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Figure 1: Scatter plot (left) and RD mean plot around the first threshold (right) of bank capital

against town population

1 Introduction

Are banks less likely to fail when they hold more capital? To provide a credible es-

timate of the causal effect of capital holdings on bank failure, one needs some quasi-

experimental variation in bank capital. As seen in Figure 1 (left), one potential source

of variation is the relationship between minimum capital requirements and town size

in the early 20th century of the United States – as town size crosses certain thresholds,

minimum capital requirements (marked by the solid line) jump up and the bottom of

the capital distribution shifts up correspondingly. Given this relationship, one may be

tempted to apply the standard RD design to estimate the impacts of capital holdings,

with town size as the running variable, capital holdings as the treatment variable, and

bank failure as the outcome.

There are two issues with this approach. First, the standard RD design assumes

a binary treatment, while the treatment variable here, capital holdings, is continuous.

Hahn, Todd, and van der Klaauw (2001) show that under proper conditions, the RD

local Wald ratio with a binary treatment identifies an average treatment effect for com-

pliers at the RD threshold. Even when the same RD local Wald ratio is valid for

a continuous treatment, the interpretation would be more complicated.1 We discuss

1Unlike the standard RD design, which can be classified into sharp and fuzzy designs, there is

generally no such distinction with a continuous treatment. The RD local Wald ratio would not reduce

to a single difference even when everyone complies with the policy rule and changes treatment when

crossing the RD threshold.
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this point in greater detail later. Second and more importantly, the discontinuous re-

lationship between minimum capital holdings and town size generates only a weak

“first-stage" discontinuity in the relationship between mean capital holdings and town

size. Figure 1 (right) plots the mean capital against town size along with the 95%

confidence intervals. No significant changes are found in the mean capital at the first

policy threshold, where most of the banks are present. Applying the standard RD

design would be difficult.

Our empirical example is not alone. Many empirical applications of RD designs

involve continuous treatments (see, for recent examples, Oreopoulos, 2006, Card,

Chetty, and Weber, 2007, Schmieder, von Wachter, and Bender, 2012, Pop-Eleches

and Urquiola, 2013, and Clark and Royer, 2013, Isen, Rossin-Slater, and Walker, 2017,

and Corbi, Papaioannou, and Surico, 2018, Agarwal, Chomsisengphet, Mahoney, and

Stroebel, 2018, Dell and Querubin, 2018). Empirical researchers typically apply the

standard RD estimand for a binary treatment to applications with continuous treat-

ments. Causal identification relies solely on the mean shift of the treatment.

In practice, public policies or welfare programs do not necessarily target the av-

erage units. Instead they may target some parts (e.g., top or bottom) or features of

the treatment distribution. Examples include minimum school leaving age, minimum

wage, maximum welfare benefits, government transfers that are capped at certain lev-

els, or pollution ceiling set by the environmental protection agency. When policies shift

these minimum or maximum requirements, focusing on the mean treatment change

may miss the true sources of identification.

The obvious question is then how one might proceed when confronting RD designs

with a continuous treatment. In this paper we answer that question. We establish

causal identification and robust inference for the class of RD designs with a continous

treatment. We show that identification can be achieved by utilizing any changes in

the distribution of the treatment variable at the RD threshold. These include not only

the usual mean change, but also changes at other quantiles (e.g., lower quantiles, as

in the case of bank capital regulation). By focusing on where the true changes are in

the treatment distribution, we provide what are likely to be the most policy relevant

treatment effects.

We first identify quantile specific local average treatment effects (Q-LATEs). These

Q-LATEs provide information on treatment effect heterogeneity at different treatment
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levels. We further identify a local weighted average treatment effect averaging over the

treatment distribution (WQ-LATE). Importantly, the WQ-LATE estimand incorporates

the standard RD local Wald ratio as a special case. It works (and is the same) when the

standard RD estimand works, and can still work when the standard RD estimand does

not. In addition, we provide bias-corrected robust inference for Q-LATE and WQ-

LATE, as well as their asymptotic mean squared error (AMSE) optimal bandwidths.

In the final part of the paper we quantify the impacts of capital holdings on bank

failure, particularly among those banks targeted by the capital regulation. We show

that while capital requirements induce small banks to hold more capital, these banks

adjust their assets to lead to only a "scale-up" effect. On average a 1% increase in

capital leads to almost a 1% increase in assets among those banks at lower quantiles

of the capital distribution. Their leverages are not significantly lowered and their long

run (up to 24 years) rates of suspension stay unchanged.

Our paper complements the existing studies of the classical RD design with a bi-

nary treatment.2 Our paper further complements several important strands of literature

on causal model identificaiton, which typically focus on binary treatments. This in-

cludes the LATE literature (see, e.g., Imbens and Angirst, 1994, Angrist, Imbens, and

Rubin 1996), the local quantile treatment effect (LQTE) literature (see, e.g., Abadie,

Angrist, and Imbens, 2002, Abadie, 2003, Frölich and Melly 2013), and the mar-

ginal treatment effect (MTE) literature (see, e.g., Heckman and Vytlacil 2005, 2007,

Carneiro, Heckman and Vytlacil, 2010). Important work discussing causal identifi-

cation with a continuous treatment includes Angrist, Graddy, and Imbens (2000) and

Florens et al. (2008) among others.

More broadly, our paper is related to the non-separable IV literature with continu-

ous endogenous covariates, where identification typically requires a scalar unobserv-

able (rank invariance) in either the first-stage or the outcome equation or both (see, e.g.,

Chesher, 2003, Horowitz and Lee, 2007, Chernozhukov, Imbens, and Newey, 2007,

Florens et al., 2008, Imbens and Newey, 2009, D’haultfoeuille and Février, 2015, and

2For theoretical discussion of the standard RD design, see, e.g., Hahn, Todd, and van der Klaauw

(2001), Porter (2003), Lee (2009), Imbens and Kalyanaraman (2012), Frandsen, Frölich, and Melly

(2012), Calonico, Cattaneo, and Titiunik (2014), Cattaneo, Frandsen, and Titiunik (2015), Otsu, Xu,

and Matsushita (2015), Dong and Lewbel (2015), Angrist and Rokkanen (2015), Feir, Lemieux, and

Marmer (2016), Bertanha (2016), Dong (2019), Arai et al. (2017), Chiang, Hsu, and Sasaki (2018),

Bugni and Canay (2018), Canay and Kamat (2018), Cattaneo, Jansson, and Ma (2018), and Gerard,

Rokkanen, and Rothe (2018).
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Torgovitsky, 2015). In contrast, we allow for multidimensional unobservables in both

the first-stage and outcome equations and exemplify identification with a binary ‘IV’.3

Our paper is also related to the IV literature using first-stage heterogeneity for iden-

tification. See, for recent examples, Brinch et al., (2017) and Caetano and Escanciano

(2017). These existing studies consider treatment response heterogeneity in covari-

ates. In contrast, we consider treatment response heterogeneity at different points of

the treatment distribution. In addition, the RD QTE model of Frandsen, Frölich, and

Melly (2012) considers a binary treatment in the RD design, but identifies heteroge-

nous treatment effects along the outcome distribution.

The rest of the paper proceeds as follows. Section 2 defines the causal parameters

of interest, and provides our main identification results. Section 3 provides a robust

estimand that incorporates the standard RD estimand as a special case. Section 4

proposes convenient tests for our identifying assumptions and discusses including co-

variates. Section 5 describes estimation. Section 6 provides bias-corrected robust

inference and the AMES optimal bandwidths. Section 7 presents the empirical analy-

sis. Short concluding remarks are provided in Section 8. All proofs, inference based

on undersmoothing, estimation details of the biases, variances, and AMSE optimal

bandwidths, as well as additional empirical analyses are gathered in the Appendix.

2 Identification

We discuss causal identification in RD designs with a continuous treatment, follow-

ing the control variable approach by Imbens and Newey (2009). Various discussions

on the control variable approach to simultaneous equations models include Blundell

and Powell (2003), Newey, Powell, and Vella (1999) and Pinkse (2000), and Ma and

Koenker (2006).

Let Y ∈ Y ⊂ R be the outcome of interest, which can be continuous or discrete,

and T ∈ T ⊂ R be the treatment. Let R ∈ R ⊂ R be the continuous running variable

that partly determines the treatment. Consider an outcome equation Y = G (T, R, ε),

3Torgovitsky (2015) discusses the identifying power of imposing restrictions on heterogeneity or the

dimensions of unobservables. He shows that by imposing rank invariance in both the first-stage and

outcome equations, one can identify an infinite-dimensional object even with a discrete or binary IV.

See also similar discussion in D’haultfoeuille and Février (2015).
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where ε ∈ E ⊂ Rdε is allowed to be of arbitrary dimension.4

Assume that at a known threshold value of the running variable, r0, treatment

changes discontinuously. Define Z ≡ 1 (R ≥ r0), where 1(·) is an indicator function

equal to 1 if the expression in the parentheses is true and 0 otherwise. The continu-

ous treatment variable can be written as T = T1 Z + T0 (1− Z), where Tz , z = 0, 1,

is the potential treatment when Z is set at a hypothetical value z. Assume Tz has a

reduced-form equation Tz = qz(R,Uz) with an unobserved disturbance Uz .

Let F·|· (·, ·) and f·|· (·, ·) be the conditional cumulative distribution function (CDF)

and probability density function (PDF), respectively, and f· (·) be the unconditional

PDF. The following discussion focuses on R ∈ R, where R is an arbitrarily small

compact interval around r0.

Assumption 1 (Quantile representation). For z = 0, 1 and any r ∈ R, the condi-

tional distribution of Tz given R = r is continuous with a strictly increasing CDF

FTz |R(Tz, r), and qz (r, u) is strictly monotonic in u.

Assumption 1 imposes monotonicity on unobserved heterogeneity in the first-stage.

Given Assumption 1, one can conveniently take qz(r, u) as the conditional u quantile

of Tz given R = r . Uz = FTz |R(Tz, R) ∼ Uni f (0, 1) is then the conditional rank of

Tz given R.5

Assumption 2 (Smoothness). qz (·, u), z = 0, 1, is a continuous function for all u ∈

(0, 1). G (·, ·, ·) is a continuous function. fε|Uz,R (e, u, r) for all e ∈ E and u ∈ (0, 1)

is continuous in r ∈ R. fR (r) is continuous and strictly positive at r = r0.

Assumption 3 (Local rank invariance or local rank similarity). 1. U0 = U1 conditional

on R = r0, or more generally 2. U0| (ε, R = r0) ∼ U1| (ε, R = r0).

Assumption 2 assumes that the running variable has only smooth effects on poten-

tial treatments and that the running variable, treatment, and unobservables all impose

smooth impacts on the outcome. It further assumes that at a given rank of the potential

4For clarity, we assume that any observable covariates are subsumed in ε. All the discussion can be

extended to explicitly condition on covariates.
5Suppose more generally Tz = Hz(R, Vz), z = 0, 1, where Vz is a continuous random variable

that is not necessarily uniformly distributed and Hz (R, v) is strictly monotonic in v. One can simply

normalize Tz = Hz(R, Vz) to be its quantile representation by a strictly monotonic transformation of

Vz , i.e., set Uz = FVz |R(Vz, R).
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treatment, the distribution of the unobservables in the outcome model is smooth near

the RD threshold. The last condition, the running variable is continuous with a positive

density at the RD threshold, is a standard assumption that is essentially required for

any RD designs. Assumption 2 in practice requires the ‘no manipulation’ condition

that units cannot sort to be just above or below the RD threshold (McCrary, 2008).

Assumption 3 imposes local rank restrictions. That is, rank invariance or rank sim-

ilarity is required to hold only at the RD cutoff. Assumption 3.1 requires units to stay

at the same rank of the potential treatment distribution right above or below the RD

threshold.

Assumption 3.2 assumes local rank similarity, a weaker condition than Assump-

tion 3.1. Without conditioning on ε, U0 and U1 given R = r0 both follow a uniform

distribution over the unit interval, i.e., U0| (R = r0) ∼ U1| (R = r0) by construction.

Local rank similarity here permits random ‘slippages’ from the common rank level

in the treatment distribution just above or just below the RD cutoff. Rank similarity

has been proposed to identify quantile treatment effects (QTEs) in IV models (Cher-

nozhukov and Hansen, 2005, 2006). Unlike Chernozhukov and Hansen (2005, 2006),

we impose the similarity assumption on the ranks of potential treatments, instead of

ranks of potential outcomes. In our empirical analysis, Assumption 3 requires that if a

bank tends to hold more capital when operating in a town with a population just below

3,000, then it would also tend to hold more capital when operating in a town with a

population at or right above 3,000.

These local rank restrictions (along with Assumptions 1 and 2) have readily testable

implications. See Dong and Shen (2018) and Frandsen and Lefgren (2018) for discus-

sion on the testable implications of rank invariance or rank similarity in treatment

models. In Section 4 we discuss a convenient test for these assumptions in our setting.

The following lemma shows that conditioning on U ≡ U1 Z + U0(1 − Z), any

changes in the outcome at the RD threshold are causally related to changes in the

treatment.

Lemma 1. Let Assumptions 1-3 hold.

1. T ⊥ ε| (U, R).
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2. For any integrable function of Y , 0 (Y ), and any u ∈ (0, 1),

lim
r→r

+
0

E [0 (Y ) |U = u, R = r ]− lim
r→r

−
0

E [0 (Y ) |U = u, R = r ]

=

∫
(0 (G (q1(r0, u), r0, e))− 0 (G (q0(r0, u), r0, e))) d Fε|U,R (e, u, r0) .

Lemma 1.1 states that U is a control variable conditional on R. The defining feature

of any ‘control variable’ is that conditional on this variable, treatment is exogenous to

the outcome of interest. Note that here the ‘IV’ Z ≡ 1 (R ≥ r0) is binary and is a

deterministic function of a possibly endogenous covariate R. When U = u and R =

r ∈ R\r0, T is deterministic, i.e., T = q1(r, u) for r > r0, and T = q0(r, u) for r < r0;

whereas when U = u and R → r0, T can randomly take on two potential values

q0(r, u) and q1(r, u). Therefore, causal identification with this control variable U is

still local to the RD cutoff, which is a generic feature of the RD design. Lemma 1.1

can follow analogously from Theorem 1 of Imbens and Newey (2009).6

Lemma 1.2 states that conditional on U = u, the mean difference in 0 (Y ) above

and below the cutoff represents the impacts of an exogenous change in treatment from

q0(r0, u) to q1(r0, u). Lemma 1.2 gives the average effect of the ‘IV’ Z on the outcome

0 (Y ) for individuals at the u quantile of the treatment distribution.

Based on Lemma 1, we define our parameters of interest and discuss identification.

Let U ≡ {u ∈ (0, 1): |q1(r0, u)− q0(r0, u)| > 0}. For any u ∈ U , define the treatment

quantile specific LATE (Q-LATE) as

τ (u) ≡ E
[

G (T1, r0, e)− G (T0, r0, e)

T1 − T0

|U = u, R = r0

]
=

∫
G (q1(r0, u), r0, e)− G (q0(r0, u), r0, e)

q1(r0, u)− q0(r0, u)
d Fε|U,R (e, u, r0)

=
E [Y |U1 = u, R = r0]− E [Y |U0 = u, R = r0]

q1(r0, u)− q0(r0, u)
, (1)

where
G(T1,r0,e)−G(T0,r0,e)

T1−T0
is the (standardized) individual causal effect, so Q-LATE

captures an average causal effect for individuals at the u quantile of the treatment at

6Note, however, that Imbens and Newey (2009) focus on a continuous IV, which when equipped

with a large support assumption that essentially requires the IV varies a lot after possibly conditioning

on exogenous covariates, yields more general identification results.
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the RD threshold. Q-LATE τ (u) can be further written as the ratio of the reduced-form

effect of Z on Y to that of Z on T at the u quantile of the treatment T .7

Further define the weighted average of Q-LATEs, or WQ-LATE, as

π (w) ≡

∫
U
τ (u) w (u) du,

where w (u) ≥ 0 and
∫
U w (u) du = 1. That is, w (u) is a properly defined weighting

function.

When the function G (T, r, ε) is continuously differentiable in its first argument,

both parameters can be expressed as weighted average derivatives of the outcome

G (T, r, ε) with respect to T . In particular, following Lemma 5 of Angrist, Graddy,

and Imbens (2000), one can write

τ (u) =

∫ q1(r0,u)

q0(r0,u)
E
[
∂

∂t
G (t, r0, ε)

∣∣∣∣U = u, R = r0

]
~ (u) dt,

for ~ (u) ≡
(
q1(r0, u) − q0(r0, u)

)−1
under standard regularity conditions and in-

terchange of the order of integration and differentiation. That is, Q-LATE τ (u) is a

weighted average derivative, averaging over the change in T at a given quantile u at

r0. It follows that WQ-LATE π (w) is also a weighted average derivative, averaging

over both changes in T at a given quantile u and over U at the RD threshold.

To identify Q-LATE and WQ-LATE, we impose the following first-stage assump-

tion.

Assumption 4 (First-stage). q1(r0, u) 6= q0(r0, u) for at least some u ∈ (0, 1).

Assumption 4 requires that the distribution functions FT1|R (t, r0) and FT0|R (t, r0)

are not the same. This is in contrast to the standard RD first-stage assumption requiring

a mean change, i.e., E [T1|R = r0] 6= E [T0|R = r0]. The weak IV literature considers

the case when E [T |Z = 1] − E [T |Z = 0] is close to zero. There, inference on the

Wald ratio estimator is known to be difficult. We instead seek to provide alternative

ways to identify and estimate causal treatment effects. Intuitively, if treatment changes

7Consider the special case where Y is given by a linear correlated random coefficients model of the

form Yi = ai + bi Ti . Q-LATE τ (u) = E [bi |U = u, R = r0], which captures the average partial effect

for units ranked at the u quantile of the treatment distribution at the RD threshold.
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concentrate in a few quantiles, instead of looking at the average change, focusing on

where the true changes are in the treatment distribution may strengthen identification.8

For notational convenience, let T = q(R,U ) ≡ q0(R,U0) (1− Z)+ q1(R,U1)Z .

Given smoothness of qz(r,Uz) by Assumption 2, q(r,U ) is right and left continuous

in r at r = r0 for all u ∈ (0, 1). Then define q+(u) ≡ limr→r
+
0

q(r, u) and q−(u) ≡

limr→r
−
0

q(r, u). Let m(t, r) ≡ E [Y |T = t, R = r ], and similarly define m+(u) ≡

limr→r
+
0

m(q+(u), r) and m−(u) ≡ limr→r
−
0

m(q−(u), r). q±(u) and m±(u) can be

consistently estimated from the data. The following theorem provides identification of

Q-LATE and WQ-LATE.

Theorem 1 (Identification). Under Assumptions 1–4, for any u ∈ U , Q-LATE τ (u) is

identified and is given by

τ (u) =
m+(u)− m−(u)

q+(u)− q−(u)
. (2)

Further, WQ-LATE π (w) ≡
∫
U τ (u) w (u) du is identified for any known or estimable

weighting function w (u) such that w (u) ≥ 0 and
∫
U w (u) du = 1.

To aggregate Q-LATE, one simple weighting function is equal weighting, i.e.,

w (u) = wS (u) ≡ 1/
∫
U 1du. One may choose other properly defined weighting

functions. w (u) is required to be non-negative; otherwise, π (w) can be a weighted

difference of the average treatment effects among those who change treatment levels

at the RD threshold. The next section shows that the standard RD estimand can be

expressed as a WQ-LATE, using a particular weighting function. In the special case

when treatment effect is locally constant, the weighting function does not matter. With

any valid weighting function, one can identify the same homogenous treatment effect.

Replacing Y by any integrable function 0 (Y ) in the above, one can readily identify

Q-LATE and WQ-LATE on 0 (Y ).

In addition to Q-LATE and WQ-LATE, one may identify other parameters. Condi-

tional on U = u, there are two potential treatment values at r = r0, in particular, t0 ≡

q0 (r0, u) and t1 ≡ q1 (r0, u). One can then identify potential outcome distributions at

each u ∈ (0, 1) at the two treatment values. Assume that Y is continuous. Let the po-

8When changes at some treatment quantiles are small, one can modify our trimming threshold for U

to be above some constant some constant c > 0 instead of 0.
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tential outcome corresponding to the treatment value t ∈ T be Yt ≡ G (t, R, ε). Under

Assumptions 1-3, FYt1
|U,R (y, u, r0) = limr→r

+
0
E
[
1 (Y ≤ y) |T = q+(u), R = r

]
for

any u ∈ (0, 1). FYt0
|U,R (y, u, r0) can be analogously identified. Further one can iden-

tify the LQTE at each u ∈ U when treatment changes from q0 (r0, u) to q1 (r0, u). It is

given by QYt1
|U,R (v, u, r0) − QYt0

|U,R (v, u, r0) for any v ∈ (0, 1) and u ∈ U , where

QYtz |U,R (v, u, r0) ≡ F−1
Ytz |U,R

(v, u, r0).

3 Robust estimand

In this section, we discuss the standard RD estimand and show that it can be expressed

as a WQ-LATE, using a particular weighting function. We then seek to provide a

robust estimand that incorporates the standard RD estimand as a special case. That is,

it works and is equivalent to the standard RD estimand when the standard RD estimand

works and continues to work under our assumptions when the standard RD estimand

does not work.

3.1 Standard RD estimand

Consider the standard RD estimand in the form of the local Wald ratio, and rewrite it

as follows

π RD ≡
limr→r

+
0
E [Y |R = r ]− limr→r

−
0
E [Y |R = r ]

limr→r
+
0
E [T |R = r ]− limr→r

−
0
E [T |R = r ]

=

∫ 1

0
{E [Y |U1 = u, R = r0]− E [Y |U0 = u, R = r0]} du∫ 1

0
(q1(r0, u)− q0(r0, u)) du

(3)

=

∫
U
τ (u)

1q (u)∫
U 1q (u) du

du, (4)

where 1q (u) ≡ q1(r0, u) − q0(r0, u), (3) follows from the smoothness conditions in

Assumption 2, and (4) follows from Assumption 3 and the definition of Q-LATE τ (u).

Equation (4) shows that under our assumptions, the standard RD estimand identifies a

weighted average of Q-LATEs, using as weights wRD (u) ≡ 1q (u) /
∫
U 1q (u) du.

The above requires1q (u) ≥ 0 or1q (u) ≤ 0 for all u ∈ U to ensurewRD (u) ≥ 0

over U . Otherwise, when 1q (u) can switch signs over U , the local Wald ratio π RD
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would be undefined if the denominator
∫
U 1q (u) du = 0. Further if

∫
U 1q (u) du 6=

0, π RD would be a weighted difference of average treatment effects for units with

positive treatment changes and units with negative treatment changes. The following

assumption is sufficient for wRD (u) ≥ 0.

Assumption 3b (Monotonicity). Pr(T1 ≥ T0|R = r0) = 1 or Pr(T1 ≤ T0|R = r0) =

1.

Assumption 3b requires that treatment T is weakly increasing or weakly decreasing

almost surely in Z . Under Assumption 3b, 1q (u) ≥ 0 or 1q (u) ≤ 0 for all u ∈

(0, 1).

Unlike Assumption 3, which imposes rank restrictions, Assumption 3b imposes a

sign restriction on the treatment changes at the RD threshold. Angrist, Graddy, and

Imbens (2000, Assumption 4) have made a similar assumption in identifying a general

simultaneous equations system with binary IVs.

When Assumption 3 local rank invariance or rank similarity does not hold, Q-

LATE involved in equation (4) does not have a causal interpretation. However, the

RD estimand may still identify a causal parameter under Assumption 3b monotonic-

ity. This is parallel to the standard RD designs with a binary treatment, where the

local Wald ratio identifies a LATE for compliers. We formally state this result in the

following Lemma 2.

Lemma 2. Let Assumptions 1, 2, 3b, and 4 hold. Then π RD identifies a local weighted

average effect of T on Y at R = r0.

The proof of Lemma 2 shows that Assumptions 1, 2, 3b, and 4, the standard RD

estimand with a continuous treatment identifies a weighted average of individual treat-

ment effects among those individuals who change their treatment intensity at the RD

threshold.9 When further G(T, R, ε) is continuously differentiable in its first argu-

ment, the identified effect can be expressed as a weighted average derivative of Y

w.r.t. T . The exact form of the weighted average derivative is provided in the proof of

Lemma 2 in the Appendix.

9Card, Lee, Pei, & Weber (2015, Section A.2) shows a simpler expression when the treatment T is

a deterministic function of the running variable.
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3.2 Robust WQ-LATE estimand

The discussion so far suggests that the standard RD estimand in general requires

monotonicity in order to be a causal estimand. Monotonicity does not always hold

in practice. Both monotonicity and local rank assumptions impose restrictions on the

first-stage heterogeneity, but neither assumption implies the other. Monotonicity im-

poses a sign restriction on T1 − T0 at R = r0, while the local rank invariance or rank

similarity imposes a rank restriction on the joint distribution of T1 and T0 at R = r0. It

is then useful to have an estimand that is valid under either assumption.

Theorem 2 below provides a robust WQ-LATE estimand that is valid under either

monotonicity or local rank invariance or rank similarity.

Theorem 2 (Robust Estimand). Let Assumptions 1, 2 and 4 hold. Then under either

Assumption 3 or 3b,

π∗ =

∫
U

m+(u)− m−(u)

q+(u)− q−(u)

|q+(u)− q−(u)|∫
U |q
+(u)− q−(u)|du

du (5)

identifies a local weighted average effect of T on Y at R = r0.

When monotonicity holds, π∗ = π RD; otherwise, when monotonicity does not

hold, but our rank assumption holds, π∗ = π (w∗) ≡
∫
Uτ (u) w

∗ (u) du for w∗ (u) ≡
|1q(u)|∫

U |1q(u)|du
.10 Either way, π∗ identifies a weighted average treatment effect among

those individuals who change their treatment intensity at the RD threshold. The two

alternative assumptions specify different ways in which individuals can respond to

crossing the RD threshold.11 Our robust estimand π∗ then provides a robust way to

aggregate these individual treatment effects.

10Theorems 1 and 2 in fact only require Assumptions 3 and 3b to hold for Uz over the sub-support

U ⊆ (0, 1), for z = 0, 1.

11Under monotonicity Pr (T1 ≥ T0|R = r0) = 1, π∗ identifies a weighted average of individual

causal effects
G(q1(r0,u1),r0,ε)−G(q0(r0,u0),r0,ε)

q1(r0,u1)−q0(r0,u1)
among those having q1(u1)−q0 (u0) > 0 (or among those

having q1(u1) − q0 (u0) < 0 under Pr (T1 ≤ T0|R = r0) = 1). Under the rank restriction, π∗ iden-

tifies a weighted average of
G(q1(r0,u),r0,ε)−G(q0(r0,u),r0,ε)

q1(r0,u)−q0(r0,u)
among those having ε| (U1 = u, R = r0) ∼

ε| (U0 = u, R = r0) for any u ∈ U .
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4 Discussion

We impose Assumptions 1 - 4 for identification. The quantile and first-stage conditions

are assumptions imposed on estimable functions and observables, respectively. They

can be directly verified in the data. In the following we briefly discuss the testable im-

plications of the local smoothness and rank restrictions and propose convenient tests

for them. It is worth emphasizing that what we propose is a joint test for the implica-

tions of both assumptions, similar to Kitagawa (2015) and Arai et al. (2018).

Recall Y = G (T, R, ε), where ε contains any other (observable and unobserv-

able) covariates of Y other than R. Let X ∈ X ⊂ R be some observable component

of ε. Under either local rank invariance or local rank similarity, U0| (ε, R = r0) ∼

U1| (ε, R = r0). By Bayes’ theorem, ε| (U0 = u, R = r0) ∼ ε| (U1 = u, R = r0), for

any u ∈ (0, 1), and hence FX |U1,R (x, u, r0) = FX |U0,R (x, u, r0) for all x ∈ X and u ∈

(0, 1). Further by Assumption 2, Fε|Uz,R (e, u, r) and hence FX |Uz,R (x, u, r), z = 0, 1,

is continuous at r = r0. It follows that the right and left limits of FX |U,R (x, u, r) =

Z FX |U1,R (x, u, r) + (1− Z) FX |U0,R (x, u, r) exist at r = r0. Therefore, to test the

implications of the local smoothness and rank restrictions, one can test the following

null hypothesis

H0: lim
r→r

+
0

E [1 (X ≤ x) |U = u, R = r ]− lim
r→r

−
0

E [1 (X ≤ x) |U = u, R = r ] = 0,

(6)

∀x ∈ X , u ∈ U .

The left-hand side of equation (6) corresponds to the numerator of equation (2)

with Y being replaced by 1 (X ≤ x). Testing for our identifying assumptions then

amounts to testing that the Q-LATEs or WQ-LATEs on the covariate distribution are

zero. Such tests are essentially falsification tests to show that treatment has no false

significant impacts on covariates at any treatment quantiles.

Complementary to our proposed tests, conventional RD validity tests can be used to

provide suggestive evidence for local smoothness. In particular, one can test smooth-

ness of the conditional means of covariates or the density of the running variable. See,

e.g., McCrary (2008), Otsu, Xu, and Matsushita (2013), Bugni and Canay (2018),

Canay and Kamat (2018), and Cattaneo, Jansson, and Ma (2018). In addition, Arai et
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al. (2018) provide a joint test for the identifying assumptions of the standard fuzzy RD

design with a binary treatment.

The above leverages covariates for testing purposes. Our discussion of identifi-

cation does not directly condition on covariates. In practice, rank similarity may be

more plausible when conditioning on relevant covariates (see, e.g., Chernozhokov and

Hansen, 2005). One may relax the rank restrictions to assume that local rank similarity

holds after conditioning on additional covariates other than the running variable. Let

Assumptions 1, 2, and 3 hold conditioning on covariates. All our results would then

hold conditional on covariates. To obtain the unconditional (on covariates) Q-LATEs,

one may average over the covariates distribution at a given treatment quantile.

5 Estimation

The proposed estimands for Q-LATE and WQ-LATE involve conditional means and

quantiles at a boundary point. Following the standard practice of the RD literature, we

estimate Q-LATE and WQ-LATE by local linear mean and quantile regressions.

For simplicity, we use the same kernel function K (·) for all estimation. Let the

bandwidths for T and R be hT and h R , respectively. Define hT ≡ hσ T and h R ≡ hσ R ,

where σ T and σ R are the standard deviations of T and R, respectively. Denote as θ̂ the

estimate of any parameter θ . Given a sample of n i.i.d. observations {(Yi , Ti , Ri )}ni=1

from (Y, T, R), we estimate Q-LATE and WQ-LATE by the following procedure.

Step 1: Partition the unit interval (0, 1) into a grid of equally spaced quantiles U(l) ≡

{u1, u2, ..., ul}. For u ∈ U(l), estimate q+(u) by q̂+(u) ≡ â0 from the local

linear quantile regression

(̂a0, â1) = arg min
a0,a1

∑
{i : Ri≥r0}

K

(
Ri − r0

h R

)
ρu (Ti − a0 − a1 (Ri − r0)) ,

where ρu(α) = α(u− 1(α < 0)) is the standard check function.12 q−(u) can be

estimated similarly using observations below r0.

12If desired, one could monotonize q̂±(u) using the inequality constraints or rearrangement methods

in Chernozhukov, Fernández-Val, and Galichon (2010) or Qu and Yoon (2015). Both papers show that

the monotonized estimators share the same first-order limiting distribution with the initial local linear

estimator.
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Step 2: Let Ũ ≡
{
u ∈ U(l) : |1q̂(u)| > εn

}
, where 1q̂(u) ≡ q̂+(u) − q̂−(u) and

εn → 0 is a positive sequence satisfying ε−1
n supu∈U

∣∣|1q̂(u)| − |1q(u)|
∣∣ =

op(1) and ε2
n

(
supu∈U

∣∣|1q̂(u)| − |1q(u)|
∣∣)−1
= op(1).

13 For all u ∈ Ũ , esti-

mate m+ (u) by m̂+ (u) ≡ b̂0 from the local linear regression

(̂
b0, b̂1, b̂2

)
= arg min

b0,b1,b2

∑
{i : Ri≥r0}

K

(
Ri − r0

h R

)
K

(
Ti − q̂+(u)

hT

)
×
(
Yi − b0 − b1 (Ri − r0)− b2

(
Ti − q̂+(u)

))2
.

m−(u) can be estimated similarly replacing q̂+(u) with q̂−(u) and using obser-

vations below r0.

Step 3: Estimate τ(u) by the plug-in estimator τ̂ (u) = m̂+(u)−m̂−(u)
q̂+(u)−q̂−(u)

for u ∈ Ũ .

Step 4: Estimate π∗ by π̂∗ =
∑

u∈Ũ τ̂ (u)
|1q̂(u)|∑

u∈Ũ |1q̂(u)| .

Our identification theory requires trimming out treatment quantiles where there are

no changes at the RD threshold, i.e., 1q(u) = 0, whereas in practice we do not know

the true 1q(u). To avoid any pre-testing problem, we trim out all quantiles having

|1q̂(u)| ≤ εn for some chosen εn . Lemma 6 in Appendix B shows that when εn

satisfies the listed conditions, this trimming procedure is asymptotically equivalent to

trimming out those treatment quantiles where1q(u) = 0 and preserves the asymptotic

properties of our estimator.

In practice, one can choose εn ≡ maxu∈U(l) se
(
1q̃(u)

)
× 1.96, where 1q̃(u) is

a preliminary Step 1 estimator of the treatment quantile change, using the bandwidth

h̃σ R such that h̃/h → 0 and nh̃2/h → ∞. We discuss the choice of h next in

Section 6.14 By this procedure, insignificant estimates (at the 5% significance level)

of 1q̂(u) along with some significant but small estimates will be trimmed out and the

asymptotic behavior of our estimator is not affected.

13If one wishes to focus on quantiles such that |1q(u)| > c for some small c > 0, then one can

define the trimming parameter to be cn = c + εn , where εn is defined the same way.
14Consider the bandwidth sequences h = cn−a and h̃ = cn−b for some constants 0 < a, b < 1 and

c > 0. The required conditions for εn are satisfied when choosing b such that a < b < (a + 1)/2. The

associated standard errors satisfy se(1q̃(u)) = Op

((
nh̃
)−1/2)

> se(1q̂ (u)) = Op

((
nh
)−1/2)

.

Intuitively, there is a trade-off on the convergence rate of εn : on the one hand, we need εn converge

to zero not too fast compared with |1q̂| − |1q|, so that the sampling variation of 1q̂ in the trimming

procedure is asymptotically ignorable; on the other hand, εn needs to converge to zero fast enough in

order to keep all the quantiles in U .
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The above describes estimation of Q-LATEs or WQ-LATE. To estimate LQTEs

conditional on U = u described in Section 2.1, one may simply replace the local linear

mean regressions in Step 2 by local linear quantile regressions. Other steps remain the

same.

6 Inference

The proposed estimators have several distinct features which make analyzing their

asymptotic properties challenging. First, the local polynomial estimator in Step 2 in-

volves a continuous treatment variable T , in addition to the running variable R. Evalu-

ating T over its interior support and evaluating R at the boundary point r0 complicates

the analysis. Second, we need to account for the sampling variation of q̂±(u) from

Step 1, which appear in both the numerator and denominator of τ̂ (u), as well as in the

weighting function ŵ∗ (u) for π̂∗. Third, our estimation involves a trimming procedure

that is based on the estimated 1q̂(u). We overcome these complications by extending

the results of Kong, Linton, and Xia (2010) and Qu and Yoon (2015). Qu and Yoon

(2015) provide uniform convergence results for local linear quantile regressions, while

Kong, Linton, and Xia (2010) establish strong uniform convergence results for local

polynomial estimators.

To establish our inference procedure, we first derive the asymptotic distributions of

the estimators τ̂ (u) and π̂∗. We show that, similar to the standard RD local polynomial

estimator, the large sample distributional approximations involve leading biases, which

depend on changes in the curvatures of the conditional quantile and mean functions in

Step 1 and Step 2 estimation. There are two common approaches to remove these

leading biases, undersmoothing and bias correction. The undersmoothing approach

uses a bandwidth sequence that goes to zero fast enough with the sample size, so that

the bias is asymptotically negligible relative to the standard error. Nevertheless it is

known that this undersmoothing approach prevents a lot of bandwidth choices used in

practice. To allow for more general bandwidth conditions, this section focuses on the

bias correction approach. Undersmoothing results are presented in the Appendix B.2.

We follow the popular approach of Calonico, Cattaneo, and Titiunik (2014) and

develop robust inference for our bias-corrected estimators. The robust inference takes

into account the added variability due to bias correction in deriving large sample dis-
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tributions. We also present the asymptotically mean squared error (AMSE) optimal

bandwidths for both the Q-LATE and WQ-LATE estimators by minimizing the AMSE.

Imbens and Kalyanaraman (2012) propose the AMSE optimal bandwidth for the stan-

dard RD estimator. The robust confidence intervals for the bias-corrected estimators

deliver valid inference when the AMSE optimal bandwidths are used.

We impose the following assumptions for asymptotics.

Assumption 5 (Asymptotics). 1. For any t ∈ Tz , z = 0, 1, r ∈ R, and u ∈ U ,

fTz R(t, r) is bounded and bounded away from zero, and has bounded first or-

der derivatives with respect to (t, r); ∂ j qz(r, u)/∂r j is finite and Lipschitz con-

tinuous over (r, u) for j = 1, 2, 3; qz(r0, u) and ∂qz(r0, u)/∂u are finite and

Lipschitz continuous in u.

2. For any t ∈ Tz , z = 0, 1, and r ∈ R, E
[
G(Tz, R, ε)|Tz = t, R = r

]
has

bounded fourth order derivatives; the conditional variance V
[
G(Tz, R, ε)|Tz =

t, R = r
]

is continuous and bounded away from zero; the conditional density

fTz R|Y (t, r, y) is bounded for any y ∈ Y . E
[∣∣Y − E [Y |Tz, R

] ∣∣3] < ∞ for

z = 0, 1.

3. The kernel function K is bounded, positive, compactly supported, symmetric,

having finite first-order derivative, and satisfying
∫∞
−∞ v

2K (v)dv > 0.

Assumption 5.1 imposes sufficient smoothness conditions to derive the asymptotic

linear representations of q̂±(u). In particular, the bounded joint density implies a com-

pact support where the stochastic expansions of q̂±(u) hold uniformly over u. Together

with the smoothness conditions on qz(r, u), the remainder terms in the stochastic ex-

pansions are controlled to be small. Assumption 5.2 imposes additional conditions to

derive the asymptotic linear representation of Ê [Y |T, R] and asymptotic normality of

our estimators. Assumption 5.3 lists the standard regularity conditions for the kernel

function.

We present the preliminary asymptotic distributions of the main estimators τ̂ (u)

and π̂∗ in Appendix B, followed by the inference theory for the undersmoothing ap-

proach. The next section presents the inference theory for the bias-corrected approach.
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6.1 Bias-corrected robust inference

Denote the leading bias for τ̂ (u) as h2Bτ (u) and the bias for π̂∗ as h2Bπ . The exact

forms of Bτ (u) and Bπ are presented, respectively, in equation (B.1) of Lemma 4 and

equation (B.3) of Lemma 5 in Appendix B. We propose the following bias-corrected

estimator for τ(u)

τ̂ bc(u) ≡ τ̂ (u)− h2B̂τ (u),

where B̂τ (u) is a consistent estimator for Bτ (u). We similarly propose the following

bias-corrected estimator for π∗

π̂bc ≡ π̂∗ − h2B̂π ,

where B̂π is a consistent estimator of Bπ . Denote as b the bandwidth used in the bias

estimation.

Bias correction reduces biases, but also introduces variability. When the added

variability of estimating the bias is not accounted for, the empirical coverage of the re-

sulting confidence interval can be well below their nominal target, which implies that

conventional confidence intervals may substantially over-reject the null hypothesis of

no treatment effect. Following the robust inference approach of Calonico, Cattaneo,

and Titiunik (2014), we present the asymptotic distributions of the bias-corrected esti-

mators τ̂ bc(u) and π̂bc
by taking into account the sampling variation induced by bias

correction.

Theorem 3 (Asymptotic distribution of τ̂ bc(u)). Let Assumptions 1-5 hold. If h =

hn → 0, b = bn → 0, h/b → ρ ∈ [0,∞], n min{h6, b6}max{h2, b2} → 0,

n min{h2, b6h−4} → ∞, and nh3 max{1, h6/b6} → ∞, then for any u ∈ U ,

τ̂ bc(u)− τ(u)√
Vbc
τ ,n(u)

−→d N (0, 1) ,where Vbc
τ ,n(u) ≡

Vτ (u)

nh2
+

VBτ (u)

nb6h−4
+

Cτ (u; ρ)

nhb
.

The exact forms of Vτ (u), VBτ (u) and Cτ (u; ρ) are given in equations (B.2), (B.12),

and (B.13), respectively, in Appendix B.

The variance Vbc
τ ,n(u) consists of three terms: Vτ (u) comes from the variance of

τ̂ (u), VBτ (u) comes from the variance of B̂τ , and Cτ (u; ρ) comes from the covariance

19



between τ̂ (u) and B̂τ .15 Theorem 3 incorporates three limiting cases depending on

h/b→ ρ ∈ [0,∞]. When h/b→ 0, the actual estimator τ̂ (u) is first-order while the

bias estimator B̂τ (u) is of smaller order, i.e., VBτ (u)/(nb6h−4) + Cτ (u; ρ)/(nhb) =

op

(
Vτ (u)/

(
nh2

))
, and hence the variance reduces to Vbc

τ ,n(u) = Vτ (u)/(nh2). When

h/b → ρ ∈ (0,∞), then both τ̂ (u) and B̂τ (u) contribute to the asymptotic variance.

When h/b → ∞, the bias estimator B̂τ (u) is first-order while the actual estimator

τ̂ (u) is of smaller order and hence Vbc
τ ,n(u) = VBτ (u)/(nb6h−4).

Note that the additional terms due to bias correction VBτ (u) and Cτ (u; ρ) depend

on Vτ (u) and some constants determined by the kernel function (see the proof of The-

orem 3 in Appendix B for details). As a result, Vbc
τ ,n(u) only depends on Vτ (u) and

some constants, which implies that estimating the robust variance is not computation-

ally more demanding than estimating the conventional variance Vτ (u). For example,

for the Uniform kernel and ρ = 1, Vbc
τ ,n(u) = 13.89Vτ (u)/(nh2).

Theorem 4 (Asymptotic distribution of π̂bc
). Let Assumptions 1-5 hold. If h =

hn → 0, b = bn → 0, h/b → ρ ∈ [0,∞], n min{h5, b5}max{h2, b2} → 0,

n min{h, b5h−4} → ∞, nh4 max{1, h5b−5} → ∞, and l →∞, then

π̂bc − π∗√
Vbc
π,n

−→d N (0, 1) ,where Vbc
π,n ≡

Vπ

nh
+

VBπ

nb5h−4
+

Cπ

nb2h−1
.

The exact forms of Vπ , VBπ , and Cπ are given in equations (B.4), (B.16), and (B.17),

respectively, in Appendix B.

Vbc
π,n consists of three terms. Vπ comes from the variance of π̂∗, VBπ comes from

the variance of B̂π , and Cπ comes from the covariance between π̂∗ and B̂π . Similar to

Theorem 3, Theorem 4 also incorporates three limiting cases depending on h/b→ ρ ∈

[0,∞]. When h/b→ 0, the actual estimator π̂∗ is first-order while the bias estimator

B̂τ is of smaller order, and hence Vbc
π,n ≡ Vπ/ (nh). When h/b → ρ ∈ (0,∞), then

both π̂∗ and B̂π contribute to the asymptotic variance. When h/b → ∞, the bias

15For the standard RD design with a binary treatment, Calonico, Cattaneo, and Titiunik (2014) derive

the conditional variance given the sample data. In contrast, we derive the asymptotic unconditional vari-

ance. These two approaches are asymptotically equivalent. In finite samples, the resulting confidence

interval based on the conditional variance can be larger or smaller than the confidence interval based on

the asymptotic unconditional variance.
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estimator B̂τ is first-order while the actual estimator π̂∗ is of smaller order, and hence

Vbc
π,n ≡ VBπ /(nbρ−4).

Given our results, one can estimate the robust variances by the plug-in estimators.

Details for estimating the biases and variances are provided in Appendix C.

As a convenient alternative, one may apply the standard bootstrap based on draw-

ing n observations with replacement to obtain standard errors and confidence intervals.

The bootstrap is known to be valid for the local linear mean and quantile estimators in

1m̂(u) and 1q̂(u) for any u (see, e.g., Horowitz, 2001). Since 1m̂(u) and τ̂ (u) are

differentiable functions of the local linear mean and quantile estimators, the bootstrap

is valid for τ̂ (u) by the standard delta method. To show the bootstrap validity for π̂∗, it

suffices to show the uniform stochastic expansion for π̂∗ based on the bootstrap sam-

ple.16 This additional technicality is out of the scope of the current paper. Bootstrap

validity for the bias-corrected estimators τ̂ bc(u) and π̂bc
follows the same arguments.

6.2 AMSE optimal bandwidth

Choosing a bandwidth is known to be a delicate task in nonparametric estimation.

Following Imbens and Kalyanaraman (2012), we derive the bandwidths for τ̂ (u) and

π̂∗ that minimize the AMSE. These results are presented in Theorem 5 and Theorem

6 below. Further details for estimating these AMSE optimal bandwidths are provided

in Appendix C.

Theorem 5 (AMSE optimal bandwidth for τ̂ (u)). Let Assumptions 1-5 hold. If h =

hn → 0 and nh2→∞, then the mean squared error of τ̂ (u) is E
[(
τ̂ (u)− τ(u)

)2]
=

h4Bτ (u)
2 +

(
nh2

)−1
Vτ (u)+ o

(
h4 +

(
nh2

)−1
)

; further if Bτ (u) 6= 0, the bandwidth

that minimizes the AMSE is h∗τ =
(
Vτ (u)/

(
2B2

τ (u)
))1/6

n−1/6.

16More specifically, by replacing the observation (Yi , Ti , Ri )with the bootstrap data (Y ∗i , T ∗i , R∗i ) and

replacing the probability measure p with p∗ implied by bootstrap sampling, the asymptotic linear repre-

sentations in Lemma 3 hold for bootstrap estimators 1q̂∗(u) and 1m̂∗(u) for any u. Bootstrap validity

then follows from the fact that τ(u) is a differentiable function of 1m(u) and 1q(u). π̂∗ is a differen-

tiable function of τ̂ (u) and ŵ∗(u), while ŵ∗(u) is Hadamard differentiable in 1q̂(u). By Theorem 3.1

in Fang and Santos (2019), the standard bootstrap is valid for inference on
∑

u∈U (l) π(u)
|1q(u)|∑

u∈U(l) |1q(u)| ,

where U (l) ≡ {u ∈ U(l) |1q(u) > εn|} for a fixed number of grid points l. As l →∞, uniformity over

u is sufficient for valid inference on π∗.
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The AMSE optimal bandwidth for τ̂ (u) is of the form Cτn−1/6 for some constant

Cτ > 0, which satisfies the bandwidth conditions specified in Theorem 3. Therefore,

one can apply the above AMSE optimal bandwidth and then conduct the bias-corrected

robust inference provided in Theorem 3.

Theorem 6 (AMSE optimal bandwidth for π̂∗). Let Assumptions 1-5 hold. If h =

hn → 0 and nh → ∞, then the mean squared error of π̂∗ is E
[(
π̂∗ − π∗

)2]
=

h4B2
π+(nh)−1 Vπ+o

(
h4 + (nh)−1

)
; further if Bπ 6= 0, the bandwidth that minimizes

the AMSE is h∗π =
(
Vπ/

(
4B2

π

))1/5
n−1/5.

The AMSE optimal bandwidth for π̂∗ is of the form Cπn−1/5 for some constant

Cπ > 0, which satisfies the bandwidth conditions in Theorem 4. These AMSE optimal

bandwidths trade off squared biases with variances, so when the biases are small, the

AMSE optimal bandwidths can be large.

7 Empirical analysis

The United States banking system in the early 20th century was characterized as a

fragile system consisting of thousands of unit banks. Minimum capital requirements

were set in place to prevent bank failures; however, bank runs and banking panics were

prevalent in the pre-Great Depression era. Are banks less likely to fail when they hold

more capital? It is an important question both in this historical context and in light

of the current debate on the macroprudencial vs microprudencial approach to financial

regulation. The macroprudencial approach promotes higher capital requirements, es-

pecially in economic upturns (Hanson, Kashyap, and Stein, 2011). It aims to create

incentives for troubled banks to raise new capital rather than shrink assets to restore

their damaged capital ratios (the percentage of a bank’s capital to its risk-weighted

assets), since many institutions shrinking assets simultaneously is likely to be more

damaging to the economy.

It is challenging to evaluate the causal impacts of capital holdings on bank failure,

as higher capital requirements can be responses to bank runs or banking panics instead

of the other way around. The regulation regime in the early 20th century United States

provides a unique opportunity for one to nonparametrically identify the true causal

impacts of capital holdings on bank responses and outcomes. As shown previously,
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Figure 2: Minimum capital requirements around the town population 3,000 in 1905

the minimum capital requirements were assigned based on the population size of the

town a bank operated in. The requirements changed abruptly at various population

thresholds.

Figure 2 presents a close-up of banks operating in towns with a population around

3,000, the first regulatory threshold. Over 80% of the towns in our sample have a

population near the 3,000 threshold. These towns represent rural farming regions

where “low population density required, numerous widely, dispersed banking offices”

(White, 1983). Arguably these small banks are the right target of the capital regulation.

We therefore focus on the first regulatory threshold and explore the exogenous changes

in the capital distribution at this threshold for identification. As is clear from Figure 2,

the bottom of the capital distribution shifts up at the 3,000 population threshold.

We estimate the impacts of capital requirements on bank capital (i.e., the first stage

impact of Z on T ), and further the causal relationships between the induced higher

bank capital and three outcomes of interest (i.e., the impacts of T on Y ), total assets,

leverage, and the suspension probability in the long run. We quantify the possible

heterogenous effects (or lack of those) of increased capital at various capital levels.

7.1 Data description

We gather first-hand data from three sources: the annual reports of the Office of

the Comptroller of the Currency (OCC), Rand McNally’s Bankers Directory, and the
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United States population census. The OCC’s annual report includes the balance sheet

information for all nationally chartered banks. On the asset side, this information in-

cludes loans, discounts, investments in securities and bonds, holdings of real estate,

cash on hand, deposits in other banks, and overdrafts. On the liability side, this in-

formation includes capital, surplus and undivided profits, circulation, and deposits.

We collect detailed balance sheet data on individual national banks in 1905, and their

suspension outcome in the following 24 years (up to 1929). The minimum capital

requirements changed in 1990. Before 1900, the first regulatory threshold did not ex-

ist. National banks were required to have a minimum capital of $50,000 regardless

of whether they operated in a town above or below the 3,000 population threshold.

National banks established before 1900 might be subject to either the old or new regu-

latory regime, depending on when they were rechartered. We do not have the recharter

information, so we focus on national banks that were established after 1900 for clean

identification.17

In our analysis, bank assets are defined as the sum of a bank’s total amount of

assets, and capital is the sum of a bank’s capital and surplus. We further define (ac-

counting) leverage as the ratio of a bank’s total assets to capital, or the amount of assets

a bank holds for each dollar of capital they own.18 This leverage is a measure of the

amount of risk a bank engages in. Higher leverage is associated with lower survival

rates during financial crises (Berger and Bouwman, 2013). However, banks generally

have an incentive to increase their leverage so they can accumulate higher rates of

returns on their capital. We use logged values for all three variables since they have

rather skewed distributions.

The OCC’s annual report also indicates the town, county, and state in which each

bank located. We match this information with the United States Population Census to

determine town populations. Since all banks in our sample were established between

1900 and 1905, their capital requirements in 1905 were determined by their town pop-

ulation in 1900, as reported by the 1900 census. Our sample consists of 822 banks in

45 towns, among which 717 had a population below 3,000 and 105 had a population

at or above 3,000 (but below 6,000). In addition, we gather information on county

17This is unlike Guo (2016), who analyzed a larger sample of banks established both before and after

1990.
18This is different from various leverage ratios used in the bank regulation, which are defined as the

ratio of a bank’s capital to its (possibly risk-adjusted) assets.
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Table 1 Sample summary statistics

Z=0 Z=1

N Mean (SD) N Mean (SD) Difference (SE)

Log(capital) 717 10.5 (0.40) 105 11.2 (0.39) 0.66 (0.04)***

Log(assets) 717 11.7 (0.53) 105 12.5 (0.54) 0.77 (0.06)***

Log(leverage) 717 1.19 (0.34) 105 1.30 (0.34) 0.11 (0.04)***

Suspension 717 0.10 (0.30) 105 0.06 (0.23) -0.04 (0.03)

Bank age 717 2.45 (1.07) 105 2.78 (1.03) 0.33 (0.11)**

Black population (%) 674 0.07 (0.16) 101 0.08 (0.15) 0.01 (0.02)

Farmland (%) 674 0.77 (0.25) 101 0.71 (0.27) -0.06 (0.03)**

Log(manufacturing output) 672 3.73 (1.11) 101 4.39 (0.96) 0.66 (0.12)***

Note: The sample consists of all national banks established between 1900 and 1905 and located

in towns with a town population less than 6,000; ***Significant at the 1% level, **Significant at

the 5% level

characteristics that measure their business and agricultural conditions, including the

percentage of black population, the percentage of farmland, and manufacturing output

per capita per square miles.

Brief sample summary statistics are provided in Table 1. Banks operating in towns

with more than 3,000 people have more capital on average; they also hold more assets,

and have higher measured leverages. However, these simple correlations may not re-

flect the true causal relationships. As we can see, towns with more than 3,000 people

are associated with older banks, a lower percentage of farm land in their counties, and

higher manufacturing output per capita. These results highlight the importance to seek

for local identification. Causal relationships would be confounded if comparing banks

far away from the threshold.

7.2 Estimation results

Table 2 reports the estimated changes in log capital from 0.10 to 0.90 quantiles and the

estimated mean change. Figure 3 visualizes the estimated quantile curves of log capital

right above or below the policy threshold (left) and the estimated quantile changes

(right) along with their 95% point-wise confidence bands. Consistent with the visual

evidence in Figure 2, results in Table 2 suggest that significant changes only occur

at roughly the bottom 30 percentiles of the distribution of log capital. The estimated

changes are also larger at lower quantiles. No significant change is found in the average

level of log capital. At the same time, there are visible quantile crossings at the high
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end of the quantiles in Figure 3. The estimated changes at the related quantiles are

negative, even though they are not statistically significant.19 Given that there is no

mean change in log capital at the policy threshold, we cannot apply the standard RD

design.

Table 2 Changes in log(capital) at the population threshold 3,000

Quantile Quantile

0.10 0.648 (0.113)*** 0.550 0.122 (0.378)

0.15 0.575 (0.128)*** 0.600 0.063 (0.390)

0.20 0.540 (0.142)*** 0.650 0.095 (0.340)

0.25 0.534 (0.193)*** 0.700 -0.017 (0.343)

0.30 0.542 (0.230)** 0.750 -0.076 (0.334)

0.35 0.386 (0.337) 0.800 -0.046 (0.371)

0.40 0.313 (0.364) 0.850 -0.044 (0.425)

0.45 0.151 (0.381) 0.900 0.105 (0.650)

0.50 0.065 (0.393)

Average 0.169 (0.175)

Note: The top panel presents estimated changes in log capital at dif-

ferent quantiles, while the bottom row reports the estimated average

change; The bandwidth is set to be h R = 4σ Rn−0.23 = 1039.5, which

satisfies the undersmoothing conditions for the Q-LATE or WQ-LATE

estimator in Theorems 7 and 8; Standard errors are in parentheses; ***

Significant at the 1% level; ** Significant at the 5% level.

One may be concerned that the data are censored at the minimum capital, implying

mass points at $25,000 and $50,000 around the 3,000 population threshold. Assump-

tion 1 would then be invalid. Our data do not suggest a censored distribution for bank

capital. Less than 1% of the banks below and less than 2% of the banks above hold

the minimum capital in our local estimation sample around the 3,000 threshold. In

addition, Figure 3 (left panel) shows that there are no flat regions at the lower ends the

estimated quantile curves of log capital right above or right below this threshold.

Table 3 presents the estimated Q-LATEs. These estimates use the AMSE optimal

bandwidth given in Theorem 6.20 We report bootstrapped standard errors that are

clustered at the town level, since capital regulation varies at the town level. Alternative

19These first-stage estimates are based on a bandwidth implied by the undersmoothing conditions

in Theorems 7 and 8 in Appendix B, so we don’t have to be concerned with bias correction. Further

analysis using other bandwidths suggests that the estimated quantile changes are robust to different

bandwidth choices.
20Note that the AMSE optimal bandwidth does not take into account the clustering nature of the error,

so they are not necessarily AMSE optimal in this particular empirical application. Rather we use it as a

reference point and later present estimates with a larger range of bandwidths.
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Figure 3: Estimated quantile curves above and below the population threshold 3,000

(left) and the estimated changes at different quantiles (right).

Table 3 Effects of log(capital) on bank outcomes

Q-LATE Quantile Log(assets) Log(leverage) Suspension

0.10 0.977 (0.314)*** -0.023 (0.314) -0.001 (0.194)

0.12 0.945 (0.317)*** -0.055 (0.317) -0.024 (0.196)

0.14 0.930 (0.318)*** -0.070 (0.318) -0.023 (0.199)

0.16 0.881 (0.295)*** -0.119 (0.295) -0.036 (0.195)

0.18 0.880 (0.309)*** -0.120 (0.309) -0.067 (0.198)

0.20 0.881 (0.311)*** -0.119 (0.311) -0.070 (0.202)

0.22 0.829 (0.307)*** -0.171 (0.307) -0.078 (0.204)

0.24 0.864 (0.311)*** -0.136 (0.311) -0.090 (0.204)

0.26 0.885 (0.336)*** -0.115 (0.336) -0.088 (0.212)

WQ-LATE 0.873 (0.298)** -0.127 (0.298) -0.051 (0.199)

Note: The first panel presents the bias-corrected estimates of Q-LATEs at equally spaced

quantiles; The last row presents the bias-corrected estimates of WQ-LATEs; The stan-

dardized AMSE optimal bandwidth for the WQ-LATE estimator is h∗π = 0.91 (the

standardized AMSE optimal bandwidth for the Q-LATE estimator h∗τ ranges from 0.72

to 1.1); The bandwidths in the estimation are then set to be h R = h∗πσ R = 1108.0
and hT = h∗πσ T = 0.4173; The bandwidths used to estimate the biases are 2 times of

the main bandwidths; The trimming thresholds are determined by using a preliminary

bandwidth for R equal to 3/4h R = 831.0; Bootstrapped standard errors are clustered at

the town level and are in the parentheses; ***Significant at the 1% level, **Significant

at the 5% level.
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Figure 4: Estimated Q-LATEs at different quantiles

results based on undersmoothing and results with analytical standard errors (without

clustering) are presented in Appendix D. For brevity, Table 3 presents the estimated

Q-LATEs at selected quantiles. Figure 4 illustrates the estimated Q-LATEs at a finer

grid of quantiles along with the 95% confidence intervals.

The estimated Q-LATEs for log assets range from 0.829 to almost 0.977 at various

low quantiles of log capital. All estimates are significant at the 1% level. That is, a

1% increase in bank capital leads to an increase of 0.829% - 0.977% in total assets

for banks at the bottom of the capital distribution. The corresponding weighted aver-

age is estimated to be 0.873, which is also significant at the 1% level. On average, a

1% increase in bank capital leads to a 0.873% increase in a bank’s total assets among

all the banks that are affected by the minimum capital requirements. As a result, the

estimated decreases in log leverage are all small and insignificant, so the increased

minimum capital requirements do not significantly lower leverage among those af-

fected small banks. Not surprisingly, the estimated impacts of bank capital on their

long-run suspension probability are small and insignificant.

Figure 5 plots the estimated WQ-LATEs against different bandwidth choices. The

estimated WQ-LATEs are robust to a wide range of bandwidths.

7.3 Validity checks

We have estimated the impacts of increased bank capital among banks with low levels

of capital. Validity of these estimates requires our local smoothness and rank restric-

tions to hold. In the following, we evaluate validity of these assumptions.

We first perform the usual standard RD tests to provide suggestive evidence for
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Figure 5: Estimated WQ-LATEs by different bandwidths

Figure 6: Histogram and the empirical density of town population

the smoothness conditions. These smoothness conditions are imposed to ensure that

banks as well as their associated business and agricultural conditions above and below

the policy threshold are comparable. Given the differential capital requirements, one

may be concerned that banks took advantage of the lower capital requirements and

hence were more likely to operate in towns with populations just under 3,000.

Following the standard practice, we test smoothness of the density of town pop-

ulation near the policy threshold. We also test smoothness of the conditional means

of pre-determined covariates. These covariates include bank age and county charac-

teristics, particularly percentage of black population, percentage of farmland and log

manufacturing output per capita per square miles.

Figures 6 and 7 provide visual evidence of smoothness. The left graph in Figure 6

presents the histogram of the town population, while the right graph presents the log

frequency of the town population within each bin of 200 population. Superimposed

on the right graph is the estimated log density along with the 95% confidence interval.
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Figure 7: Conditional means of covariates conditional on town population

Table 5 Tests for smoothness of covariates and density

I: Covariate

Bank age 0.276 (0.385) Farmland (%) -0.013 (0.119)

Black Population (%) -0.087 (0.093) Log(manufacturing output) 0.431 (0.429)

II: Density of town population

-0.429 (0.668)

Note: Panel I presents the estimated discontinuities in the conditional means of covari-

ate; Robust standard errors are clustered at the town level and are in parentheses; Panel

II presents the t statistic of the estimated density discontinuity of town population along

with the p-value using the Stata command rddensity; h R = h∗πσ R = 1108.0 for all

estimation.
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Formal test results are reported in Table 5. No significant discontinuities are found in

the conditional means of these covariates or in the density of town population. These

results suggest that smoothness conditions are plausible in our empirical setting.

Table 6 Tests for local rank invariance or rank similarity

First moment Second moment

Bank age 0.880 (0.764) 3.710 (3.932)

Black Population (%) -0.035 (0.160) -0.031 (0.097)

Farmland (%) 0.066 (0.224) 0.170 (0.260)

Log(manufacturing output) 0.068 (0.899) 0.096 (7.710)

Note: Bias-corrected estimates of WQ-LATEs are reported; The standardized AMSE

optimal bandwidth for the WQ-LATE estimator is h∗π = 0.91, so the bandwidths for

estimation are set to be h R = 1108.0 and hT = 0.4173 for R and T ; The trimming

thresholds are determined by using a preliminary bandwidth for R equal to 3/4h R =
831.0. The bandwidths used to estimate the biases are 2 times of the main bandwidths;

Bootstrapped standard errors are in the parentheses.

We next perform our proposed joint test. For simplicity, instead of testing the entire

distribution of covariates, we test the low order (raw) moments of covariates. That is,

we replace the outcome variable by each of the first and second moments of the four

covariates (i.e., bank age, percentage of black population, percentage of farmland, and

log manufacturing output per capita) and re-estimate Q-LATEs and WQ-LATEs. We

use the same bandwidth and specification as those used to produce the main estimates

in Table 3. Results of these falsification tests are presented in Table 6. Figures 8 and 9

further visualize the results. None of these estimates are significant. Overall we cannot

reject validity of the local smoothness and rank restrictions.

7.4 Policy implications

Our empirical analysis shows that while higher capital requirements induce banks at

the bottom of the capital distribution to hold more capital, these banks adjust their

assets proportionately. That is, banks simply scale up without a ratio regulation. Their

leverages and long-run risk of failure remain almost unchanged. This analysis sheds

light on the U.S. banking crisis in the early twentieth century, when bank runs and

bank panics occurred often – 29 banking panics occurred from 1865 to 1933.

Note that while earlier regulations focus on the dollar amount of capital, modern

regulations focus on capital ratios. Our results support such a regime shift. Interest-
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Figure 8: Estimated Q-LATEs on covariates (first moments)

Figure 9: Estimated Q-LATEs on covariates (second moments)
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ingly, existing studies suggest that under a ratio regulation, troubled banks in a finan-

cial crisis tend to shrink assets rather than raise new capital to restore their damaged

capital ratios, even when the latter is more desirable from a social perspective. Based

on this and what we have learned from our empirical exercise, a better practice seems

to be supplementing the capital ratio regulation with higher capital requirements. This

is precisely what the macroprudential approach promotes. For example, in discussing

the macroprudential approach, Hanson, Kashyap, and Stein (2011) note "...it may be

especially helpful in thinking about the phase-in of higher capital requirements under

Basel III."

8 Conclusion

An empirically important class of RD designs involve continuous treatments. This is

the first paper to provide identification and inference theory for the RD design with a

continuous treatment. We utilize for identification any treatment distributional changes

(including the usual mean change as a special case) at the RD threshold.

Our model applies to a large class of policies that target parts or features of the

treatment distribution, such as changing the mean, changing the variance or shifting

one or both tails of the distribution. Treatment changes are generally responses to

relevant policies, and such policies may target some parts (e.g., top or bottom) or

features of the treatment distribution. By focusing on where the true changes are in

the treatment distribution, we provide what are likely to be the most policy relevant

treatment effects.

We identify both quantile specific treatment effects (Q-LATEs) and a weighted

average treatment effect (WQ-LATE) at the RD threshold. We also provide bias-

corrected robust inference along with the AMSE optimal bandwidths for the identified

treatment effects. Our approach complements the standard RD design and the related

weak identification approach, since we can identify treatment effect heterogeneity at

different treatment intensities. Compared with the standard RD local Wald ratio, the

proposed WQ-LATE estimator has the advantage of being robust to possible failure

of the monotonicity assumption. It incorporates the standard RD local Wald ratio as

a special case; it is valid under either the local rank restriction or the monotonicity

assumption.
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In our empirical scenario, the minimum capital regulation shifts up the bottom of

the capital distribution, but leads to no mean changes. Estimating the causal impacts

of capital holdings would be difficult by just applying the standard RD design. How-

ever, taking advantage of lower quantile changes in the capital distribution allow for

precisely estimating the causal impacts of increased bank capital.

We show that while the higher capital requirements induce small banks to hold

more capital, these banks adjust their assets proportionately to lead to only a "scale-

up" effect. A 1% increase in capital leads to a close to 1% increase in assets among all

banks at the lower quantiles of the capital distribution. As a result, the long-run (up to

24 years, from 1905 to 1929) risk of suspension for those banks stays the same. These

results help us better understand the frequent bank runs and banking panics prior to

the Great Depression. These results are also useful in considering the macroprudential

approach to financial regulation, which promotes higher capital requirements under

the ratio regulation regime.
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Yingying Dong, Ying-Ying Lee, Michael Gou

This Appendix is organized as follows. Section A provides proofs for the lemmas,

theorem, and corollary presented in Section 2 Identification. Sections B.1 and B.2

provide some preliminary lemmas along with their proofs to facilitate deriving the

asymptotic properties for the proposed estimators. Sections B.3 and B.4 then present

proofs for the theorems presented in Section 6 Inference. Section C describes how to

estimate the biases, variances, and AMSE optimal bandwidths presented in Sections

6.2 and 6.3. Section D provides additional results for the empirical analysis.

A Proofs for Section 2 Identification

Proof of Lemma 1.1 First we show that T ⊥ ε| (U, R) holds trivially for R ∈ R\r0.

Next we show T ⊥ ε| (U, R = r0).
For any R = r ∈ R\r0 and a bounded function η(T ), η (T ) is constant conditional

on U = u and R = r . In particular,

E [η (T ) |U = u, R = r ]

= E [η (T1) |U1 = u, R = r ] 1 (r ≥ r0)+ E [η (T0) |U0 = u, R = r ] 1 (r < r0)

= η (q1 (r, u) 1 (r ≥ r0)+ q0 (r, u) 1 (r < r0)) .

For any bounded functions γ (ε) and η(T ),

E
[
η (T ) γ (ε) |U = u, R = r

]
= E [η (T ) |U = u, R = r ]E

[
γ (ε) |U = u, R = r

]
.

Therefore, T ⊥ ε| (U, R) holds for R ∈ R\r0.

By Assumption 3 local rank invariance or similarity, U0| (ε, R = r0) ∼ U1| (ε, R = r0).
Further by Bayes’ Theorem, ε| (U0,= u, R = r0) ∼ ε| (U1 = u, R = r0) for any u ∈
(0, 1). Then

fε|U1,R (e, u, r0) = fε|U0,R (e, u, r0)
(1)
⇐⇒

lim
r→r

+
0

fε|U1,R (e, u, r) = lim
r→r

−
0

fε|U0,R (e, u, r)
(2)
⇐⇒

lim
r→r

+
0

fε|T,U,R, (e, q1 (r, u) , u, r) = lim
r→r

−
0

fε|U,R,T (e, q0 (r, u) , u, r)
(3)
⇐⇒

fε|T,U,R (e, q1 (r0, u) , u, r0) = fε|T,U,R (e, q0 (r0, u) , u, r0) ,

1



where equivalence (1) follows from smoothness of fε|Uz,R (e, u, r) in Assumption 2,

(2) follows from the definition U ≡ U11 (R ≥ r0) + U01 (R < r0) and the fact that

conditional on U = u and R = r , T is deterministic, and (3) follows again from

smoothness of qz (r, u) and fε|Uz,R (e, u, r), z = 0, 1, and hence the right and left

limits of fε|U,R (e, u, r) = Z fε|U1,R (e, u, r)+(1− Z) fε|U0,R (e, u, r) at r = r0 exist.

Conditional on U = u, T can take on two potential values at r = r0, T = tz ≡
qz (r0, u), z = 0, 1. The above shows fε|T,U,R (e, t1, u, r0) = fε|T,U,R (e, t0, u, r0) =
fε|U,R (e, u, r0) for any u ∈ (0, 1) and e ∈ Supp(ε|U = u, R = r0); therefore

T ⊥ ε| (U, R = r0).

Proof of Lemma 1.2 For simplicity, the following assumes that 0 is an identity

mapping, i.e., 0 (Y ) = Y . The derivation can be readily extended to any integrable

functional 0.

lim
r→r

+
0

E [Y |U = u, R = r ]− lim
r→r

−
0

E [Y |U = u, R = r ]

= lim
r→r

+
0

E
[
Y |T = q1(r, u),U1 = u, R = r

]
− lim

r→r
−
0

E
[
Y |T = q0(r, u),U0 = u, R = r

]
= lim

r→r
+
0

E
[
G (q1(r, u), r, ε) |U1 = u, R = r

]
− lim

r→r
−
0

E
[
G (q0(r, u), r, ε) |U0 = u, R = r

]
= E

[
G (q1(r0, u), r0, ε) |U1 = u, R = r0

]
− E

[
G (q0(r0, u), r0, ε) |U0 = u, R = r0

]
=

∫
(G (q1(r0, u), r0, e)− G (q0(r0, u), r0, e)) d Fε|U,R (e, u, r0) ,

where the first equality follows from Assumption 1; the second equality follows from

the fact Y = G (T, R, ε); the third equality follows from the smoothness conditions in

Assumption 2, and the last equality follows from the fact that Assumption 3 implies

Fε|U1,R (e, u, r0) = Fε|U0,R (e, u, r0) = Fε|U,R (e, u, r0).

Proof of Theorem 1 By definition, T = q(r, u) = q0(r, u) (1− Z)+q1(r, u)Z . Fur-

ther by smoothness of qz(r, u), z = 0, 1 in Assumption 2, the right and left limits of

q(r, u) r = r0 exist, i.e., q1(r0, u) = limr→r
+
0

q(r, u) and q1(r0, u) = limr→r
+
0

q(r, u).

Equation (2) holds following Lemma 1. π (w) ≡
∫
U τ (u) w (u) du is identified since

since τ (u) is identified, the weighting function w (u) is assumed to be known or es-

timable, and the set U ≡ {u ∈ (0, 1): |q1(r0, u)− q0(r0, u)| > 0} is identified since

qz(r, u), z = 0, 1 is identified.

Proof of Lemma 2 For notational convenience, the following derivation uses qz(Uz) to

denote qz(r0,Uz), z = 0, 1. Assumption 3b monotonicity states Pr (q1(U1) ≥ q0(U0)) =

2



1 or Pr (q1(U1) ≤ q0(U0))
= 1. Without loss of generality, we assume the former is true. Given the smoothness

conditons in Assumption 2, we have

π RD

=
E
[
G (q1(U1), r0, ε) |R = r0

]
− E

[
G (q0 (U0)), r0, ε) |R = r0

]
E
[
q1(U1)|R = r0

]
− E

[
q0(U0)|R = r0

]
=
E
[
G (q1(U1), r0, ε)− G (q0(U0), r0, ε) |R = r0

]
E
[
q1(U1)− q0(U0)|R = r0

]
=

∫∫ ∫
(G (q1(u1), r0, ε)− G (q0(u0), r0, ε)) Fε|U0,U1,R=r0

(de, u0, u1) FU0,U1|R=r0
(du0, du1)∫∫

(q1(u1)− q0(u0))FU0,U1|R=r0
(du0, du1)

=
∫∫ ∫ G (q1(u1), r0, ε)− G (q0(u0), r0, ε)

q1(u1)− q0 (u0)
w̃RD (u0, u1) Fε|U0,U1,R=r0

(de, u0, u1)

× FU0,U1|R=r0
(du0, du1) ,

where the outer integration in the last equality is over I2 ≡
{
(u0, u1) ∈ (0, 1) ×

(0, 1): q1(u1)−q0(u0) > 0
}

and w̃RD (u0, u1) ≡
q1(u1)−q0(u0)∫∫

I2(q1(u1)−q0(u0))FU0,U1|R=r0
(du0,du1)

.

When monotonicity holds, w̃RD (u0, u1) > 0 and
∫∫
I2w̃RD(u0, u1)FU0,U1|R=r0

(du0, du1) =
1. That is, under Assumptions 2, 3b, and 4, π RD identifies a weighted average of indi-

vidual causal effects
G(q1(u1),r0,ε)−G(q0(u0),r0,ε)

q1(u1)−q0(u0)
among those having q1(u1)−q0 (u0) >

0 for any (u0, u1) ∈ I2.

Further, when the function G (T, R, ε) is continuously differentiable in its first

argument, we have

π RD

=
E
[∫ q1(U1)

q0(U0)
∂G(t,r0,ε)

∂t
dt

∣∣∣R = r0

]
E
[∫ q1(U1)

q0(U0)
1dt

∣∣∣R = r0

]
=
E
[∫ ∂G(t,r0,ε)

∂t
1 (q0(U0) ≤ t ≤ q1(U1)) dt

∣∣∣R = r0

]
E
[∫

1 (q0(U0) ≤ t ≤ q1(U1)) dt

∣∣∣R = r0

]
=

∫ ∫∫
E
[
∂G(t,r0,ε)

∂t

∣∣∣R = r0, q0(u0) ≤ t ≤ q1(u1)
]

Pr (q0(u0) ≤ t ≤ q1(u1)|R = r0) du0du1dt∫
T
∫∫

Pr (q0(u0) ≤ t ≤ q1(u1)|R = r0) du0du1dt

=
∫ ∫∫

E
[
∂G (t, r0, ε)

∂t

∣∣∣∣R = r0, q0(u0) ≤ t ≤ q1(u1)

]
wRD (u0, u1) du0du1dt,

3



where wRD (u0, u1) ≡
Pr(q0(u0)≤t≤q1(u1)|R=r0)∫ ∫∫

Pr(q0(u0)≤t≤q1(u1))du0du1dt
, the second to the last equality

follows from the law of iterated expectations and interchanging the order of integration

under standard regularity conditions.

Proof of Theorem 2 When Assumption 3 local rank invariance or local rank simi-

larity holds, under Assumptions 1, 2 and 4, π∗ ≡
∫
U

m+(u)−m−(u)
q+(u)−q−(u)

|q+(u)−q−(u)|∫
U |q

+(u)−q−(u)|du
du

identifies π (w∗), which is a special case of the WQ-LATE in Theorem 1 using a

weighting function w∗ (u) ≡ |1q(u)|∫ 1
0 |1q(u)|du

. Note that w∗ (u) > 0 by construction, so

π (w∗) is a causal parameter by Theorem 1 and the discussion in the main text.

Alternatively, when Assumption 3b monotonicity holds, under Assumptions 1, 2

and 4, π∗ = π RD. π RD identifies a causal parameter by Lemma 2.

B Proofs for Section 6 Inference

This section proceeds as follows. We first introduce notation. Section B.1 presents

preliminary lemmas to facilitate establishing asymptotics. Section B.2 presents as-

ymptotic theorems under undersmoothing. These lemmas and theorems can also be

of independent interest. Section B.3 collects the proofs of the lemmas in Section B.1.

Section B.4 provides the proofs of Theorem 7, Theorem 3, and Theorem 5 in Section

6, which pertain to τ̂ (u). Section B.5 presents the proofs of Theorem 8, Theorem 4,

and Theorem 6 in Section 6, which pertain to π̂∗.

Notation Let f ±T |R(u) ≡ limr→r
±
0

fT |R(q
±(u), r), σ 2±(u) ≡ limr→r

±
0
V
[
Y
∣∣T =

q±(u), R = r
]
, q ′′±r (u) ≡ limr→r

±
0
∂2q(r, u)/∂r2, m′±t (u) ≡ limr→r

±
0
∂E
[
Y |T =

t, R = r
]
/∂t |t=q±(u), m′′±t (u) ≡ limr→r

±
0
∂2E

[
Y |T = t, R = r

]
/∂t2|t=q±(u), and

m′′±r (u) ≡ limr→r
±
0
∂2E

[
Y |T = q±(u), R = r

]
/∂r2.

The following constants are defined by the kernel function. κ j ≡
∫∞

0
ν j K (ν)dν,

λ j ≡
∫∞

0
ν j K 2(ν)dν, CV ≡ 4

(
κ2

2λ0 − 2κ1κ2λ1 + κ2
1λ2

)(
κ2 − 2κ2

1

)−2
, CB ≡

(
κ2

2 −

κ1κ3

)(
κ2 − 2κ2

1

)−1
, and CC ≡

∫∞
0

K (ν/ρ)K (ν)dν
(
ρκ2

∫∞
0

K (ν/ρ)K (ν)dν−
κ1

∫∞
0
νK (ν/ρ)K (ν)dν

)
.21

Let e j be the 6× 1 j th unit column vector, i.e., it has 1 as the j th entry and 0’s as

21For the Uniform kernel, λ0 = 1/4, CV = 4, CB = −1/12, CC = ρ3/384 if ρ ≤ 1, and CC =
0.03125(ρ/3 − 0.25) if ρ > 1. For the Epanechnikov kernel, λ0 = 0.3, CV = 0.243, CB = 0.07414,

CC = 0.if ρ = 0, and CC = λ0(κ2λ0 − κ1λ1) if ρ = 1.
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all other entries. Further define the 6× 6 symmetric matrices

S2 ≡



1/2 κ1 0 κ2 0 κ2

κ2 0 κ3 0 2κ2κ1

κ2 0 2κ2κ1 0

κ4 0 2κ2
2

2κ2
2 0

κ4

 and32 ≡


λ0 λ1 0 λ2 0 0

λ2 0 λ3 0 0

0 0 0 0

λ4 0 0

0 0

0

 .

Let B
[
β̂
]
≡ E

[
β̂
]
− β denote the bias for a generic estimator β̂ of the parameter

β and C [X,Y] denote the covariance of any two random variables X and Y. Let ‖·‖∞
be the sup-norm, i.e., ‖ f ‖∞ = supx∈X | f (x)|.

B.1 Preliminary asymptotic results

In the following, Lemma 3 presents the asymptotic linear representations for 1q̂(u)
and1m̂(u). Lemma 4(I) and Lemma 5(I) present the asymptotic linear representations

for τ̂ (u) and π̂∗, respectively. Lemma 4(D) and Lemma 5(D) present the asymptotic

distributions of τ̂ (u) and π̂∗, respectively.

Lemma 3. Let Assumptions 1-5 hold. Then uniformly in u ∈ U ,

(Q) 1q̂(u)−1q(u)−h2
(
B+1 (u)−B−1 (u)

)
= n−1

∑n
i=1 Zi8

+
1i
(u)−(1−Zi )8

−
1i
(u)+

Op(h
3)+ op

(
(nh)−1/2

)
, where B±1 (u) ≡ CBq ′′±r (u)σ 2

R ,

8+1i
(u) ≡ (u − 1 (Ti ≤ q1(Ri , u)))

2 (κ2 − κ1(Ri − r0)/(hσ R))

f +T R(u)
(
κ2 − 2κ2

1

) 1

hσ R

K

(
Ri − r0

hσ R

)
and 8−1i

(u) is defined analogously by replacing q1(Ri , u) with q0(Ri , u).
(M) 1m̂(u)−1m(u)−h2

(
B2(u)+B+1 (u)m

′+
t (u)−B−1 (u)m

′−
t (u)

)
= n−1

∑n
i=1 Zi

(
φ+2i
(u)+

8+1i
(u)m′+t (u)

)
− (1 − Zi )

(
φ−2i
(u) + 8−1i

(u)m′−t (u)
)
+ Rem, where B2

(
u
)
≡

CB

(
m′′+r (u)− m′′−r (u)

)
σ 2

R + κ2

(
m′′+t (u)− m′′−t (u)

)
σ 2

T ,

φ±2i
(u) ≡

(
Yi −

(
m±(u)+ m′±r (u) (Ri − r0)+ m′±t (u)

(
Ti − q±(u)

)))
×

2 (κ2 − κ1(Ri − r0)/(hσ R))

f ±T R(u)
(
κ2 − 2κ2

1

) 1

hσ T

K

(
Ti − q±(u)

hσ T

)
1

hσ R

K

(
Ri − r0

hσ R

)

and the remainder term Rem = Op

((
log n/

(
nh2

))3/4
+ h4 + n−1h−5/2 + h3

)
.

Lemma 4. Let Assumptions 1-5 hold.

5



(I) Then uniformly in u ∈ U , τ̂ (u)− τ(u)− h2Bτ (u) = n−1
∑n

i=1 I Fτ i (u)+ Rem,

where

Bτ (u) ≡
(
B2(u)+ B+1 (u)

(
m′+t (u)− τ(u)

)
− B−1 (u)

(
m′−t (u)− τ(u)

) ) 1

1q(u)
,

(B.1)

B±1 (u) and B2 (u) are given in Lemma 3, the influence function I Fτ i (u) ≡(
Zi (φ

+
2i
(u) + 8+1i

(u)(m′+t (u) − τ(u))) − (1 − Zi )(φ
−
2i
(u) + 8−1i

(u)(m′−t (u) −
τ(u)))

)
(1q(u))−1, and 8±1i

(u), φ±2i
(u), and Rem are given in Lemma 3.

(D) If h = hn → 0, nh3 → ∞, and nh6 → c ∈ [0,∞), then for u ∈ U ,√
nh2

(
τ̂ (u)− τ(u)− h2Bτ (u)

)
→d N

(
0,Vτ (u)

)
, where

Vτ (u) ≡
2λ0CV

σ Tσ R (1q(u))2 fR(r0)

(
σ 2+(u)

f +T |R(u)
+
σ 2−(u)

f −T |R(u)

)
. (B.2)

Lemma 5. Let Assumptions 1-5 hold.

(I) Then π̂∗ − π∗ − h2Bπ = n−1
∑n

i=1 I Fπ i + Rem, where

Bπ ≡

∫
U

Bτ (u)w
∗ (u) du +

∫
U

(
B+1 (u)− B−1 (u)

) (
τ(u)− π∗

) w∗ (u)
1q(u)

du,

(B.3)

the influence function I Fπ i ≡ Zi8
+
21i
− (1− Zi )8

−
21i
+
∫
U
(
Zi8

+
1i
(u)3+(u)−

(1− Zi )8
−
1i
(u)3−(u)

)
du,

8±21i
≡
(
Yi − m(Ti , r

±
0 )− m′r (Ti , r

±
0 ) (Ri − r0)

) w∗ (FT |R(Ti , r
±
0 )
)

1q
(
FT |R(Ti , r

±
0 )
)

×
2 (κ2 − κ1(Ri − r0)/(hσ R))

fR(r0)
(
κ2 − 2κ2

1

) 1

hσ R

K

(
Ri − r0

hσ R

)
1
(
FT |R(Ti , r

±
0 ) ∈ U

)
,

m′r (Ti , r
±
0 ) ≡ limr→r

±
0
∂E [Y |T = Ti , R = r ] /∂r ,3±(u) ≡

(
m′±t (u)−π

∗
)w∗(u)
1q(u) ,

and 8±1i
(u) and Rem are given in Lemma 3.

(D) If h = hn → 0, nh4→∞, and nh5→ c ∈ [0,∞), then
√

nh
(
π̂∗ − π∗ − h2Bπ

)
→d N (0,Vπ ), where

Vπ ≡ Vm
π + Vq

π . (B.4)

Vm
π is due to estimation of 1m̂(u) in Step 2 and

Vm
π ≡

CV

∫
U
(
σ 2+(u)+ σ 2−(u)

)
du

σ R fR(r0)
(∫
U |1q(u)|du

)2 . (B.5)

6



V
q
π is due to estimation of 1q̂(u) in Step 1 and

Vq
π ≡

CV

σ R fR(r0)

∫
U

∫
U
(min{u, v} − vu)

(
3+(u)3+(v)

f +T |R(u) f +T |R(v)

+
3−(u)3−(v)

f −T |R(u) f −T |R(v)

)
dvdu. (B.6)

Define χ(u) = 1 (|1q(u)| > 0). Rewrite π∗ =
∫ 1

0
τ(u)w∗(u)χ(u)du. In estima-

tion, we replace χ(u) by χ̂(u) = 1
(
|1q̂(u)| > εn

)
. Lemma 6 below shows that using

χ̂(u) is asymptotically equivalent to using χ(u).

Lemma 6. Let the trimming parameter εn satisfy ε−1
n supu∈U

∣∣|1q̂(u)| − |1q(u)|
∣∣ =

op(1) and ε2
n

(
supu∈U

∣∣|1q̂(u)| − |1q(u)|
∣∣)−1

= op(1). Then
∫ 1

0
1q̂(u)

(
χ̂(u) −

χ(u)
)
du = op

(
supu∈U

∣∣|1q̂(u)| − |1q(u)|
∣∣).

Given the above Lemma 6, in the following proofs for π̂ and π̂bc
we focus on

estimators using the infeasible trimming function χ(u).

B.2 Asymptotic distributions under undersmoothing

Theorem 7 below presents the asymptotic distribution of τ̂ (u) under a bandwidth se-

quence h = hn that goes to zero fast enough with the sample size n (i.e., satisfying

nh6→ 0 instead of nh6→ c ∈ (0,∞)), so that the bias is asymptotically negligible.

Theorem 7 (Asymptotic distribution of τ̂ (u)). Let Assumptions 1-5 hold. If h = hn →
0, nh3→∞, and nh6→ 0, then for u ∈ U

τ̂ (u)− τ(u)√
Vτ ,n(u)

−→d N (0, 1) , where Vτ ,n(u) ≡
Vτ (u)

nh2
.

The exact form of Vτ (u) is given by equation (B.2) of Lemma 4 in Appendix B.

The bandwidth conditions in Theorem 7 imply a bandwidth choice h = hn =
Cτn−a for some constant a ∈ (1/6, 1/3) and Cτ ∈ (0,∞). Theorem 7 implies√

nh2
(
τ̂ (u)− τ(u)

)
→d N (0,Vτ (u)), where Vτ (u) is the asymptotic variance of√

nh2τ̂ (u). The 100(1 − α)% confidence interval for τ(u) is then given by
[
τ̂ (u) ±

8−1
1−α/2

√
Vτ (u)/(nh2)

]
, where8−1

1−α/2 is the (1−α/2)-quantile of the standard normal

distribution. One can estimate Vτ (u) by the usual plug-in estimator, i.e., replacing the

unknown parameters involved with their consistent estimates.

Theorem 8 below similarly presents the asymptotic distribution of π̂∗ using a band-

width sequence that goes to zero fast enough with the sample size (i.e., satisfying

nh5→ 0 instead of nh5→ c ∈ (0,∞)), so that the bias is asymptotically negligible.
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Theorem 8 (Asymptotic distribution of π̂∗). Let Assumptions 1-5 hold. If h = hn →
0, nh4→∞, nh5→ 0, and the number of grid points l →∞, then

π̂∗ − π∗√
Vπ,n

→d N (0, 1) , where Vπ,n ≡
Vπ

nh
.

The exact form of Vπ is given by equation (B.4) of Lemma 5 in Appendix B.

The bandwidth conditions in Theorem 8 imply a bandwidth choice h = hn =
Cπn−a for a ∈ (1/5, 1/4) and Cπ ∈ (0,∞). Based on Theorem 8,

√
nh
(
π̂∗ − π∗

)
→d

N (0,Vπ ), where Vπ is the asymptotic variance of
√

nhπ̂∗.
The asymptotic distributions of τ̂ (u) and π̂∗ presented here are valid only when

the bandwidths shrink to zero fast enough with the sample size, which prevents overly

large bandwidth choices, as are typical in empirical practice.

B.3 Proofs for Section B.1

The following proofs focus on q̂+(u) and m̂+(u) using observations above the RD

threshold. Results for q̂−(u) and m̂−(u) can be analogously derived.

Proof of Lemma 3

(Q) Proof for 1q̂(u) By Theorem 1.2 of Qu and Yoon (2015), we can show that the

leading bias of q̂+(u) with a small enough h R is given by

B+1 (u) ≡ q ′′+r (u)
1

2
(1, 0) N+h R

−1
∫
D+

h R

v2(1, v)>K (v)dv, where

N+h R
≡

∫
D+

h R

(
1 v

v v2

)
K (v)dv = N1 ≡

(
1/2 κ1

κ1 κ2

)
and D+h R

≡
[
0, (r̄ − r0)/h R) ∩ Supp(K ) if R = (r , r̄). Note that (1, 0)N−1

1 =

(2κ2,−2κ1, 0)/(κ2−2κ2
1), so B+1 (u) ≡ CBq ′′+r (u)σ 2

R . Similarly we can show B−1 (u) ≡
CBq ′′−r (u)σ 2

R .

By the Taylor expansion in Step 3 of the proof of Theorem 1 in Qu and Yoon (2015)

and by their notation, ei (u) = −h2
R

1
2

(
Ri−r0

h R

)2
∂2q(u,r)
∂r2 −h3

R
1
3!

(
Ri−r0

h R

)3
∂3q(u,r)
∂r3 +o(h3

R).

Following the same arguments as those in their proof and assuming that ∂3q(u, r)/∂r3

is bounded, the second-order bias of q̂+(u) is O(h3
R).

(M) Proof for 1m̂(u) Kong, Linton, and Xia (2010) provide a uniform Bahadur

representation for the local polynomial regression that is uniform over the interior
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support of the regressors. In the following, we extend their results to the case when

one of the regressors R is evaluated at the boundary point r0.

Decompose m̂+(u)−m+(u) = m̂+(u)−m̃+(u)+m̃+(u)−m+(u), where m̃+(u) =
Ê
[
Y |T = q+(u), R = r0

]
is the infeasible estimator using the true q+(u). By Corol-

lary 1 of Kong, Linton, and Xia (2010), the following asymptotic linear representation

holds:22 m̃+(u)−m+(u)−B
[
m̃+(u)

]
= n−1

∑n
i=1 Ziφ

+
2i
(u)+Op

((
log n/(nh2)

)3/4)
uniformly over u ∈ U , where the bias

B
[
m̃+(u)

]
= h2(1, 0, 0)S−1

1 Q1

(
σ 2

R

2
m′′+r (u), σ Rσ T lim

r→r
+
0

∂2m(t, r)

∂r∂t

∣∣∣∣
t=q+(u)

,
σ 2

T

2
m′′+t (u)

)>
+ Op(h

3),

S1 =

 1/2 κ1 0

κ1 κ2 0

0 0 κ2

 , and Q1 =

 κ2 0 κ2

κ3 0 2κ2κ1

0 2κ2κ1 0

 .
Note (1, 0, 0)S−1

1 =
(
2κ2,−2κ1, 0

)
/
(
κ2 − 2κ2

1

)
and (1, 0, 0)S−1

1 Q1 = 2(CB, 0, κ2).

Then B2(u) ≡ B
[
m̃+(u)

]
−B

[
m̃−(u)

]
= CBσ

2
R

(
m′′+r (u)−m′′−r (u)

)
+κ2σ

2
T

(
m′′+t (u)−

m′′−t (u)
)
.

Applying Theorem 1 of Kong, Linton, and Xia (2010) and Lemma 3(Q), we have

sup
u∈U

∣∣∣∣m̂+(u)− m̃+(u)−
(
q̂+(u)− q+(u)

) ∂
∂t
E [Y |T = t, R = r0]

∣∣∣
t=q+(u)

∣∣∣∣
= Op

((
sup
u∈U

∣∣q̂+(u)− q+(u)
∣∣ )2

+ sup
t∈T0

(∣∣∣ ∂
∂t
Ê [Y |T = t, R = r0]

−
∂

∂t
E [Y |T = t, R = r0]

∣∣∣) sup
u∈U

∣∣∣q̂+(u)− q+(u)
∣∣∣)

= Op

(
log n/(nh)+ h4 +

((
log n/

(
nh4

))1/2
+ h

)(
(log n/(nh))1/2 + h2

))
= Op

(
log n/

(
nh5/2

)
+ h3

)
,

where the compact set T0 ⊂ T . We then obtain m̂+(u) − m+(u) − B
[
m̃+(u)

]
−

h2B+1 (u)m
′+
t (u) = n−1

∑n
i=18

+
1i
(u)m′+t (u)Zi + φ

+
2i
(u)Zi + Rem.

Proof of Lemma 4

(I) From the proof of Lemma 3, ‖1q̂−1q‖∞ = Op

(
(log n/(nh))1/2 + h2

)
, ‖1m̂−

22Note that Kong, Linton, and Xia (2010) use the same bandwidths for all (standardized) regressors.
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1m‖∞ = Op

((
log n/

(
nh2

))1/2
+ h2

)
, and uniformly over u ∈ U ,

τ̂ (u)− τ(u) =
1m̂(u)−1m(u)

1q(u)
−

τ(u)

1q(u)

(
1q̂(u)−1q(u)

)
+ Op

(∥∥1m̂ −1m
∥∥
∞

∥∥1q̂ −1q
∥∥
∞

)
.

By Lemma 3, we obtain the influence function I Fτ i (u) and the bias.

(D) Consider the asymptotic variance Vτ (u). SinceE
[
Z
(
u−1 (T ≤ q1(R, u))

)∣∣R] =
0, E

[
Zi8

+
1i

]
= 0. Since limr→r

+
0
E
[
Y −

(
m+(u) + m′+r (u)(R − r0) + m′+t (u)(T −

q+(u))
)∣∣T = q+(u), R = r

]
= 0, we can show E

[
Ziφ
+
2i

]
= O(h). Then the sampling

variation from m̂(u) in Step 2 contributes

h2V
[
Ziφ
+
2i
(u)
]

= h2E
[

ZE
[ (

Y −
(
m+(u)+ m′+r (u) (R − r0)+ m′+t (u)

(
T − q+(u)

)))2 ∣∣∣∣T, R

]

×

(
2 (κ2 − κ1(R − r0)/h R)

f +T R(u)
(
κ2 − 2κ2

1

) )2
1

h2
T

K 2

(
T − q+(u)

hT

)
1

h2
R

K 2

(
R − r0

h R

)]
+ o(1)

=
2λ0CV

σ Tσ R

σ 2+(u)

f +T R(u)
+ o(1),

where CV = 4
∫∞

0

(
κ2−κ1v

)2
K 2(v)dv/

(
κ2−2κ2

1

)2
= 4

(
κ2

2λ0−2κ1κ2λ1+κ2
1λ2

)(
κ2−

2κ2
1

)−2
. The sampling variation from 1q̂ in Step 1 contributes

h2V
[
Zi8

+
1i
(u)
]

= h2E
[

ZE
[
(u − 1 (T ≤ q1(R, u)))2

∣∣∣R](2 (κ2 − κ1(R − r0)/h)

f +T R(u)
(
κ2 − 2κ2

1

) )2

×
1

h2σ 2
R

K 2
(R − r0

hσ R

)]
= h

CVu(1− u)

σ R

f +R (r0)

f +2
T R(u)

+ o(h) = O(h).

Thus the sampling variation from the first step estimator 1q̂ is of smaller order com-

pared with the sampling variation from the second step estimator m̂(u). Therefore we

obtain the asymptotic variance Vτ (u).
To show asymptotic normality, we apply Lyapounov CLT with third absolute mo-
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ment. The Lyapounov condition holds,
(∑n

i=1V
[
I Fτ i (u)

])−3/2∑n
i=1 E

[
|I Fτ i (u)|3

]
=

O
(
(nh−2)−3/2

)∑n
i=1 E

[
|I Fτ i (u)|3

]
= O

((
nh2

)−1/2)
= o(1).

Proof of Lemma 5

(I) The proof is for the estimator using the infeasible trimming, i.e., we use w̃∗(u) ≡
|1q̂(u)|∫

U |1q̂(u)|du
for U = {u ∈ (0, 1) : |1q(u)| > 0}. Denote this infeasible estimator as

π̃ ≡
∫
U τ̂ (u)w̃

∗(u)du. We show l →∞ and n →∞, π̂∗ − π̃ = op((nh)−1/2) at the

end of the proof.

Let w∗ (u) ≡ |1q(u)|∫
U |1q(u)|du

≡ A(u)
B

and w̃∗(u) ≡ |1q̂(u)|∫
U |1q̂(u)|du

≡
Â(u j )

B̂
. A linear

expansion w̃∗(u)−w∗ (u) = Â(u)−A(u)
B

− w∗(u)
B

(
B̂− B

)
+ Op

(∥∥ Â− A
∥∥
∞

∣∣B̂− B
∣∣) =

Op

(
‖q̂ − q‖∞

)
= Op

(
(log n/(nh))1/2 + h2

)
. Then

π̃ − π∗ =

∫
U
τ̂ (u)ŵ∗(u)du −

∫
U
τ(u)w∗ (u) du

=

∫
U

(
τ̂ (u)− τ(u)

)
w∗ (u) du +

∫
U
τ(u)

(
w̃∗(u)− w∗ (u)

)
du (B.7)

+

∫
U

(
τ̂ (u)− τ(u)

) (
w̃∗(u)− w∗ (u)

)
du,

where the last term is Op

((
(log n/(nh2))1/2+h2

)(
(log n/(nh))1/2+h2

))
by Lemma 4.

First consider the estimation error in the estimated weighting function w̃∗(u) in

equation (B.7). Let φ1i (u) ≡ φ
+
1i
(u)− φ−1i

(u), where φ+1i
(u) ≡ Zi8

+
1i
(u)+ h2B+1 (u)

and φ−1i
(u) ≡ (1 − Zi )8

−
1i
(u) + h2B−1 (u), so 1q̂(u) −1q(u) = n−1

∑n
i=1 φ1i (u) +

Op(h
3) + op((nh)−1/2). The absolute value function is Hadamard directionally dif-

ferentiable. By the delta method in Example 2.1 of Fang and Santos (2019), Â(u) −
A(u) = |1q̂(u)| − |1q(u)| = n−1

∑n
i=1 φ1i (u) (1 (1q(u) > 0)− 1 (1q(u) < 0))+

Op(h
3)+ op

(
(nh)−1/2

)
= Op

(
(nh)−1/2 + h2

)
, since 1 (1q(u) = 0) = 0 for u ∈ U .

It follows that B̂−B =
∫
U
(

Â(u)−A(u)
)
du+o(1) = n−1

∑n
i=1

∫
U φ1i (u)

(
1(1q(u) >
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0)− 1(1q(u) < 0)
)
du + op

(
(nh)−1/2

)
= Op

(
(nh)−1/2 + h2

)
. Then∫

U
τ(u)

(
w̃∗(u)− w∗ (u)

)
du

=

∫
U

τ(u)

B

(
Â(u)− A(u)

)
du −

π∗

B

(
B̂ − B

)
+ Op

(∫
U
|τ(u)|du

∥∥∥ Â − A

∥∥∥
∞

∣∣∣B̂ − B

∣∣∣)
=

1

n

n∑
i=1

∫
U

(
τ(u)

B
−
π∗

B

)
φ1i (u) (1 (1q(u) > 0)− 1 (1q(u) < 0)) du

+ Op

(
log n/(nh)+ h4

)
+ op

(
(nh)−1/2

)
=

1

n

n∑
i=1

∫
U

(
τ(u)− π∗

)
φ1i (u)

w∗ (u)

1q(u)
du + Op

(
log n/(nh)+ h4

)
+ op

(
(nh)−1/2

)
(B.8)

since w∗(u)/1q(u) =
(
1(1q(u) > 0)− 1(1q(u) < 0)

)
/B.

Next consider the first term in (B.7). Let m+(v) ≡ limr→r
+
0
E
[
Y
∣∣T = v, R = r

]
,

m+r (v) ≡ limr→r
+
0
∂E
[
Y
∣∣T = v, R = r

]
/∂r , and m+t (v) ≡ limr→r

+
0
∂E
[
Y
∣∣T =

t, R = r
]
/∂t |T=v. By change of variable v = q+(u), dv = du∂q+(u)/∂u =

du fR(r0)/ f +T R(u). Then φ+2i
(u) defined in Lemma 3 becomes

φ+2i
(FT1|R(v, r0)) =

(
Yi −

(
m+(v)+m′+r (v) (Ri − r0)+m′+t (v) (Ti − v)

))
×

2 (κ2 − κ1(Ri − r0)/h R)

f +T R(FT1|R(v, r0))
(
κ2 − 2κ2

1

) 1

hT

K

(
Ti − v

hT

)
Kh R

(Ri − r0) .
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Let U+ ≡
[
u, ū

]
⊆ U such that 1q(u) > 0 for all u ∈ U+. Then∫

U+
φ+2i
(u)

w (u)

1q(u)
du

=

∫ q+(ū)

q+(u)

(
Yi −

(
m+(v)+m′+r (v) (Ri − r0)+m′+t (v) (Ti − v)

))
×

2 (κ2 − κ1(Ri − r0)/h R)

f +T R(FT1|R(v, r0))
(
κ2 − 2κ2

1

)KhT
(Ti − v) Kh R

(Ri − r0)
f +T R(FT1|R(v, r0))

fR(r0)B
dv

=

∫ q+(ū)−Ti
hT

q+(u)−Ti
hT

(
Yi −

(
m+(Ti + hT s)+m′+r (Ti + hT s) (Ri − r0)

−m′+t (Ti + hT s) (hT s)
))

K (s)ds
2 (κ2 − κ1(Ri − r0)/h R)

fR(r0)B
(
κ2 − 2κ2

1

) Kh R
(Ri − r0)

= 8+21i

(
1+ Op

(
h2
))
.

The last equality follows by letting Uzi ≡ FTz |R(Tzi , r0) ∼ Uni f (0, 1) for z ∈ {0, 1}.
Thus T1i = q+(U1i ) and m+(T1i ) = m+(U1i ). The same argument applies to U−,

where 1q(u) < 0 for u ∈ U−. Then together with the influence function derived in

Lemma 4, the first term in equation (B.7) is given by∫
U

(
τ̂ (u)− τ(u)

)
w∗(u)du

=
1

n

n∑
i=1

(
Zi8

+
21i
− (1− Zi )8

−
2i

)
1 (Ui ∈ U)+

∫
U

(
φ+1i

(
m′+t (u)− τ(u)

)
−φ−1i

(
m′−t (u)− τ(u)

)
+ h2B2(u)

)w∗ (u)
1q(u)

du + Rem.

Together with (B.8), we obtain the asymptotic linear representation for π̂∗.

(D) The asymptotic variance Vπ is derived using the influence function in Lemma

5(I),

Vπ = lim
n→∞

hV
[ (

Zi8
+
21i
− (1− Zi )8

−
21i

)
1 (Ui ∈ U)

+

∫
U

(
Zi8

+
1i
(u)3+(u)− (1− Zi )8

−
1i
(u)3−(u)

)
du

]
.

limr→r
+
0
E
[
(Y − (m+(U)+m+r (U)(R − r0)))w

∗(U)/1q(U)
∣∣U = FT1|R(T1, r0), R =

r
]
= 0, so we can show E

[
Zi8

+
2i

1
(
Ui ∈ U

)]
= O(h) and E

[
1
(
Ui ∈ U

)
Zi8

+
21i
×
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∫
U Zi8

+
1i
(u)3+(u)du

]
= O(h). Then for V

q
π ,

lim
n→∞

hV
[∫
U

Zi8
+
1i
(u)3+(u)du

]
= lim

n→∞
h

∫ ∞
r0

∫
U

∫
U
E
[(

u − 1
(
T ≤ q+(u)

)) (
v − 1

(
T ≤ q+(v)

))
|R
]

×
3+(u)

f +T R(u)
du
3+(v)

f +T R(v)
dv

(
2 (κ2 − κ1(R − r0)/h)(

κ2 − 2κ2
1

) 1

hσ R

K

(
R − r0

hσ R

))2

fR(R)d R.

For Vm
π , limn→∞ hV

[
1 (Ui ∈ U) Zi8

+
21i

]
is

lim
n→∞

hE
[

ZE
[ (

Y −
(
m+(U)+ m′+r (U) (R − r0)

))2 ∣∣∣∣U, R

](
w∗(U)

1q(U)

)2

1 (U ∈ U)

×
4
(
κ2 − κ1

R−r0

h R

)2

f 2
R(r0)(κ2 − 2κ2

1)
2

1

h2σ 2
R

K 2

(
R − r0

hσ R

)]

=
CV

σ R fR(r0)

limr→r
+
0
E
[
V
[
Y
∣∣U, R

]
1 (U1 ∈ U)

∣∣R = r
]

(∫
U |1q(u)|du

)2 (B.9)

by (w∗(Ui )/1q(Ui ))
2 =

(∫
U |1q(u)|du

)−2
. Note limr→r

+
0
V
[
Y
∣∣U1 = FT1|R(T1, r0),

R = r
]
= limr→r

+
0
V
[
Y
∣∣T1 = q+(U1), R = r

]
= σ 2+(U1) and U1 ∼ Uni f (0, 1).

Thus in (B.9), limr→r
+
0
E
[
V
[
Y
∣∣U, R

]
1
(
U1 ∈ U

)∣∣R = r
]
=
∫
U σ

2+(u)du.

To show asymptotic normality, we apply Lyapounov CLT with third absolute mo-

ment. By the bandwidth conditions, the Lyapounov condition
(∑n

i=1V
[
I Fπ i

])−3/2
×∑n

i=1 E
[
|I Fπ i |3

]
= O

(
(nh−1)−3/2

)∑n
i=1 E

[
|I Fπ i |3

]
= O

((
nh
)−1/2)

= o(1) holds.

Finally, we argue that as the number of grid points l arbitrarily goes to infinity,

we can work with π̃ in the above proof by showing that π̂∗ − π̃ = op((nh)−1/2).
Since liml→∞U(l) = (0, 1), liml→∞ Ũ = Û ≡ {u ∈ (0, 1) |1q̂(u)| > εn} for any

n. It follows that liml→∞ l−1
∑

u j∈Ũ |1q̂(u j )| =
∫
Û |1q̂(u)|du and liml→∞ π̂

∗ =∫
Û τ̂ (u)w̃

∗(u)du for any n.

Next we argue that using the estimated trimming Û is asymptotically equivalent to

using the unknown U . By Lemma 6,
∫
Û |1q̂(u)|du−

∫
U |1q̂(u)|du =

∫ 1

0
|1q̂(u)|(χ̂(u)−

χ(u))du = op((nh)−1/2). The smoothness condition in Assumption 5.2 implies Lip-

schitz continuity τ(u)w∗(u)×
∫
U |1q(u)|du = O(|1q(u)|). Thus

∣∣ ∫
Û τ̂ (u)w̃

∗(u)du−∫
U τ̂ (u)w̃

∗(u)du
∣∣ = Op

( ∫ 1

0
|1q̂(u)|(χ̂(u)− χ(u))du

)
= op((nh)−1/2) by Lemma 6.

Therefore as l →∞ and n→∞, π̂∗ − π̃ = op((nh)−1/2).
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Proof of Lemma 6 Rewrite

χ̂(u)− χ(u)

= 1
(
|1q̂(u)| > εn, |1q(u)| ≤ 0

)
− 1

(
|1q̂(u)| ≤ εn, |1q(u)| > 0

)
= 1

(
|1q̂(u)| > εn, |1q(u)| ≤ 0

)
− 1

(
|1q̂(u)| ≤ εn < 2εn < |1q(u)|

)
(B.10)

− 1
(
|1q̂(u)| ≤ εn, 0 < |1q(u)| ≤ 2εn

)
. (B.11)

By the condition ε−1
n supu∈U

∣∣|1q̂(u)| − |1q(u)|
∣∣ = op(1), the first term in (B.10)

1
(
|1q̂(u)| > εn, |1q(u)| ≤ 0

)
≤ 1

(∣∣|1q̂(u)| − |1q(u)|
∣∣ > εn

)
= 0 with probability

approaching one (w.p.a.1) for any u ∈ U . Thus
(

supu∈U
∣∣|1q̂(u)| − |1q(u)|

∣∣)−1
×∫ 1

0
|1q̂(u)|1

(
|1q̂(u)| > εn, |1q(u)| ≤ 0

)
du = 0 w.p.a.1. It then implies that∫ 1

0
|1q̂(u)|1

(
|1q̂(u)| > εn, |1q(u)| ≤ 0

)
du = op

(
supu∈U

∣∣|1q̂(u)| − |1q(u)|
∣∣).

The same argument applies to the second term in (B.10) and implies that
∫ 1

0
|1q̂(u)|

1
(
|1q̂(u)| ≤ εn < 2εn < |1q(u)|

)
du = op

(
supu∈U

∣∣|1q̂(u)| − |1q(u)|
∣∣).

For the term in (B.11), note that
∫ 1

0
1
(
0 < |1q(u)| ≤ 2εn

)
du = F(2εn) denotes

the CDF of |1q(U )| with U ∼ Uni f (0, 1). By the smoothness Assumption 5.1, we

can apply a Taylor series expansion F(2εn) = F ′(0)2εn + o(εn) = O(εn). Therefore∫ 1

0

|1q̂(u)|1
(
|1q̂(u)| ≤ εn, 0 < |1q(u)| ≤ 2εn

)
du

≤ εn

∫ 1

0

1
(
0 < |1q(u)| ≤ 2εn

)
du = O(ε2

n) = o
(

sup
u∈U

∣∣|1q̂(u)| − |1q(u)|
∣∣)

by the condition ε2
n

(
supu∈U

∣∣|1q̂(u)| − |1q(u)|
∣∣)−1
= op(1). The result is then im-

plied.

B.4 Proofs of Theorem 7, Theorem 3, and Theorem 5 for τ(u)

Proof of Theorem 7 Lemma 4 implies Theorem 7 by letting the bias be of smaller

order, i.e.,
√

nh2h2Bτ (u) = o(1).

Proof of Theorem 3 The following derives the terms VBτ (u) and Cτ (u; ρ) in the as-

ymptotic variance of
√

nh2τ̂ bc(u), which are due to bias-correction. They are defined
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as follows.

VBτ (u) ≡ Vτ (u)
4λ0

CV

(CBe4 + κ2e6)
> S−1

2 e1e>1 S−1
2 (CBe4 + κ2e6) and (B.12)

Cτ (u; ρ) ≡ − Vτ (u)
8 (CBe4 + κ2e6)

> S−1
2 e1

λ0CV(κ2 − 2κ2
1)

CC. (B.13)

For notational simplicity, we suppress the notation for u in the functions of u.

Let B̂τ − Bτ ≡ B̂+τ − B+τ −
(
B̂−τ − B−τ

)
. We linearize the estimator and focus

on the part above the threshold: B̂+τ − B+τ =
{
B̂+2 − B+2 − B+1

(
τ̂ − τ

)
+
(
B̂+1 −

B+1
)
(m′+t − τ)

}/
1q + Remτ . Corollary 1 of Kong, Linton, and Xia (2010) for the

local quadratic estimator implies the asymptotic linear representation for B̂+2 − B+2 in

(B.14) below and the convergence rates of the derivatives in B̂+2 : ‖m̂′′+r − m′′+r ‖∞ =

Op

((
log n/(nb6)

)1/2
+b

)
, ‖m̂′′+t −m′′+t ‖∞ = Op

((
log n/(nb6)

)1/2
+b

)
, and ‖m̂′+t −

m′+t ‖∞ = Op

((
log n/(nb4)

)1/2
+ b2

)
. Lemma 3 in Qu and Yoon (2018) suggests

‖q̂ ′′+r − q ′′+r ‖∞ = Op

((
log n/(nb5)

)1/2
+ b

)
. Thus it can be shown that the term

associated with q̂ ′′+r in B̂+1 and the remainder terms Remτ are of smaller order.

B̂+τ − B+τ

=
1

1q

{
b−2 (CBe4 + κ2e6)

> β∗+
n2 + B

[
B̂+2

]}
+ Op

(
1

b2

(
log n

nb2

)3/4
)

(B.14)

−
B+1
1q

(
τ̂ − τ

)
+

CBσ
2
R

1q

(
q̂ ′′+r − q ′′+r

) (
m′+t − τ

)
+ Remτ

= Op

((
log n/(nb6)

)1/2
+ b +

(
log n/(nh2)

)1/2
+ h2

)
,

where B
[
B̂+2

]
= O(b) and

β∗+
n2 (u) ≡

W2S−1
2 B−1

n

n f +T R(u)

n∑
i=1

Kb(X i−x)
(

Yi − µ
(
X i − x

)>
W−1

2 β2(x)
)
µ
(
X i − x

)
Zi ,

where Kb(X i−x) ≡ (b2σ Rσ T )
−1K

(
Ti−q+(u)

bσ T

)
K

(
Ri−r0

bσ R

)
, W2 ≡ diag{1, 1, 1, 2, 1, 2},

Bn = diag{1, b, b, b2, b2, b2}, X i ≡ (Ti/σ T , Ri/σ R)
>, x ≡ (q+(u)/σ T , r0/σ R)

>,

µ
(
X
)
≡
(

1, R/σ R, T/σ T , R2/σ 2
R, RT/(σ Rσ T ), T 2/σ 2

T

)>
, and

β2(x) ≡
(

m+,m′+r σ R,m′+t σ T ,m′′+r σ 2
R, limr→r

+
0

∂2m(t,r)
∂r∂t

∣∣
t=q+(u)

σ Rσ T ,m′′+t σ 2
T

)>
. β∗−

n2

16



is defined as β∗+
n2 by replacing Zi with 1− Zi and + with −.

Together with Lemma 4, the asymptotic linear representation for τ̂ bc
is

τ̂ bc − τ

= τ̂ − τ − h2
(
B̂τ − Bτ

)
− h2Bτ

=
1

n

n∑
i=1

I Fτ bci − h2

(B [B̂+2 − B̂−2

]
1q

−
B+1 − B−1
1q

(
τ̂ − τ

)
+
(
q̂ ′′+r − q ′′+r

) CBσ
2
R

1q

(
m′+t − τ

)
−
(
q̂ ′′−r − q ′′−r

) CBσ
2
R

1q

(
m′−t − τ

) )
+ Op

(
h2

b2

(
log n

nb2

)3/4
)
+ Rem

=
1

n

n∑
i=1

I Fτ bci + Op

(
h2b + h3 +

h2
√

log n
√

nb5
+

h
√

n
+

log n
√

n2h5
+ (1+ ρ2)

(
log n

nb2

)3/4
)
,

where the influence function

I Fτ bci ≡
1

1q

{
Zi

(
φ+2i
+8+1i

(
m′+t − τ

))
−

h2

b2
(CBe4 + κ2e6)

> β∗+
n2

− (1− Zi )
(
φ−2i
+8−1i

(
m′−t − τ

))
+

h2

b2
(CBe4 + κ2e6)

> β∗−
n2

}
. (B.15)

Next we derive the asymptotic variance V
[
β∗+

n2

]
to be

W2S−1
2 B−1

n

n f +2
T R

V
[

Kb(X − x)
(

Yi − µ
(
X − x

)>
W−1

2 β2(x)
)
µ
(
X − x

)
Zi

]
B−1

n S−1
2 W2,

17



where the second moment term

V
[

Kb(X − x)
(

Y − µ
(
X − x

)>
W−1

2 β2(x)
)
µ
(
X i − x

)
Zi

]
=

∫
T

∫ ∞
r0

K 2
b (X − x)E

[(
Y − µ

(
X − x

)>
W−1

2 β2(x)
)2
∣∣∣∣R, T

]
µ
(
X − x

)
µ
(
X − x

)>
× fT R(T, R)dT d R

=

∫ ∞
−∞

∫ ∞
0

K 2(v)K 2(s)E
[(

Y − µ
(
X − x

)>
W−1

2 β2(x)
)2
∣∣∣∣T = q+ + bs, R = r0 + bv

]
× µ((bs, bv)>)µ((bs, bv)>)> fT R(q

+ + bs, r0 + bv)dvds
1

b2σ Tσ R

=
2λ2

0

b2σ Tσ R

V
[
Y
∣∣T = q+, R = r0

]
fT R(q

+, r0)e1e>1 + O

(
b−1

)
.

Therefore

V
[
β∗+

n2

]
=

2λ2
0σ

2+

nb2σ Tσ R f +T R

W2S−1
2 e1e>1 S−1

2 W2 + O

(
(nb)−1

)
.

Thus the variance of B̂τ contributes to the asymptotic variance of τ̂ bc
by a term of order

ρ4(nb2)−1 = (nh2ρ−6)−1. Since (CBe4 + κ2e6)
>W2 = 2 (CBe4 + κ2e6)

>, we obtain

VBτ (u) defined in (B.12) by showing that the sample above the threshold contributes

σ 2+

f +T R

1

σ Tσ R(1q)2
8λ2

0 (CBe4 + κ2e6)
> S−1

2 e1e>1 S−1
2 (CBe4 + κ2e6) .

For the covariance term,

C
[
Ziφ
+
2i
, β∗+

n2

]
=

1

n

2W2S−1
2 B−1

n

f +2
T R

(
κ2 − 2κ2

1

)E[Kh

(
T − q+, R − r0

)
Kb

(
T − q+, R − r0

)
×
(
Y −

(
m+ + m′+r (R − r0)+ m′+t

(
T − q+

))) (
Y − µ

(
X − x

)>
W−1

2 β2(x)
)

× (κ2 − κ1(R − r0)/h) µ
(
X − x

)
Z

]
,

18



where the expectation term is∫
T

∫ ∞
r0

Kh

(
T − q+, R − r0

)
Kb

(
T − q+, R − r0

)
(κ2 − κ1(R − r0)/h) µ

(
X − x

)
× E

[ (
Y −

(
m+ + m′+r (R − r0)+ m′+t

(
T − q+

)))
×
(

Y − µ
(
X − x

)>
W−1

2 β2(x)
) ∣∣∣∣T, R

]
fT R(T, R)d RdT

=
2σ 2+

h2σ Tσ R

(
κ2

(∫ ∞
0

K (v/ρ)K (v)dv

)2

−
κ1

ρ

∫ ∞
0

vK (v/ρ)K (v)dv

∫ ∞
0

K (v/ρ)K (v)dv

)
e1 f +T R + O

(
bh−2

)
.

Since B−1
n e1 = e1, the covariance

C
[

Ziφ
+
2i
,−

h2

b2
(CBe4 + κ2e6)

> β∗+
n2

]
1

(1q)2

= − (CBe4 + κ2e6)
> 1

(1q)2
ρ2C

[
Ziφ
+
2i
, β∗+

n2

]
= −

1

nb2σ Tσ R

σ 2+

f +T R

8 (CBe4 + κ2e6)
> S−1

2 e1(
κ2 − 2κ2

1

)
(1q)2

{
κ2

(∫ ∞
0

K (v/ρ)K (v)dv

)2

−
κ1

ρ

∫ ∞
0

vK (v/ρ)K (v)dv

∫ ∞
0

K (v/ρ)K (v)dv

}
+ O

(
(nb)−1

)
.

A similar derivation yields

C
[

Zi8
+
1i

(
m′+t − τ

)
,−

h2

b2
(CBe4 + κ2e6)

> β∗+
n2

]
1

(1q)2

= − (CBe4 + κ2e6)
>

(
m′+t − τ

)
(1q)2

ρ2C
[
Zi8

+
1i
, β∗+

n2

]
= o

(
(nb2)−1

)
.

Thus the covariance between the B̂τ and τ̂ contributes to the asymptotic variance of

τ̂ bc
by a term of order (nb2ρ)−1 = (nh2ρ−1)−1. We obtain Cτ (u; ρ) defined in (B.13)
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by showing that the sample above the threshold contributes

−
σ 2+

f +T R

16 (CBe4 + κ2e6)
> S−1

2 e1

σ Tσ R(κ2 − 2κ2
1)(1q)2

∫ ∞
0

K (v/ρ)K (v)dv

×

(
ρκ2

∫ ∞
0

K (v/ρ)K (v)dv − κ1

∫ ∞
0

vK (v/ρ)K (v)dv

)
.

Therefore Vbc
τ = O

(
(nh2)−1 + h4(nb6)−1

)
and B

[
τ̂ bc
]
= −h2B

[
B̂τ
]
+ O(h3) =

O
(
h3 + h2b

)
is of smaller order by the conditions n min{h6, b6}max{h2, b2} → 0.

We have the asymptotic linear representation in (B.15), τ̂ bc − τ = n−1
∑n

i=1 I Fτ bci +
op

(
(nh2)−1/2 + h2(nb6)−1/2

)
. To show asymptotic normality, we apply Lyapounov

CLT with third absolute moment. When h/b→ ρ ∈ 0,∞), (B.15) implies
√

nh2
(
τ̂ bc−

τ − B
[
τ̂ bc
])
=
√

nh2n−1
∑n

i=1 I Fτ bci + op(1). The Lyapounov condition holds,(∑n
i=1V

[
I Fτ bci

])−3/2∑n
i=1 E

[
|I Fτ bci |

3
]
= O

(
(nh−2)−3/2

)∑n
i=1 E

[
|I Fτ bci |

3
]
=

O
(
n−1/2h3

(
h−4 + ρ6b−4

))
= O

((
nh2

)−1/2)
= o(1). Then

√
nh2

(
τ̂ bc(u; h, b) −

τ(u)
)
→d N

(
0,Vbc

τ (u)
)
.

When h/b → ∞,
√

nb6h−4
(
τ̂ bc − τ − B

[
τ̂ bc
])
=
√

nb6h−4n−1
∑n

i=1 I Fτ bci +

op(1). The Lyapounov condition holds,
(∑n

i=1V
[
I Fτ bci

])−3/2∑n
i=1 E

[
|I Fτ bci |

3
]
=

O
(
(nb−6h4)−3/2

)∑n
i=1 E

[
|I Fτ bci |

3
]
= O

(
n−1/2b9h−6ρ6b−4

)
= O

((
nb2

)−1/2)
=

o(1). Then
√

nb6h−4
(
τ̂ bc(u; h, b)− τ(u)

)
→d N

(
0,VBτ (u)

)
.

Proof of Theorem 5 Theorem 5 follows by minimizing the AMSE implied by Lemma 4.

The asymptotic distribution becomes n1/3
(
τ̂ (u)− τ(u)

)
→d N

(
c2

uBτ (u), c−2
u Vτ (u)

)
,

where cu ≡
(
Vτ (u)/

(
2B2

τ (u)
))1/6

.

B.5 Proofs of Theorem 8, Theorem 4, and Theorem 6 for π∗

Proof of Theorem 8 Lemma 5 implies Theorem 8 by letting the bias be of smaller

order, i.e.,
√

nhh2Bπ = o(1).

Proof of Theorem 4 The following derives the terms VBπ and Cπ in the asymptotic

variance of
√

nhπ̂bc
, which are due to bias correction. They are defined as follows.

VBπ ≡ Vm
πC−1

V
4 (CBe4 + κ2e6)

> S−1
2 32S−1

2 (CBe4 + κ2e6) and (B.16)

Cπ ≡− Vm
π

8 (CBe4 + κ2e6)
> S−1

2

CV

(
κ2 − 2κ2

1

) ∫ ∞
0

K (v)K (v/ρ)v2(κ2 − κ1v/ρ)dv, (B.17)
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where v2 ≡ (1, v, 0, v2, 0, 0)>. For ρ = 1, the integration in Cπ becomes
(
κ2λ0 −

κ1λ1, κ2λ1 − κ1λ2, 0, κ2λ2 − κ1λ3, 0, 0
)>

.

Similar to the proof of Lemma 5, the proof below is for the estimator using the

infeasible trimming function χ(u), denoted by B̃π ≡
∫
U B̂τ (u)w̃

∗(u)du+
∫
U

(
B̂+1 (u)−

B̂−1 (u)
)(
τ̂ (u) − π̂

)
w̃∗(u)/1q̂(u)du. Following the same arguments as in Lemma 6,

we have π̃bc − π̂bc = op((nh)−1/2).
First derive the asymptotic linear representation

π̂bc − π∗ =
1

n

n∑
i=1

I Fπbci + op

(
(nh)−1/2 + ρ2(nb)−1/2

)
,

where the influence function

I Fπbci ≡ Zi

{∫
U
8+1i

(u)3+(u)du − ρ2 (CBe4 + κ2e6)
>8+22i

(b)1 (Ti ∈ TU1)

+8+21i
(h)1 (Ti ∈ TU1)

}
− (1− Zi )

{
8−21i

(h)1 (Ti ∈ TU0) (B.18)

+

∫
U
8−1i

(u)3−(u)du − ρ2 (CBe4 + κ2e6)
>8−22i

(b)1 (Ti ∈ TU0)

}
with 8±21i

(h) defined in Lemma 5 and

8±22i
(b) ≡

(
Yi −

(
m±(Ui )+ m′±r (Ui ) (Ri − r0)+

1

2
m′′±r (Ui ) (Ri − r0)

2

))
w∗(Ui )

1q(Ui )

×
W2S−1

2

fR(r0)

(
1,

Ri − r0

b
, 0,

(
Ri − r0

b

)2

, 0, 0

)>
1

bσ R

K

(
Ri − r0

bσ R

)
.

To derive 8±22i
(b), linearize the bias estimator B̂π − Bπ to be∫

U

(
B̂τ (u)− Bτ (u)

)
w∗(u)du +

∫
U

(
B+1 (u)− B−1 (u)

) (
τ̂ (u)− τ(u)

) w∗(u)
1q(u)

du + Remπ .

The leading term in Remπ is Op(‖B̂τ−Bτ‖∞‖1q̂−1q‖∞) = Op

(((
log n/(nb6)

)1/2
+

b+
(

log n/(nh)
)1/2
+ h2

)((
log n/(nh)

)1/2
+ h2

))
. And the terms associated with the

cross products of B̂+1 − B+1 , 1q̂ − 1q, τ̂ − τ , and π̂∗ − π∗ in Remπ are of smaller
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order. Together with Lemma 4 and Lemma 5,

π̂bc − π∗

= π̂∗ − π∗ − h2Bπ − h2(B̂π − Bπ )

=
1

n

n∑
i=1

I Fπ i − h2

∫
U

(
B̂τ (u)− Bτ (u)

)
w∗(u)du

− h2 1

n

n∑
i=1

∫
U

I Fτ i (u)
(
B+1 (u)− B−1 (u)

) w∗(u)
1q(u)

du

− h4

∫
U

Bτ (u)
(
B+1 (u)− B−1 (u)

) w∗(u)
1q(u)

du + Rem + Op

(
h5 + h2(Rem + Remπ )

)
.

By the same argument in the proof of Lemma 5, the third term associated with I Fτ i (u)
is Op

(
h2
(
(nh)−1/2 + h2

))
, which is of smaller order. We focus on the second term∫

U
(
B̂τ (u)− Bτ (u)

)
w(u)du using the expansion in (B.14). One can show that∫

U

w∗(u)

1q(u)

{
b−2 (CBe4 + κ2e6)

> β∗+
n2 (u)+ B

[
B̂+2
]
− B+1 (u)

(
τ̂ (u)− τ(u)

) }
du

(B.19)

= Op

(
(nb5)−1/2 + b + (nh)−1/2 + h2

)
.

To see why, the second term associated with B
[
B̂+2
]

is O(b) and the third term asso-

ciated with τ̂ − τ is Op

(
(nh)−1/2 + h2

)
by the proof of Lemma 5 with the additional

weight B+1 (Ui )/1q(Ui ). For the first term in (B.19), we use the same arguments as

those in deriving (B.9) in the proof of Lemma 8. By change of variable v = q+(u)
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and s = (v − Ti )/bT , we have∫
U

w∗(u)

1q(u)
β∗+

n2 (u)du

=
W2S−1

2 B−1
n

n

n∑
i=1

∫
U

w∗(u)

f +T R(u)1q(u)
Kb(X i − x)

(
Yi − µ

(
X i − x

)>
W−1

2 β2(x)
)

× µ
(
X i − x

)
du Zi

=
W2S−1

2 B−1
n

n

n∑
i=1

∫ ∞
−∞

w∗
(
FT1|R(Ti + bT s, r0)

)
1q

(
FT |R(Ti + bT s, r0)

) K (s)

fR(r0)
1
(
FT1|R(Ti + bT s, r0) ∈ U

)
×
(

Yi − µ
(
(Ri − r0, bT s)>

)>
W−1

2 β2(x)
)
µ
(
(Ri − r0, bT s)>

)
ds Zi Kb(Ri − r0)

=
1

n

n∑
i=1

Zi8
+
22i
(b)1 (Ui ∈ U) (1+ Op(b

2)).

For the asymptotic variance contributed by B̂π , VBπ , we have

E
[
8+2

22i
(b)1 (Ui ∈ U) Zi

]
= W2S−1

2 E
[(

Y −

(
m+(U)+ m′+r (U) (R − r0)+

1

2
m′′+r (U) (R − r0)

2)

))2

×

(
1,

R − r0

b
, 0,

(
R − r0

b

)2

, 0, 0

)> (
1,

R − r0

b
, 0,

(
R − r0

b

)2

, 0, 0

)

×

(
w∗(U)

1q(U)

)2

K 2
b (R − r0) 1 (U ∈ U) Z

]
S−1

2 W2

f 2
R(r0)

= W2S−1
2

∫ ∞
0

∫
T

1
(
FT1|R(T |r0) ∈ U

)
v>vK 2 (v)E

[(
Y −

(
m+(U)+ m′+r (U)(bv)

+
1

2
m′′+r (U)(bv)2

))2∣∣∣∣U = FT1|R(T |r0), R = r0 + bv

]
fT R(T, r0 + bv)dT dv

×
S−1

2 W2

bσ R B2 f 2
R(r0)

=
E
[
V
[
Y
∣∣U, R

]
1 (U ∈ U)

∣∣R = r+0

]
bσ R B2 fR(r0)

W2S−1
2 32S−1

2 W2 + o(b−1) = O(b−1).

Thus the first term in (B.19) is Op((nb5)−1/2). Then ρ2 (CBe4 + κ2e6)
>8+22i

(b) con-

tributes to the asymptotic variance of π̂bc
by a term of order ρ4(nb)−1 = (nhρ−5)−1.

We obtain VBπ defined in (B.16) by showing that the sample above the cutoff con-
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tributes
4
∫
U σ

2+(u)du

σ R B2 fR(r0)
(CBe4 + κ2e6)

> S−1
2 32S−1

2 (CBe4 + κ2e6) .

The asymptotic covariance is limn→∞−2hρ2
(
CBe4+ κ2e6

)>C[Zi8
+
21i
(h)1

(
Ui ∈

U
)
, Zi8

+
22i
(b)1

(
Ui ∈ U

)]
= limn→∞−2hρ2

(
CBe4+κ2e6

)>E[Zi8
+
21i
(h)8+22i

(b)1
(
Ui ∈

U
)]

, where

E
[
Zi8

+
21i
(h)8+22i

(b)1 (Ui ∈ U)
]

=
2W2S−1

2

B2 f 2
R(r0)

(
κ2 − 2κ2

1

)E[Z Kh (R − r0) Kb (R − r0)
(

Y − m±(U)− m′±r (U) (R − r0)
)

×

(
Y − m±(U)− m′±r (U) (R − r0)−

m′′±r (U)

2
(R − r0)

2

)

×

(
1,

R − r0

b
, 0,

(
R − r0

b

)2

, 0, 0

)> (
κ2 − κ1

R − r0)

h

)
1 (U ∈ U)

]
.

By change of variable v = (R − r0)/b, the above expectation term is

1

σ Rρb

∫ ∞
0

∫
T

K (v)K (v/ρ)V
[
Y |U = FT1|R(T, r0), R = r0 + vb

]
v2 (κ2 − κ1v/ρ)

× 1
(
FT1|R(T, r0) ∈ U

)
fT R(T, r0 + vb)dT dv = O

(
(ρb)−1

)
.

Thus the covariance between ρ2 (CBe4 + κ2e6)
>8+22i

(b) and 8+21i
(h) contributes to

the asymptotic variance of π̂bc
by a term of order ρ2(nρb)−1 = (nhρ−2)−1. We

obtain Cπ defined in (B.17) by showing that the sample above the cutoff contributes

−
8
∫
U σ

2+(u)du

σ R B2 fR(r0)
(
κ2 − 2κ2

1

) (CBe4 + κ2e6)
> S−1

2

∫ ∞
0

K (v)K (v/ρ)v2(κ2−κ1v/ρ)dv.

Therefore V
[
π̂bc

]
= O

(
(nh)−1 + (nb5h−4)−1

)
and B

[
π̂bc

]
= O

(
h2(h + b)

)
that is smaller-order by the bandwidth conditions n min{h5, b5}max{h2, b2} → 0.

To show asymptotic normality, we apply Lyapounov CLT with third absolute mo-

ment. When h/b → ρ ∈ 0,∞), (B.18) implies
√

nh
(
π̂bc − π∗ − B

[
π̂bc

])
=

√
nhn−1

∑n
i=1 I Fπbci + op(1). The Lyapounov condition

(∑n
i=1V

[
I Fπbci

])−3/2
×∑n

i=1 E
[
|I Fπbci |

3
]
= O

(
(nh−1)−3/2

)∑n
i=1 E

[
|I Fπbci |

3
]
= O

(
n−1/2h3/2h−2

)
=

O
(
(nh)−1/2

)
= o(1) holds. Then

√
nh
(
π̂bc(h, b)− π∗

)
→d N

(
0,Vbc

π

)
.

When h/b→∞,
√

nb5h−4
(
π̂bc −π∗−B

[
π̂bc

])
=
√

nb5h−4n−1
∑n

i=1 I Fπbci +

op(1). The Lyapounov condition holds,
(∑n

i=1V
[
I Fπbci

])−3/2∑n
i=1 E

[
|I Fπbci |

3
]
=
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O
(
(nb−5h4)−3/2

)∑n
i=1 E

[
|I Fπbci |

3
]
= O

(
n−1/2b15/2h−6ρ6b−2

)
= O

(
(nb)−1/2

)
=

o(1). Then
√

nb5h−4
(
π̂bc(h, b)− π∗

)
→d N

(
0,VBπ

)
.

Proof of Theorem 6 Theorem 6 follows by minimizing the AMSE implied by Lemma 5.

The asymptotic distribution becomes n2/5
(
π̂∗ − π∗

)
→d N

(
c2
πBπ , c−1

π Vπ
)
, where

cπ ≡
(
Vπ/

(
4B2

π

))1/5
.

C Estimation of the biases, variances, and AMSE opti-

mal bandwidths

This section briefly describes how to estimate the biases Bτ (u) and Bπ for τ̂ (u) and

π̂∗, respectively, and the asymptotic variances Vτ (u) and Vπ for τ̂ (u) and π̂∗, respec-

tively. We also describe how to estimate their associated AMSE optimal bandwidths

h∗τ (u) and h∗π . We focus on estimating the unknown parameters defined above the RD

cutoff. Corresponding parameters defined below the cutoff can be estimated analo-

gously.

C.1 Biases estimation

Consider the bias of τ̂ (u). Bτ (u) ≡
(
B2(u)+B+1 (u)

(
m′+t (u)−τ(u)

)
−B−1 (u)

(
m′−t (u)−

τ(u)
))

1
1q(u) , where B±1 (u) ≡ CBq ′′±r (u)σ 2

R and B2(u) ≡ CB

(
m′′+r (u)−m′′−r (u)

)
σ 2

R+

κ2

(
m′′+t (u)− m′′−t (u)

)
σ 2

T .

CB is a constant depending on the kernel function. For the Uniform kernel, CB =
−1/12. 1q(u) is the denominator of τ(u), which is estimated in Step 1 of the estima-

tion procedure described in the main text. m′+t (u) can be estimated by b̂2 (u) in Step 2

of the local linear estimation described in the main text.

The remaining unknowns are q ′′+r (u), m′′+r (u), and m′′+t (u). They can be estimated

by local quadratic quantile or mean regressions. In particular, q ′′+r (u) can be estimated

by 2α̂2 from the following local quadratic quantile regression with a chosen bandwidth

b,

(̂α0, α̂1, α̂2)

= arg min
α0,α1,α2

∑
{i : Ri≥r0}

K

(
Ri − r0

bσ R

)
ρu

(
Ti − α0 − α1 (Ri − r0)− α2 (Ri − r0)

2
)
.

Further, m′′+t (u) and m′′+r (u) can be estimated by 2β̂0,2 and 2β̂2,2, respectively
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from the following local quadratic regression

(
β̂k, j ,k, j=0,1,2

)
= arg min

βk, j ,k, j=0,1,2

∑
{i Ri≥r0}

K

(
Ri − r0

bσ R

)
K

(
Ti − q̂+(u)

bσ T

)

×

(
Yi −

2∑
j=0

j∑
k=0

βk, j (Ri − r0)
k
(
Ti − q̂+(u)

) j−k

)2

.

Plugging in CB and estimates of m′±t (u), q ′′±r (u), m′′±r (u), and m′′±t (u), one obtains

B̂τ (u).
Consider next the bias of π̂∗. Bπ ≡

∫
U Bτ (u)w

∗(u)du+
∫
U
(
B+1 (u)−B−1 (u)

)(
τ(u)−

π∗
)w∗(u)
1q(u)du. Bτ (u) and B±1 (u) are estimated in the above. 1q(u) is estimated in Step

1 estimation described in the main text. The weighting function w∗(u) is estimated in

Step 4. Plugging in these estimates, one obtain B̂π .

C.2 Variances estimation

For the standard error of τ̂ (u), Theorem 7 gives Vτ (u) ≡
2λ0CV

(1q(u))2 fR(r0)σ Rσ T

(
σ 2+(u)

f
+
T |R(u)

+

σ 2−(u)

f
−
T |R(u)

)
.23 For the Uniform kernel, CV = 4 and λ0 = 1/4. 1q(u) is estimated by Step

1 estimation described in the main text. The remaining unknowns are fR(r0), σ R , σ T ,

f ±T |R(u), and σ 2±(u).
σ R and σ T can be estimated directly by the sample standard deviations of R and

T , respectively. The densities fR(r0) and f +T |R(u) can be estimated by the standard

Nadaraya-Watson estimator. In particular, f̂ ±T |R(u) =
∑n

i=1 K

(
Ri−r0

gσ R

)
K

(
Ti−q±(u)

gσ T

)
Zi/∑n

i=1 K

(
Ri−r0

gσ R

)
Zi and f̂R(r0) = (ngσ R)

−1
∑n

i=1 K

(
Ri−r0

gσ R

)
, where the Silverman-

rule-of-thumb bandwidth for a uniform kernel g = 0.7344n±
−1/6

for f̂ ±T |R(u) and

g = 1.843n−1/5 for f̂R(r0).
σ 2+(u) can be estimated by θ̂0 from the following local linear regression

(̂
θ0, θ̂1, θ̂2

)
= arg min

θ0,θ1,θ2

∑
{i Ri≥r0}

K

(
Ti − q̂+(u)

bσ T

)
K

(
Ri − r0

bσ R

)
×
(
(Yi − m̂+(u))2 − θ0 − θ1 (Ri − r0)− θ2

(
Ti − q̂+(u)

))2

,

23The influence function for τ̂ (u) is provided in Lemma 4. If desired, one can alternatively estimate

the influence function and then estimate the variance of τ̂ (u) by the sample variance of the estimated

influence function. Similarly we can use the influence function for π̂∗ provided in Lemma 5 to estimate

the variance of π̂∗.
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where m̂+(u) is estimated in Step 2 estimation described in the main text.

Plugging in all estimates and the constants CV and λ0, one obtains V̂τ (u).
Consider next the standard error of the bias-corrected estimator τ̂ bc(u). By Theo-

rem 3, Vbc
τ ,n(u) ≡

Vτ (u)
nh2 +

VBτ (u)+ρ
−5Cτ (u;ρ)

nh2ρ−6 . Estimation of Vτ (u) is discussed above.

For the Uniform kernel, VBτ (u) = 9.765625Vτ (u) by equation (B.12), and Cτ (u; ρ) =
3.125ρ3Vτ (u) when ρ ≤ 1, and Cτ (u; ρ) = 37.5(ρ/3 − 1/4)Vτ (u) when ρ > 1 by

equation (B.13). Plugging in V̂τ (u) for a chosen ρ, one can obtain V̂bc
τ ,n(u).

Consider the standard error of π̂∗. By Theorem 8, Vπ ≡ Vm
π + V

q
π , where Vm

π ≡
CV

∫
U (σ

2+(u)+σ 2−(u))du

σ R fR(r0)(
∫
U |1q(u)|du)2

and V
q
π ≡

CV
σ R fR(r0)

∫
U
∫
U
(

min{u, v} − vu
)( 3+(u)3+(v)

f
+
T |R(u) f

+
T |R(v)
+

3−(u)3−(v)

f
−
T |R(u) f

−
T |R(v)

)
dvdu with3±(u) ≡

(
m′±t (u)−π

∗
)w∗(u)
1q(u) . Estimation of1q(u), fR(r0),

f ±T |R(u), and σ 2±(u) is described at the beginning of this section. w∗(u) is estimated

in Step 4 estimation in the main text.

The only unknown involved in Vπ is m′±t (u), which appears in 3±(u), u = u, v.

m′±t (u) can be estimated by b̂±2 (u) from Step 2 local linear regression described in the

main text. Plugging in the estimates of 1q(u), m′±t (u), and w∗(u), one get estimates

of 3±(u).
Further plugging in the estimates of 1q(u), fR(r0), f ±T |R(u), 3

±(u), σ 2±(u), and

the constant CV, and replacing integration by summation, one can obain V̂π = V̂m
π +

V̂
q
π .

Consider lastly the standard error of the bias-corrected estimator π̂bc
. By Theorem

4, Vbc
π,n ≡

Vπ
nh
+

VBπ+ρ
−3Cπ

nhρ−5 . Estimation of Vπ is provided above. For the Uniform

kernel, VBπ = 1.641Vm
π by equation (B.16) and Cπ = (3.125ρ − 2.5ρ3)Vm

π when

ρ ≤ 1, and Cπ = (2.5− 1.875/ρ)Vm
π when ρ > 1 by equation (B.17). Estimation of

Vm
π is discussed above. Plugging in the estimates of Vπ and Vm

π and the constant Cπ ,

one obtain V̂bc
π,n .

C.3 Optimal bandwidths estimation

Given consistent estimates of Bτ (u), Vτ (u), Bπ , and Vπ in the previous section,

by the plug-in rule, one can estimate the AMSE optimal bandwidths by ĥ∗τ (u) =(
V̂τ (u)

/(
2B̂2

τ (u)
))1/6

n−1/6 and ĥ∗π =
(
V̂π
/(

4B̂2
π

))1/5
n−1/5.
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D Supplementary empirical analysis

Table D.1 presents the estimated impacts of log capital on the outcomes of interest,

using bandwidths consistent with undersmoothing and so no bias correction is made.

These estimates show similar patterns as those bias-corrected robust inference results

reported in the main text. The estimated impacts on log assets are significant for all

banks at the low quantiles of log capital, while the estimated impacts on log leverage

and suspension are all insignificant. In addition, the estimates for log assets are slightly

larger at for banks at the lower quantiles of log capital. Note that the bias-corrected

estimates use larger bandwidths and hence there is no loss of precision compared with

estimates by undersmoothing.

Figure D.1 plots the estimated Q-LATEs based on undersmoothing at different

quantiles. Figure D.2 shows how the estimated WQ-LATEs based on undersmooth-

ing changes with bandwidths. Tables D.2 and D.3 present estimates using analytical

standard errors.

Table D.1 Impacts of log(capital) on bank outcomes (undersmoothing)

Q-LATE Quantile Log(assets) Log(leverage) Suspension

0.10 0.843 (0.322)*** -0.157 (0.322) 0.136 (0.176)

0.12 0.777 (0.327)** -0.223 (0.327) 0.133 (0.176)

0.14 0.734 (0.321)** -0.266 (0.321) 0.125 (0.176)

0.16 0.687 (0.312)** -0.313 (0.312) 0.132 (0.174)

0.18 0.677 (0.316)** -0.323 (0.316) 0.107 (0.176)

0.20 0.681 (0.327)** -0.319 (0.327) 0.103 (0.181)

0.22 0.665 (0.348)* -0.335 (0.348) 0.102 (0.183)

0.24 0.639 (0.366)* -0.361 (0.366) 0.088 (0.197)

WQ-LATE 0.700 (0.287)** -0.300 (0.287) 0.116 (0.172)

Note: The first panel presents estimated Q-LATEs at equally spaced quantiles; The

last row presents the estimated WQ-LATEs; The bandwidths are set to be h R =
4σ Rn−0.23 = 1039.5 and hT = 4σ T n−0.23 = 0.3905, which satisfy the undersmooth-

ing conditions in Theorems 7 and 8; The trimming thresholds are determined by using

a preliminary bandwidth for R equal to 3/4h R , or 779.6; Bootstrapped standard errors

are clustered at the town level and are in the parentheses; ***Significant at the 1% level,

**Significant at the 5% level.
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Figure D.1: Estimated Q-LATEs at different quantiles (undersmoothing)

Figure D.2: Estimated WQ-LATEs by different bandwidths (undersmoothing)
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Table D.2 Impacts of log (capital) on bank outcomes (analytical SEs)

Q-LATE Quantile Log(assets) Log(leverage) Suspension

0.10 0.949 (0.295)*** -0.051 (0.282) 0.005 (0.132)

0.12 0.915 (0.261)*** -0.085 (0.247) -0.018 (0.123)

0.14 0.899 (0.276)*** -0.101 (0.254) -0.017 (0.128)

0.16 0.862 (0.356)** -0.138 (0.313) -0.033 (0.153)

0.18 0.858 (0.360)** -0.142 (0.306) -0.064 (0.150)

0.20 0.871 (0.362)** -0.129 (0.304) -0.070 (0.151)

0.22 0.819 (0.351)** -0.181 (0.295) -0.077 (0.153)

0.24 0.865 (0.340)** -0.135 (0.282) -0.091 (0.143)

0.26 0.883 (0.335)*** -0.117 (0.279) -0.089 (0.141)

WQ-LATE 0.873 (0.718) -0.127 (0.655) -0.051 (0.344)

Note: The first panel presents the bias-corrected estimates of Q-LATEs at equally spaced

quantiles; The last row presents the bias-corrected estimates of WQ-LATEs; The stan-

dardized AMSE optimal bandwidth for the WQ-LATE estimator is h∗π = 0.91 (the

standardized AMSE optimal bandwidth for the Q-LATE estimator h∗τ ranges from 0.72

to 1.1); The bandwidths in the estimation are then set to be h R = h∗πσ R = 1108.0
and hT = h∗πσ T = 0.4173; The bandwidths used to estimate the biases are 2 times of

the main bandwidths; The trimming thresholds are determined by using a preliminary

bandwidth for R equal to 3/4h R = 831.0; The bandwidths used to estimate the biases

are 2 times of the main bandwidths; Analytical standard errors are in the parentheses;

***Significant at the 1% level, **Significant at the 5% level.

Table D.3 Impacts of log(capital) on bank outcomes (undersmoothing with analytical SEs)

Q-LATE Quantile Log(assets) Log(leverage) Suspension

0.10 0.843 (0.249)*** -0.157 (0.247) 0.136 (0.120)

0.12 0.777 (0.230)*** -0.223 (0.216) 0.133 (0.117)

0.14 0.734 (0.237)*** -0.266 (0.225) 0.125 (0.136)

0.16 0.687 (0.282)** -0.313 (0.260) 0.132 (0.151)

0.18 0.677 (0.276)** -0.323 (0.249) 0.107 (0.147)

0.20 0.681 (0.257)*** -0.319 (0.229) 0.103 (0.139)

0.22 0.665 (0.265)** -0.335 (0.235) 0.102 (0.145)

0.24 0.639 (0.249)** -0.361 (0.221) 0.088 (0.139)

WQ-LATE 0.700 (0.650) -0.300 (0.608) 0.116 (0.354)

Note: The first panel presents estimated Q-LATEs at equally spaced quantiles; The

last row presents the estimated WQ-LATEs; The bandwidths are set to be h R =
4σ Rn−0.23 = 1039.5 for R and hT = 4σ T n−0.23 = 0.3905, which satisfies the un-

dersmoothing conditions for the Q-LATE or WQ-LATE estimator in Theorems 7 and

8; The trimming thresholds are determined by using a preliminary bandwidth The trim-

ming thresholds are determined by using a preliminary bandwidth for R equal to 3/4h R

or 779.6; Analytical standard errors are in the parentheses; ***Significant at the 1%

level, **Significant at the 5% level.
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