
DP
RIETI Discussion Paper Series 20-E-010

Science and Technology Co-evolution in AI: Empirical Understanding 
through a Linked Dataset of Scientific Articles and Patents

MOTOHASHI, Kazuyuki
RIETI

The Research Institute of Economy, Trade and Industry
https://www.rieti.go.jp/en/

https://www.rieti.go.jp/en/index.html


 

 

 

 

RIETI Discussion Paper Series 20-E-010 

February 2020 

 

Science and Technology Co-evolution in AI: Empirical understanding through a linked dataset of 

scientific articles and patents* 

 

By Kazuyuki Motohashi 

(University of Tokyo, NISTEP and RIETI, Japan) 

Abstract 

The linked dataset of AI research articles and patents reveals that a substantial public sector contribution 

is found for AI development. In addition, the role of researchers who are involved both in publication and 

patent activities, particularly in the private sector, increased over time. That is, open science that is 

publicly available through research articles and propriety technology that is protected by patents are 

intertwined in AI development. In addition, the impact of data science, measured by AI research articles 

on innovation, is analyzed by patent citation analysis. It is found that patents invented by AI paper authors 

are more likely to have more forward citations by other applicants (non-self-citation), in wider technology 

fields (greater generality index). This implies that the nature of general purpose technology (GPT) for 

data science is elevated by the fact that patent inventors are also involved with scientific activities and 

published as research authors.  
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1. Introduction 

AI (machine learning) is perceived as a key technology causing fundamental changes of 
innovation landscape by making future prediction cheaper and more certain (Agrawal et al., 
2018). Therefore, private incentives to capture such potential values are substantial, and huge 
attention to this technology is found both in private firms and academic sector. Another 
characteristics of AI is that its potential applications can be found in variety of industry. In other 
words, AI is a killer application of IT as general purpose technology (Helpman, 1998). 
Furthermore, AI can be served as a new method of invention (IMI: Invention as a Method of 
Inventing), as is seen in AI use for new drug discovery (Cockburn et al., 2018).  

It is also found that the co-occurrence of publication and patenting at individual engineer level 
is very popular in this field, suggesting that the co-evolution of science and innovation is 
happening (Motohashi, 2018). For example, the deep learning (deep neural network) is used in 
various industrial application, but an initial implementation of new methodology was made by 
academia. Subsequently, a series of development of deep learning algorithms, suited for various 
kinds of datasets (such as CNN for image data and RNN for text data) are developed by 
computer science scholars. A substantial contribution to AI development by private sector is 
also found. A typical case example is Google Brain’s publication of “alpha go” (Silver et al., 
2017). A team at Deep Mind, currently under the Google AI department (Google Brain), not 
only developed the software to beat the world go (Chinese chess) champion, but also made it in 
a public as a research paper. A shorter distance between science and innovation is found in many 
fields, where a shift from linear model (science -> innovation) to co-evolution of them are found 
in open and digital era (OECD, 2019).  

This paper sheds new light on the nature of AI (machine leaning) focusing on the interactions 
between scientific publication and patenting. The research questions include “why a firm 
publish freely their new findings in the field of AI, as well as patenting some of them as 
propriety technology?” and “can such behavior be explained by using business ecosystem 
concept, in a sense that a key stone player needs to balance providing its managerial resource to 
whole ecosystem players and appropriating the economic rents?”. We use the linked dataset of 
SCOPUS research article database and USPTO patent information at author/inventor level. 
There are around 8 million papers from SCOPUS and 3 million patents from USPTO data. These 

two data are linked by author/inventor names as well as his/her affiliates, and about 5% of all authors 

from SCOPUS and about 13.3% of inventors from USPTO data can be linked (Motohashi, 2018). 

We have constructed the AI patent datasets, centered on the IPC subclass “G06N” (WIPO, 2019; 

JPO, 2019). Then, the empirical analysis is conducted the impact of being a paper author as an 
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inventor of such patent on subsequent innovations, measured by patent citation information.  

The next section described the concept of AI (data science) driven innovation. Here the 
interrelationship between AI and the complementary elements to innovation, i.e., big data and 
IoT is discussed. Then, an analytical part by using the linked dataset of research articles and 
patents is provided. This section is followed by the statistical analysis using patent citation 
information. Finally, this paper concludes with some managerial and policy implications.  

2. AI as a driver of data driven innovation 

Faster and cheaper computer power and internet environment open new opportunities to use 
computer in more intelligent way, such as recognition, inference and future prediction. An 
application of AI includes image or text data recognition technologies, human interfaces 
(visualization of data and interactive agents), knowledge discovering technologies related to the 
diagnosis, monitoring, and datamining of various types of equipment devices. Combining these 
components (enablers of downstream innovation) lead to various industrial applications, called 
smart XXX (XXX includes home appliances, factory, energy, maintenance, and medical 
services).   

One of essential components of AI is data (or called big data), used for machine learning. 
Regardless of whether supervised or unsupervised learning, the 3Vs (Volume, Variety and 
Velocity) of big data are important. In supervised learning, a large volume of the text and image 
data accumulated on the internet can be used as training data. For example, Google provides 
translation services by having their translation system read a large volume of documents written 
in two or more languages (training data) to construct translation models. Conventional machine 
translation systems utilize rule-based models, which is based on grammatical structure of 
sentences and word dictionary. On the other hand, in the models that use machine learning, 
computers produce rules for translation from a large volume of documents (corresponding 
documents between English and Japanese for Japanese-English translation, for example), which 
are provided as inputs. In other words, computers automatically perform language parsing work, 
which is the basis for translation rules in place of the one developed by linguists. In this case, 
since human thinking is replaced by a computer, we can consider this to also be one example of 
AI. 

Another important component of AI is IoT, consisted by sensor and network technologies. A 
tremendous amount of data is generated by various sensors around us. The realization of IoT 

requires various elements—identification, or the labelling of each item using an IP address; sensing, 

or the measurement and “datafication” of the item; communication, which primarily involves data 
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communication; computation, or an analysis of the item’s data—and its implementation as a specific 

service, such as the maintenance and operation of industrial machinery or buildings’ energy 

management systems (Al-Faqaha et al., 2015). It is believed that one trillion things, or 100 times the 

human population, could be connected by the year 2020. As networking expands from people to 

“things,” the data volume will also dramatically increase. As it is unrealistic to exchange all 

information through the Internet, “edge” computing has also attracted attention, as this forms local 

networks and performs distributed processing. This can enable more expanded applications through 

the aggregation of a certain level of information from those local networks and the connection of 

“things” in wider areas through the Internet. Consequently, information of all kinds will become 

connected worldwide through the Internet. 

(Figure 1) 

AI plays an important role to convert such data to various industrial applications or data driven 
innovation (smart XXX), with leaning (knowledge accumulation), inference and prediction 
function. Deep learning, a method of machine learning that uses a multi-layered neural network, 
tremendously improves prediction accuracy. A neural network is a classical mathematical 
method with decades of history. There have conventional ideas of deep learning to make a 
multilayered network layer; however, there was a problem in that it was difficult to estimate 
parameters, which increase through the creation of a multilayered network. In addition, the 
abilities and performance of a computer are insufficient. In recent years, deep learning has been 
re-examined, and AI studies are now hot spots since computer performance has been improved, 
and a large volume of information has been compiled on the internet, which enables big data to 
be utilized when estimating models. In recent years, estimation methods have been developed 
for respective types of data (e.g., image data or text data) and characters, and implemented in 
various fields, including industrial applications such as industrial robots and autonomous 
operation technologies, investment decision-making for financial institutions, financial advisory 
work, and household appliances such as cleaning robots and AI speakers. 

3. Measuring AI driven innovation by patent and research article information 

We have linked patent and research article data at author/inventor level, more specifically, 
finding identical author/inventor in the database of research articles and patents in order to 
measure AI driven innovation presented in the previous section. We focus on some important 
features of AI, such as machine learning, driving large numbers of downstream innovations 
(smart XXX). Specifically, we use the framework developed by WIPO to characterize the nature 
of AI innovation by patent and research article information (WIPO, 2019).  
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The WIPO’s analytical framework is constructed by three layers of AI, methodology (such as 
machine learning), function (such as image recognition) and applications (such as autonomous 
driving). As regards to AI related patents, the key IPC subclass is G06N, representing “computer 
systems based on specific computational models, such as neural network, inference machine and 
fuzzy logic”. This classification is used for “methodology” layer of WIPO framework, and also 
used by IP offices for patent based AI technology review (JPO, 2014; JPO, 2019). WIPO have 
retrieved patents related to the other two layers of its framework (“function” and “application”) 
by using other IPC classes and keywords. However, it is shown that WIPO’s three layer 
framework can be reconstructed by using “G06N” as a basis together with the other IPC 
information given to the same invention (Motohashi, 2019). Therefore, we use this IPC subclass 
as a definition of AT patents in subsequent analysis. 

In terms of research article information, we use SCOPUS database by Elsevier, where ASJC 
(All Science Journal Classification) is given in each journal. Here, ASJC 1702 is labeled as 
“Artificial Intelligence” under a broad category of “computer science”, which is used in this 
paper as AI paper identification. It should be noted that ASJC classification is made at journal 

level, instead of individual paper level, so that AI paper extraction by ASJC code may not capture 

the emerging trend of AI for non-AI related journals. Therefore, the robustness check of AI paper 

trend is conducted by using keyword matching, used in Coburn et al. (2017), and confirmed that the 

trend of these two sources do not give very different results. 

Figure 2 shows the trend of the shares of AI papers (with ASJC 1702 and US based affiliated 
organization) and patents (USPTO patents with G06N subclasses) to the all of discipline. Both 
of them have upward trend until 2010, but stable afterwards. It should be noted USPTO 
discloses the information of only granted patents. Therefore, only data applied until 2011 can be 
used even the datasets are obtained from USPTO data download site, called patentview.org in 
2016. In Figure 2, the trend of AI patent applications, whose truncation bias is relatively small, 
are also presented. The surge of AI patent applications after 2010 is found. It should be also 
noted that the shares of AI papers and patents are very small, like less than 1% of total papers 
and patents, since only core technology of AI is included in both definitions.  

(Figure 2) 

We, then, linked the USPTO patent and SCOPUS research article at individual researcher level, 
to investigate science and technology coevolution of AI. In both datasets, we select the 
researchers working for the organizations located in the United States. There are around 8 
million papers from SCOPUS and 3 million patents from USPTO data. These two data are 
linked by author/inventor names as well as his/her affiliates, and about 5% of all authors from 



5 
 

SCOPUS and about 13.3% of inventors from USPTO data can be linked (Motohashi, 2018). 
This approach is taken from the one of measuring science and innovation co-evolution in Japan 
(Ikeuchi et al., 2016). A similar study is found in constructing the matched data of paper and 
patent pair by their contents (Lissoni et al., 2013). But, we take a broader context of science and 
innovation co-occurrence at engineer level, even the contents of the two sources are difference. 
Traditionally, the degree of scientific basis, or ‘science intensity’ of industry has been measured 
using non-patent literature (research article) citations made by patents (Narin and Noma 1985, 
Schmoch, 1997). Non-patent literature citations show the degree of disembodied scientific 
knowledge that flows into patents, while the patent-publication pair can capture the state of co-
occurrence of scientific and invention activities within the same researchers, i.e., interplay of 
science and technology embodied in human capital. 

Next, we look at the contribution of AI author/inventor contribution to aggregated trend of AI 
papers and patents, and it is found that the shares of AI papers and AI patents of such cross over 
researchers are greater than those of pure authors and pure inventors, respectively (Figure 3). 
The difference of these two groups is particularly large in AI patent shares. That is, more and 
more appropriation of AI technology by patents are observed in AI scientist, who also 
contributed to research article publication activities.  

(Figure 3) 

4. Statistical analysis: S&T co-evolution at researcher level  

Since our focus of statistical analysis is to evaluate S&T co-evolution at individual researcher 
level, we start with AI authors (a researcher who has at least one AI paper as the definition 
above) and extract all patents invented those researchers. Those patents are compared with the 
patents invented by AI inventors (an inventor who has at least one AI patent as the definition 
above) to see the impact of science linkage on their subsequent inventions. Figure 4 shows the 
difference of technology classification (WIPO’s technology classification of 35 categories) of 
them (patents by AI authors and AI inventors). In Figure 4, we take out the category of 
“computer technology” where G06N (AI patents) is included. 1 It is found that the patents 
invented by AI authors have wider applications across technology field, as compared to those by 
AI inventors. The difference between two figures are found particularly in “measurement”, 
“medical technology”, “transport” and “organic fine chemistry”. These findings reflect that the 
AI inventors with scientific activities measured by publication contributes significantly to the 

                                                      
1 The share of computer technology is 53.2% for AI inventors and 41.6% for AI authors. 
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AI’s nature of GPT (general purpose nature) and/or IMI (invention of method of invention).  

(Figure 4) 

Another dimension of S&T co-evolution is related to inventor’s affiliated organization type. 
Since our analysis is based on disambiguated inventor information at USPTO official website 
(http://www.patentview.org/), it is possible for us to identify “cross-over” inventor who moves 
across scientific sector (university or public research institution) and industry (private firm).2 It 
is found that the share of patents of crossover inventor is particularly high in AI patents (Figure 
5). More than 25% of AI patents have at least one crossover inventors, as compare to its average 
value of less than 10%.  

(Figure 5) 

In order to see the impact of science and technology co-evolution in subsequent inventions, a 
regression analysis is conducted to compare the patent invented by AI author to that invented by 
AI inventor (but not involving with research article as an author). We use the patents invented 
after 2000 for the regression analysis, and the number of samples of AI authors patents group is 
51,946, while that of AI inventors are 75,252. The dependent variables are the number of 
forward citations, the number of non-self forward citations and generality index (Trajtenberg et 
al., 1998). The key explanatory variable is a dummy of invented by AI author or not, as well as 
followings, 

 A dummy for a patent invented by the author of AI papers 
 A dummy of NPL citation 
 A dummy for public sector as a patent assignee (1 for academia and 0 for private firm) 
 A dummy with patent invented by at least one crossover inventor between academia and 

private firm 
 Interaction terms of AI paper dummy with NPL, public and crossover 
 A dummy with patent applied after AI paper published (used for AI author patent samples 

only) 

                                                      
2 Machine learning technique is used to identify patents with an identical inventor, based 
on USPTO inventor records with synonym problem (in which the same person’s name 
appears in several distinct forms due to name changing etc.) and homonym problem (in 
which many distinct people share the same name). A survey of inventor disambiguation 
works comparing machine learning methodologies is found in Yin el. al (2019). 

http://www.patentview.org/
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We also control for application year and IPC subclasses of each patent, and the regression 
analysis are conducted for all samples to control for cross time and technology difference of 
citation indicators. OLS regression results are presented in Table 1-1, 1-2 and 1.3 for three types 
of dependent variables.  

(Table 1-1), (Table 1-2), (Table 1-3) 

In both total citation and non-self citation, a dummy of AI publication (invented by AI author) 
has positive and statistically significant coefficients in all models. It should be noted that this 
result is robust even after controlling for NPL dummy (citing to non-patent literature, reflecting 
science linkage of patent content). In terms of the role crossover inventor in subsequent patent 
citations, the mixed results are found. That is, negative and statistically significant coefficient is 
found in the models (Table 1-1 and Table 1-2). However, the coefficient to the interaction term 
with AI publication has positive and greater absolute value, so that the total impact of crossover 
inventor should be positive (2.199-0.599>0 in Table 1-1, for example). Or, this should be 
interpreted by crossover inventor dummy being negatively correlated for the controlling 
samples, while positively correlated for the samples with AI publication authors.  

In addition, we have conducted the regression analysis, only for AI author samples, by including 
a dummy with patent applied after AI paper published (mode (5) in all three tables). It is found 
that a dummy for the invention after AI publication has positive and statistically significant 
coefficients. Therefore, the impact of AI publication for subsequent inventions are confirmed 
even after controlling for the inventor level characteristics (such as research quality and social 
capital by researcher networks). 

In terms of generality index, reflecting technological diversity of citing patents, a dummy of AI 
publication leads to greater values in general (Table 1-3 and Table 2-3). A positive association of 
crossover inventor, as well as its complementary relationship with AI publication is also found. 
However, a different result from those of forward citations is found in the coefficient to a 
dummy for invention after publication. That is, the generality is lower for the patents invented 
after AI publication made. Taken together with the results of forward citation, the patents 
invented after AI publication is more likely to be cited by other patents, but by those with 
narrower technology focus.   

5. Robustness check 

The empirical results presented in the previous literature depends on the comparability of 
controlling samples to the treated group (patents by AI authors). Therefore, we have conducted a 
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robustness check by using different kind of controlling group and redo the regressions. We use 
matching samples created by the same IPC subgroup and application year with the samples in 
treated group, instead of AI inventor patents in the previous section. The sample size of this 
control group is 40,201 (type 2), while it is the same as above for the treated group (51,946). 
The results are presented in Table 2-1, 2-2 and 2-3. 

(Table 2-1), (Table 2-2), (Table 2-3) 

The results do not change from the previous ones. A one difference is that coefficient to cross 
over inventor becomes to be positive and significant, as we as positive coefficient to the 
interaction term with AI author paper dummy. However, this does not change a key story here, 
that is, positive impact of AI publication to subsequent inventions and its complementarity with 
a talent cross over public and private institutions.  

6. Discussion and implications 

In this paper, coevolution of science and technology in AI field is investigated by the linked 
dataset of AI research articles and patents at individual researcher level. It is found that the 
interaction between patent and research article occurs more frequently in AI field, and such 
trend increases over time, particularly in the share of AI author patents. In addition, the share of 
inventor moving across academic and industry sector (cross over inventor) is higher in AI 
patents. This is, open science, publicly available by research articles and propriety technology, 
protected by patents are intertwined in AI development.    

Furthermore, our regression analysis reveal that the patent invented by AI paper author have 
more impacts on subsequent inventions, both in self citation and non-self citation, and the 
generality index of forward citation is greater, as compared to the patents with similar contents. 
The existence of cross over inventors positively moderates such relationship, so that the impact 
of publication on subsequent inventions are reinforced by the inventor who has working 
experience both in academic and industry sectors.  

As regards to the original research question of this paper, “why does a private open up its 
technological findings as research article publication?”, our empirical findings support the view 
of eco-system building, in a sense that a keystone player (or a platformer) in business ecosystem 
is supposed to provide its managerial resources to niche players (or platform users) in order to 
maximize the value of whole ecosystem (Iansiti and Levien, 2004). Opening up of technology 
as a form of publication as well as making related technologies be proprietary one by patent, 
leads to higher subsequent inventions such technologies. Subsequently, a firm with publication 
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activities are able to create greater numbers of followers of the firm’s technology stream, 

Another potential answer to the question of why a firm publishes is based on the requirement of 
accessing talents in academic sector. Due to explosion of demand for AI and data analytics 
works, labor market for data scientists becomes extremely tight. Therefore, it is important for a 
firm to offer attractive working environment for them. One of incentives for them to work for a 
private firm is higher salary and access to its internal propriety big data. However, financial 
incentive may not be enough to attract a top notch data scientist, so that some of firms give 
some opportunity for its employee to work on her own project, and academic activities such as 
participating in academic conferences and publications. In our works, it is found that cross over 
talents between academia and industry plays complementary role in positive relationship 
between publication and subsequent inventions. This finding is consistent with the view of 
human resource reason of private firm’s publication, in sense that a firm supposed to offer some 
room for academic activities to those academic researchers who are capable to conduct high 
impact research and engineering activities at the firm. 

Managerial implications from our empirical study is directly related to foregoing discussion. 
First, it is important to understand the nature of AI driven innovation, active science and 
technology co-evolution, in order to tap on huge economic opportunities by using such new 
technologies. Therefore, a good balance between open and close strategy as regards to the 
outputs of technological activities are important. Second, understanding the incentives of 
academic researchers are important. In AI field, university and industry collaboration activities 
should involve substantial interactions of human resources across industry and academia. 
Therefore, a firm should not enforce too tight regulation over joint activities with academic, but 
it may be more effective if a firm allows researchers involved in such joint activities to publish 
their research findings.  
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Table 1-1: Regression results (Forward Citation, vs AI Patents) 

 

**: Statistically significant at 1% level, * Statistically significant at 5% level 

 

  

(1) (2) (3) (4) (5)
Sample ALL ALL ALL ALL With autor
With paper author dummy 0.848 0.816 0.861 0.349            

[0.084]** [0.140]** [0.084]** [0.148]*            
NPL dummy 1.826 1.821 1.831 1.762 1.974

[0.087]** [0.108]** [0.087]** [0.108]** [0.153]** 
Public dummy 0.949 -0.458 0.872 -0.073 0.355

[0.314]** [0.670] [0.320]** [0.673] [0.402]  
With Author *NPL 0.016 0.085            

[0.172] [0.172]            
With Author*Public 1.794 0.295            

[0.755]* [0.768]            
With Crossover Inventor 0.129 -0.599 1.866

[0.100] [0.121]** [0.246]** 
With Author*Crossover 2.199            

[0.205]**            
After publication 0.421

[0.155]** 
After pub*Crossover -0.404

[0.344]  
Constant -0.769 -0.753 -0.812 -0.522 -1.406

[0.776] [0.777] [0.776] [0.777] [1.317]  
Application year dummy Yes Yes Yes Yes Yes
IPC subclass dummy Yes Yes Yes Yes Yes
R2 0.13 0.13 0.13 0.13 0.16
# of observations 127,198 127,198 127,198 127,198 51,946
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Table 1-2: Regression results (Non-self Forward Citation, vs AI patents) 

 

**: Statistically significant at 1% level, * Statistically significant at 5% level 

 

  

(1) (2) (3) (4) (5)
Sample ALL ALL ALL ALL With autor
With paper author dummy 0.998 0.835 1.023 0.474            

[0.076]** [0.127]** [0.077]** [0.135]**            
NPL dummy 1.396 1.314 1.405 1.277 1.655

[0.079]** [0.098]** [0.079]** [0.098]** [0.144]** 
Public dummy 1.389 0.234 1.240 0.482 0.804

[0.285]** [0.608] [0.290]** [0.611] [0.378]*  
With Author *NPL 0.224 0.265            

[0.156] [0.156]            
With Author*Public 1.465 0.218            

[0.686]* [0.697]            
With Crossover Inventor 0.249 -0.358 1.698

[0.090]** [0.109]** [0.232]** 
With Author*Crossover 1.810            

[0.186]**            
After publication 0.357

[0.146]*  
After pub*Crossover -0.417

[0.323]  
Constant -0.715 -0.661 -0.798 -0.519 -1.334

[0.704] [0.705] [0.705] [0.706] [1.240]  
Application year dummy Yes Yes Yes Yes Yes
IPC subclass dummy Yes Yes Yes Yes Yes
R2 0.13 0.13 0.13 0.13 0.15
# of observations 127,198 127,198 127,198 127,198 51,946
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Table 1-3: Regression results (Generality Index, vs AI Patents) 

 

**: Statistically significant at 1% level, * Statistically significant at 5% level 

 

(1) (2) (3) (4) (5)
Sample ALL ALL ALL ALL With autor
With paper author dummy 0.024 0.032 0.023 0.016

[0.002]** [0.003]** [0.002]** [0.003]**
NPL dummy 0.027 0.032 0.027 0.030 0.024

[0.002]** [0.002]** [0.002]** [0.002]** [0.003]**
Public dummy 0.052 -0.007 0.057 0.014 0.036

[0.007]** [0.016] [0.007]** [0.016] [0.008]**
With Author *NPL -0.013 -0.010

[0.004]** [0.004]**
With Author*Public 0.072 0.025

[0.018]** [0.018]
With Crossover Inventor -0.008 -0.033 0.046

[0.002]** [0.003]** [0.005]**
With Author*Crossover 0.068

[0.004]**
After publication 0.004

[0.003]
After pub*Crossover -0.030

[0.007]**
Constant 0.099 0.096 0.101 0.109 0.109

[0.022]** [0.022]** [0.022]** [0.022]** [0.034]**
Application year dummy Yes Yes Yes Yes Yes
IPC subclass dummy Yes Yes Yes Yes Yes
R2 0.13 0.13 0.13 0.13 0.17
# of observations 84,313 84,313 84,313 84,313 36,872
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Table 2-1: Regression results (Forward Citation, vs Same IPC Patents) 

 

**: Statistically significant at 1% level, * Statistically significant at 5% level 

 

  

(1) (2) (3) (4) (5)
Sample ALL ALL ALL ALL ALL
With paper author dummy 1.454 1.305 1.309 1.066 1.311

[0.099]** [0.161]** [0.100]** [0.165]** [0.100]** 
NPL dummy 1.897 1.783 1.873 1.762 1.868

[0.107]** [0.150]** [0.107]** [0.150]** [0.107]** 
Public dummy 1.414 0.807 0.501 0.471 0.499

[0.332]** [0.725] [0.345] [0.743] [0.345]  
With Author *NPL 0.222 0.228            

[0.205] [0.205]            
With Author*Public 0.759 -0.045            

[0.810] [0.836]            
With Crossover Inventor 1.455 0.729 1.661

[0.153]** [0.292]* [0.201]** 
With Author*Crossover 0.991            

[0.340]**            
After publication 0.285

[0.111]*  
After pub*Crossover -0.470

[0.284]  
Constant -1.663 -1.597 -1.737 -1.623 -1.919

[1.052] [1.054] [1.052] [1.053] [1.054]  
Application year dummy Yes Yes Yes Yes Yes
IPC subclass dummy Yes Yes Yes Yes Yes
R2 0.13 0.13 0.13 0.13 0.13
# of observations 92,147 92,147 92,147 92,147 92,147
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Table 2-2: Regression results (Non-self Forward Citation, vs Same IPC patents) 

 

**: Statistically significant at 1% level, * Statistically significant at 5% level 

 

  

(1) (2) (3) (4) (5)
Sample ALL ALL ALL ALL ALL
With paper author dummy 1.461 1.262 1.330 1.047 1.332

[0.088]** [0.144]** [0.089]** [0.146]** [0.089]** 
NPL dummy 1.468 1.310 1.447 1.291 1.441

[0.095]** [0.134]** [0.095]** [0.134]** [0.095]** 
Public dummy 1.812 1.409 0.988 1.101 0.986

[0.295]** [0.644]* [0.307]** [0.661] [0.307]** 
With Author *NPL 0.308 0.314            

[0.182] [0.182]            
With Author*Public 0.501 -0.219            

[0.720] [0.744]            
With Crossover Inventor 1.313 0.668 1.547

[0.136]** [0.259]* [0.179]** 
With Author*Crossover 0.883            

[0.302]**            
After publication 0.283

[0.099]** 
After pub*Crossover -0.530

[0.253]*  
Constant -1.543 -1.456 -1.610 -1.480 -1.787

[0.936] [0.937] [0.935] [0.937] [0.938]  
Application year dummy Yes Yes Yes Yes Yes
IPC subclass dummy Yes Yes Yes Yes Yes
R2 0.13 0.13 0.14 0.14 0.14
# of observations 92,147 92,147 92,147 92,147 92,147
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Table 2-3: Regression results (Generality Index, vs Same IPC Patents) 

 

**: Statistically significant at 1% level, * Statistically significant at 5% level 

 

  

(1) (2) (3) (4) (5)
Sample ALL ALL ALL ALL ALL
With paper author dummy 0.022 0.019 0.019 0.013 0.019

[0.002]** [0.003]** [0.002]** [0.003]** [0.002]**
NPL dummy 0.018 0.016 0.018 0.016 0.018

[0.002]** [0.003]** [0.002]** [0.003]** [0.002]**
Public dummy 0.054 0.002 0.036 0.000 0.035

[0.007]** [0.016] [0.007]** [0.016] [0.007]**
With Author *NPL 0.004 0.004

[0.004] [0.004]
With Author*Public 0.062 0.040

[0.018]** [0.018]*
With Crossover Inventor 0.029 0.006 0.039

[0.003]** [0.006] [0.004]**
With Author*Crossover 0.030

[0.007]**
After publication 0.004

[0.002]
After pub*Crossover -0.024

[0.006]**
Constant 0.110 0.111 0.110 0.113 0.108

[0.029]** [0.029]** [0.029]** [0.029]** [0.029]**
Application year dummy Yes Yes Yes Yes Yes
IPC subclass dummy Yes Yes Yes Yes Yes
R2 0.13 0.13 0.13 0.13 0.13
# of observations 62,704 62,704 62,704 62,704 62,704
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Figure 1: AI and data driven innovation 

 

Figure 2: Share of AI papers and patents 
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Figure 3: Share of private sector authors 

 

Figure 4: AI author and inventor patents by technology (except for computer technology) 
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Figure 5: The share of patents with crossover inventor 
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