2
max

P→ α−1. Combining these results, one

gets

n2(log n)−1‖w‖2∞
P→ 1

b2α(Esi)2

Thus, the desired result follows.

Proof of Proposition 3.3. For simplicity, let k := α/2 > 1/2. Consider a random variable given by

n2−1/k‖w‖2∞ =
1

b2
n−1/ks2

max

(n−1
∑

i si)
2
.

The same argument as in the proof of Proposition 3.2 yields that (n−1
∑

i si)
2 converges to (Esi)

2 a.s. and

(Kn)−1/ks2
max

d→ uk,

where uk is a non-degenerate random variable, independent of n. By combining these results together, one

obtains

n2−1/k‖w‖2∞
d→ K1/kuk
b2(Esi)2
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Thus, the desired result follows.

7.1.2 Proof of Propositions 3.4 and 3.5

The relation between the sum and maximum of random variables is studied in the literature on regularly

varying functions (see, e.g., Section 8.2.4 in Embrechts et al. (1997) and Section 8.15 in Bingham et al.

(1987)). My proof below follows this literature.

Proof of Proposition 3.4. Note that Es2
i < ∞ is equivalent to

∑∞
n=1 P (s2

n > δn) < ∞ for all δ > 0.

Thus, the Borel-Cantelli lemma implies P (s2
n > δn i.o.) = 0 for all δ > 0, which is equivalent to

limn→∞ n
−1s2

n = 0 a.s. Next, I use an equivalent relation between n−1s2
n and n−1s2

max: for some n0 ≤ n,

n−1s2
n ≤ n−1s2

max ≤ max

(
s2

1

n
, ...,

s2
n0

n
,
s2
n0+1

(n0 + 1)
,
s2
n0+2

(n0 + 2)
, ...,

s2
n

n

)
This inequality implies

lim
n→∞

n−1s2
n = 0 a.s. ⇐⇒ lim

n→∞
n−1s2

max = 0 a.s.

Finally, the strong law of laws of large numbers yields (n−1
∑

i s
2
i )

a.s.→ Es2
i . Combining all results together,

I obtain

rmax =
(n−1s2

max)

(n−1
∑

i s
2
i )

a.s.→ 0

The relation between the sum and maximum for random variables with infinite mean is fully char-

acterized by Bingham and Teugels (1981). They provide an equivalent condition for the existence of the

non-degenerate limit distribution of rmax.

Theorem 7.1 (Theorem 8.15.3 in Bingham et al. (1987)). Let ξ1, ..., ξn be iid random variables drawn from

a distribution F . Let Sn andMn denote the sum and maximum of ξ1, ..., ξn, respectively. Then, the following

conditions are equivalent to each other:

(i)Mn/Sn has a non-degenerate limit distribution.

(ii) F is attracted to a stable law of exponent k ∈ (0, 1).

(iii) E(Sn/Mn − 1) has a positive finite limit.

Let ξi = s2
i . Since a distribution with a Pareto tail with exponent α ∈ (0, 2) is attracted to the stable

law of k ∈ (0, 1), one can immediately show Proposition 3.5. In the following, I give a simplified proof of

(ii)⇒ (iii) for Zipf’s law, that is, the second part of Proposition 3.5. This proof shows how one can get the

lower bound of the mean of rmax.

Proof of the second part of Proposition 3.5. Note that for a general distribution F , the following equation
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holds:

E

[
exp

(
it

(∑
i ξi

ξmax
− 1

))]
= n

∫ ∞
−∞

dF (v)

[∫ v

−∞
exp

(
it
x

v

)
dF (x)

]n−1

By taking the derivative of both sides and setting t equal to 0, one gets

E

[∑
i ξi

ξmax
− 1

]
= n(n− 1)

∫ ∞
0

v−1

∫ v

0
xdF (x)Fn−2(v)dF (v)

Here, I use the assumption that ξi is a non-negative random variable.

For simplicity, consider a simple case where F (x) = x−1/2 on [1,∞). In this case,
∫ v

1 xdF (x) =

v1/2 − 1 and

(v−1/2 − v−1)Fn−2(v) = (F (v)− F 2
(v))Fn−2(v)

= F (v)Fn−1(v)

= Fn−1(v)− Fn(v)

Thus,

E

[∑
i ξi

ξmax
− 1

]
= n(n− 1)

∫ ∞
1

v−1

∫ v

1
xdF (x)Fn−2(v)dF (v)

= n(n− 1)

∫ ∞
1

(Fn−1(v)− Fn(v))dF (v)

= n(n− 1)

(
1

n
[Fn(v)]∞1 −

1

n+ 1
[Fn+1(v)]∞1

)
= n(n− 1)

1

n(n+ 1)
→ 1

Therefore, E 1
rmax

converges to 2.

Finally, I use Jensen’s inequality. Since f(x) := 1/x is a convex function, Jensen’s inequality yields
1

Ermax
≤ E 1

rmax
. Thus, I obtain

lim
n→∞

Ermax ≥ lim
n→∞

1

E 1
rmax

=
1

2

7.1.3 Proof of Proposition 3.8

I follow the proof strategy used in the theory of concentration inequalities. For more details, see Chapter

2 in Wainwright (2019) and Chapter 2 in Vershynin (2020). I need a lemma that characterizes the moment

generating function.

Lemma 7.2 (Theorem 2.1.3 in Wainwright (2019)). Let X be a zero-mean random variable. Suppose that

P (|X| > x) ≤ K exp(−βx) for all x ≥ 0,

whereK and β are positive constants. Then, there exist non-negative constants (C, c) such that

EeλX ≤ eCλ2 for all |λ| < 1

c
.
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Proof of Proposition 3.8. Markov’s inequality and the independence of ε1, ..., εn yield

P (Z ≤ −x) ≤ e−λx
∏
i

E exp(λwiεi).

The lemma implies that there exists non-negative constants (C, c) such that for all |λ| ≤ 1
c‖w‖∞ and for all i,

E exp(λwiεi) ≤ exp(Cλ2w2
i ).

Hence, I have the upper bound of P (Z ≤ −x):

P (Z ≤ −x) ≤ exp(−λx+ Cλ2‖w‖22)

Next, I minimize the upper bound by choosing an optimal λ subject to the constraint |λ| ≤ 1
c‖w‖∞ . The

optimal λ is given by

λ = min

(
x

2C‖w‖22
,

1

c‖w‖∞

)
,

and

P (Z ≤ −x) ≤ exp

(
−min

(
x2

4C‖w‖22
,

x

2c‖w‖∞

))
.

Here, I used the fact that if x ≥ 2C‖w‖22
c‖w‖∞ ,

− x

c‖w‖∞
+

C‖w‖22
c2‖w‖2∞

≤ − x

2c‖w‖∞
.

Therefore, the desired result follows.

7.1.4 Proof of Proposition 3.9

The topics of heavy-tailed distributions are one of the fields of probability theory (see, e.g., Embrechts

et al. (1997); Foss et al. (2011)). Following Foss et al. (2011), I introduce the classes of distributions S and

SR on R+ and R, respectively.24

Definition 7.1. A distribution F on R+ belongs to class S (denoted by F ∈ S) if the convolution F ∗ F
satisfies

F ∗ F (x) ∼ 2F (x) as x→∞.

A distribution F on R belongs to class SR (denoted by F ∈ SR) if F+ ∈ S, where F+ is the distribution of

X+ := max(X, 0).

The distribution on R with a Pareto tail belongs to SR because, as shown in Example 3.4, the Pareto

distribution on R+ satisfies the relation F ∗ F (x) ∼ 2F (x). One can also show that the distribution on R

with a Weibull tail belongs to SR (see, e.g., Example 1.4.3 in Embrechts et al. (1997)).

24The classes of distributions S and SR are usually called "subexponential," whose notations are first introduced by Athreya and Ney
(2004) and widely used in the related literature (e.g., Embrechts et al. (1997); Foss et al. (2011)). However, in the literature on
concentration inequality (e.g., Boucheron et al. (2012)), the term "subexponential" means distributions satisfying the property in
Lemma 7.2. Since the two usages of "subexponential" are incompatible and confusing, I decided not to use it throughout this paper.
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The main tool for the proof of Proposition 3.9 is the following theorem (given as Corollary 3.19 in Foss

et al. (2011); see also Embrechts and Goldie (1982)).

Theorem 7.3 (Corollary 3.19 in Foss et al. (2011)). Suppose that F ∈ SR (the reference distribution). If

distributions G1, . . . , Gn satisfy Gi(x)/F (x) → ci as x → ∞ for some constant ci ≥ 0 and i = 1, . . . , n,

then
G1 ∗ . . . ∗Gn(x)

F (x)
→ c1 + . . .+ cn as x→∞.

Proof of Proposition 3.9. Let the distribution of the first component w1ε1 be the reference distribution F

(i.e., F (x) := P (w1ε1 ≤ x)), and let Gi be the distribution of wiεi (i.e., Gi(x) := P (wiεi ≤ x)). Note that

the distribution of Z is given by the convolution of Gi, that is, G1 ∗ ... ∗Gn.
For the case of a Pareto tail,

Gi(x)

F (x)
=
P (wiεi > x)

P (w1ε1 > x)
=

(
wi
w1

)β
Thus,

lim
x→∞

Gi(x)

F (x)
=

(
wi
w1

)β
Thus, Theorem 7.3 and the symmetry of the distribution of Z yield

P (Z ≤ −x) ∼
∑
i

(
wi
w1

)β
P (w1ε1 ≤ −x)

For the case of a Weibull-tail,
Gi(x)

F (x)
=
P (wiεi > x)

P (w1ε1 > x)
= eβ(w−τ1 −w

−τ
i )xτ

Since the largest weight w1 is strictly larger than any other weights,

lim
x→∞

Gi(x)

F i(x)
=

 1 for i = 1

0 for i = 2, 3, ..., n

Thus, Theorem 7.3 and the symmetry of the distribution of Z yield

P (Z ≤ −x) ∼ P (w1ε1 ≤ −x)

7.1.5 Proof for Section 4

I first define a sub-Gamma random variable and then give a lemma used in Example 4.1. The proof of

this lemma is essentially the same as the latter half of the proof of Proposition 5 in Acemoglu et al. (2017).

Definition 7.2. A real-valued centered random variable X is called sub-Gamma with variance factor v and

scale c if for all λ such that 0 < λ < 1/c,

EeλX ≤ λ2v

2(1− cλ)
.
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Lemma 7.4. Let X be a sub-Gamma random variable with variance factor v and scale c. Then,

P (X > x) ≤ exp

(
− x2

2(v + cx)

)
for x ≥ 0

Proof. I use Chernoff’s method. First, by Markov’s inequality,

P (X > x) ≤ exp

(
−λx+

vλ2

2(1− cλ)

)
I optimize the upper bound with respect to λ ∈ (0, 1/c):

sup
λ∈(0,1/c)

(
xλ− λ2v

2(1− cλ)

)
=

v

c2
h1

(cx
v

)
where h1(u) := 1 + u−

√
1 + 2u. Finally, by using the following inequality

h1(u) ≥ u2

2(1 + u)
for u > 0,

the desired result follows.

Proof of Lemma 4.1. For the first result, let Λ be a diagonal matrix whose diagonal entries are given by

w∗1, ..., w
∗
n. Note that matrix B can be written as B = θ−1

2 M , where M := Λ − w∗w∗T . Consider the

quadratic form ofM :

〈Mx, x〉 = 〈Λx, x〉 − 〈wwTx, x〉

= 〈Λx, x〉 − ‖wTx‖2 ≤ 〈Λx, x〉
Since M is a symmetric real matrix, the largest eigenvalue of M is given by λmax = max‖x‖=1〈Mx, x〉.
Thus, I have λmax ≤ max(w∗1, ..., w

∗
n) = ‖w∗‖∞.

What remains is to show that all eigenvalues ofM are non-negative. Assume that 1−w∗i ≥ 0 for all i.

SinceM is a symmetric matrix with real non-negative diagonal entries, all eigenvalues are real. Furthermore,

Gershgorin’s circle theorem (see, e.g., Garren (1968)) implies that for each eigenvalue λ, there exists an

index i such that

λ ∈

bii −∑
j 6=i
|bij | , bii +

∑
i 6=j
|bij |


Since matrixM is diagonally dominant, one gets λ ≥ 0. Therefore, the desire result follows.

For the second result, note that

‖B‖2HS :=
∑
i

∑
j

b2ij

=
(θ − 1)2

4

∑
i

w∗2i
∑
j

(1{i=j} − w∗j )2

=
(θ − 1)2

4

∑
i

w∗2i (1− 2w∗i + ‖w∗‖22)

=
(θ − 1)2

4

(∑
i

w∗2i (1− 2w∗i ) + ‖w∗‖42

)
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Assume that (1− 2w∗i ) > 0 for all i. By the above equation, I obtain

c‖w∗‖22 < ‖B‖2HS < C‖w∗‖22

Proof of Proposition 4.2. Let us consider the square of ε′Bε:

(ε′Bε)2 =
∑

1≤i,j,k,`≤n
Bi,jBk,`εiεjεkε`

The independence of ε1, ..., εn yields that

E(εiεjεkε`) =


m4 if i = j = k = `

m2
2 if i = j 6= k = ` or i = k 6= j = ` or i = ` 6= k = j

0 otherwise
Thus, by taking its expectation, I have

E[(ε′Bε)2] =
∑
i

B2
i,im4 +

∑
1≤i 6=k≤n

Bi,iBk,km
2
2 +

∑
1≤i 6=j≤n

Bi,jBj,im
2
2 +

∑
1≤i 6=k≤n

Bi,kBk,im
2
2

= m4

∑
i

B2
i,i +m2

2

 ∑
1≤i 6=k≤n

Bi,iBk,k + 2
∑

1≤i 6=j≤n
B2
i,j


The summations inside the bracket are written as follows:∑

1≤i 6=k≤n
Bi,iBk,k =

∑
i

Bi,i
∑
k

Bk,k −
∑
i

B2
i,i = tr(B)2 −

∑
i

B2
i,i

∑
1≤i 6=j≤n

B2
i,j =

∑
i

∑
j

B2
i,j −

∑
i

B2
i,i

=
∑
i

∑
j

Bi,jBj,i −
∑
i

B2
i,i

=
∑
i

(B2)i,i −
∑
i

B2
i,i = tr(B2)−

∑
i

B2
i,i

By plugging these equations into the bracket, I obtain

E[(ε′Bε)2] = m4

∑
i

B2
i,i +m2

2

[
tr(B)2 −

∑
i

B2
i,i + 2tr(B2)− 2

∑
i

B2
i,i

]
= (m4 − 3m2

2)
∑
i

B2
i,i +m2

2[tr(B)2 + 2tr(B2)]

Since E(ε′Bε) = m2tr(B), I obtain the variance of Z

σ2
Z = (m4 − 3m2

2)
∑
i

B2
i,i +m2

2[tr(B)2 + 2tr(B2)]−m2
2tr(B)2

= (m4 − 3m2
2)
∑
i

B2
i,i + 2m2

2tr(B2)

Finally, note that tr(B2) = ‖B‖2HS. Indeed, since B is a symmetric matrix,

‖B‖2HS :=
∑
i

∑
j

a2
ij =

∑
i

∑
j

aijaji = tr(B2)
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Thus, the desired result follows.

Suppose that bij := (θ−1)
2 w∗i (1{i=j}−w∗j ). Note that Lemma 4.1 implies that ‖B‖2HS is the same order

as that of ‖w∗‖22. For
∑
B2
i,i, note that∑

B2
i,i =

(θ − 1)2

4

∑
i

w∗2i (1− w∗i )2

Since w∗i ≤ 1,
∑
B2
i,i is the same order as that of ‖w∗‖22. Thus, it follows that σ2

Z is of the order of

‖w∗‖22.

Proposition 4.3 is an immediate consequence of Lemma 4.1 and Proposition 1.1 given by Götze et al.

(2019).25

Theorem 7.5 (Proposition 1.1 in Götze et al. (2019)). Suppose that ε1, ..., εn are iid random variables with

mean 0 and that B is an n × n symmetric matrix. Suppose further that ε1, ..., εn satisfy ‖εi‖ψα ≤ C for

α ∈ (0, 1] ∪ {2} for i = 1, ..., n, where ‖ · ‖ψα is the Orlicz norm defined by ‖εi‖ψα := inf{t > 0 :

E exp(εαi /t
α) ≤ 2}. Then,

P (Z − EZ ≤ −x) ≤ exp

(
−cmin

(
x2

C4‖B‖2HS
,

(
x

C2‖B‖

)α
2

))
for x ≥ 0,

where c is an absolute constant.

Proof of Proposition 4.3. If microeconomic shocks follow a Laplace distribution, the Orlicz norm with

α = 1 exists by definition, that is, there exists a constant C such that ‖εi‖ψ1 ≤ C. Thus, by combining

Lemma 4.1, the desired result follows.

7.2 Estimation of the tail probability of the GDP growth rate

I explain how the left tail probability of the GDP growth rate is estimated in Section 5.1. Before

explaining the estimation method, I provide another visual inspection of the left tail of the distribution of the

GDP growth rate. Let X be the absolute value of the negative GDP growth rate in my sample. I define by

e(u) the mean excess function over the threshold u:

e(u) := E[X − u | X > u] for u > 0.

The dependence of e(u) on u is determined by the underlying distribution of X . For example, if X follows

an exponential distribution with parameter λ, then e(u) = λ−1, that is, e(u) is a constant. In contrast, if

X follows a generalized Pareto distribution, then e(u) becomes a linear function of u with a positive slope.

Intuitively, if e(u) is an increasing function of u, the underlying distribution of X has a fatter tail than an

exponential.

25The result by Götze et al. (2019) is the extension of the so-called Hanson-Wright inequality. For the Hanson-Wright inequality, see
Rudelson and Vershynin (2013).
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Figure 6: Empirical mean excess function for the negative GDP growth rates.

Let ê(u) be its empirical counterpart:

ê(u) :=
1

card∆(u)

∑
t∈∆(u)

(Xt − u) for u > 0,

where ∆(u) is the set of t such that Xt > u and card∆(u) is the cardinality of ∆(u). Figure 6 depicts the

plot of ê(u) over u, showing that ê(u) does not converge to a constant value but increases as u increases. This

graphical inspection suggests that the distribution of the GDP growth rate has a fatter tail than an exponential.

Keeping this observation in mind, I estimate this fatter tail by two methods based on the extreme value

theory. The first method uses the limit theorem, in which nP (X > cnx + dn) with some normalized

constants cn and dn converges to the logarithm of the generalized extreme value (GEV) distribution with

parameter ξ as n→∞.26 Thus, assuming that this approximation holds well, I estimate its parameter. More

precisely, let X1, ..., Xn be the absolute value of the negative GDP growth rate in my sample, and let Xj,n

be the jth largest sample among the n samples. I approximate the tail probability of X by

P̂ (X > x) =
k

n

(
x

Xk+1,n

)−1/ξ̂(H)

The parameter ξ(H) measures the heavy-tailedness of the distribution. I estimate ξ̂(H) based on the k largest

samples (Hill’s estimator):

ξ̂(H) :=
1

k

k∑
j=1

lnXj,n − lnXk+1,n.

The estimate of the tail probability is shown in Figure 3, where k = 10, ξ̂(H) = 0.624, andXk+1 = 0.0106.

The second method uses the limit theorem that the distribution ofX conditional onX > u, where u is

a threshold, converges to the generalized Pareto distribution (GPD). More precisely, I use the property that

26For the deviation of this limit theorem, see, for example, Chapter 6 in Embrechts et al. (1997).
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for y > 0,

P (X > u+ y) = P (X > u)P (X > u+ y | X > u).

The first term on the right-hand side, P (X > u), can be approximated by the empirical distribution function

because the samples in this region are abundant. For the second term P (X > u + y | X > u), I use the

GPD for the approximation. Thus, the estimate of the tail probability over threshold u is given by

P̂ (X > u+ y) =
Nu

n

(
1 + ξ̂

y

β̂

)−1/ξ̂

for y > 0,

where Nu is the number of samples exceeding u. I estimate the parameters ξ, β by the maximum likelihood

method. The estimate of the tail probability is shown in Figure 3, where ξ̂(H) = 0.880, β̂ = 0.00480, and

u = 0.01.
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