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Abstract 

Firms face substantial uncertainty when doing business in new markets. We propose that 

multinational firms use “cross-market learning” to resolve such uncertainties. We develop a 

model of firm-level expectations formation with noisy signals from multiple markets and 

derive predictions on market entries and expectations formation over the firm's life cycle. 

Using a novel dataset of Japanese multinational corporations that includes sales expectations 

of each affiliate, we provide supportive evidence for the model's predictions. We find that 

firms rely on their performance in nearby markets to predict their profitability in a new 

market and make entry decisions. Such “cross-market learning” is less important after the 

firm has accumulated experience in the new market, but becomes more important if the 

uncertainty of the focal market is high or the firm has received more signals from the nearby 

markets.  
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1 Introduction

Firms face substantial uncertainty when doing businesses in new markets, and this is

particularly true for multinational corporations (MNCs) that produce and sell in multi-

ple countries. Before a firm enters a particular market, it may have limited information

about consumers’ tastes and the costs of production. Given the large sunk entry costs,

MNCs’ entry decisions into new markets can be costly when information is imperfect.

In this paper, we ask how and to what extent MNCs can resolve such uncertainties.

In particular, we propose “cross-market” learning as a key mechanism, in which firms

learn about their profitability in a new market based on their performance in nearby

markets, and use direct measures of sales expectations to show the existence of such a

learning mechanism.

To guide our empirical analysis, we first build a model in which a firm learns about

its demand conditions in multiple markets based on similar ideas in the social learning

literature (Foster and Rosenzweig, 1995; Jovanovic and Nyarko, 1996).1 The model

serves three purposes. First, it provides testable predictions of cross-market learning.

Second, it informs us of ways to estimate key model parameters, which can be further

used in the empirical analysis. Third, it makes a distinction between the implica-

tions of cross-market learning on market entries and those on expectations formation.

Specifically, we show that though good performance in nearby markets increases both

entry probabilities and sales expectations, the effects of other model parameters on this

relationship (cross-derivatives in our model) are ambiguous for entry probabilities but

unambiguous for expectations formation.2 Therefore, it is crucial to use direct measures

of firm-level expectations to test model predictions on the cross-derivatives.

In the model, the firm’s demand shifter in a particular market and period is the

sum of a time-invariant component and a transitory shock. The firm does not know the

exact value of the time-invariant component, but has to infer it based on its prior and

observed signals (demand shifters) in the past. Without loss of generality, we assume

that the firm operates in two other markets besides the focal market. One is close to the

1We assume that the only uncertainty comes from the demand side in our model. One can allow
uncertainty on the supply side and reinterpret our model as a firm learning about its efficiency in
different markets. Given that we do not observe prices and quantities separately in our data, we do
not attempt to distinguish between learning about demand and supply.

2One example is that our learning model has an ambiguous prediction on how the precision of
signals affects the probability of market entry (into the destination market), although it unambiguously
predicts that the weight of these signals used in the expectations formation formula increases with the
their precision.
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focal market, and its time-invariant component is positively correlated with that in the

focal market. The positive correlation can be caused by similar consumer preferences

over the characteristics of the products or services that the firm provides. The third

market is remote from the first two markets, so its time-invariant demand component

is assumed to be uncorrelated with those in the first two.3

Several key testable predictions emerge from the model. First, the firm uses the

average signal from the nearby market to forecast its expected sales in a new market

and ignores signals from the remote market. Thanks to the positive correlation in

the time-invariant demand, the firm can use information from the nearby market to

reduce their uncertainty about the new market. Moreover, although better signals from

nearby markets increase the entry probability (into the new market), how the precision

of such signals affects this positive effect depends on distributional assumptions and

accordingly are ambiguous.4 Therefore, we focus on testing the comparative statics

regarding firms’ expectations formation, as the model yields unambiguous predictions

along this dimension.

After the firm enters the new market, it continues to update its expectation of future

sales given the signals observed, which now also include the signals from the new market.

Again, due to the positive correlation in the time-invariant demand, the model predicts

that the sales expectation depends on the signals from both this new market and the

nearby market. Importantly, the model also yields other testable predictions related

to the key mechanism of the life-cycle learning model (Jovanovic, 1982; Jovanovic and

Nyarko, 1997) extended to cross-market learning. We show that the firm’s expectation

in the new market relies more on the average signal from the nearby market and less

on the signal from the new market when (1) the firm is less experienced in the new

market, and/or the firm is more experienced in the nearby market, and, (2) the signals

from the new market are noisier (with higher variance of the transitory shocks). The

intuition is that signals from the nearby market are more precise relative to those from

the new market under these conditions.

We take advantage of a 22 year long panel dataset of Japanese MNCs to test the

3These assumptions are motivated by our empirical finding that only past sales in the same industry
and region can predict entry and sales expectation in a particular market. In Online Appendix OA.1.6,
we show the model predictions are robust even if we allow the demand in the third market to have a
positive but weaker correlation with those in the first two markets.

4Online Appendix OA.1.5 discusses this point in details. We show that this is the case even if we
assume a log normal distribution for the entry cost. Despite this theoretical ambiguity, previous works
rely heavily on the entry margin to establish the existence of firm learning.
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theoretical predictions. The dataset is at the affiliate-year level and it includes a mea-

sure of each affiliate’s sales expectations for the next year. In Section 4, we provide

more descriptions about the data and this unique variable, and show that the sales

expectations are reliable and contain useful information that is used in actual firm

decisions.

We first test our model’s predictions on new market entries. We show that the

strong average past sales (average “signal”) of affiliates in markets within the same

region (referred to as “nearby siblings”) raises the probability of entry into a new

market.5 By contrast, the average past signal of affiliates outside the region (referred

to as “remote siblings”) has a weak and statistically insignificant effect. Our baseline

estimate suggests that a one-standard-deviation increase in the average nearby siblings’

signal leads to an increase in entry probability by 0.28�, approximately 25% of the

average entry rate.

It is important to note that our evidence does not imply that the existence of a

nearby sibling necessarily increases the likelihood of entry into other countries in the

same region. Such a positive impact is realized only when the nearby siblings’ signal

is good enough. To demonstrate this point, we expand our baseline sample to include

regions which the firm has not entered yet and estimate the impact of different deciles

of average nearby siblings’ signal on the probability of market entry. Relative to firms

without any nearby siblings, having a sibling only significantly raises the probability of

entry when the siblings’ signal is above the fourth decile. When the siblings’ signal is

in the lowest decile, the entry probability is actually significantly lower than that of a

firm without any presence in the region.

We think the above finding of the heterogeneous effects demonstrates an impor-

tant distinction between our learning mechanism and other mechanisms that lead to

sequential entries in similar markets. For instance, the “extended gravity” literature

(Morales et al., 2019) finds that an exporter’s prior entry in nearby markets lowers the

sunk entry costs into new markets and thus increases its entry probability into a new

market.6 Their mechanism may well exist for many MNCs in our data, as the presence

5To ensure the information spillover within MNCs concerns an individual firm’s demand or supply
conditions, we use average past sales net of aggregate components, taking out the destination-industry-
year fixed effects.

6Strictly speaking, Morales et al. (2019) study entries into new destinations by exporters, which
cannot be directly compared to MNC entries. Using U.S. multinational firm data, Garetto et al. (2019)
show that the entry probability conditional on having an existing affiliate in a market within the same
continent is slightly larger than the unconditional probability. However, they do not consider the
heterogeneity due to the performance of the existing affiliates.
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of nearby siblings starts to show a positive and significant impact on subsequent entries

into new markets when the siblings’ signal is above the fourth decile. However, this is

clearly not the case for the lowest two deciles. In a recent study, Garetto et al. (2019)

provide evidence that the presence of a U.S. MNC in a country only has a slightly

positive and sometimes insignificant effect on the probability of its entry into another

similar country. We conjecture that the effects of prior presence on subsequent entries

may well depend on the historical performance of the existing affiliates.

Next, we explore our measure of affiliates’ sales expectations after market entry and

provide empirical support for additional theoretical predictions over the affiliate’s life

cycle. We find that strong average signals of nearby siblings raise the expectation for

the next year’s sales, while the average signals of remote siblings has no significant

impact. The elasticity of sales expectations with respect to the strength of nearby

siblings’ signal is 0.024.

The average effect of nearby siblings’ signals on sales expectations hides rich under-

lying heterogeneity. Following the model’s predictions, we further examine how market

and affiliate characteristics affect the strength of learning. We find the elasticity of

expected sales with respect to the nearby siblings’ signal is larger if the affiliate in the

focal market is younger and/or the siblings in the nearby markets are older. In addition,

model-consistent measures of market-level uncertainty, or the noisiness of the signals,

can hinder the firm’s learning in the new market and make it rely more on signals from

nearby markets. Such heterogeneous effects are our key evidence for learning, as one

may worry that our earlier findings of nearby siblings’ signals on entry and sales expec-

tations can be driven by correlated shocks within the firm across markets, despite that

we control for market-year and firm (or firm-year) fixed effects in all our regressions.

However, we find it difficult to rationalize the heterogeneous learning effects using an

explanation based on correlated shocks. Moreover, taking advantage of our direct mea-

sures of sales forecasts, we perform a simple calibration and show that the coefficients

in the expectations formation formula implied by the model are in the same ballpark

of those estimated from the data for affiliates of different ages.

2 Literature Review

Our study contributes to five strands of the literature. First, our study contributes

to the literature on learning in the international context. Existing studies have docu-
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mented the role of learning in exporter dynamics, as well as the inter-market linkages

through information acquisition or sunk cost reduction. For instance, Timoshenko

(2015a,b) study how incorporating self-discovery by exporting firms into an otherwise

standard heterogeneous firms models helps explain persistence in exporting and be-

havior of new exporters. Berman et al. (2017) and Arkolakis et al. (2018b) show that

learning about demand is an important driver of firm dynamics.7 Relatedly, Albornoz

et al. (2012) examine cross-market learning among exporters, and Morales et al. (2019)

use a novel moment inequality approach to quantify reductions in entry costs into a

new market if the firm has already exported to similar markets. We contribute to this

literature by directly detecting firm learning, thanks to the availability of firm-level

expectations data. Our empirical approach can be extended further in future research,

as firm-level expectations data are becoming increasingly available.8

A growing literature has focused on MNC dynamics, with or without the learning

mechanism (Egger et al., 2014; Conconi et al., 2016; Gumpert et al., 2016; Garetto et

al., 2019; Chen et al., 2020). Egger et al. (2014) show that the dynamic entry patterns of

German MNCs are consistent with a two-period model featuring cross-market learning.

We complement the existing work by showing that cross-market learning not only exists

prior to entry, but also after market entry. Conconi et al. (2016) and Gumpert et al.

(2016) study the joint dynamics of exporters and MNCs with and without the learning

mechanism. We differ from their studies by studying how cross-market learning and

thus information transmission within the same MNC shape patterns of FDI entries

and MNC dynamics. Finally, our current paper has a different focus from Chen et al.

(2020) which study life-cycle dynamics of MNCs without the mechanism of cross-market

learning within the same MNC.9

Our paper is related to the literature on the flow of intangibles within the firm

boundary. Using the commodity flow data of the U.S., Atalay et al. (2014) find that

vertical ownership is not primarily used to facilitate transfers of goods. Instead, they

argue that the flow of intangibles is a crucial factor for us to understand intra-firm

relationships. Echoing their finding, Ramondo et al. (2016) document a similar pattern

7Other importance contributions include Akhmetova and Mitaritonna (2013) Aeberhardt et al.
(2014) and Cebreros (2016).

8Papers that use firm-level expectations include Gennaioli et al. (2016), Bloom et al. (2017), and
Altig et al. (2019) for American firms, Bachmann et al. (2013), Bachmann and Elstner (2015), and
Enders et al. (2019) for German firms, Boneva et al. (2018) for firms in the U.K., and Ma et al. (2019)
for Italian firms.

9As a result, affiliates in different countries that belong to the same MNC parent firm operate
independently in Chen et al. (2020).
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for U.S. MNCs. Several papers have investigated various channels through which in-

tangibles are transferred within the firm boundary (Keller and Yeaple, 2013; Fan, 2017;

Bilir and Morales, 2018). Using the same data of U.S. MNCs, Bilir and Morales (2018)

find that headquarters’ innovations increase affiliate performance, although affiliates’

innovations do not affect performance at other firm sites. We complement this litera-

ture by substantiating the existence of information sharing within the firm boundary

and across geographic locations.

Fourth, our paper connects to a large literature on learning and technology adoption

(Foster and Rosenzweig, 1995; Jovanovic and Nyarko, 1996; Conley and Udry, 2010) as

well as its applications in international trade (Fernandes and Tang, 2014; Kamal and

Sundaram, 2016; Hamilton, 2018). Our model shares the same key ingredients as models

in this literature, i.e., Bayesian updating and correlated signals, and we extend these

models naturally to cross-market learning by the same firm.10 Our main contribution

to this literature is to directly measure firm’s expectations in each market and use the

expectations to test additional predictions from the model, such as life-cycle learning

and the impact of uncertainty on learning.

Finally, our paper is also related to the work on inflation expectations and agents’

decisions (Malmendier and Nagel, 2011, 2016; Coibion et al., 2018, 2020). Work on this

topic finds that experience affects agents’ expectations formation and thus actions. We

contribute to this literature by showing how one key dimension of experience that is

age affects firm-level expectations formation.

3 Model

In this section, we develop a simple model of firm learning that features both self-

discovery in a particular market (Jovanovic, 1982; Arkolakis et al., 2018b) and learning

about the focal market from other markets (Albornoz et al., 2012). As the firm’s

information on market-level demand conditions is imperfect, the firm has to form an

expectation of these conditions in the destination market both before and after market

entry. Before entering the foreign market, the firm learns its demand conditions in the

destination market imperfectly from the performance of its affiliates in nearby markets.

10Our model has a key conceptual difference from the social learning literature: information
“spillover” happens within the firm, so the firm can internalize such an “externality”. Since we do not
solve the full dynamics of the MNCs since their births, this distinction is only conceptual and does not
affect our empirical tests.
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After observing the performance of nearby siblings, the firm decides whether to enter

the destination market and is more likely to enter when its nearby affiliates have better

past sales performance.

The key innovation of our model rests on the expectations formation after market

entry. If the firm enters the foreign market, its affiliate in that market updates its

expectation of demand conditions over the life-cycle. Different from previous studies

(e.g., Timoshenko (2015b), Berman et al. (2017)), we allow the affiliate to learn its

demand conditions both from its own performance (i.e., average past sales) and from

the performance of its nearby siblings.

3.1 Setup

We study a single firm’s problem. Suppose there are three foreign markets: markets

1 and 2 are in the same region, and market 3 is in another region. Without loss of

generality, we focus on the firm’s expectation in market 1, and refer to markets 2

and 3 as the “nearby” and “remote” markets, respectively. We first study the case in

which the firm is considering entering market 1 and then the problem of expectations

formation after it has entered market 1.

We assume that consumers in all foreign markets have CES preferences. The firm’s

demand function in market j is

qjt = Ajte
ajtp−ςjt , (1)

where t denotes time and ς is the elasticity of substitution. The variable Ajt is the

aggregate demand shifter and ajt is firm-specific demand in market j. For each market

j, the firm faces demand uncertainty, which comes from the demand shifter ajt. We

assume that ajt is the sum of a time-invariant market-specific demand draw θj and a

transitory shock εjt:

ajt = θj + εjt, εjt
i.i.d.∼ N

(
0, σ2

εj

)
. (2)

The firm understands that θj is drawn from a normal distribution N
(
θ̄j, σ

2
θj

)
, and the

independent and identically distributed (i.i.d.) transitory shock, εjt, is drawn from

another normal distribution N
(
0, σ2

εj

)
. On the supply side, we assume that to produce

q units of output in market j, all firms have to employ one unit of labor at the wage

rate wjt.

The timing of the model is stated as follows. After a firm enters market j, its
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affiliate in that market makes its output choice after observing the demand shifter, ajt,

in period t. As a result, realized sales are

Rjt = Ajte
ajt

(
ςwjt
ς − 1

)1−ς

. (3)

The above equation implies that the logarithm of realized sales is the sum of ajt and

a term that only consists of aggregate variables. Therefore, we construct a measure of

ajt in our empirical analysis by taking out the market-year fixed effects in log sales.

Before the firm enters market 1, it forms an expectation of θ1 based on the realized

sales in the other markets where it has entered. To enter market 1, the firm has to pay

a one-time entry cost F , where the cumulative distribution function of F is G(·).
The fundamental assumption of the model is that the firm does not know the value

of θj and therefore has to form a belief about its distribution to make its entry decision.

After entry, the firm updates its belief about θj over time. Naturally, the sources of

information the firm uses to form its expectations in market j are the key predictions

of the model. These are determined by the extent to which demand shocks θj are

correlated across markets.

We introduce the interdependence of demand shocks across markets as follows. The

variance-covariance matrix of the firm’s demand draws in the three market is

V


θ1

θ2

θ3


 =

σ
2
θ1 σ2

12 σ2
13

σ2
12 σ2

θ2 σ2
23

σ2
13 σ2

23 σ2
θ3

 .
We further define ρij ≡ σ2

ij/σθiσθj as the correlation between θi and θj. We make the

following assumption on these correlation coefficients:

Assumption 1 ρ12 > ρ13 = ρ23 = 0.

In Appendix A.1, we provide a model-consistent method of estimating within- and

cross-region correlations in θ (i.e., ρ12 and ρ13). Within-region correlation is always

higher than cross-region correlation, but the latter is also positive. We assume that

the cross-region correlation is zero in our model for simplicity. As shown in Online

Appendix OA.1.6, our model predictions continue to hold even if we allow the cross-

region correlation to be positive but smaller than the within-region correlation although

the mathematical derivations are more involved.
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3.2 Determinants of Market Entry

According to the assumption of a random market entry cost, the probability of entering

market 1 in period t is G(π1t), where π1t is the discounted expected profit from this

market in all future periods and G(·) is the cumulative distribution function of the

entry cost. To understand how siblings’ signals affect the entry probability, we need to

know how they affect π1t. In particular, π1t can be written as

π1t = Et−1

∞∑
τ=t

A1τ

(
ςw1t

ς − 1

)1−ς

ητ−tea1τ , (4)

where the expectation is taken given the information up to period t−1 and η denotes the

discount factor. Further assuming that the firm-specific demand draws are independent

of the aggregate variables and taking into account the fact that a1t = θ1 + ε1t, where

ε1t is i.i.d. normal, we have

π1t = eσ
2
ε1/2Et−1

(
eθ1
)
× Et−1

∞∑
τ=t

A1τ

(
ςw1t

ς − 1

)1−ς

ητ−t.

Therefore, it is sufficient to examine how Et−1

(
eθ1
)

responds to siblings’ signals.

Assuming that the sibling has received t2 signals from market 2, we can prove the

following proposition:

Proposition 1 Under Assumption 1, the firm only uses signals from market 2 to fore-

cast its “would-be” demand in market 1 and ignores signals from market 3. The firm’s

expected profit and entry probability in market 1 increase with the average past signals

in market 2, ā2 ≡
∑t−1

τ=t−t2 a2τ/t2.

Proof. See Online Appendix OA.1.2.

The intuition behind this result is that a firm’s demand conditions across markets

within the same region are correlated. Therefore, nearby siblings’ past sales contain

information value, when the firm forecasts its demand in the market that it may enter in

the future. Naturally, when the forecast is above a certain threshold, the MNC chooses

to enter market 1.

In the next subsection, we will examine how various parameters such as t2 affect the

expectations formation post entry. However, how t2 affects the positive effect of ā2 on

the entry probability depends on distributional assumptions of the idiosyncratic entry
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cost G(·). This is true, even if we assume that G(·) is log normal.11 On the contrary,

we will show that our learning model has unambiguous predictions regarding how the

firm forms sales expectations over its life cycle (post entry). Therefore, we argue that

the best way to provide evidence on learning over the life cycle is to derive and test

theoretical predictions regarding expectations formation directly.

3.3 Expectations Formation after Market Entry

After the firm enters market 1, it continues to update its belief for θ1. Now the firm can

use signals from both markets 1 and 2 to update its posterior. The following proposition

characterizes the firm’s (or equivalently, the affiliate’s) forecasting rule for its sales in

market 1.

Proposition 2 Under Assumption 1, an affiliate in market 1 uses its own average

past signal and the average past signal of its siblings in market 2 to form its expectation

of future sales, with positive weights put on both average signals. All else equal, the

weights it places on the average signals of itself and its nearby siblings have the following

properties:

1. [life-cycle learning] The weight it places on the average signal of itself (its nearby

sibling) increases (decreases) with self age, and decreases (increases) with the total

number of signals received from market 2.

2. [uncertainty impedes self-learning] The weight it places on the average signal of

itself (its nearby sibling) decreases (increases) with the standard deviation of the

transitory shocks in its market.

Why do diverging age profiles for the two weights show up in the expectations

formation formula? When the number of signals from market i (i ∈ 1, 2) increases

(while fixing the number of signals from the other market), the precision of signals

increases both in absolute terms and in relative terms (compared with the signals from

the other market). As a result, the affiliate’s expectation of sales in market i relies

more on signals from market i. On the contrary, the precision of signals from the other

market stays unchanged in absolute terms and decreases in relative terms (compared

with the signals from market i) when the number of signals from market i increases.

11We prove that the cross derivative of the entry probability with respect to t2 and ā2 is ambiguous.
See Online Appendix OA.1.5 for details.

10



This results in the affiliate placing a lower weight on the signals from the other market in

the expectations formation process. Similarly, when the affiliate’s own signal becomes

less precise, its forecast depends more on nearby siblings’ signals and less on its own

signals, all other things being equal.

It is worth discussing how the results would change if we allow the signals from

market 3 to be informative as well. In Online Appendix OA.1.6, we derive model

predictions under a weaker assumption ρ12 > ρ13 = ρ23 ≥ 0. In this more general

setting, we find that the average past signal from market 3 is also used to predict the

would-be profit before the firm enters market 1 and to predict future sales thereafter.

However, when ρ12 is sufficiently larger than ρ13 and ρ23, the firm places higher weights

on the signals from market 2 than those from market 3 when forming its expectations.

Finally, we also derive the effects of the other model parameters on learning as in

Proposition 2. We thus show that all the results hold under the weaker assumption.

A convenient and probably unrealistic assumption of the our model is that tem-

porary demand shocks are uncorrelated between the focal affiliate and its siblings in

the same region. One interesting modification of our baseline model is to allow the

temporary shocks to be positively correlated across destination economies within the

same region. In Online Appendix OA.1.4, we provide such an extension and examine

the impact of the correlation in temporary shocks on the learning parameters (the coef-

ficient of the self signal and that of the sibling’s signal). We are able to sign the impact

under certain parameter restrictions. We also empirically examine the correlation in εjt

in Appendix A.1. We find that the level of correlation is much lower than that among

θj. Numerical simulations in Online Appendix OA.1.4 show that, if the correlation is

as large as what we observe in the data, they have a negligible effect on the learning

parameters β1 and β2.

4 Data

In this section, we describe our data and discuss how we construct the key variables

in our main empirical specifications. Given our emphasis on the direct measure of

affiliate-level sales expectations, we also devote a subsection to discuss the credibility

of this measure.
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4.1 Basic Description and the Definition of Markets

We draw our data from the Basic Survey on Overseas Business Activities (Kaigai Jigyo

Katsudo Kihon Chosa) conducted by the Ministry of Economy, Trade and Industry

(METI) of the Japanese government (“the survey” hereafter). This survey is mandatory

and conducted annually via self-declaration survey forms (one for the parent firm and

another for each foreign affiliate) sent to the parent firm at the end of each fiscal

year. The survey form for parent firms includes variables on the firm’s domestic sales,

employment, industry classifications, and so on, while the survey for foreign affiliates

collects information on their sales, employment, location, and industry.

Based on the annual survey, we construct a panel dataset of parent–affiliate pairs

from 1995 to 2016 that includes both manufacturing and non-manufacturing firms. Each

parent–affiliate pair is traced throughout the period using time-consistent identification

codes. Compared with other standard multinational datasets such as the U.S. BEA

survey, our data is novel in that it contains information on affiliate-level expectations.

Specifically, the affiliates of Japanese MNCs are asked to report their forecasted sales

for the next year. This enables us to provide evidence of learning that directly uses

affiliate-level expectations. Since this measure is rare in firm-level datasets, we examine

its credibility in Section 4.3.

In our data, affiliates are classified into 29 industries, including 16 manufacturing

and 9 services sectors. In terms of the total number of affiliates abroad, “wholesale

and retail” and “transportation equipment” are the largest in services and manufac-

turing, respectively. Regarding geographic distribution, Table 1 shows the number of

firms with presence in the most popular destinations in 2016, after dropping affiliates

in tax haven countries listed in Gravelle (2009). China and the United States are the

largest markets for Japanese multinationals. Interestingly, for firms that operate in two

destinations the top combination is China-Thailand, which may be seen as suggestive

evidence that geographic closeness between host countries is important for understand-

ing multinational location choices. In Section 5, we examine the dynamic patterns of

entry and the impact of siblings’ signals formally.

We define markets at the destination-industry level. For a (potential) market of a

Japanese firm, we define “nearby” and “remote” markets by first grouping all destina-

tions into seven geographic regions: North America, Latin America, Asia (excluding

the Middle East), the Middle East, Europe, Oceania, and Africa. A nearby market is

a destination-industry pair that satisfies two conditions: (1) the destination is in the
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Table 1: Most Popular Destinations in 2016

Destination # Firms Destinations # Firms Destinations # Firms

CHN 2784 CHN-THA 230 CHN-THA-USA 73
USA 679 CHN-USA 179 CHN-IDN-THA 38
THA 526 CHN-VNM 115 CHN-KOR-TWN 24
VNM 258 CHN-TWN 86 CHN-THA-VNM 24
TWN 183 CHN-KOR 83 CHN-DEU-USA 21

Notes: The table shows the most popular destinations or destination combinations for firms operate in
one, two and three destinations. Destination abbreviations: CHN (China), USA (the United States),
THA (Thailand), VNM (Vietnam), TWN (Taiwan), KOR (South Korea), IDN (Indonesia), DEU
(Germany).

same region as the focal market and (2) the two markets belong to the same industry.12

Similarly, a “remote” market is in the same industry but located in a different region.

“Nearby” and “remote” siblings are existing affiliates of the same firm in nearby and

remote markets, respectively. Consistent with our model setup, we require the firm to

have at least one nearby and one remote siblings.

We focus on horizontal FDI by defining an entry only when a firm first sets up an

affiliate in a market and this affiliate has high local sales shares. The local-to-total-

sales ratio may change over the affiliate’s life cycle (Garetto et al., 2019). We calculate

the ratio for each affiliate-year and use the average ratio of each affiliate over time

to determine the nature of FDI. In our baseline regressions, we define affiliates to be

“horizontal” only when this ratio is above 85%.13 We define entry when a firm sets up

its first horizontal affiliate in the destination market. Our main empirical results are

robust to increasing this threshold to 95%. These results are presented in Columns 1

and 2 of Appendix Tables A.3 and A.4.

12We focus on within-industry learning for two reasons. First, firms in our sample do not typically
set up foreign affiliates in multiple industries (average number of industries is 1.6). Second, as we show
in Section 5.1, signals from different industries do not significantly affect entry probabilities.

13 Garetto et al. (2019) find that the local sales shares decline as U.S. affiliates become older.
Because of such fluctuations, we select our sample in slightly different ways for the entry regressions
and the post-entry expectations formation regressions. In the entry regressions, we define a “horizontal
affiliate” as one whose life-time average local-to-total sales ratio is above 85%, because we want to
capture affiliates that are established mainly for local sales purposes. For the expectations formation
regressions, we select the sample based on the current local sales share, because the learning mechanism
that we propose may be very important for young affiliates that mainly serve the local market, meaning
that we remove them from our sample when their local sales share drops below 85%. In Table A.4, we
show that the expectations formation results are robust if we select the sample based on average local
sales shares over the affiliates’ life cycle.
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4.2 Construction of Siblings’ Signals

Consistent with our theory, we focus on firm learning about their idiosyncratic de-

mand/supply conditions in particular markets. We construct our measures of signals

using affiliates’ local sales, which exclude potential vertical sales to parent firms or

downstream affiliates of the same business group in other countries. We further tease

out the aggregate components in affiliates’ performance by regressing the affiliate’s log

local sales on the destination–industry-year fixed effects. Suppose we denote the log

local sales of affiliate i in year t as rit; we then run the following regression:

rit = δ̂skt + r̃it, (5)

where δ̂skt denotes the estimated destination-industry-year fixed effects. Destinations

and industries are denoted by k and s, respectively. We use the residual from this

regression (denoted as r̃it) as a measure of the affiliate’s exceptional performance rela-

tive to its peers in the same market. Similarly, we project firms’ domestic sales on the

domestic-industry-year fixed effects and use the residual sales as a control for produc-

tivity shocks common across all affiliates of the same firm.

We are now ready to define the two key regressors in our empirical analyses. The

model in Section 3 suggests that firms infer their market-specific demand using all past

signals. Therefore, we construct the cumulative average of the past residual sales of

existing affiliates as follows:

rnearby
fskt ≡

1

N(τ ≤ t, i ∈ Ifsk)
∑

τ≤t,i∈Ifsk

r̃iτ , rremote
fskt ≡

1

N(τ ≤ t, i ∈ Icfsk)
∑

τ≤t,i∈Icfsk

r̃iτ ,

(6)

where Ifsk denotes the set of firm f ’s affiliates in industry s and in destinations in the

same region other than k. The set Icfsk includes the affiliates of the same firm in industry

s but in other regions. The N(·) function denotes the number of signals observed until

time t.14 In the following analysis, we refer to rnearby
fskt and rremote

fskt as nearby and remote

siblings’ signals. We use both variables as regressors in our main specifications, requiring

14One may consider an alternative model in which firms may learn more when they sell to more
customers. In this scenario, we should calculate sales-weighted signals instead of an simple average.
In Online Appendix OA.2.6, we present results using sales-weighted signals. These signals are highly
correlated with simple averages, and we observe similar results from the entry and expectations for-
mation regressions. We think that there is not enough variation for us to distinguish our model and
an alternative model where firms learn more when they sell more.
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the observation to have at least one nearby and one remote siblings. Therefore, our

main analysis can be at best seen as a test of the theory conditional on the firm having

affiliates in both the nearby and remote markets. After we introduce our main results

in Section 5.1, we consider firms that have not established any affiliates in a region or

only have established affiliates in one region, i.e., Figure 1 and Table 7.

4.3 Validation of Affiliate-level Forecasts

One unique feature of our dataset is that each affiliate reports its expected sales for the

next year, when it fills out the survey of the current year. As such information is rarely

available in firm-level datasets, we discuss why this measure is reliable and contains

useful information that matters for actual firm decisions.

First, in our sample, it is very rare for firms to use a naive rule to make their sales

forecasts. For example, as is shown in Online Appendix OA.2.11, only 1.59% of the

observations use their sales in year t as a forecast for sales in t+1. Our main regression

results are basically unchanged after dropping these observations (see Online Appendix

Table OA.17).15 Second, we show in Table 2 that the sales forecasts have statistically

significant and economically strong impacts on realized sales and employment in the

future, even when we control for past sales and employment. Finally, the MNC survey

is mandated by METI under the Statistics Law, so the information in the survey is

confidential and cannot be applied for purposes beyond the scope of the survey, such

as tax collection. Firms therefore are unlikely to have incentives to misreport to avoid

taxes or to manage stock market expectations.

5 Empirical Evidence

We now examine the empirical predictions of the model (Propositions 1 and 2).

5.1 Market Entries

In this subsection, we study how the past sales of existing affiliates affect the probability

of Japanese firms’ entering new markets in order to provide empirical evidence for

15In Online Appendix OA.2.5, we report a small but non-negligible fraction of affiliates (1.08%)
report expected sales that coincide with the realized sales next period. These affiliates may be subject
to another concern: managers and workers start shirking after they “hit the target”. We perform
robustness checks by dropping these observations and the results are similar.
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Table 2: Sales Forecasts Predict Affiliates’ Future Outcomes

Dep. Var. log total sales log(Ri,t+1) log employment log(Li,t+1)

(1) (2) (3) (4) (5) (6)

logEt(Ri,t+1) 0.619a 0.526a 0.517a 0.291a 0.130a 0.135a

(0.029) (0.032) (0.035) (0.020) (0.013) (0.014)
logRit 0.121a 0.121a

(0.019) (0.036)
logRi,t−1 0.038a

(0.011)
logLit 0.514a 0.505a

(0.023) (0.030)
logLi,t−1 0.019

(0.021)
Affiliate FE X X X X X X
Destination-Ind-Year FE X X X X X X

N 26040 26040 22726 25935 25863 22962
# of Firms (cluster) 782 782 706 784 784 711
Within R-squared 0.44 0.46 0.45 0.16 0.37 0.36
R-squared 0.97 0.97 0.98 0.97 0.98 0.98

Notes: The dependent variable is affiliate i’s log total sales or total employment in year t+ 1. We use
R to denote sales and L to denote employment. Et(Ri,t+1) refers to the affiliate’s expectation in year
t for its sales in year t+ 1. Standard errors are clustered at the firm level. Significance levels: a: 0.01,
b: 0.05, c: 0.10. We restrict our sample to those with at least one nearby and one remote siblings as in
Column 1 of Table 8 in the paper. We have fewer observations here because we require a longer panel
(at least two years for each affiliate). We also run the same regressions using all the observations in
our dataset, and the results are similar. They are available upon request.

Proposition 1. We first transform our affiliate-year-level dataset into a firm-market-year-

level dataset, where a “market” refers to a destination-industry pair. In principle, each

firm can enter a potential market in any year. We keep the market-year combinations

in which the firm has not yet established any affiliates in that market and study the

probability of setting up a horizontal affiliate there in the next year. Since we include

nearby and remote siblings’ signals as regressors, our sample also requires the focal

market to have at least one nearby and one remote siblings. For instance, suppose firm

A has set up affiliates in industry s and regions r1, r2 and r3. We consider firm A’s

entries into any of the remaining destination markets in these three regions (in industry

s).16 We do not consider its entries into other regions or industries since it does not

have any operations in those markets yet and thus has not received signals. For new

markets in r1, signals from existing affiliates in r1 are “nearby signals” while signals

from r2 and r3 are “remote signals”.

Table 3 shows the number of observations and next years’ entries by year in the

sample used in our baseline regressions on average. There are around 41,700 firm-

16As discussed in Section 4.2, for a particular focal market, siblings are affiliates of the same firm
operating in the same industry but different countries.
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market combinations in each year and 47 of them will see a new entry in the next year.

The average entry rate is 1.1�.17

Table 3: Number of observations and entries by year

(1) (2) (3)
Year # of obs. # of next year’s entries entry rate (�)

1995 21919 68 3.10
1996 27100 50 1.85
1997 27736 46 1.66
1998 30772 42 1.36
1999 36426 39 1.07
2000 36101 50 1.39
2001 33531 48 1.43
2002 38926 42 1.08
2003 40303 58 1.44
2004 41905 49 1.17
2005 44611 44 0.99
2006 44952 53 1.18
2007 44289 41 0.93
2008 46096 36 0.78
2009 47753 48 1.01
2010 47073 72 1.53
2011 48704 78 1.60
2012 51978 47 0.90
2013 54473 32 0.59
2014 54338 23 0.42
2015 56541 11 0.19
Total 875527 977 1.12

Notes: Column 1 shows the number of observations by year in our baseline regression. Column 2 shows
the number of the next year’s entries among the observations in Column 1. Column 3 calculates the
entry rates (Column 2/Column 1).

We now introduce our econometric specification for this subsection. In particular,

we run the following linear probability regression:

Pr(Enterfsk,t+1 = 1) = b1r
nearby
fskt + b2rremote

fskt + b3r̃ft + δskt + δf + εfk,t+1, (7)

where the dependent variable is a binary variable indicating whether firm f enters

destination k and industry s in year t + 1. The independent variables are nearby

and remote siblings’ signals up to year t defined in equation (6). We also control for

the firms’ domestic performance, r̃ft, which is the residual of log domestic sales after

teasing out the domestic industry-year fixed effects. We control for various fixed effects

in our regressions, such as market-year fixed effects (δskt) and firm fixed effects (δf ).

According to Proposition 1, we expect b1 to be positive while b2 to be zero. Under

17The entry rate in 1995 is higher than those in the other years. Note that we define entry using
the founding year of each affiliate reported in the survey instead of using their first appearance in the
data, so the higher entry rate in 1995 is not an artifact. In Online Appendix OA.2.12, we show our
main empirical results are robust if we exclude 1995 from our sample.
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the less extreme assumption that cross-region correlation in time-invariant demand is

positive but smaller than that within region, we expect b2 to be positive but smaller

than b1.18

Note that we add residual domestic performance r̃ft in our specification to control

for productivity shocks to the entire multinational firm. The assumption here is that

productivity shocks to the parent firm can be transmitted to all affiliates at the same

rate. This is stronger than assuming the transmission rates are destination-specific, a

typical assumption in the literature (Ramondo and Rodŕıguez-Clare, 2013; Tintelnot,

2017; Arkolakis et al., 2018a). In Online Appendix Section OA.2.3, we show that our

main results are robust to controlling for r̃ft interacted with destination-industry fixed

effects. We also consider parent firms’ heterogeneous exposure to aggregate shocks,

such as the banking shocks in Japan in the 1990s, by controlling for the interactions

between parent firm characteristics (capital-labor ratio and firm sales) and year dum-

mies. Finally, as discussed below, our empirical results are robust to controlling for

firm-year fixed effects instead of firm fixed effects, which is a more flexible approach to

control firm-level shocks regardless of their sources.

Before we show the regression results, Table 4 presents the summary statistics of

the key regressors and related variables in the same sample as in Table 3. The median

observation has one nearby sibling and two remote siblings, and the average number of

siblings (1.7 and 3.7) is larger than the median, suggesting that their distributions are

right-skewed. Although many firms entered new destinations during our sample period,

they established operations in developed regions (e.g., North America and Europe) long

time ago. This is reflected by the average age of nearby and remote siblings, with

medians of 13.8 and 15.5, respectively. Finally, there is substantial variability in the

siblings’ signals. For example, the 75th percentile of nearby siblings’ signal is 197 log

points higher than the 25th percentile, which translates into a 618% difference in past

sales. The three regressors (nearby siblings’ signal, remote siblings’ signal, and residual

parent sales) are also far from being perfectly correlated. The correlation coefficients

between any two of these variables are between 0.38 and 0.45.

Table 5 reports the estimation results of equation (7). In Column 1, we estimate

the equation controlling for the destination-year and industry-year fixed effects but

18Since the regressors are “generated”, they contain estimation errors, which may cause biases in the
standard errors. In Online Appendix Section OA.2.4, we perform bootstrap estimation for two core
regression tables in the paper and find such biases tend to be small. Due to computational constraints,
we present simple standard errors clustered at the firm level in all of our regressions in the paper.
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Table 4: Summary statistics of siblings and parents

Obs. mean std. dev. 25 pct. median 75 pct.

Number of nearby siblings 875,527 1.677 2.247 1 1 2
Average age of nearby siblings 875,478 15.38 9.410 8.750 13.83 20.20
Average nearby signal 875,527 -0.258 1.585 -1.182 -0.157 0.789
Number of remote siblings 875,527 3.695 5.364 1 2 4
Average age of remote siblings 875,510 16.46 7.905 11 15.50 20.91
Average remote signal 875,527 0.0321 1.432 -0.784 0.0824 0.960
Residual sales of parents 875,527 -0.226 1.794 -1.388 -0.122 1.046

Notes: Nearby siblings are affiliates of the same firm in the same region and industry but a different
destination. Remote siblings are affiliates of the same firm in the same industry but other regions. We
calculate the signals as the cumulative average residual sales following the definition in equation (6).

not the firm fixed effects. Both nearby siblings’ signal and firms’ domestic sales raise

the probability of FDI entry in the next period. A one standard deviation increase in

nearby siblings’ signal raises the entry probability by 1.59 × 0.174� = 0.28�, which

is around 25% of the average entry probability (1.1�). By contrast, remote siblings’

signal does not have a significant impact on the probability of FDI entry. In Column 2,

we further control for firm fixed effects to tease out time-invariant firm characteristics.

Column 3 shows that the results are robust when we drop firms’ domestic sales but

control for firm-year fixed effects.

Table 5: Impact of siblings’ experience on entry in the next period

Dep. Var: 1(Enterspk,t+1)× 1000 (1) (2) (3)

Average nearby signal 0.174a 0.180a 0.172a

(0.032) (0.038) (0.040)
Average remote signal 0.041 0.042 0.018

(0.040) (0.054) (0.057)
Firm domestic sales 0.066c -0.142

(0.035) (0.108)
Destination-Ind-Year FE X X X
Firm FE X
Firm-Year FE X

N 875527 875527 902527
# of Firms 1922 1922 1931
# of Firm-Markets 113998 113998 115183
# of Entries 977 977 1003
R-squared 0.064 0.067 0.088

Notes: The dependent variable indicates whether the firm enters a particular destination in the next
year. We calculate the signals as the cumulative average residual sales following the definition in
equation (6). Standard errors are clustered at the firm level. Significance levels: a: 0.01, b: 0.05, c:
0.10.

In addition to our linear probability model, we show that the previous results are

robust if we model the hazard ratio of firm f that enters destination k and industry s
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between time t and t+ 1 using the Cox regression model (see Conconi et al. (2016)):

hfsk(t|X) = hj(t) exp
(
b1r

nearby
fskt + b2rremote

fskt + b3r̃ft

)
, (8)

where hj(t) is the hazard ratio for strata j and the terms in the exponential function

are defined in the same way as in equation (7). The key assumption of this model is

that the regressors shift the hazard function hj(t) proportionally. The hazard functions

within each stratum are allowed to differ and do not need to be estimated. We specify

strata at different levels to check the robustness of the results.

Table 6 shows the results from the Cox regression models, which are qualitatively

similar to those from the linear probability model. When we set the strata at the market

or market-year level, both the nearby siblings’ signal and the firms’ domestic sales have

a positive impact on the hazard of FDI entry. According to the estimates in Column

1, a one standard deviation increase in the average nearby siblings’ signal raises the

hazard ratio by e1.59×0.167 − 1 = 30%. Since the subject of the survival analysis is at

the firm-market-year level, we cannot specify the strata at a level finer than the firm-

market level. In Columns 3 and 4, we set the strata at the firm and firm-year levels,

respectively and obtain slightly larger effects of the average nearby siblings’ signal.

Table 6: Impact of siblings’ experience on entry in the next period (survival analysis)

(1) (2) (3) (4)

Average nearby signal 0.167a 0.178a 0.241a 0.208a

(0.027) (0.031) (0.042) (0.050)
Average remote signal 0.049 0.026 -0.038 -0.046

(0.031) (0.036) (0.059) (0.061)
Firm domestic sales 0.062c 0.049

(0.032) (0.034)

N 881049 881049 907868 907868
# of Firms 1923 1923 1932 1932
# of Firm-Markets 114469 114469 115642 115642
# of Entries 1030 1030 1063 1063
Log likelihood -3950.1 -2885.8 -4127.5 -3847.6
Strata Destination-Ind Destination-Ind-Year Firm Firm-Year

Notes: Results of the Cox regression models. Standard errors are clustered at the firm level. Signifi-
cance levels: a: 0.01, b: 0.05, c: 0.10. Note that the sample is exactly the same as those in Table 5.
The number of observations differs because we do not count singletons due to the fixed effects in the
linear regressions.

It is important to note that our evidence does not imply that the existence of

a nearby sibling necessarily increases the likelihood of entry into other countries in

the same region. Such a positive impact is realized only when the nearby siblings’

signal is good enough. To demonstrate this point, we expand our sample to include
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regions which the firm has not entered yet. We then estimate the impact of different

deciles of average nearby siblings’ signal on the probability of market entry, using the

observations without any nearby siblings as the base category, and controlling firm

domestic performance, and destination-industry-year and firm-industry fixed effects.19

We then plot the coefficients of decile dummies in Figure 1. Consistent with our earlier

evidence, stronger siblings’ signal raises the entry probability. However, compared to

firms without any siblings, having a sibling only significantly raises the probability of

entry when the siblings’ signal is above the fourth decile. When the siblings’ signal is

in the lowest decile, the entry probability is actually significantly lower than that of a

firm without any presence in the region.

We think that this result demonstrates an important distinction between our learn-

ing mechanism and other mechanisms that lead to sequential entries in similar markets.

For example, Morales et al. (2019) construct and estimate an empirical model where an

exporter’s prior entry in nearby markets lowers the sunk entry costs into new markets,

which can explain the “extended gravity” patterns in market entry. Their mechanism

may well exist in our FDI context, as the presence of nearby siblings starts to show

a positive impact on subsequent entries into new markets when the siblings’ signal is

as low as the third decile. However, this is not the case for the lowest two deciles.

In a recent study, Garetto et al. (2019) provide evidence that the presence of a U.S.

MNC in a country only has a slightly positive and sometimes insignificant effect on the

probability of its entry into another similar country. We conjecture that the effects of

prior presence on subsequent entries may well depend on the historical performance of

the existing affiliates.

We have so far defined markets at destination-industry levels. In Table 7, we perform

horse race regressions and show that signals from other industries cannot predict market

entry, even if those signals come from the same region. In Columns 1-2, we regress the

entry dummy on the average signals of siblings in the same region and industry and

of siblings in the same region but different industries. We see that only the signal

of siblings in the same region and industry has predictive power for the next period’s

entry. In Columns 3-4, we add remote sibling signals, and further separate remote

sibling signals into those in the same industry and those in different industries. We

again find that only signals from siblings in the same region and industry can predict

19The details of the sample and regression results are presented in Online Appendix OA.2.2. We also
report the results controlling for firm-industry-year fixed effects instead of firm-industry fixed effects.
The results are similar.
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Figure 1: Impact of Nearby Sibling Signal Deciles on Entry Probability (�)
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Notes: The coefficients of nearby siblings’ signal decile dummies on entry proba-
bility, using firm-country-industry cells without any nearby siblings are the base
category (horizontal line at y = 0). The details of the sample and the regression
results are presented in Online Appendix Table OA.3.

market entry. Therefore, learning effect is the strongest for this type of signals.20

Before we close this section and look at evidence based on affiliates’ expectations post

entry, we briefly discuss the potential mechanisms through which such learning effects

operate. We first recognize that such a behavior is optimal from the MNC’s perspective

(Bayesian updating of beliefs). A MNC with frictionless information flows between

subsidiaries and the parent company should use all the signals available and predict

their future sales. Given that the signals are more correlated within a region, nearby

siblings’ signals are more important in predicting entry and expectations formation. We

also conjecture that the pursuit of “regional strategies” by MNCs and the prevalence

of regional headquarters (RHQs) may have further facilitated such information flows

within a region ((Rugman and Verbeke, 2004)). For example, according to interviews

with multiple MNCs and their RHQs, Nell et al. (2011) argue that RHQs play an

20A caveat is that, as we add more signals into the horse race regressions, the number of observations
shrinks. For example, Columns 1-2 in Table 7 requires that, for the focal market, the firm has at least
one sibling in the same region-industry and one sibling in the same region but different industry.
Columns 3-4 require an additional sibling in the other regions, whether in the same industry or not,
while the last two columns further require one sibling in the same industry but different region and
one sibling in a different industry and different region.
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Table 7: Impact of siblings’ experience on entry in the next period, horse race between
signals from the same and different industries

Dep. Var: 1(Enterspk,t+1)× 1000 (1) (2) (3) (4) (5) (6)

Avg nearby signal (same ind) 0.166a 0.157a 0.167a 0.168a 0.154a 0.114b

(0.039) (0.040) (0.037) (0.041) (0.045) (0.051)
Avg nearby signal (diff ind) 0.006 -0.019 0.009 -0.006 -0.020 -0.055

(0.049) (0.072) (0.053) (0.074) (0.063) (0.084)
Avg remote signal 0.004 0.136

(0.091) (0.170)
Avg remote signal (same ind) 0.045 0.021

(0.062) (0.070)
Avg remote signal (diff ind) -0.014 -0.011

(0.099) (0.131)
Firm domestic sales -0.005 0.025 -0.006 0.029 0.048 0.087

(0.057) (0.139) (0.065) (0.145) (0.089) (0.208)
Destination-Year FE X X X X X X
Industry-Year FE X X X X X X
Firm FE X X X

R-squared 0.01 0.02 0.01 0.02 0.02 0.02
N 458137 458136 447263 447261 319763 319763

Notes: The dependent variable indicates whether the firm enters a particular destination in the next
year. Standard errors are clustered at the firm level. Significance levels: a: 0.01, b: 0.05, c: 0.10.

important role in facilitating the communication between regional affiliates and the

parent firm. However, since we do not have proxies for information flows within the

MNCs in our data, we cannot investigate this mechanism more thoroughly.

5.2 Life-cycle Learning after Market Entries

In this subsection, we use our measure of affiliates’ sales forecasts to study how past

signals affect the formation of expectations and to test Proposition 2. The baseline

regression specification is as follows:

logEt(Ri,t+1) = b1rit + b2r
nearby
fskt + b3rremote

fskt + b4r̃ft + δskt + δf + εi,t+1, (9)

where we examine how the affiliate’s own signal and its siblings’ signals affect its ex-

pected sales in the next year. The right hand of equation (9) is almost the same as

that of equation (7), except for the addition of the first regressor, rit. This variable is

a measure of the affiliate’s own signal, which is defined as the cumulative average of

its residual log local sales r̃iτ , τ ≤ t. Proposition 2 predicts that both b1 and b2 are

positive.

Column 1 of Table 8 presents the results from the baseline regression. The affiliate’s

own signal is a key determinant of future sales expectation, with a precisely estimated
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Table 8: Impact of siblings’ signal on expected sales in the next year, baseline and by
age group

Dep. Var: logEt(Ri,t+1) (1) (2) (3) (4)
Sample: all ages 1 ≤ age ≤ 3 4 ≤ age ≤ 6 age ≥ 7

Average self signal 0.823a 0.550a 0.805a 0.935a

(0.011) (0.024) (0.026) (0.009)
Average nearby signal 0.024b 0.098a 0.028 0.022c

(0.011) (0.036) (0.026) (0.013)
Average remote signal 0.014 0.008 0.006 0.020

(0.017) (0.057) (0.046) (0.019)
Firm domestic sales 0.052a 0.088c 0.107a 0.054b

(0.019) (0.050) (0.031) (0.022)
Destination-Ind-Year FE X X X X
Firm FE X X X X

R-squared 0.88 0.88 0.89 0.90
N 32881 2182 3778 24160

Notes: Dependent variable is the logarithm of expected sales in the next year. We calculate the
signals as the cumulative average residual sales following the definition in equation (6). Standard
errors are clustered at the firm level. Significance levels: a: 0.01, b: 0.05, c: 0.10. The number of
observations in Columns 2–4 does not add up to that in Column 1 because we have excluded the
singletons (observations whose variation is completely absorbed by the fixed effects) when calculating
these numbers, and the set of singletons depends on the subsample.

coefficient of 0.823. Nearby siblings’ signals also positively affect expectations. If the

average past sales of all nearby siblings increase by one log point, the affiliate’s expected

sales increase by 0.024 log points. By contrast, remote siblings’ signals have a positive

but insignificant impact, which is consistent with the evidence we presented for market

entries in the previous subsection.

We next explore the heterogeneous effects of the nearby siblings’ signals and test the

additional predictions in Part 1 of Proposition 2. In Columns 2 to 4 of Table 8, we divide

the sample into affiliates of different ages. We find that the impact of nearby siblings’

signal is higher for younger affiliates, whereas the impact of self-experience is higher for

older affiliates. When affiliates are no older than three years, the coefficient of nearby

siblings’ signal is four times the average effect in Column 1, while the coefficient of

the affiliate’s own signal is one third smaller. When affiliates are older, the coefficients

of the average nearby siblings’ signal are much smaller and becomes insignificant or

marginally significant.

To confirm the increasing (declining) impact of the affiliate’s own (nearby siblings’)

signal on the expectations formation, we interact these two signals with affiliate age in

Table 9. Since some affiliates in our data are old, we create two age measures to capture

the non-linear effects of age: the logarithm of affiliate age and affiliates’ age capped at

10. We further control for the direct impact of age on expected sales using the affiliate
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Table 9: Impact of siblings’ signal (interacted with affiliate age) on expected sales in
the next year

Dep. Var: logEt(Ri,t+1) (1) (2) (3) (4)

Average self signal 0.868a 0.596a 0.868a 0.587a

(0.009) (0.019) (0.010) (0.020)
× log(self age) 0.091a 0.092a

(0.006) (0.006)
×max{self age, 10} 0.033a 0.034a

(0.002) (0.002)
Average nearby signal 0.023b 0.181a 0.034a 0.200a

(0.012) (0.026) (0.012) (0.029)
× log(self age) -0.050a -0.052a

(0.008) (0.009)
×max{self age, 10} -0.019a -0.020a

(0.003) (0.003)
Average remote signal 0.018 0.017 0.017 0.016

(0.017) (0.017) (0.025) (0.025)
Firm domestic sales 0.053a 0.056a

(0.019) (0.018)
Destination-Ind-Year FE X X X X
Firm FE X X
Firm-Year FE X X
Age FE X X X X

R-squared 0.89 0.89 0.91 0.91
N 32872 32872 31724 31724

Notes: Dependent variable is the logarithm of expected sales in the next year. We calculate the signals
as the cumulative average residual sales following the definition in equation (6). The logarithm of
affiliate age is also standardized to facilitate the interpretation of the coefficients. Standard errors are
clustered at the firm level. Significance levels: a: 0.01, b: 0.05, c: 0.10.

age fixed effects. The logarithm of affiliate age is also standardized to facilitate the

interpretation of the coefficients. Taking the estimates in Column 1 as an example, we

find that a one standard deviation increase in the logarithm of affiliate age raises the

impact of the affiliate’s own signals by 0.091 and reduces the impact of nearby siblings’

signals by 0.050. In Columns 3 and 4, we replace firms’ domestic sales and the firm

fixed effects with the firm-year fixed effects and the patterns are similar.

Before we end this subsection, we examine how siblings’ experience affects the

strength of learning and test the other prediction in Part 1 of Proposition 2. We

first need to construct measures of sibling experience. Since siblings’ signal is calcu-

lated by aggregating all siblings’ past sales in nearby markets, the correct notion of

siblings’ experience is the number of signals observed by the firm. However, since some

siblings entered before 1995, the earliest year of our data, we cannot observe their per-

formance before 1995 and cannot include them in the siblings’ signal measure. We thus

construct two variables to measure siblings’ age. First, consistent with our notion of

average past signals (residual log local sales), we calculate the number of signals used
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in this calculation, i.e., N(τ ≤ t, i ∈ Ifsk) in equation (6). Second, we calculate the

sum of nearby siblings’ ages, which assumes that the firm uses all past signals of the

nearby siblings to forecast sales in the focal market. To capture the non-linear effect,

we use the logarithms of both variables in our regressions; they are also standardized

to facilitate interpretation.

Table 10 reports the results of regressions where we add interaction terms between

the siblings’ experience and self/siblings’ average signals. Although the interaction term

between the nearby siblings’ experience and the affiliate’s own signal is significantly

negative in only one specification (Column 1), the interaction term between nearby

siblings’ experience and their own signal is significantly positive in all specifications,

suggesting that siblings’ signals matters more if they are older. Depending on the

specification, a one standard deviation increase in the nearby siblings’ experience raises

the coefficient of the nearby siblings’ signal by around 50%. The estimated effects are

similar regardless of whether siblings’ experience is measured by the number of observed

signals or total age. Finally, the coefficients of the interaction terms of the affiliate’s

age and the signals are similar to those in Table 9. The effect of siblings’ experience on

learning is in general smaller than that of the affiliate’s own experience.

We now show that the magnitude of the estimated age effect on the strength of

learning is consistent with our theoretical model using a simple calibration, taking

advantage of our direct measure of sales forecasts. In Online Appendix OA.1.3, we

derive closed-form expressions for the coefficients of the average self and nearby siblings’

signal in the expectation updating formula:

β1 =
(1− ρ2

12)λ2 + 1/t2
(1 + 1/λ1t1)(λ2 + 1/t2)− ρ2

12λ2

(10)

β2 =
σθ1
σθ2

ρ12/t1
(λ1 + 1/t1)(1 + 1/λ2t2)− ρ2

12λ1

. (11)

To gauge the values of β1 and β2, we first impose symmetry within a region so that

markets 1 and 2 have the same σθ and σε. In an earlier paper (Chen et al., 2020), we

provide estimates for these parameters which imply a signal-to-noise ratio of 1.86.21 The

average age of nearby siblings is 15 according to Table 4 in the paper. We estimated ρ12

to be 0.38, using the model-consistent approach discussed in Appendix A.1 (the value

in the second row of Table A.1). We then plug λ1 = λ2 = 1.86, t2 = 15 and ρ12 = 0.38

21The estimation relies on the result that the forecast errors of old firms are dominated by ε, while
uncertainty about θ and ε drives the forecast errors of young firms together.
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Table 10: Interaction of siblings’ signal with siblings’ experience

Sibling Experience Measure: # Signals Total Age

Dep. Var: logEt(Ri,t+1) (1) (2) (3) (4)

Average self signal 0.869a 0.870a 0.868a 0.869a

(0.010) (0.010) (0.010) (0.010)
× Self experience 0.092a 0.093a 0.091a 0.093a

(0.006) (0.006) (0.006) (0.006)
× Nearby siblings’ experience -0.011c -0.005 -0.004 -0.000

(0.006) (0.007) (0.007) (0.008)
Average nearby signal 0.039a 0.060a 0.033b 0.051a

(0.015) (0.016) (0.014) (0.014)
× Self experience -0.051a -0.053a -0.052a -0.053a

(0.009) (0.009) (0.009) (0.009)
× Nearby siblings’ experience 0.021b 0.032a 0.016b 0.025a

(0.009) (0.011) (0.008) (0.010)
Nearby siblings’ experience 0.023 0.000 0.023 0.015

(0.018) (0.022) (0.017) (0.020)
Average remote signal 0.019 0.020 0.019 0.019

(0.018) (0.025) (0.018) (0.026)
Firm domestic sales 0.052a 0.053a

(0.019) (0.019)
Destination-Ind-Year FE X X X X
Firm FE X X
Firm-Year FE X X
Age FE X X X X

R-squared 0.89 0.91 0.89 0.91
N 32872 31724 32862 31714

Notes: Dependent variable is the logarithm of expected sales in the next year. We calculate the signals
as the cumulative average residual sales following the definition in equation (6). Self experience is
the logarithm of self age, while the nearby siblings’ experience is measured by the logarithm of total
number of signals or total age of the nearby siblings, indicated by the column head. Standard errors
are clustered at the firm level. Significance levels: a: 0.01, b: 0.05, c: 0.10.

into equations (10) and (11). The implied coefficients under different values of t1 are

presented in Table 11, quantitatively similar to those estimated in Table 8 of the paper.

For example, the coefficient of average nearby siblings’ signal is estimated to be 0.098

for age one to age three affiliates in the data, while the model implies this coefficient

to be 0.141, 0.088 and 0.063 for age one, two and three affiliates, respectively.

Table 11: Model-implied coefficients of average self and nearby siblings’ signals

Self Age t1 1 2 3 4 5 6 7 8 9 10

Coef. of Self Signal 0.614 0.761 0.827 0.864 0.888 0.905 0.918 0.927 0.935 0.941
Coef. of Nearby Signal 0.141 0.088 0.063 0.050 0.041 0.035 0.030 0.027 0.024 0.022

Notes: The coefficients are calculated according to equations (10) and (11), respectively. We choose
the following parameter values in addition to t1: σθ1 = σθ2, ρ12 = 0.38, λ1 = λ2 = 1.86, t2 = 15.
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5.3 Market Uncertainty and Cross-market Learning

In this subsection, we explore how the relationship between the affiliate’s expectation

and its nearby siblings’ signal varies with the level of uncertainty in the affiliate’s market,

according to Part 2 of Proposition 2. We first construct two measures of σε1 that are

consistent with our model. First, log sales in our model are proportional to θ + εt.

Hence, subtracting log sales in period t− 1 from that in period t can remove the time-

invariant component θ. The variance of the log sales growth rates in the focal market

is thus proportional to 2σ2
ε1. Second, sufficiently old affiliates have almost discovered θ,

meaning that the only source of their forecast errors is the temporary shock εt. Table

8 suggests that learning from siblings is very weak after seven years in the market. We

therefore use the standard deviation of forecast errors of affiliates with at least seven

years of experience as a proxy for σ2
ε1. We also experiment with residual log sales growth

and residual forecast errors from which we have removed destination-industry-year fixed

effects (capturing aggregate shocks to all affiliates in the same market). The results are

very similar.

We perform the following regression to examine the impact of σε1:

logEt(Ri,t+1) = b1rit + b2r
nearby
fskt + b3rremote

fskt + b4r̃ft

b5rit × σ̂ε1,k + b6r
nearby
fskt × σ̂ε1,k + δskt + δf + εi,t+1. (12)

Our new estimation equation is equation (9) with the addition of two new terms: the

interaction terms between signal noisiness in destination k and the signals of the affiliate

and of its nearby siblings. The destination-level signal noisiness measure, σ̂ε1,k, is

defined as the standard deviation of the log sales growth of all the Japanese affiliates in

destination k, or the standard deviation of the sales forecast errors of affiliates at least

seven years old. To ensure these measures are precise, we only include destinations that

have at least 20 observations of sales growth or forecast errors.22 Proposition 2 predicts

that b5 and b6 is are negatively and positively significant respectively.

Table 12 reports the regression results. In Columns 1 and 2, we approximate σ̂ε1,k

using the standard deviation of the sales growth rates in destination k, which are further

standardized to facilitate the interpretation of the coefficients. Column 2 replaces the

firms’ domestic sales control and firm fixed effects in Column 1 with firm-year fixed

22Ideally, one would want to calculate a proxy σε1 at the destination-industry level because it is our
definition of a “market”. However, this causes more measurement errors in σε1 since we have fewer
observations in each cell. We decide to aggregate the sales growth rates at the destination level instead.
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effects. The results in these two columns show that b5 is negative, while b6 is positive,

which confirms the model’s prediction. As shown in Column 1, a one standard deviation

increase in σ̂ε1,k lowers the coefficient of the affiliate’s own signals by 0.056 and raises

the coefficient of nearby siblings’ signals by 0.035.

We experiment with alternative measures of σ̂ε1,k in the other columns of Table 12.

Columns 3 and 4 construct this measure using the standard deviation of the forecast er-

rors for affiliates above seven years, as discussed earlier. The signs of the two interaction

terms are the same, but the magnitude of the coefficients falls. Finally, Columns 5–8

show that the results are robust when we use the standard deviation of residual sales

growth or forecast errors, which exclude the systemic influence of destination-industry

level trends.

Table 12: Effect of market noisiness on learning

Proxy constructed using Sales Growth Fore. Err. Res. Sales Growth Res. Fore. Err.

Dep. Var: logEt(Ri,t+1) (1) (2) (3) (4) (5) (6) (7) (8)

Average self signal 0.844a 0.847a 0.838a 0.840a 0.844a 0.847a 0.838a 0.840a

(0.011) (0.012) (0.012) (0.012) (0.011) (0.012) (0.012) (0.012)
× proxy of σε1 -0.056a -0.054a -0.028a -0.028a -0.056a -0.054a -0.028a -0.028a

(0.008) (0.008) (0.007) (0.007) (0.008) (0.008) (0.007) (0.007)
Average nearby signal 0.028b 0.039a 0.026b 0.036a 0.028b 0.039a 0.026b 0.036a

(0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)
× proxy of σε1 0.035a 0.037a 0.022a 0.019a 0.035a 0.037a 0.022a 0.019a

(0.009) (0.009) (0.007) (0.007) (0.009) (0.009) (0.007) (0.007)
Average remote signal 0.018 0.019 0.016 0.017 0.018 0.019 0.016 0.017

(0.017) (0.024) (0.017) (0.025) (0.017) (0.024) (0.017) (0.025)
Firm domestic sales 0.054a 0.054a 0.054a 0.054a

(0.018) (0.019) (0.018) (0.019)
Destination-Ind-Year FE X X X X X X X X
Firm FE X X X X
Firm-Year FE X X X X
Age FE X X X X X X X X

R-squared 0.88 0.90 0.88 0.90 0.88 0.90 0.88 0.90
N 32872 31724 32855 31707 32872 31724 32853 31704

Notes: Dependent variable is the logarithm of expected sales in the next year. We calculate the signals
as the cumulative average residual sales following the definition in equation (6). Market noisiness σε1 is
proxied by the standard deviation of (residual) sales growth rates or that of (residual) forecast errors,
which are indicated in the column heads. The proxies are standardized. Standard errors are clustered
at the firm level. Significance levels: a: 0.01, b: 0.05, c: 0.10.

5.4 Additional Evidence and Robustness

We discuss two robustness checks of our main empirical results in this subsection and

refer the reader to the appendix for detailed regression tables. We also briefly discuss

additional empirical results related to “learning from exporting” (Conconi et al., 2016;
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Chen et al., 2020) and the impact of signals on affiliate exits. We present the additional

results in the Online Appendix.

First, in our expectations formation regressions, we considered several factors that

may affect the weights that affiliates place on the signals of itself and of its nearby

siblings. These factors may be correlated with each other and/or correlated with other

confounding variables. In Table A.2, we rerun the regressions including the full set of

factors considered above and obtain similar results as before. This suggests that affiliate

age, market noisiness, and siblings’ experience all have separate effects on learning

as predicted by the model. We also show that our results are robust to adding the

interaction of signals and focal market income levels. This suggests that conditional on

market uncertainty, the income levels of the focal markets do not affect the strength of

learning.

The second challenge to our empirical analysis is the presence of regional value

chains. We know from earlier work that Japanese firms may have established regional

value chains, especially in Asia (Hayakawa and Matsuura, 2011). For example, if a Thai

affiliate of a Japanese firm produces electronic components that are both sold in Thai-

land and exported to its Chinese affiliate for final assembly, supply shocks to the Thai

affiliate can cause positive correlations in the local sales in Thailand and the expected

sales of the Chinese affiliate. To address this concern, we perform robustness checks

by restricting our sample to new entrants that have a small regional or global import

shares. Specifically, we calculate the regional and total import shares for each affiliate.

The regional import share is defined as affiliates’ imported inputs from countries in the

same region (excluding Japan) divided by total sales, while the total import share is

the ratio of imports from all countries excluding Japan to total sales. We restrict our

sample to affiliates whose import shares are less than 15%, since we see these affiliates

as not well integrated into the regional value chains or the global value chains.

Columns 3–6 of Appendix Table A.3 report the entry regressions with the restricted

sample. Requiring the regional import share to be lower than 15% reduces the number

of entries by around one-quarter. Compared with the earlier results, the coefficient of

the average nearby siblings’ signal falls, suggesting that part of the earlier results are

driven by integration into regional value chains. Nevertheless, restricting the sample

does not eliminate these effects. Columns 5 and 6 require entering affiliates to have an

import share below 15%. The import share is higher than the regional import share by

definition, and thus we drop more entries. However, since most of the imported inputs

are from the same region, this criterion only drops slightly more entries compared with
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Columns 3 and 4. We obtain similar results as in those two columns. The results from

the expectations formation regressions are also robust to using these two definitions of

horizontal MP, which are reported in Columns 3–6 of Appendix Table A.4. Finally, as

discussed in footnote 13, we select our sample for expectations formation regressions

based on current local sales ratio, which may fluctuate over affiliates’ life cycles. In

Columns 7-8 of Table A.4, we select the sample based on the life-cycle average local

sales ratio as for our entry regressions. We lose about 5% of the sample but the results

are similar to those in Table A.2.

The literature has emphasized exporting as a mechanism through which MNCs can

learn about the demand in potential markets (Conconi et al., 2016; Chen et al., 2020).

The idea is that firms enter a foreign market by exporting first and “upgrading” to

MP when the expected profitability is sufficiently high. They provide evidence that

the number of years with export experience is positively associated with FDI entry and

uncertainty reduction. We do not attempt to provide a full-fledged model that features

both learning from exporting and learning from siblings. We do, however, provide

alternative and complementary evidence to the literature in Online Appendix OA.2.1,

in the spirit of the entry regressions presented in Section 5.1. We construct export

“signals” in similar ways as siblings’ signals, with the caveat that the measurement of

arms-length exports by the parent firms in our data are far from being ideal. With this

caveat in mind, we find that both the nearby siblings’ signals and export experience

(i.e., signals) increase the probability that a firm enters the new market in the same

region, supporting both the “learning from exporting” and the “learning from siblings”

mechanisms.

Finally, our paper focuses on expectations formation and a simple entry problem but

abstracts from the full dynamics of multi-market entries and exits of MNCs, mainly due

to the theoretical complexity of the problem (Tintelnot, 2017; Arkolakis and Eckert,

2017). In the Online Appendix OA.2.9, we provide discussions regarding affiliates’

endogenous exits in a single market. We show that, under our simplifying assumptions,

the affiliate’s exit rate decreases in self and nearby siblings’ signals. When taking this

prediction to the data, we find that both the self and nearby siblings’ signals have

a negative impact on the probability of exits. However, the coefficient of the nearby

siblings’ signals is insignificant, which lends a weak support to the predictions of our

extended.23

23A practical question here is how we measure “exits” of affiliates in the data. In the survey, some
affiliates do respond in the year when they exit, and report that their status as “operation suspended”
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6 Conclusion

In this study, we use a novel dataset of Japanese MNCs to provide evidence that MNCs

learn about profitability in the destination market by observing the performance of their

affiliates in similar markets. Specifically, the strong past sales of siblings in nearby

markets raises the probability of the firm entering a particular market. In addition,

after market entry, the strong sales performance of siblings in nearby markets also raises

the expectation of future sales held by the affiliate in the focal market. Importantly,

such an impact declines over the affiliate’s life-cycle, while self-discovery becomes more

important as the affiliate ages. We also show that the effect of learning from nearby

siblings is stronger if the destination market’s signals are noisier and when siblings are

more experienced. We view these findings as evidence of cross-market learning and

information transmission within MNCs. The simple model we provide here rationalizes

all the empirical findings and is thus a good starting point for studying MNC dynamics

and interdependence across markets.

There are at least three fruitful avenues for future research. First, constructing a

structural model would be useful to estimate the key parameters of the model (e.g., cor-

relations of the time-invariant demand across markets, variances of the time-invariant

demand and the transitory shock) and to conduct counterfactual analysis. Second,

incorporating information transmission within MNCs into a quantitative MP frame-

work (e.g., Helpman et al. (2004) and Ramondo and Rodŕıguez-Clare (2013)) would

help quantify the role of learning within MNCs in determining their entry and pro-

duction patterns. Finally, the current study does not consider information spillovers

across MNCs, which may also influence their activities abroad and have strong policy

implications. We leave these promising approaches and interesting questions to future

research.

or “dissolution or withdrawal” or “decline in control share” (below 10%). However, we are concerned
that this strict definition of “exit” understates the overall exit rates because other affiliates may just
stop responding when they exit. We therefore use two more general definitions of exits by including
affiliates that stopped responding for at least two consecutive years (and plus those that report zero
sales for at least two consecutive years). The exit rates are 7.29% and 7.31% under the two definitions,
respectively.
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A Appendix

A.1 Within- and Cross-region Correlations in θ and ε

In this section, we compare the within-region and cross-region correlations of time-

invariant demand θ. To measure such correlations, we first try to extract model-

consistent measures of θ from the data. According to the model, sufficiently old firms

have almost learned the value of θ and the variability in their sales is only caused by

ε. Therefore, if we average over a large number of realized (log) sales of old firms, we

can obtain a proxy for θ. We perform this exercise for each firm-market combination,

only taking observations when the affiliate is at least seven years old. We then obtain

a parent-firm-market-level dataset. We pair each market in which a parent firm has

entered with all the other markets it has presence. For each pair of markets 1 and

2, we can calculate the correlation in θ1 and θ2 across all firms with presence in both

markets. The correlation can be calculated for two markets within the same region

or in different regions. Row 1 of Table A.1 shows the within-region and cross-region

correlations, pooling all within-region pairs and cross-region pairs, respectively. The

within-region correlation is around 0.41, higher than the cross-region correlation.

One concern about this calculation is that the proxy for θ is contaminated by other

factors such as aggregate shocks and global firm-level shocks that are not firm-market-

specific. To address this issue, we compute two alternative proxies for θ. First, we

remove the destination-industry-year fixed effects from log sales, so that the residual

ê1(sales) is arguably idiosyncratic demand. We then calculate the average of ê1(sales)

of affiliates that are at least seven years old within each firm-market. Second, we use a

different residual ê2(sales) obtained by regressing log sales on log parent firm domestic

sales as well as the above fixed effects. This further removes the global firm-level shocks

that are not firm-market-specific. We use this ê2(sales) to construct a third proxy for θ.

Rows 2 and 3 of Table A.1 show the correlations of θ constructed in these ways within

and across regions, respectively. These correlations are smaller than that in row 1,

whereas the within-region correlation is always larger than the cross-region correlation,

and the differences are around 0.1.

In our main model, we assume that the idiosyncratic transitory shocks εjt are i.i.d.

over time and across affiliates. We now calculate the contemporary correlation of εjt

between siblings. According to our model, the first difference in log sales is exactly

∆εjt ≡ εjt − εj,t−1. We have used this result to estimate the variance σε in Section 5.3.
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Table A.1: Correlation of demand within and between regions for affiliates above age
seven

Demand Measure Corr. within Region Corr. between Regions

Panel A: Corr(θi, θj)

log(sales) 0.414 0.315
[13270] [28639]

ê1(sales) 0.379 0.298
[12574] [25704]

ê2(sales) 0.328 0.230
[13033] [28062]

Panel B: Corr(εit, εjt)

∆log(sales) 0.096 0.062
[166223] [362710]

∆ê1(sales) 0.043 0.025
[156719] [319896]

∆ê2(sales) 0.099 0.068
[160221] [347933]

Notes: In Panel A, each observation is a firm-country-pair combination (two different countries). For
each firm-country cell, we take the average of sales for all affiliates at least seven years old. When the
demand measure is log(sales), we simply use the logarithm of local sales of each affiliate. When the
demand measure is ê1(sales), we regress log local sales on the destination-industry-year fixed effects
and use the residual to measure an affiliate’s idiosyncratic demand. When the demand measure is
ê2(sales), we further control for parent sales in Japan beyond the fixed effects to obtain residual
sales. In Panel B, each observation is a affiliate-sibling-year combination (two different siblings). We
calculate the correlation between the siblings of their growth in raw sales, growth in residual sales
ê1(sales) (controlling for destination-industry-year fixed effects) and growth in residual sales ê2(sales)
(further controlling parent sales). All the correlation coefficients are significant at 1%.

We now compute the correlation of this first difference between two siblings, i and j

Corr(∆εit,∆εjt) =
Cov(∆εit,∆εjt)√
V ar(∆εit)V ar(∆εjt)

=
Cov(εit, εjt)√
V ar(εit)V ar(εjt)

= Corr(εit, εjt),

where we have applied that {εit}i are independently and identically distributed over

time (but not across affiliates). Similar to our calculation of θj, we consider three sales

measures: log local sales, residual log local sales controlling for destination-industry-

year fixed effects, ê1sales, and residual log local sales further controlling for parent

sales ê2sales. We then take first difference and create all possible sibling pairs for each

year and compute the correlation of the first differences. The number of observations

is much larger than that used for calculating Corr(θi, θj) since we do not aggregate

over time and across affiliates within a destination. In general, we observe much lower

within-region correlation than that of θj, ranging from 0.043 to 0.099.

A.2 Additional Robustness Checks
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Table A.2: Full set of interaction terms in the expectation formation regressions

Dep. Var: logEt(Ri,t+1) (1) (2) (3) (4)

Average self signal 0.869a 0.869a 0.868a 0.867a

(0.010) (0.010) (0.010) (0.010)
×σε1 (SD of sales growth) -0.026a -0.029a

(0.008) (0.009)
×σε1 (SD of fore. err.) -0.013b -0.010c

(0.006) (0.006)
× log(self age) 0.086a 0.086a 0.091a 0.088a

(0.007) (0.007) (0.006) (0.007)
× Nearby siblings’ experience 0.004 0.003 0.001 0.004

(0.008) (0.008) (0.007) (0.008)
× Destination income level -0.004 0.014

(0.011) (0.009)
Average nearby signal 0.051a 0.050a 0.050a 0.051a

(0.014) (0.015) (0.014) (0.015)
×σε1 (SD of sales growth) 0.020b 0.024b

(0.008) (0.009)
×σε1 (SD of fore. err.) 0.009 0.008

(0.006) (0.006)
× log(self age) -0.047a -0.048a -0.052a -0.049a

(0.010) (0.010) (0.010) (0.010)
× Nearby siblings’ experience 0.023b 0.024b 0.024b 0.024b

(0.010) (0.010) (0.010) (0.010)
× Destination income level 0.006 -0.008

(0.015) (0.012)
Nearby siblings’ experience 0.013 0.014 0.014 0.014

(0.020) (0.020) (0.020) (0.020)
Average remote signal 0.020 0.021 0.020 0.021

(0.026) (0.026) (0.026) (0.026)
Destination-Ind-Year FE X X X X
Firm-Year FE X X X X
Age FE X X X X

N 31714 31599 31697 31582
R-squared 0.905 0.905 0.905 0.905

Notes: Dependent variable is the logarithm of expected sales in the next year. Nearby siblings’
experience is the total number of nearby siblings’ signals. Host country income level is measured as
the log of real GDP per capita in 2005. All moderator variables are standardized. Standard errors are
clustered at the firm level. Significance levels: a: 0.01, b: 0.05, c: 0.10.
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Table A.3: Robustness of the entry regressions: Stricter definitions of horizontal MP

Def. of Horizontal Entry

Avg Local Sales

Share ≥ 0.95

Avg Regional

Import Share < 0.15

Avg Import

Share < 0.15

Dep. Var: 1(Enterspk,t+1)× 1000 (1) (2) (3) (4) (5) (6)

Average nearby signal 0.144a 0.139a 0.101a 0.115a 0.098a 0.109a

(0.032) (0.036) (0.031) (0.032) (0.030) (0.031)
Average remote signal 0.033 0.003 0.021 0.036 0.019 0.033

(0.045) (0.048) (0.041) (0.042) (0.041) (0.041)
Destination-Ind-Year FE X X X X X X
Firm FE X X X
Firm-Year FE X X X

R-squared 0.06 0.08 0.07 0.09 0.07 0.09
N 902532 902527 902532 902527 902532 902527

Notes: Dependent variable is an indicator variable indicating whether the firm enters a particular
destination in the next year. Siblings’ signals are the average of past residual sales. The local sales
share is the ratio of local sales to total sales. The regional import share is the ratio of imports from
other countries in the same region to total sales. The import share is the ratio of imports from the
rest of the world (excluding Japan) to total sales. The “average” is calculated withn an affiliate over
time. Standard errors are clustered at the firm level. Significance levels: a: 0.01, b: 0.05, c: 0.10.
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Table A.4: Robustness of the expectation formation regressions: Stricter definitions of
horizontal MP

Def. of Horizontal Affiliates
Local Sales

Share ≥ 0.95

Avg Regional

Import Share < 0.15

Avg Import

Share < 0.15

Avg Local Sales

Share ≥ 0.85

Dep. Var: logEt(Ri,t+1) (1) (2) (3) (4) (5) (6) (7) (8)

Average self signal 0.873a 0.872a 0.871a 0.871a 0.874a 0.875a 0.849a 0.848a

(0.011) (0.011) (0.011) (0.011) (0.012) (0.012) (0.013) (0.013)
×σε1 (SD of sales growth) -0.026a -0.030a -0.031a -0.033a -0.032a -0.041a -0.020b -0.023b

(0.008) (0.010) (0.010) (0.013) (0.010) (0.013) (0.009) (0.012)
× Self experience 0.088a 0.089a 0.092a 0.092a 0.096a 0.097a 0.084a 0.085a

(0.007) (0.007) (0.008) (0.008) (0.008) (0.008) (0.009) (0.009)
× Nearby siblings’ experience 0.008 0.007 0.011 0.010 0.013 0.011 -0.002 -0.003

(0.008) (0.008) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
× Destination income level -0.004 -0.003 -0.011 -0.004

(0.012) (0.013) (0.014) (0.014)
Average nearby signal 0.046a 0.046a 0.055a 0.054a 0.061a 0.060a 0.054a 0.055a

(0.014) (0.015) (0.017) (0.019) (0.017) (0.018) (0.016) (0.017)
×σε1 (SD of sales growth) 0.018b 0.020b 0.007 0.011 0.006 0.013 0.026a 0.023b

(0.008) (0.009) (0.011) (0.012) (0.013) (0.013) (0.009) (0.011)
× Self experience -0.053a -0.054a -0.056a -0.056a -0.058a -0.059a -0.041a -0.041a

(0.011) (0.011) (0.012) (0.012) (0.013) (0.013) (0.013) (0.013)
× Nearby siblings’ experience 0.020b 0.021b 0.027b 0.027b 0.027b 0.027b 0.033a 0.032a

(0.010) (0.010) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)
× Destination income level 0.004 0.006 0.009 -0.005

(0.015) (0.019) (0.019) (0.016)
Nearby siblings’ experience 0.009 0.010 0.004 0.005 -0.008 -0.007 0.042c 0.043c

(0.021) (0.021) (0.022) (0.023) (0.023) (0.023) (0.024) (0.024)
Average remote signal 0.004 0.005 0.030 0.031 0.017 0.018 -0.004 -0.004

(0.025) (0.025) (0.026) (0.026) (0.027) (0.027) (0.021) (0.021)
Destination-Ind-Year FE X X X X X X X X
Firm-Year FE X X X X X X X X
Age FE X X X X X X X X

R-squared 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
N 26216 26102 24065 24021 23285 23247 30094 29998

Notes: Dependent variable is the logarithm of expected sales in the next year. Standard errors are
clustered at the firm level. Self-experience is the log of affiliate age. Nearby siblings’ experience is the
total number of nearby siblings’ signals. Host country income level is the log of real GDP per capita
in 2005. All moderator variables are standardized. The local sales share is the ratio of local sales to
total sales. The regional import share is the ratio of imports from other countries in the same region
to total sales. The import share is the ratio of imports from the rest of the world (excluding Japan)
to total sales. Columns 3 to 6 select the sample based on the average of the corresponding shares over
the affiliates’ life cycles. Significance levels: a: 0.01, b: 0.05, c: 0.10.
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OA.1 Additional Theoretical Results

In this theory appendix, we first discuss the forecasting problem in the general case in

which ρ12 > ρ13 = ρ23 > 0 and then prove Propositions 1 and 2 as a special case in which

ρ13 = ρ23 = 0.

OA.1.1 Expectation Formation in the General Case

Before we consider the expectation formation before and after entering market 1, we show

that the average past signals in each market are sufficient statistics for the posterior distri-

bution of θ1. To see this, without loss of generality, suppose the firm has entered all three

markets and observed signals a1,a2,a3, where the bold letters represent the entire vector of

the signals from a particular market. Using Bayes’ rule and denoting the density functions

with f(·), we have

f(θ1|a1,a2,a3) =
f(θ1,a1,a2,a3)

f(a1,a2,a3)
∝ f(θ1,a1,a2,a3)

=

∫
θ2,θ3

f(θ1, θ2, θ3,a1,a2,a3)dθ2dθ3

=

∫
θ2,θ3

f(a1,a2,a3|θ1, θ2, θ3)f(θ1, θ2, θ3)dθ2dθ3

=

∫
θ2,θ3

f(θ1, θ2, θ3)
3∏
i=1

f(ai|θi)dθ2dθ3 (1)

=

∫
θ2,θ3

f(θ1, θ2, θ3)
3∏
i=1

f(θi|ai)f(ai)

f(θi)
dθ2dθ3 (2)

∝
∫
θ2,θ3

f(θ1, θ2, θ3)
3∏
i=1

f(θi|āi)f(āi)

f(θi)
dθ2dθ3 (3)

= f(θ1, ā1, ā2, ā3) ∝ f(θ1|ā1, ā2, ā3). (4)

We have used the fact that conditional on θi, each element in ai is independent to obtain

step (1), applied Bayes’ rule to obtain step (2), used the well-known result that āi is a

sufficient statistic if one wants to predict θi with ai alone (e.g., Jovanovic (1982)) when

deriving step (3), and finally obtained equation (4) by rolling back the derivations above

(with āi instead of ai). Therefore, we have simplified the problem: we just need to use the

joint distribution of θ1, ā1, ā2, ā3 to derive the posterior distribution of θ1.



OA.1.1.1 Before Entering Market 1

Before the firm enters market 1, it uses ā2 and ā3 to predict θ1 given the joint normal

distribution: θ1

ā2

ā3

 ∼ N


θ̄1

θ̄2

θ̄3

 ,
 σ2

θ1 ρ12σθ1σθ2 ρ13σθ1σθ3

ρ12σθ1σθ2 σ2
θ2 + σ2

ε2/t2 ρ23σθ2σθ3

ρ13σθ1σθ3 ρ23σθ2σθ3 σ2
θ3 + σ2

ε3/t3


 .

We denote the number of signals received in market j up to the current period as tj, and

the signal-to-noise ratio in market j as λj ≡ σ2
θj/σ

2
εj.

Using the formula of the conditional distribution under joint normal distributions, θ1|ā2, ā3

is distributed as normal with mean µ̄ and variance Σ̄. One can obtain the conditional mean

of θ1

µ̄ = θ̄1 + β2(ā2 − θ̄2) + β3(ā3 − θ̄3),

where

β2 =
σθ1σθ2
σ2
ε2

ρ12(λ3 + 1/t3)− ρ13ρ23λ3

(λ2 + 1/t2)(λ3 + 1/t3)− ρ2
23λ2λ3

(5)

β3 =
σθ1σθ3
σ2
ε3

ρ13(λ2 + 1/t2)− ρ12ρ23λ2

(λ2 + 1/t2)(λ3 + 1/t3)− ρ2
23λ2λ3

. (6)

The conditional variance is

Σ̄ = σ2
θ1 − β2σ

2
12 − β3σ

2
13 = σ2

θ1 − σ2
θ1

ρ2
12λ2(λ3 + 1/t3)− 2ρ12ρ13ρ23λ2λ3 + ρ2

13λ3(λ2 + 1/t2)

(λ2 + 1/t2)(λ3 + 1/t3)− ρ2
23λ2λ3

.

OA.1.1.2 After Entering Market 1

After the firm enters market 1, it uses all three average past signals ā1, ā2, ā3 to form the

posterior of θ1. The joint distribution of θ1, ā1, ā2, ā3 is
θ1

ā1

ā2

ā3

 ∼ N



θ̄1

θ̄1

θ̄2

θ̄3

 ,


σ2
θ1 σ2

θ1 ρ12σθ1σθ2 ρ13σθ1σθ3

σ2
θ1 σ2

θ1 + σ2
ε1/t1 ρ12σθ1σθ2 ρ13σθ1σθ3

ρ12σθ1σθ2 ρ12σθ1σθ2 σ2
θ2 + σ2

ε2/t2 ρ23σθ2σθ3

ρ13σθ1σθ3 ρ13σθ1σθ3 ρ23σθ2σθ3 σ2
θ3 + σ2

ε3/t3


 .

2



According to the formula of the conditional distribution of joint normal distributions, the

conditional mean of θ1 given ā1, ā2, ā3 is

µ̄ = θ̄1 +
[
σ2
θ1 ρ12σθ1σθ2 ρ13σθ1σθ3

]
A−1

 ā1 − θ̄1

ā2 − θ̄2

ā3 − θ̄3,


where A denotes the submatrix of the variance-covariance matrix after removing Row 1 and

Column 1.

Therefore, the conditional mean of θ1 is linear in āi − θ̄i:

µ̄ = θ̄1 + β1(ā1 − θ̄1) + β2(ā2 − θ̄2) + β3(ā3 − θ̄3),

where

β1 =

σ2
θ1σ

2
ε2σ

2
ε3

[
(λ2 + 1/t2)(λ3 + 1/t3) + 2ρ12ρ13ρ23λ2λ3

−ρ2
23λ2λ3 − ρ2

12λ2(λ3 + 1/t3)− ρ2
13λ3(λ2 + 1/t2)

]
∆

, (7)

β2 =

σθ1σθ2σ
2
ε1σ

2
ε3

[
ρ12

t1
(λ3 + 1/t3)− ρ13ρ23

λ3

t1

]
∆

, (8)

β3 =

σθ1σθ3σ
2
ε1σ

2
ε2

[
ρ13

t1
(λ2 + 1/t2)− ρ12ρ23

λ2

t1

]
∆

, (9)

and ∆ is the determinant of matrix A, which is positive. ((ā1, ā2, ā3) has a non-degenerate

multivariate normal distribution, meaning that the covariance matrix must be positive-

definite with a positive determinant.) The conditional variance of θ1, Σ̄, can be expressed as

follows:

Σ̄ = (1− β1)σ2
θ1 − β2σ

2
12 − β3σ

2
13. (10)

OA.1.2 Proof of Proposition 1

Proof. Under Assumption 1, we can simplify equations (5) and (6) as

β2 =
σθ1σθ2
σ2
ε2

ρ12

λ2 + 1/t2
, β3 = 0.

Therefore, the firm only uses signals from market 2 to form its expectation of market 1.

Next, we study how the average signal from market 2 affects the entry probability. We

3



can rewrite the conditional mean and variance of θ1 as

µ̄ = θ̄1 +
σθ1ρ12

σθ2

(
1− 1

1 + λ2t2

)
(ā2 − θ̄2) (11)

and

Σ̄ = σ2
θ1 − σ2

θ1ρ
2
12

λ2t2
1 + λ2t2

. (12)

The firm’s probability of entering market 1 is G(π1t) and

∂G(π1t)

∂ā2

= g(π1t)Bte
µ̄+ Σ̄

2
σθ1ρ12

σθ2

λ2t2
1 + λ2t2

> 0,

where

Bt ≡ eσ
2
ε1/2Et−1

∞∑
τ=t

A1τ

(
ςw1t

ς − 1

)1−ς

ητ−t.

We can conclude that the entry probability increases with the average signal from market 2,

ā2.

OA.1.3 Proof of Proposition 2

Proof. Recall that the firm’s sales in market 1 can be expressed as

R1t = A1te
a1t

(
ςw1t

ς − 1

)1−ς

.

Here, we maintain the assumption that the aggregate variables A1t, w1t are independent of

the demand draw θ1. Therefore, we can write the expected sales as

Et−1(Rt) = Et−1(ea1t)ebt−1 ,

where bt−1 is the log of Et−1

(
A1t [ςw1t/(ς − 1)]1−ς

)
. Since the posterior of a1t is normal with

mean µ̄ and variance Σ̄ + σ2
ε1 as discussed in Section OA.1.1.2, we have

logEt−1(Rt) = µ̄+
(
Σ̄ + σ2

ε1

)
/2.

In this expression, only the term µ̄ is affected by the signals. Therefore, to understand how

the signals affect the log of expected revenue, it is sufficient to examine how they affect µ̄.
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Under Assumption 1, we can simplify equations (7) to (8) as

β1 =
(1− ρ2

12)λ2 + 1/t2
(1 + 1/λ1t1)(λ2 + 1/t2)− ρ2

12λ2

(13)

β2 =
σθ1
σθ2

ρ12/t1
(λ1 + 1/t1)(1 + 1/λ2t2)− ρ2

12λ1

(14)

β3 = 0,

and the firm forms its expectation of θ1 using the following rule:

µ̄ = θ̄1 + β1(ā1 − θ̄1) + β2(ā2 − θ̄2), (15)

Both β1 and β2 are positive.

We are now ready to characterize how the effects of signals on expected revenue are

affected by the other model parameters. It is straightforward to show that

∂β1

∂t1
> 0,

∂β1

∂t2
< 0,

∂β2

∂t1
< 0,

∂β2

∂t2
> 0.

The noisiness of signals from market 1, σε1, only enters β1 and β2 via λ1 ≡ σ2
θ1/σ

2
ε1. Since

β1 increases with λ1 and β2 decreases with λ1 (holding all the other parameters fixed), we

must have
∂β1

∂σε1
< 0,

∂β2

∂σε1
> 0.

OA.1.4 Correlated Temporary Shocks

A convenient and probably unrealistic assumption of the our model is that temporary de-

mand shocks are uncorrelated between the focal affiliate and its siblings in the same region.

One interesting modification of our baseline model is to allow the temporary shocks to be

positively correlated across destination economies within the same region (i.e., the assump-

tion we impose on time-invariant demand draws). In the remaining part of the model section,

we consider a more realistic case in which temporary demand shocks are positively correlated

within the region but not across regions. In general, it is hard to analyze comparative stat-

ics of the learning parameters with respect to the correlation of temporary demand shocks

within the region, which forces us to prove Proposition 1 under parameter assumptions.

Proposition OA 1 Assume that temporary demand shocks in markets 1 and 2 are positively

correlated with a positive correlation coefficient of ρe12(> 0). Furthermore, we assume that
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ρ12 is not too large and λ1 is not too small. Therefore, we have

1. The weight the focal affiliate put on its nearby sibling’s average signal decreases with

the correlation coefficient of ρe12.

2. The weight the focal affiliate put on its own average signal increases with the correlation

coefficient of ρe12.

Proof. Since we assume there is no correlation of both time-invariant demand draws

and temporary demand shocks across regions, the conditional mean of θ1 given ā1, ā2, ā3 can

be expressed as

µ̄ = θ̄1 +
[
σ2
θ1 ρ12σθ1σθ2

] [ σ2
θ1 + σ2

ε1/t1 ρ12σθ1σθ2 +
ρe12σε1σε2
max{t1,t2}

ρ12σθ1σθ2 +
ρe12σε1σε2
max{t1,t2} σ2

θ2 + σ2
ε2/t2

]−1 [
ā1 − θ̄1

ā2 − θ̄2,

]

which lead to the results that

β1 =
(1− ρ2

12)λ2 + 1
t2
− ρ12ρ

e
12

√
λ2/λ1

t0

(1 + 1
λ1t1

)(λ2 + 1
t2

)− ρ2
12λ2 − 2ρ12ρe12

√
λ2/λ1

t0
−
(
ρe12

)2 1
λ1t20

(16)

β2 =
σθ1
σθ2

(
ρ12λ2

λ1t1
− ρe12

√
λ2/λ1

t0

(1 + 1
λ1t1

)(λ2 + 1
t2

)− ρ2
12λ2 − 2ρ12ρe12

√
λ2/λ1

t0
−
(
ρe12

)2 1
λ1t20

)
, (17)

where

t0 ≡ max{t1, t2}.

Note that the common denominator in equations (16) and (17) is positive for sure. The first

thing ot notice is that β1 and β2 can be negative now. This is more likely to happen when

ρe12 is large. There two forces here. First, the focal affiliate wants to incorporate ā2 into its

forecast of θ1 in a positive way, as θ1 and θ2 are positively correlated. At the same time,

the focal affiliate also wants to tease out the series of temporary shocks in market 1 when

forming the expectation for θ1. When the i.i.d. temporary shocks in the two markets are

highly and positively correlated, the focal affiliate can do so by taking the different between

ā1 and ā2 which implies that the weight on ā2 is negative.

6



For the weight put on self signal, we have

Sign

(
∂β1

∂ρe12

)

= Sign

[
− ρ12

√
λ2/λ1

t0

(
(1 +

1

λ1t1
)(λ2 +

1

t2
)− ρ2

12λ2 − 2ρ12ρ
e
12

√
λ2/λ1

t0
−
(
ρe12

)2

λ1t20

)

+

(
2ρ12

√
λ2/λ1

t0
+

2ρe12

λ1t20

)(
(1− ρ2

12)λ2 +
1

t2
− ρ12ρ

e
12

√
λ2/λ1

t0

)]
> 0,

when ρ12 = 0.38 and λ1 = λ2 = 1.86 (i.e., the calibrated values). In general, β1 increases

with ρe12 as long as ρ12 is not too large and λ1 is not too small. The following condition is a

sufficient condition:

(1− ρ2
12)λ2 +

1

t2
≥
(
λ2 +

1

t2

)
1

λ1t1
.

However, when ρ12 is extremely large and λ1 is extremely small, β1 decreases with ρe12.

For the weight put on nearby sibling’s signal, we have

Sign

(
∂β2

∂ρe12

)

= Sign

[
−
√
λ2/λ1

t0

(
(1 +

1

λ1t1
)(λ2 +

1

t2
)− ρ2

12λ2 − 2ρ12ρ
e
12

√
λ2/λ1

t0
−
(
ρe12

)2

λ1t20

)

+

(
2ρ12

√
λ2/λ1

t0
+

2ρe12

λ1t20

)(
ρ12λ2

λ1t1
− ρe12

√
λ2/λ1

t0

)]
.

Note that[
−
√
λ2/λ1

t0

(
(1 +

1

λ1t1
)(λ2 +

1

t2
)− ρ2

12λ2 − 2ρ12ρ
e
12

√
λ2/λ1

t0
−
(
ρe12

)2

λ1t20

)

+

(
2ρ12

√
λ2/λ1

t0
+

2ρe12

λ1t20

)(
ρ12λ2

λ1t1
− ρe12

√
λ2/λ1

t0

)]

=

[
−
√
λ2/λ1

t0

(
(1 +

1

λ1t1
)(λ2 +

1

t2
)− ρ2

12λ2

)
+

(
2ρ12

√
λ2/λ1

t0
+

2ρe12

λ1t20

)
ρ12λ2

λ1t1
− (ρe12)2

λ1t20

√
λ2/λ1

t0

]
< 0,

when ρ12 = 0.38 and λ1 = λ2 = 1.86 (i.e., the calibrated values). In general, β1 decreases

with ρe12 as long as ρ12 is not too large and λ1 is not too small. Otherwise, β1 would increase

7



with ρe12.

Although we cannot find the exact range of parameter values in which the sign of com-

parative statics is unambiguously positive or negative, we can gain insights by considering

a special case in which temporary shocks are perfectly correlated within the region and the

focal affiliate and its nearby sibling are at the same age. In such a case, the difference be-

tween two average signals in the same region is simply ā1 − ā2 = θ1 − θ2 (where β1 = 1 and

β2 = −1 in the formula of Bayesian updating), as the temporary shocks that have hit the two

affiliates are perfectly canceled out. In addition, if we assume that there is no uncertainty

concerning the nearby sibling’s time-invariant demand draw (i.e., σ2
θ2 = 0), the focal affiliate

can infer its time-invariant demand draw perfectly by taking the difference between the two

average signals. In other words, the information value provided by the nearby sibling’s signal

is to tease out common temporary shocks, which leads to a negative coefficient of β2 in the

formula of Bayesian updating (if the time-invariant demand draws are uncorrelated). This

insight has been pointed out in studies of tournament games and games of relative perfor-

mance evaluation.1 As the time-invariant demand draws are still correlated in our extended

model, what we can show is that when the correlation of temporary demand shocks increases,

the motive of doing “relative performance evaluation” (between the focal affiliate and the

nearby sibling) becomes stronger.

Turning to the empirical side, we have to make it clear that the temporary shocks we are

considering are firm-specific shocks. Thus, we can use residual sales to tease out aggregate

persistent or temporary shocks that can be either correlated or uncorrelated across markets.

According to the model, sufficiently old firms have almost learned the value of θ (the time-

invariant demand shock) and the change in their residual sales over time (i.e., sales growth) is

only caused by the temporary shocks, εit. Therefore, we calculate the growth rate of residual

sales and correlate them across affiliates in different countries within the same multinational

parent firm.2 As a result, we obtain several measures for the correlation of firm-specific

temporary shocks both within and across regions in Panel B, Table A.1 of the paper. There

are several points that are worth mentioning. First, the correlations of temporary demand

shocks are indeed positive and smaller when we focus on between-region correlations. Impor-

tantly, when we focus on the within-region correlation of temporary demand shocks, we find

that it is much smaller than the within-region correlation of time-invariant demand draws.

We also calculated proxies of ρe12 between countries within each region in Table OA.1. These

values range from 0.03 to 0.2.

1Specifically, the value of doing a tournament game or relative performance evaluation is that common
random shocks (i.e., lucks) that affect all agents’ performance can be teased out by comparing performance
between different agents.

2The methodology is documented in Section A.1 of the paper.
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Table OA.1: Correlation of temporary idiosyncratic demand within each region

Demand Measure Asia North America Latin America Europe Others

∆log(sales) 0.079 0.110 0.073 0.178 0.193
[127527] [5437] [2410] [30058] [791]

∆ê1(sales) 0.037 0.062 0.066 0.062 0.132
[123952] [5180] [1282] [25839] [466]

∆ê2(sales) 0.086 0.097 0.104 0.149 0.203
[122845] [5386] [2247] [29129] [614]

Notes: Each observation is an affiliate-sibling-year combination (two different siblings in two different coun-
tries within a particular region). The proxies for the temporary idiosyncratic demand shock are explained
in the notes of Table A.1 of the paper. All the correlation coefficients are significant at 1%.

Based on those empirical estimates, we calculated the two weights, β1 and β2 over the

focal affiliate’s life cycles by imposing that ρe12 = 0.03 or ρe12 = 0.2 in Panel (a) of Figure

OA.2. The curves for ρe12 = 0.2 and for ρe12 = 0.03 are almost indistinguishable from each

other. This is even true when we consider more extreme values of the correlation, i.e.,

ρe12 = 0.5 and ρe12 = 0 in Panel (b). In these two panels, we have assumed the signal-to-noise

ratios λ1 = λ2 = 1.86 as Chen et al. (2020). In Panels (c) and (d), we multiply λ1 and λ2 by

three, respectively. Increasing λ1 does affect the speed of learning, but it barely affects the

difference between the case of low ρe12 and high ρe12.

In total, we conclude that having a reasonable level of the correlation in temporary shocks

only causes a quantitatively small bias in our estimated coefficients of self and sibling signals

on expectation formation.

In total, we conclude that having a reasonable level of the correlation in temporary shocks

only causes a quantitatively small bias in our estimated coefficients of self and sibling signals

on expectation formation.
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Figure OA.1: Correlation of temporary shocks and Learning Parameters
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(a) t1 = 10, ρ12 = 0.38
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(b) t1 = 3, ρ12 = 0.38
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(c) t1 = 10, ρ12 = 0.9

Notes: Other paramters λ1 = λ2 = 1.86, t2 = 15.
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Figure OA.2: Correlation of temporary shocks and Learning over Life-cycle: correlation
coefficients consistent with the data
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(a) Empirically relevant ρe12, λ1 = λ2 = 1.86

1 2 3 4 5 6 7 8 9 10

age of the focal affiliate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Extreme ρe12, λ1 = λ2 = 1.86
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(c) Extreme ρe12, λ2 = 1.86, λ1 = 3λ2
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(d) Extreme ρe12, λ1 = 1.86, λ2 = 3λ1

Notes: Other parameters σθ1 = σθ2 = 1.8, t2 = 15, ρ12 = 0.38.
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OA.1.5 Effects of t2 on the Entry Probability

In this section, we examine how t2 affects the entry probability and how it affects the partial

derivative of G(π1t) with respect to ā2.

First, calculation shows

∂G(π1t)

∂t2
= g(π1t)Bte

µ̄+ Σ̄
2
σθ1ρ12

σθ2

λ2

(1 + λ2t2)2

(
(ā2 − θ̄2)− σθ1σθ2ρ12

2

)
.

Therefore, ∂G(π1t)
∂t2

> 0 if and only if ā2 > θ̄2 + σθ1σθ2ρ12

2
(i.e., ā2 is sufficiently large).

Next, we discuss signs of ∂2 ln(π1t)
∂ā2∂t2

and ∂2π1t

∂ā2∂t2
. Simple calculation shows

∂2 ln (π1t)

∂ā2∂t2
=
σθ1ρ12

σθ2

λ2

(1 + λ2t2)2 > 0,

and
∂2π1t

∂ā2∂t2
=
∂π1t

∂ā2

[
1 +

σθ1ρ12

σθ2

λ2t2
1 + λ2t2

(
(ā2 − θ̄2)− σθ1σθ2ρ12

2

)]
,

which is positive if and only if

1 +
σθ1ρ12

σθ2

λ2t2
1 + λ2t2

(
ā2 − θ̄2 − σθ1σθ2ρ122

)
> 0.

I.e., when ā2 is not too small, ∂2π1t

∂ā2∂t2
> 0.

Third, the relationship between entry probability, G(π1t), and the nearby sibling’s signal,

ā2, is mediated by various parameters such as t2. One may conjecture that the sign of
∂2G(π1t)
∂ā2∂t2

is unambiguous (at least under simple parameter restrictions). However, we are

going to show the sign of this cross derivative is actually ambiguous.

Consider the cross derivative of G(π1t) with respect to ā2 and t2, which can be written

as
∂2G(π1t)

∂ā2∂t2
=

∂

∂t2

(
g(π1t)

∂π1t

∂ā2

)
= g′(π1t)

∂π1t

∂t2

∂π1t

∂ā2

+ g(π1t)
∂2π1t

∂ā2∂t2
,

where π1t = Bt exp(µ̄+ Σ̄/2). The above expression can be rewritten as

∂2G(π1t)

∂ā2∂t2
=
∂π1t

∂ā2

[
g
′
(π1t)π1tA+ g(π1t)(1 + A)

]
,

where

A ≡ σθ1ρ12

σθ2

λ2t2
1 + λ2t2

(
(ā2 − θ̄2)− σθ1σθ2ρ12

2

)
. (18)

Therefore, ∂2G(π1t)
∂ā2∂t2

has an ambiguous sign, as the value of g(π1t) and the sign of g
′
(π1t)
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all depend on the value of π1t and the functional assumption of g(·). Without knowing

the distributional assumption of the entry cost, we cannot determine the sign of the above

expression.

Finally, we discuss whether the sign of ∂2G(π1t)
∂ā2∂t2

has a systemic pattern, if the entry cost

is assumed to follow a log normal normal N(µe, σ
2
e). In such a case, we have

∂2G (π1t)

∂ā2∂t2
=

∂2Φ (ln (π1t))

∂ā2∂t2

=
∂

∂t2

(
φ (ln (π1t))

∂ ln (π1t)

∂ā2

)
=

σθ1ρ12

σθ2

1

1 + λ2t22
[φ′ (ln (π1t))A+ φ (ln (π1t))]

=
σθ1ρ12

σθ2

1

1 + λ2t22
φ (ln (π1t))

(
1− Aπ1t − µe√

σ2
e

)
,

where A is defined in equation (18), Φ and φ denote the CDF and PDF of the normal

distribution with mean µe and variance σ2
e . The last step comes from the definition of PDF

of the log normal distribution. We know φ (ln (π1t)) is positive and both A and π1t strictly

increase with ā2. In particular, both A and π1t approach infinity when ā2 goes to infinity,

which leads to ∂2Φ(ln(π1t))
∂ā2∂t2

< 0. However, we do not know the sign of 1 − Aπ1t−µe√
σ2
e

(and thus

∂2Φ(ln(π1t))
∂ā2∂t2

) in general. In total, our learning model has an ambiguous prediction on how

the number of signals affects the positive impact of a better average signal on the entry

probability.

OA.1.6 Model Predictions with Positive Cross-region Correlations

In this subsection, we discuss how our model predictions change when we allow ρ13 and ρ23

to be positive. In particular, we make the following assumption instead of Assumption 1.

Assumption 1’ ρ12 > ρ23 = ρ13 > 0.

Under this alternative assumption, we have two propositions analogous to Propositions

1 and 2.

Proposition 1’ Assume Assumption 1’ holds. Before the firm enters market 1, it uses

signals from both markets 2 and 3 to forecast its “would-be” demand in market 1. The

firm’s expected profit and entry probability in market 1 increases with the average past signals

ā2 ≡
∑t−1

τ=t−t2 a2τ/t2. and ā3 ≡
∑t−1

τ=t−t3 a3τ/t3.
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Proof. Since 0 < ρ23 = ρ13 < ρ12, one can simplify equations (5) and (6) and show

β2 > 0, β3 > 0.

Because the average past signals only affect the expected profit and entry probability via

the conditional mean of θ1 (µ̄), both margins increase with ā2 and ā3.

Proposition 2’ Under Assumption 1’, an affiliate in market 1 uses its own average past

signal, that of its siblings in market 2, and that of its siblings in market 3 to form its

expectation of future sales, with positive weights on all average signals. All else equal, the

weights it places on its own average signal and those of the sibling in market 2 have the

following properties:

1. [life-cycle learning] The weight it places on its own average signal (the average signal

of siblings in market 2) increases (decreases) with its age, and decreases (increases)

with the total number of signals from market 2.

2. [uncertainty impedes self-learning] the weight it places on its own average signal (the

average signal of siblings in market 2) decreases (increases) with the standard deviation

of the time-varying idiosyncratic shocks in its market (market noisiness).

Proof. Similar to the proof of Proposition 2, we simplify equations (7) to (9) under the new

assumption. Specifically, we rewrite the expressions for β1 and β2 as

β1 =
σ2
θ1σ

2
θ2σ

2
θ3

∆

[
2ρ12ρ13ρ23 + (1 + 1

λ2t2
)(1 + 1

λ3t3
)− ρ2

23

−ρ2
12(1 + 1

λ3t3
)− ρ2

13(1 + 1
λ2t2

)

]
,

β2 =
σθ1σθ2σ

2
θ3σ

2
ε1

∆

[
ρ12

t1
(1 +

1

λ3t3
)− ρ13ρ23

1

t1

]
,

β3 =
σθ1σθ3σ

2
θ2σ

2
ε1

∆

[
ρ13

t1
(1 +

1

λ2t2
)− ρ12ρ23

1

t1

]
,

where ∆ equals

σ2
θ1σ

2
θ2σ

2
θ3

[
2ρ12ρ13ρ23 +(1+

1

λ1t1
)
[
(1+

1

λ2t2
)(1+

1

λ3t3
)−ρ2

23

]
−ρ2

12(1+
1

λ3t3
)−ρ2

13(1+
1

λ2t2
)

]
.

It is straightforward to show that

β1, β2, β3 > 0.

Regarding the effect of the signals moderated by t1, t2 and σε1, we take the partial

derivative of β1 and β2 with respect to these parameters. Three points are worth mentioning.

14



First, the numerator of β1 does not depend on t1 and σε1 and the numerator of β2 does not

depend on t2. Second, ∆ increases with σε1 and decreases with t1 and t2. Therefore, we

must have
∂β1

∂σε1
< 0,

∂β1

∂t1
> 0,

∂β2

∂t2
> 0.

Third, the numerator of β2 increases proportionately with σε1 and decreases proportionately

with t1. However, the determinant of matrix A, ∆, increases less proportionately with σε1

and decreases less proportionately with t1.3 Therefore, we must have

∂β2

∂σε1
> 0,

∂β2

∂t1
< 0.

Finally, we analyze how β1 varies with t2. We rewrite β1 as

β1 =

[
(1 + 1

λ2t2
)[(1 + 1

λ3t3
)(1 + 1

λ1t1
)− ρ2

13]

+2ρ12ρ13ρ23 − ρ2
12(1 + 1

λ3t3
)− ρ2

23(1 + 1
λ1t1

)

]−1 [
(1 + 1

λ2t2
)(1 + 1

λ3t3
− ρ2

13)

+2ρ12ρ13ρ23 − ρ2
12(1 + 1

λ3t3
)− ρ2

23

]
.

We prove that 1
β1

decreases with 1 + 1
λ2t2

in what follows:

1

β1

= 1 +

[
(1 + 1

λ2t2
)(1 + 1

λ3t3
− ρ2

13)

+2ρ12ρ13ρ23 − ρ2
12(1 + 1

λ3t3
)− ρ2

23

]−1 [
1

λ1t1
(1 +

1

λ2t2
)(1 +

1

λ3t3
)− ρ2

23

λ1t1

]
> 1.

The calculation shows that

Sign

[
∂ log

(
1
β1
− 1
)

∂ log
(

1 + 1
λ2t2

)] = Sign

[
−
[
(1 +

1

λ3t3
)ρ12 − ρ13ρ23

]2
]
< 0.

Since 1 + 1
λ2t2

decreases with t2, we have

∂β1

∂t2
< 0.

OA.1.7 Effects of Signals on Endogenous Exit

In this section, we extend our model and analyze how the signals affect the exit rate of the

focal affiliate. We assume that in each period, an affiliate has to pay a fixed operating cost,

fx, to stay in the market.

3This is true, as 2ρ12ρ13ρ23 +
[
(1+ 1

λ2t2
)(1+ 1

λ3t3
)−ρ223

]
−ρ212(1+ 1

λ3t3
)−ρ213(1+ 1

λ2t2
) is strictly positive.
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Proposition OA 2 Both the affiliate’s own average past signal and its nearby sibling’s av-

erage past signal negatively affect the exit probability of the focal affiliate.

Proof. The value function of the incumbent as

V (t, µ̄t−1) = max
pt

Et−1p
−ς
t A1te

a1t (pt − w1t) + max{EtβV (t+ 1, µ̄t)− fx, 0},

where β is the discount factor of the firm. Note that the state variable µ̄t−1 (posterior

mean of θ) depends on the average past signal and thus the age of the focal affiliate, t. In

addition, it also depends on the age of the nearby sibling which we omit here for simplicity.

Importantly, the firm decides whether to stay in the market (and pay the fixed per-period

operation cost) at the beginning of each period (before observing the signal of the current

period). Therefore, the final value function at the end of period t is simply

max{EtβV (t+ 1, µ̄t)− fx, 0}.

Now we prove that EtV (t + 1, µ̄t) increases with both ā1(t1) and ā2(t2) where t1 and

t2 are the focal affiliate’s age and the nearby sibling’s age at period t. Note that the only

uncertain variable in the value function is a1t and

Et(e
a1,t+1) = eµ̄t+(Σ̄+σ2

ε1)/2,

where µ̄t is defined in equation (15). As µ̄t increases in ā1(t1) and ā2(t2) strictly, the expected

per-period profit also increases in the two average signals strictly. Moreover, the choice set of

pt+1 is the same, irrespective of the values of the two state variables in the value function.4

Therefore, Theorem 4.7 of Stokey (1989) implies that the value function EtβV (t + 1, µ̄t)

increases with ā1(t1) and ā2(t2). Accordingly, when ā1 or ā2 increases, the exit probability

goes down.

4Note that the choice set of pt+1 is non-empty, compact-valued, and continuous with respect to µ̄t. Also
note that the expected profit function is bounded and continuous.
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OA.2 Additional Empirical Results

OA.2.1 Learning from Exporting Experience

Several papers in the literature have emphasized the importance of MNE pre-entry exports

to the market. Firms that are uncertain about the demand in a particular market can

“test the market” by exporting, because the entry cost of exporting is likely to be lower

than that of multinational production (MP). If the firms learn that their demand is high

enough, they will establish a horizontal affiliate in that market. For example, Conconi et al.

(2016) build a two-period model and show that under certain parameter values, firms enter

a foreign market by exporting first and “upgrading” to MP when the expected profitability

is sufficiently high. They provide evidence that the number of years of export experience

is positively associated with FDI entry. Chen et al. (2020) build a multi-period dynamic

model of export and MP and focus on predictions concerning forecasting errors. Using the

same dataset as this paper, they show that affiliates whose parent firm has export experience

before entry start with smaller forecast errors, consistent with the learning mechanism.

In this section, we provide alternative and complementary evidence to the literature, in

the spirit of the entry regressions in Section 5.1 of the paper. We construct export “signals”

in similar ways as siblings’ signals, which is more informative about the level of demand

in similar markets than indicators or the number of years of export experience. However,

there are two caveats about the measurement of exports in the Japanese data. First, unlike

Conconi et al. (2016), we only observe the parent firm’s export to one of the seven regions

(North America, Asia, Middle East, Europe, Latin America, Oceania and Africa), not its

exports to a particular country. Second, the total exports to a particular region include

exports to all countries, including those where the firm has entered as MNEs. Therefore,

some of the exports may be intra-firm exports of intermediate inputs.

We cannot directly address the first caveat, but we argue that regional exports are in-

formative about the overall level of demand at the region level. Given our assumption that

nearby signals are correlated with the demand in the focal market, whether the exports are

for consumers in the focal or nearby markets matters less. In this sense, the signals extracted

from the regional arms-length exports are comparable to the nearby siblings’ signals. For

the second caveat, we try our best to exclude intra-firm exports. In our data, the exist-

ing affiliates report the total and intra-firm imports from Japan after 2009. We infer their

intra-firm imports before 2009 by first calculating the average share of intra-firm imports in

total imports from Japan across all affiliates of the same firm in the relevant regions after

2009, and multiply the total imports of an affiliate in a particular year before 2009 by that

share. We exclude the intra-firm imports from the parent firm’s total exports to the region,
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which represent the arms-length exports to the region. We also calculate a more conserva-

tive measure of arms-length exports to the regions by excluding all existing affiliates’ import

from Japan. This measure is actually quite close to the previous one since among Japanese

affiliates, 90% of their imports from Japan are intra-firm.

With all the measurement caveats in mind, we first regress the log of parent exports by

region and year fixed effects and obtain the residual, and use the cumulative average of these

residual exports as a measure of the “average export signal”. Table OA.2 replicates the

regressions in Table 5 of the paper, controlling for average export signals. Both the nearby

siblings’ and export signals tend to increase the chance that a firm enters the new market in

the same region. The effects of the export signals are significantly positive, and especially so

when we control for firm-year fixed effects. The coefficients of the nearby siblings’ signal are

slightly smaller compared to those in Table 5, and the export signals are as quantitatively

important as the nearby siblings’ signals, though the coefficients are less precisely estimated.

The results are robust regardless of whether we exclude intra-firm exports from the export

measures.

In summary, we provide evidence that both the mechanism of learning from exporting

and the mechanism of learning from nearby siblings exist in the Japanese data. The two

mechanisms have similar quantitative importance regarding MP entry decisions.

Table OA.2: Impact of siblings’ and export signals on entry in the next period

All Parent Exports

to Region

Exclude Siblings

Imports from Japan
Exclude Intra-firm

Imports from Japan

Dep. Var: 1(Enterspk,t+1)× 1000 (1) (2) (3) (4) (5) (6)

Average nearby signal 0.136a 0.153a 0.150a 0.153a 0.152a 0.155a

(0.036) (0.045) (0.036) (0.046) (0.035) (0.045)
Average export signal 0.083b 0.139c 0.053 0.161c 0.045 0.156c

(0.038) (0.084) (0.036) (0.087) (0.036) (0.085)
Average remote signal 0.025 0.059 0.022 0.054 0.022 0.045

(0.047) (0.061) (0.046) (0.062) (0.046) (0.060)
Firm domestic sales 0.028 0.055 0.060

(0.046) (0.045) (0.045)
Destination-Ind-Year FE X X X X X X
Firm-Year FE X X X

N 706487 718229 694723 706186 699979 711590
# of Firms 1551 1553 1541 1544 1547 1549
# of Firm-Markets 91846 92270 91042 91480 91466 91904
# of Entries 819 829 806 816 812 822
R-squared 0.062 0.086 0.062 0.087 0.062 0.087

Notes: Average export signal is the average of residual log exports, which in turn is obtained from a regression
with year and region fixed effects. Different columns use different export measures. Columns 1 and 2 use
the total export of parent firms to the region where the potential market belongs. Columns 3 and 4 exclude
the imports of all existing affiliates in the region from Japan. Columns 5 and 6 exclude instead the intra-
firm imports of these affiliates. The intra-firm imports are precise for years post 2009, but we impute the
intra-firm imports before 2009 assuming that the share of intra-firm imports from Japan among all imports
from Japan is the same as the average share of all sibling affiliates in the corresponding regions post 2009.
Standard errors are clustered at the firm level. Significance levels: a: 0.01, b: 0.05, c: 0.10.

18



OA.2.2 The Impact of Nearby Sibling Signal Deciles on Entry

Probability

In this section, we compare the entry probabilities among three types of firms for a given

region r: (1) multinationals that have presence in the region and have received good signals,

(2) multinationals that have presence in the region but have received bad signals, and (3)

multinationals that have no existing affiliates in the region. Note that our baseline entry

regression focuses on firms that already have presence in the region and excludes multina-

tionals in group (3). To highlight the difference between firms with and without presence in

the region, we expand our sample to include markets in regions where firms have no pres-

ence yet. We also focus on the impact of nearby siblings’ presence/signals and do not require

the firm to have established an affiliate in a remote market. This increases our sample size

substantially.5

If nearby siblings exist, we calculate their signal and group them into ten equally sized bins

(deciles one to ten). We assign the observations with no nearby siblings as the base category.

Therefore, when we run a linear probability model of entry on decile dummies, the coefficient

indicates the difference in the entry probability between each decile and the observations

with no nearby siblings. Besides the decile dummies, we also include destination-industry-

year and firm-industry (or firm-industry-year) fixed effects. As Table OA.3 shows, receiving

signals in a higher decile tends to increase the entry probability, consistent with our findings

in Table 5 in the paper. However, we find that the presence of nearby siblings significantly

lowers the probability of entry, if the signal is sufficiently bad (in the lowest decile). We see

this as a key distinction between the learning mechanism and other mechanisms that lead

to sequential entries into similar markets.

5For each firm, we only include industries in which they eventually enter in at least one destination. This
is to make sure that the firm does have the technological capability of operating in these industries. We
implicitly added the same restriction in our baseline regressions, since we require the firm to have at least
one sibling in the same region and industry (i.e., the nearby sibling). However, we do not restrict the firm
to have operations in a remote market in the current regression, as we are not doing a horse race between
nearby siblings’ and remote siblings’ signals.
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Table OA.3: The impact of nearby siblings’ signal on next period entry, using markets
without nearby siblings as the base category

Dep. Var: 1(Enterspk,t+1)× 1000 (1) (2)

Average nearby signal Q1 -0.241a -0.148b

(0.061) (0.062)
Average nearby signal Q2 -0.042 0.063

(0.077) (0.081)
Average nearby signal Q3 0.039 0.123

(0.078) (0.078)
Average nearby signal Q4 0.151c 0.272a

(0.083) (0.086)
Average nearby signal Q5 0.193b 0.295a

(0.086) (0.088)
Average nearby signal Q6 0.335a 0.432a

(0.093) (0.093)
Average nearby signal Q7 0.654a 0.758a

(0.104) (0.107)
Average nearby signal Q8 0.591a 0.713a

(0.102) (0.100)
Average nearby signal Q9 0.344a 0.503a

(0.093) (0.097)
Average nearby signal Q10 0.689a 0.851a

(0.115) (0.121)
Firm domestic sales -0.001

(0.009)
Destination-Ind-Year FE X X
Firm-Ind FE X
Firm-Ind-Year FE X

R-squared 0.02 0.02
N 13669307 13669307

Notes: Dependent variable is an indicator variable indicating whether the headquarters
enters a particular destination next year. Standard errors are clustered at headquarters
(HQ) level. Significance levels: a: 0.01, b: 0.05, c: 0.10. The number of observations
is much larger than that in Table 5 of the paper because we include markets in regions
where firms have no presence yet. These observations are used as the base category.
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OA.2.3 Robustness to Heterogeneous Transmission and Exposure

In this section, we show that our results are robust to additional controls for heterogeneous

transmission of parent shocks and parent firm heterogeneous exposures to aggregate shocks.

In the paper, we sometimes control for parent- or MNE-level shocks using residual parent

domestic sales. It is only an ideal control when the productivity shocks to the parent firms

are transmitted to all affiliates at a constant rate. This is a stronger assumption than what

the literature has assumed, i.e., a constant destination-specific transmission rate. (Ramondo

and Rodŕıguez-Clare, 2013; Tintelnot, 2017; Arkolakis et al., 2018). In Column 1 of Table

OA.4 and Columns 1 and 2 of Table OA.5, we control for interactions between residual

parent domestic sales and destination-industry fixed effects, allowing the transmission to be

destination-industry specific. Our main results are robust to this control.

We are also concerned that there may be parent- or firm-level shocks not captured by

parent domestic sales, such as heterogeneous exposures to aggregate monetary and financial

shocks. We postulate that such heterogeneous exposure is correlated with firm size and

sufficiency of capital. Therefore, we control for parent firm size and their capital-labor ratios

interacted with year fixed effects as a robustness check in Columns 2-4 of Table OA.4 and

Columns 3-6 of Table OA.5. The results are very similar to those without these controls.

Table OA.4: Impact of siblings’ experience on entry in the next period, controlling for
heterogeneous transmission and HQ heterogeneous exposure to domestic shocks

Dep. Var: 1(Enterspk,t+1)× 1000 (1) (2) (3) (4) (5)

Average nearby signal 0.174a 0.185a 0.180a 0.185a 0.179a

(0.038) (0.038) (0.038) (0.038) (0.039)
Average remote signal 0.033 0.045 0.044 0.047 0.038

(0.055) (0.054) (0.053) (0.054) (0.056)
Firm domestic sales -0.159 -0.012 -0.021

(0.111) (0.159) (0.160)
Destination-Ind-Year FE X X X X X
Firm FE X X X X X
log Firm K/L × Year FE X X X
log Firm Sales × Year FE X X X
Destination FE × Domestic Sales X X

N 875527 863009 875527 863009 863009
R-squared 0.071 0.068 0.067 0.068 0.072

Notes: Standard errors are clustered at the firm level. Significance levels: a: 0.01, b: 0.05, c: 0.10.
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Table OA.5: Full set of interaction terms in the expectation formation regressions, controlling
for heterogeneous transmission and HQ heterogeneous exposure to domestic shocks

Dep. Var: logEt(Ri,t+1) (1) (2) (3) (4) (5) (6)

Average self signal 0.867a 0.866a 0.869a 0.868a 0.869a 0.869a

(0.010) (0.010) (0.010) (0.010) (0.010) (0.009)
×σε1 (SD of sales growth) -0.031a -0.036a -0.030a -0.031a -0.030a -0.031a

(0.008) (0.010) (0.007) (0.009) (0.007) (0.009)
× log(self age) 0.083a 0.084a 0.083a 0.083a 0.084a 0.084a

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
× Nearby siblings’ experience 0.002 0.001 0.001 0.000 0.001 0.001

(0.008) (0.008) (0.007) (0.007) (0.007) (0.007)
× Destination income level -0.006 -0.002 -0.001

(0.012) (0.011) (0.011)
Average nearby signal 0.029b 0.029c 0.032b 0.031b 0.034b 0.033b

(0.014) (0.015) (0.014) (0.014) (0.014) (0.014)
×σε1 (SD of sales growth) 0.012 0.016 0.017b 0.021b 0.018b 0.021b

(0.009) (0.010) (0.008) (0.009) (0.008) (0.009)
× log(self age) -0.046a -0.047a -0.046a -0.047a -0.045a -0.046a

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
× Nearby siblings’ experience 0.013 0.013c 0.015c 0.016b 0.016c 0.017b

(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)
× Destination income level 0.005 0.005 0.004

(0.014) (0.014) (0.014)
Nearby siblings’ experience 0.016 0.016 0.020 0.021 0.018 0.018

(0.017) (0.017) (0.017) (0.017) (0.017) (0.017)
Average remote signal 0.021 0.021 0.019 0.019 0.018 0.018

(0.018) (0.018) (0.018) (0.018) (0.018) (0.018)
Firm domestic sales 0.058a 0.059a 0.021 0.021

(0.020) (0.020) (0.026) (0.026)
Destination-Ind-Year FE X X X X X X
Firm FE X X X X X X
Age FE X X X X X X
Destination-Ind FE × Domestic Sales X X
log Firm K/L × Year FE X X
log Firm Sales × Year FE X X

N 32862 32749 32838 32725 32862 32749
R-squared 0.889 0.889 0.886 0.886 0.886 0.886

Notes: Dependent variable is the logarithm of expected sales in the next year. Nearby siblings’ experience is
the total number of nearby siblings’ signals. Host country income level is measured as the log of real GDP
per capita in 2005. All moderator variables are standardized. Standard errors are clustered at the firm level.
Significance levels: a: 0.01, b: 0.05, c: 0.10.
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OA.2.4 Bootstrap Estimation

Since our key regressors are cumulative residuals from regressing firm sales on a set of fixed

effects, the inference in our main regressions suffer from the “generated regressor” problem.

To assess the bias in standard errors, we perform bootstrap estimations of the two core tables

(Tables 5 and A.2).

In particular, our bootstrap exercises are as follows. First, we randomly draw firms from

the original affiliate-year level data with resampling. We draw blocks of firms instead of

affiliates or affiliate-years because we worry about within-firm correlations in the error term

– all our original standard errors are clustered at the firm level. We then estimate the

regressors (as cumulative average of residual sales) using the bootstrapped samples and run

the same regressions as in Tables 5 and A.2. Since the regressors are reestimated for each

sample, this approach takes into account the potential estimation errors when generating the

regressors. We perform 1000 bootstraps and present the results in Tables OA.6 and OA.7.

In each column, we show the average point estimate, the standard deviation of the point

estimate (in parentheses) and the 95% confidence interval (in brackets). In general, we find

the bias in standard errors using simple OLS regressions is small. Due to computational

constraints, we only use the bootstrapped regressions as a robustness check here and keep

our original OLS regressions as the main evidence.

Table OA.6: Impact of siblings’ experience on entry in the next period

Dep. Var: 1(Enterspk,t+1)× 1000 (1) (2) (3)

Average nearby signal 0.184 (0.033) 0.179 (0.041) 0.183 (0.044)
[0.119, 0.253] [0.098, 0.257] [0.102, 0.272]

Average remote signal 0.041 (0.040) 0.040 (0.057) 0.024 (0.062)
[-0.038, 0.122] [-0.070, 0.150] [-0.100, 0.142]

Firm domestic sales 0.065 (0.034) -0.111 (0.098)
[-0.002, 0.134] [-0.307, 0.084]

Destination-Ind-Year FE X X X
Firm FE X
Firm-Year FE X

Notes: The dependent variable indicates whether the firm enters a particular destination in the next year.
We calculate the signals as the cumulative average residual sales following the definition in equation (6).
Standard errors are clustered at the firm level. Significance levels: a: 0.01, b: 0.05, c: 0.10.
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Table OA.7: Full set of interaction terms in the expectation formation regressions

Dep. Var: logEt(Ri,t+1) (1) (2) (3) (4)

Average self signal 0.872 (0.011) 0.872 (0.011) 0.871 (0.011) 0.870 (0.011)
[0.849, 0.891] [0.849, 0.891] [0.847, 0.890] [0.847, 0.889]

×σε1 -0.027 (0.009) -0.030 (0.012) -0.015 (0.009) -0.012 (0.009)
[-0.046, -0.010] [-0.055, -0.007] [-0.033, 0.003] [-0.030, 0.006]

× log(self age) 0.085 (0.007) 0.086 (0.007) 0.091 (0.007) 0.087 (0.007)
[0.073, 0.098] [0.072, 0.099] [0.078, 0.104] [0.074, 0.101]

× Nearby siblings’ experience 0.006 (0.008) 0.005 (0.008) 0.003 (0.008) 0.006 (0.008)
[-0.009, 0.020] [-0.010, 0.021] [-0.012, 0.017] [-0.009, 0.021]

× Destination income level -0.002 (0.013) 0.014 (0.010)
[-0.026, 0.022] [-0.004, 0.032]

Average nearby signal 0.052 (0.017) 0.052 (0.019) 0.051 (0.017) 0.053 (0.018)
[0.018, 0.083] [0.015, 0.087] [0.018, 0.082] [0.017, 0.087]

×σε1 0.019 (0.010) 0.021 (0.013) 0.010 (0.010) 0.007 (0.011)
[-0.001, 0.040] [-0.004, 0.046] [-0.009, 0.031] [-0.014, 0.029]

× log(self age) -0.049 (0.009) -0.049 (0.009) -0.053 (0.009) -0.050 (0.009)
[-0.066, -0.031] [-0.066, -0.031] [-0.071, -0.036] [-0.068, -0.032]

× Nearby siblings’ experience 0.023 (0.011) 0.023 (0.011) 0.024 (0.011) 0.023 (0.011)
[-0.000, 0.044] [0.001, 0.043] [0.001, 0.045] [0.001, 0.044]

× Destination income level 0.002 (0.017) -0.010 (0.013)
[-0.032, 0.036] [-0.035, 0.017]

Nearby siblings’ experience 0.008 (0.023) 0.009 (0.023) 0.010 (0.023) 0.009 (0.023)
[-0.037, 0.053] [-0.036, 0.054] [-0.036, 0.054] [-0.037, 0.053]

Average remote signal 0.019 (0.030) 0.020 (0.030) 0.019 (0.030) 0.020 (0.030)
[-0.038, 0.077] [-0.037, 0.079] [-0.037, 0.078] [-0.036, 0.079]

Destination-Ind-Year FE X X X X
Firm-Year FE X X X X
Age FE X X X X

Notes: Dependent variable is the logarithm of expected sales in the next year. Nearby siblings’ experience is
the total number of nearby siblings’ signals. Host country income level is measured as the log of real GDP
per capita in 2005. All moderator variables are standardized. Standard errors are clustered at the firm level.
Significance levels: a: 0.01, b: 0.05, c: 0.10.
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OA.2.5 Excluding Observations with Zero Forecast Errors

In this section, we examine the distribution of affiliates’ forecast errors, with a special focus

on the density of forecast errors around a small neighborhood of zero. We find that a small

but non-negligible fraction of firms have exactly zero forecast errors. We discuss different

interpretations of this finding and show that our results are robust to excluding this set of

firms from our sample.

Figure OA.3: Density of forecast errors, log
(

Ri,t+1

Et(Ri,t+1)

)
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density of bins with width = .01 density of the bin (0,.01)

Notes: Each circle represents the density of forecasting errors in a symmetric neigh-
bourhood around the center of the bin. Each bin has equal width 0.01, with the left
boundary closed and the right boundary open (e.g., [-0.02, -0.01), [-0.01, 0), [0, 0.01),
etc). The red square denotes the fraction of observations with forecasting error in the
range (0,0.01). We drop observations with forecasting errors below -1 and above 1,
which accounts for 1.6% of the sample.

In Figure OA.3, we plot the share of firms in our expectation formation regressions in

different bins of log forecast errors. Each bin has a width of 0.01, with the left boundary

being inclusive. It is clear that the share of observations report forecast errors in the range

[0,0.01) is much larger than the other bins in the neighborhood. A closer look at these

observations reveals that this phenomenon is entirely driven by observations “bunching” at

zero forecast errors, i.e., they perfectly predict their sales next period. In particular, the

fractions of observations reporting forecast errors of zero and in the four neighborhoods of
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zero are displayed in Table OA.8.

Table OA.8: Fractions of observations reporting forecast errors in neighborhoods of zero

Range [-0.02, -0.01) [-0.01, 0) 0 (0,0.01) [0.01, 0.02)

Share of Obs. 2.20% 1.98% 1.08% 1.98% 2.16%

We think that there are two possible interpretations for this bunching behavior. First,

affiliates may just want to “hit their targets” and put less effort once they have satisfied the

goals.6 Second, we think that firms may have used their previous forecasts as anchors and

simply report the same value as their current sales in the survey if their actual sales are quite

close to the forecasts. Both are reasonable interpretations, but the evidence slightly favors

the second one. If affiliates are trying to “hit the targets”, it is a bit puzzling why they do

not want to “beat the targets” by a small margin – we do not see extra mass in the ranges

slightly above zero. In addition, we see that the density of forecast errors tends to decline

as the bins are more distant from zero. However, this is not true when comparing the four

bins around zero. We see a small increase when moving from [-0.01,0) to [-0.02,-0.01) and

from (0,0.01) to [0.01,0.02). This suggests that affiliates may round their sales so that they

have zero forecast errors when their sales are very close to the previous forecasts, e.g., when

their true forecast errors are in the ranges of [-0.01,0) and (0,0.01).

Regardless of the cause of such bunching behavior, we are concerned that it may bias our

estimates. We therefore perform robustness checks by excluding observations with zero fore-

cast errors. Table OA.9 replicates Table A.2 in the paper after dropping these observations.

The coefficients are almost unchanged.

OA.2.6 Sales weighted signals

In this section, we consider alternative measures of sibling signals that are cumulative aver-

ages of residual log sales weighted by the level of sales. In the paper, our preferred measure

is a cumulative average where all past signals have equal weights. This measure is consistent

with our simple model, but does not allow the possibility that firms learn more from signals

with more sales activities. It is possible to construct models in which learning is positively

correlated with the level of sales. For example, when firms reach more customers, they may

draw a singal from each customer that they serve.

6We thank a referee for suggesting this possibility.
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Table OA.9: Full set of interaction terms in the expectation formation regressions, excluding
observations with zero forecast errors

Dep. Var: logEt(Ri,t+1) (1) (2) (3) (4)

Average self signal 0.867a 0.866a 0.866a 0.864a

(0.010) (0.010) (0.010) (0.010)
×σε1 (SD of sales growth) -0.026a -0.028a

(0.008) (0.009)
×σε1 (SD of fore. err.) -0.012c -0.010

(0.006) (0.006)
× log(self age) 0.086a 0.086a 0.091a 0.088a

(0.007) (0.007) (0.006) (0.007)
× Nearby siblings’ experience 0.004 0.003 0.001 0.004

(0.008) (0.008) (0.008) (0.008)
× Destination income level -0.002 0.014

(0.011) (0.009)
Average nearby signal 0.052a 0.050a 0.051a 0.052a

(0.014) (0.015) (0.014) (0.015)
×σε1 (SD of sales growth) 0.020b 0.024a

(0.008) (0.009)
×σε1 (SD of fore. err.) 0.010c 0.008

(0.006) (0.006)
× log(self age) -0.046a -0.047a -0.050a -0.048a

(0.010) (0.010) (0.010) (0.010)
× Nearby siblings’ experience 0.024b 0.025a 0.025a 0.025a

(0.010) (0.010) (0.010) (0.010)
× Destination income level 0.007 -0.008

(0.015) (0.012)
Nearby siblings’ experience 0.013 0.014 0.014 0.014

(0.020) (0.020) (0.020) (0.020)
Average remote signal 0.020 0.021 0.020 0.021

(0.025) (0.025) (0.025) (0.025)
Destination-Ind-Year FE X X X X
Firm-Year FE X X X X
Age FE X X X X

N 31522 31407 31505 31390
R-squared 0.906 0.905 0.905 0.905

Notes: Dependent variable is the logarithm of expected sales in the next year. Nearby siblings’ experience is
the total number of nearby siblings’ signals. Host country income level is measured as the log of real GDP
per capita in 2005. All moderator variables are standardized. Standard errors are clustered at the firm level.
Significance levels: a: 0.01, b: 0.05, c: 0.10.

Table OA.10: Impact of siblings’ experience on entry in the next period, sales-weighted
signals

Dep. Var: 1(Enterspk,t+1)× 1000 (1) (2) (3)

Average nearby signal 0.210a 0.202a 0.225a

(0.032) (0.037) (0.041)
Average remote signal 0.122a 0.095c 0.118b

(0.039) (0.050) (0.057)
Firm domestic sales -0.002 -0.152

(0.035) (0.107)
Destination-Ind-Year FE X X X
Firm FE X
Firm-Year FE X

N 875523 875523 902523
# of Firms 1922 1922 1931
# of Firm-Markets 113996 113996 115181
# of Entries 977 977 1003
R-squared 0.064 0.067 0.088

Notes: Standard errors are clustered at the firm level. Significance levels: a: 0.01, b: 0.05, c: 0.10.
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Table OA.11: Full set of interaction terms in the expectation formation regressions, sales-
weighted signals

Dep. Var: logEt(Ri,t+1) (1) (2) (3) (4)

Average self signal 0.892a 0.892a 0.892a 0.891a

(0.011) (0.011) (0.011) (0.011)
×σε1 (SD of sales growth) -0.011 -0.009

(0.008) (0.011)
×σε1 (SD of fore. err.) -0.008 -0.007

(0.007) (0.007)
× log(self age) 0.078a 0.077a 0.080a 0.078a

(0.007) (0.007) (0.007) (0.007)
× Nearby siblings’ experience 0.005 0.006 0.004 0.006

(0.011) (0.010) (0.010) (0.011)
× Destination income level 0.004 0.008

(0.010) (0.008)
Average nearby signal 0.014 0.014 0.014 0.014

(0.012) (0.012) (0.012) (0.012)
×σε1 (SD of sales growth) 0.001 0.004

(0.008) (0.009)
×σε1 (SD of fore. err.) 0.003 0.004

(0.005) (0.005)
× log(self age) -0.029a -0.029a -0.029a -0.029a

(0.008) (0.008) (0.008) (0.008)
× Nearby siblings’ experience 0.009 0.010 0.009 0.010

(0.007) (0.007) (0.007) (0.007)
× Destination income level 0.005 0.003

(0.010) (0.009)
Nearby siblings’ experience -0.019 -0.020 -0.019 -0.020

(0.020) (0.020) (0.020) (0.020)
Average remote signal -0.002 -0.002 -0.002 -0.001

(0.015) (0.015) (0.015) (0.015)
Destination-Ind-Year FE X X X X
Firm-Year FE X X X X
Age FE X X X X

N 31714 31599 31697 31582
R-squared 0.913 0.913 0.913 0.913

Notes: Dependent variable is the logarithm of expected sales in the next year. Nearby siblings’ experience is
the total number of nearby siblings’ signals. Host country income level is measured as the log of real GDP
per capita in 2005. All moderator variables are standardized. Standard errors are clustered at the firm level.
Significance levels: a: 0.01, b: 0.05, c: 0.10.
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OA.2.7 Controlling (sibling) distance to Japan

In this section, we consider robustness checks by controlling for the focal affiliates’ or the

siblings’ distance to Japan. In particular, Columns 1 and 2 in Table OA.12 replicate the ex-

pectation formation regressions adding interaction terms between signals and the log distance

between the focal host country and Japan. This addresses the concerns that the proximity to

the parent firms may affect the ability of the affiliates to adjust their expectations based on

signals from itself and the nearby siblings. We see that the interaction terms with distance

are insignificant, while the other interaction terms are not affected much compared to Table

A.2 in the paper.7

Columns 3 and 4 augment the regressions with the average distance of nearby siblings

to Japan and the interaction between this variable with signals. The impact of the average

distance of siblings can be identified because for focal affiliates in the same destination,

their siblings may be in different countries within the region, thus having different average

distance to Japan. We again see insignificant effects of the average distance and the two

interaction terms, while the other interaction terms are similar to our baseline results. In

sum, our results are robust to controlling for the focal affiliate’s and the siblings distance to

Japan.

7One may also worry that the distance to Japan will affect the level of expected sales directly. However,
this term is co-linear with the destination-industry-year fixed effects and cannot be identified.
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Table OA.12: Full set of interaction terms in the expectation formation regressions, excluding
observations with zero forecast errors

Dep. Var: logEt(Ri,t+1) (1) (2) (3) (4)

Average self signal 0.867a 0.867a 0.868a 0.867a

(0.009) (0.009) (0.009) (0.009)
×σε1 (SD of sales growth) -0.025a -0.027a -0.028a -0.030a

(0.007) (0.008) (0.007) (0.008)
× log(self age) 0.082a 0.083a 0.083a 0.083a

(0.006) (0.006) (0.006) (0.006)
× Nearby siblings’ experience 0.001 0.001 0.001 0.001

(0.007) (0.008) (0.007) (0.008)
× Destination dist. to Japan 0.007 0.008

(0.008) (0.008)
× Regional siblings dist. to Japan 0.002 0.002

(0.008) (0.009)
× Destination income level -0.002 -0.002

(0.011) (0.012)
Average nearby signal 0.030b 0.029b 0.030b 0.030b

(0.014) (0.015) (0.014) (0.014)
×σε1 (SD of sales growth) 0.015b 0.019b 0.017b 0.020b

(0.007) (0.008) (0.007) (0.009)
× log(self age) -0.048a -0.048a -0.048a -0.048a

(0.009) (0.009) (0.009) (0.009)
× Nearby siblings’ experience 0.014c 0.015c 0.014c 0.015c

(0.008) (0.008) (0.008) (0.008)
× Destination dist. to Japan -0.003 -0.004

(0.009) (0.009)
× Regional siblings dist. to Japan 0.002 0.001

(0.010) (0.010)
× Destination income level 0.006 0.005

(0.014) (0.015)
Nearby siblings’ experience 0.018 0.018 0.018 0.018

(0.016) (0.016) (0.016) (0.016)
Average remote signal 0.021 0.021 0.021 0.021

(0.018) (0.018) (0.018) (0.018)
Regional siblings dist. to Japan 0.031 0.031

(0.060) (0.060)
Destination-Ind-Year FE X X X X
Firm FE X X X X
Age FE X X X X

N 33321 33297 33420 33305
R-squared 0.885 0.885 0.885 0.885

Notes: Dependent variable is the logarithm of expected sales in the next year. Nearby siblings’ experience is
the total number of nearby siblings’ signals. Host country income level is measured as the log of real GDP
per capita in 2005. All moderator variables are standardized. Standard errors are clustered at the firm level.
Significance levels: a: 0.01, b: 0.05, c: 0.10.
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OA.2.8 Placebo Test: Predicting Rival Forecasts

As a placebo test, Table OA.13 replicates Table A.2 in the paper by replace the dependent

variable with the average log expected sales of the focal affiliate’s rivals. Rivals are defined

to be those affiliates of other parent firms in the same destination and industry.8

We find the average self signal has a small negative impact on rivals’ expectations. This

is intuitive: better (relative) historical performance of the focal affiliates means stronger

competition with the “rivals”. Therefore, the rivals lower their expectations, the extent of

which depends on multiple factors, such as how well the rivals observe these signals and

the elasticity of substitution between products produced by different affiliates. We do not

have a strong belief about the signs of the interaction terms and most of them are actually

insignificant. Finally, we see from these regressions that the focal affiliate’s nearby siblings’

signals have a small and insignificant effect on the rivals’ expectations. This suggests that

firms may take into account the performance of rivals in the same destination and industry

when forming their expectations, but do not take into account the rivals’ performance in

other markets.

8We thank a reviewer for proposing this placebo test.
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Table OA.13: The impact of signals on rivals’ expectations

Dep. Var: Average logEt(Ri,t+1) of Rivals (1) (2) (3) (4)

Average self signal -0.021a -0.020a -0.020a -0.020a

(0.001) (0.001) (0.001) (0.001)
×σε1 (SD of sales growth) 0.004b 0.003

(0.002) (0.002)
×σε1 (SD of fore. err.) -0.004c -0.005b

(0.002) (0.002)
× log(self age) 0.001 0.001 -0.001 -0.000

(0.001) (0.001) (0.001) (0.001)
× Nearby siblings’ experience -0.001 -0.001 0.000 -0.000

(0.002) (0.001) (0.001) (0.001)
× Destination income level -0.001 -0.004a

(0.002) (0.001)
Average nearby signal 0.002 0.001 0.002 0.001

(0.002) (0.003) (0.003) (0.003)
×σε1 (SD of sales growth) -0.003b -0.001

(0.002) (0.002)
×σε1 (SD of fore. err.) -0.001 0.001

(0.002) (0.002)
× log(self age) 0.000 0.000 0.001 0.000

(0.001) (0.001) (0.001) (0.001)
× Nearby siblings’ experience 0.000 0.001 -0.000 0.000

(0.002) (0.002) (0.002) (0.002)
× Destination income level 0.004c 0.005a

(0.002) (0.002)
Nearby siblings’ experience -0.009b -0.008b -0.010a -0.008b

(0.004) (0.003) (0.004) (0.003)
Average remote signal 0.005 0.005 0.004 0.003

(0.004) (0.004) (0.004) (0.004)
Destination-Ind-Year FE X X X X
Firm-Year FE X X X X
Age FE X X X X

N 31088 30984 31071 30967
R-squared 0.986 0.986 0.987 0.987

Notes: Dependent variable is the logarithm of expected sales in the next year. Nearby siblings’ experience is
the total number of nearby siblings’ signals. Host country income level is measured as the log of real GDP
per capita in 2005. All moderator variables are standardized. Standard errors are clustered at the firm level.
Significance levels: a: 0.01, b: 0.05, c: 0.10.
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OA.2.9 Impact of Signals on Affiliate Exits

In this section, we examine the impact of self and siblings’ signals on exits. A practical

question here is how we measure “exits” of affiliates. In the survey, some affiliates do

respond in the year that they exit, and report that their status as “operation suspended”

or “dissolution or withdrawal” or “decline in control share” (below 10%). However, we are

concerned that this strict definition of “exit” will understate the overall exit rates because

other affiliates may just stop responding when they exit. We therefore use two more general

definitions of exits by including affiliates that stopped responding for at least two consecutive

years (and plus those that report zero sales for at least two consecutive years).

We regress an indicator variable of whether the affiliate exits in the next year on self

and sibling signals up to the current period in Online Appendix Table OA.14. We find that

a better self signal significantly reduces the probability of exit next period. The coefficient

in front of the nearby sibling’s signal, though negative, is not precisely estimated and in-

significantly different from zero. Therefore, we only find suggestive evidence for the model’s

predictions. This may be due to the difficulty of measuring affiliate exits precisely.

Table OA.14: Signals on affiliate exits

Dep. Var: Exit × 100 Basic Definition Extended Definition

(1) (2) (3) (4)

Average self signal -1.117a -1.307a -1.129a -1.319a

(0.150) (0.152) (0.154) (0.157)
Average nearby signal -0.132 -0.146 -0.146 -0.157

(0.196) (0.196) (0.199) (0.199)
Average remote signal 0.212 0.183 0.217 0.187

(0.349) (0.349) (0.351) (0.351)
Firm domestic sales 0.666 0.655 0.632 0.619

(0.452) (0.453) (0.454) (0.455)
Destination-Ind-Year FE X X X X
Firm FE X X X X
Age FE X X

N 40736 40721 40530 40515
# of Exits 2972 2968 2966 2962
R-squared 0.297 0.298 0.297 0.298

Notes: Dependent variable is an indicator of whether the affiliate exit in the next year (scaled by 100).
Standard errors are clustered at the firm level. Significance levels: a: 0.01, b: 0.05, c: 0.10. Columns 1 and 2
define exit as affiliates that report “operation dissolved” or “dissolution or withdrawal” or “decline in control
share” (below 10%), plus affiliates that stopped responding to the survey for at least two consecutive years.
Column 3 and 4 further include cases where affiliates report zero sales for at least two consecutive years.
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OA.2.10 Horse race between parent and affiliate/sibling experi-

ence

In this section, we run a horse race between the affiliate/sibling experience, measured by the

number of signals received by the focal affiliate and its nearby siblings, and two measures of

parent experience in multinational production: the time since the first affiliate was founded,

and the current number of affiliates worldwide. Similar to the regressions in Table A.2, we

interact the self and sibling signals with the two measures of parent global experience in

Table OA.15. We find that the parent experience interaction terms are insignificant, but the

other interaction terms have similar coefficients and standard errors as before. The positive

interaction term between nearby siblings’ signal and the total number of signals survives

these horse race regressions. We therefore conclude that it is the number of the “relevant

signals” rather than the parent firm’s global experience that matters for the learning speed.
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Table OA.15: Horse race between parent and affiliate/sibling experience

Dep. Var: logEt(Ri,t+1) (1) (2) (3) (4)

Average self signal 0.867a 0.866a 0.867a 0.867a

(0.009) (0.009) (0.009) (0.009)
×σε1 (SD of sales growth) -0.030a -0.032a -0.030a -0.033a

(0.007) (0.009) (0.007) (0.009)
× log(self age) 0.083a 0.083a 0.082a 0.082a

(0.006) (0.006) (0.006) (0.006)
× Nearby siblings’ experience -0.002 -0.002 -0.003 -0.004

(0.008) (0.009) (0.008) (0.008)
× log(total # of affiliates) 0.006 0.006

(0.008) (0.008)
× log(Parent MP Age) 0.010 0.010

(0.009) (0.009)
× Destination income level -0.003 -0.004

(0.011) (0.011)
Average nearby signal 0.032b 0.031b 0.032b 0.031b

(0.014) (0.015) (0.014) (0.015)
×σε1 (SD of sales growth) 0.017b 0.020b 0.017b 0.021b

(0.008) (0.009) (0.008) (0.009)
× log(self age) -0.047a -0.048a -0.047a -0.047a

(0.009) (0.009) (0.009) (0.009)
× Nearby siblings’ experience 0.015 0.016c 0.015c 0.016c

(0.009) (0.009) (0.009) (0.009)
× log(total # of affiliates) 0.002 0.002

(0.010) (0.011)
× log(Parent MP Age) 0.000 -0.000

(0.009) (0.010)
× Destination income level 0.005 0.006

(0.014) (0.014)
Nearby siblings’ experience 0.022 0.023 0.024 0.025

(0.017) (0.017) (0.017) (0.017)
Average remote signal 0.019 0.020 0.019 0.019

(0.018) (0.018) (0.018) (0.018)
Firm domestic sales 0.053a 0.054a 0.053a 0.053a

(0.019) (0.019) (0.019) (0.019)
Destination-Ind-Year FE X X X X
Firm FE X X X X
Age FE X X X X

N 32862 32749 32862 32749
R-squared 0.886 0.886 0.886 0.886

Notes: Dependent variable is the logarithm of expected sales in the next year. Nearby siblings’ experience is
the total number of nearby siblings’ signals. Host country income level is measured as the log of real GDP
per capita in 2005. All moderator variables are standardized. Standard errors are clustered at the firm level.
Significance levels: a: 0.01, b: 0.05, c: 0.10.
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OA.2.11 The Frequency of “Naive” Forecasts

In Table OA.16, we show that it is very rare for firms to use a naive rule to make their sales

forecasts. We calculate the expected growth rates as the ratio of the affiliate’s forecast for

year t+1 to its realized sales in year t minus one. If an affiliate simply uses its realized sales in

year t to predict their sales next year, the expected growth rate will be zero. As one can see

from the table, only 1.59% of the observations in our sample have a zero expected growth

rate. The frequency of the other top cases is all below 0.1%. For the affiliates reporting

zero expected growth rates, it is difficult to tell whether they are making a naive forecast

or making a serious forecast with the expectation that their sales growth will be very close

to zero. We also checked whether firms simply use their previous growth rates as expected

growth rates – we only see this in 0.03% of the observations in our sample .

Table OA.16: The Most Frequent Values of Expected Growth Rates

Top 1-5 Top 6-10

Et(Rt+1)/Rt − 1 Freq. (%) Et(Rt+1)/Rt − 1 Freq. (%)

0.0000 1.59 0.0417 0.06
0.1111 0.09 0.2000 0.06
0.2500 0.09 0.1250 0.05
0.1000 0.08 0.1429 0.05
0.0526 0.07 0.3333 0.05

Notes: This table shows the most frequent values of expected growth rates among all the affiliate-year
observations that are in our baseline regressions using the variable of sales expectations (Column 1 of Table
8 in the paper). Total number of observations is 29,958. It is smaller than that in our baseline regression
because some affiliates do not report their current sales. Our data contains more observations than those in
our baseline regressions since our regressions only include affiliates with at least one nearby and one remote
siblings. However, if we compute the expected growth rates over all the observations in the dataset, the
results are similar. They are available upon request.

Though it is difficult to tell whether forecasts that are the same as previous sales contain

useful information or not, we conduct robustness checks in Table OA.17. It replicates all

regressions in Table A.2 in the paper. Our main empirical results remain largely unchanged.
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Table OA.17: Full set of interaction terms in the expectation formation regressions, excluding
observations with zero expected growth rates

Dep. Var: logEt(Ri,t+1) (1) (2) (3) (4)

Average self signal 0.859a 0.858a 0.857a 0.856a

(0.010) (0.010) (0.010) (0.010)
×σε1 (SD of sales growth) -0.025a -0.028a

(0.008) (0.009)
×σε1 (SD of fore. err.) -0.013b -0.011c

(0.006) (0.006)
× log(self age) 0.085a 0.086a 0.090a 0.088a

(0.007) (0.007) (0.006) (0.007)
× Nearby siblings’ experience 0.005 0.004 0.003 0.005

(0.008) (0.008) (0.007) (0.008)
× Destination income level -0.005 0.012

(0.010) (0.009)
Average nearby signal 0.054a 0.053a 0.053a 0.055a

(0.014) (0.015) (0.014) (0.015)
×σε1 (SD of sales growth) 0.020a 0.025a

(0.008) (0.009)
×σε1 (SD of fore. err.) 0.011c 0.009

(0.006) (0.006)
× log(self age) -0.045a -0.046a -0.049a -0.047a

(0.010) (0.010) (0.010) (0.010)
× Nearby siblings’ experience 0.022b 0.022b 0.023b 0.022b

(0.010) (0.009) (0.010) (0.009)
× Destination income level 0.007 -0.008

(0.015) (0.012)
Nearby siblings’ experience 0.010 0.011 0.012 0.011

(0.020) (0.020) (0.020) (0.020)
Average remote signal 0.025 0.026 0.025 0.026

(0.025) (0.025) (0.025) (0.025)
Destination-Ind-Year FE X X X X
Firm-Year FE X X X X
Age FE X X X X

R-squared 0.90 0.90 0.90 0.90
N 31101 30988 31084 30971

Notes: Dependent variable is the logarithm of expected sales in the next year. Nearby siblings’ experience is
the total number of nearby siblings’ signals. Host country income level is measured as the log of real GDP
per capita in 2005. All moderator variables are standardized. Standard errors are clustered at the firm level.
Significance levels: a: 0.01, b: 0.05, c: 0.10.
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OA.2.12 Excluding the Year of 1995

In our data, the entry rates in 1995 are higher than the other years. In Table OA.18 and

OA.19, we replicate the entry and expectation formation regressions in Table 5 and A.2 in

the paper, respectively after excluding the year 1995 from our sample. The main empirical

results are robust.

Table OA.18: Impact of siblings’ experience on entry in the next period, excluding 1995

Dep. Var: 1(Enterspk,t+1)× 1000 (1) (2) (3)

Average nearby signal 0.154a 0.162a 0.156a

(0.031) (0.037) (0.040)
Average remote signal 0.058 0.053 0.034

(0.040) (0.053) (0.055)
Firm domestic sales 0.051 -0.110

(0.033) (0.101)
Destination-Ind-Year FE X X X
Firm FE X
Firm-Year FE X

R-squared 0.06 0.06 0.09
N 853608 853608 879313

Notes: The dependent variable indicates whether the firm enters a particular destination in the next year.
Standard errors are clustered at the firm level. Significance levels: a: 0.01, b: 0.05, c: 0.10.

38



Table OA.19: Full set of interaction terms in the expectation formation regressions, excluding
the year 1995 from our sample

Dep. Var: logEt(Ri,t+1) (1) (2) (3) (4)

Average self signal 0.869a 0.868a 0.868a 0.867a

(0.010) (0.010) (0.010) (0.010)
×σε1 (SD of sales growth) -0.025a -0.029a

(0.008) (0.009)
×σε1 (SD of fore. err.) -0.012c -0.010

(0.006) (0.006)
× log(self age) 0.086a 0.087a 0.092a 0.089a

(0.007) (0.007) (0.006) (0.007)
× Nearby siblings’ experience 0.003 0.003 0.001 0.003

(0.008) (0.008) (0.008) (0.008)
× Destination income level -0.004 0.013

(0.011) (0.009)
Average nearby signal 0.051a 0.050a 0.051a 0.052a

(0.014) (0.015) (0.014) (0.015)
×σε1 (SD of sales growth) 0.019b 0.023b

(0.008) (0.009)
×σε1 (SD of fore. err.) 0.009 0.007

(0.006) (0.006)
× log(self age) -0.048a -0.048a -0.052a -0.050a

(0.010) (0.010) (0.010) (0.010)
× Nearby siblings’ experience 0.024b 0.024b 0.025b 0.025b

(0.010) (0.010) (0.010) (0.010)
× Destination income level 0.007 -0.007

(0.015) (0.012)
Nearby siblings’ experience 0.013 0.014 0.014 0.014

(0.020) (0.020) (0.020) (0.020)
Average remote signal 0.019 0.020 0.019 0.021

(0.026) (0.026) (0.026) (0.026)
Destination-Ind-Year FE X X X X
Firm-Year FE X X X X
Age FE X X X X

R-squared 0.91 0.91 0.91 0.91
N 31586 31471 31569 31454

Notes: Dependent variable is the logarithm of expected sales in the next year. Nearby siblings’ experience
is the log of total number of nearby siblings’ signals. Host country income level is measured as 2005 real
GDP per capita. All moderator variables are standardized. Standard errors are clustered at the firm level.
Significance levels: a: 0.01, b: 0.05, c: 0.10.
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