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Abstract 

The evolution of product markups has important implications for macroeconomic dynamics. However, thus far, 

the trends and distributions of product markups have been very different, depending on how they are estimated. 

This paper uses plant-product matched data from Japan, and theoretically and empirically compares two 

alternative measures of product markups. One measure is De Loecker and Warzynski's (2012) state-of-the-art 

production approach that estimates production function parameters and computes markups from the output 

elasticities of an input divided by that input's revenue share. An alternative measure, which has been much less 

frequently applied empirically to micro data, is Diewert and Fox's (2008) approach that derived markups from 

the revenues divided by the total costs. Markups derived from the latter approach are consistent with the 

theoretical predictions: The markups increase as their market power increases and as their marginal costs decline. 
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1 Introduction

The evolution of product markups has important implications for macroeconomic dynamics, in-

cluding the inequality between capitalists and workers, the profitability of corporations, corporate

tax revenue, and the exit and entry of firms. To examine the influence of markups on macroeco-

nomic dynamics and find appropriate policy responses, it is crucial to measure markups accurately.

However, thus far, the trends and distributions of markups have been very different, depending on

how they are estimated. See, for example, De Loecker and Eackhout (2017), Karabarbounis and

Nieman (2018), and Hall (2018) for the U.S. trends of markups during the past few decades.

To better understand which empirical approaches give us accurate measures of markups, this

paper uses plant-product matched data from Japan, and empirically compares two approaches of

estimating product markups. One approach is De Loecker and Warzynski’s (2012) state-of-the-art

production approach that estimates markups from the output elasticities of an input divided by

that input’s revenue shares. As an alternative approach (hereafter, the cost approach), building on

Diewert and Fox’s (2008) theoretical contributions, we derive markups from the revenues divided

by the total costs, which is the cost share of an input divided by revenue share of that input. In

principle, these two approaches are theoretically consistent; however, they are empirically different

in how to estimate output elasticities. While the production approach assumes a certain form of

production function and estimates output elasticities from production function parameters, the

cost approach computes total cost and approximates output elasticities from cost shares of inputs

without estimating production functions.

The cost approach has some advantages because it does not estimate production functions. To

estimate production function parameters, the production approach requires that several economet-

ric and data issues, including simultaneity and selection biases (Olley and Pakes, 1996), functional

dependence problems (Ackerberg et al., 2015), and input allocation and price biases for multi-

product firms (De Loecker et al., 2016), be resolved. Moreover, to obtain unbiased production

function parameters, it is crucial to use product-level information about output prices and quanti-

ties (Lu and Yu, 2015; De Loecker et al., 2016).1

1Using the Annual Survey of Industrial Firms of China, Lu and Yu (2015) estimate a translog production function
for two different measures of real outputs: one derived from product-level physical quantity for single-product firms;
and the other from conventional method by using industry-level output deflators (i.e., firm-level revenue divided by
industry-level output deflators). They find that the product markups computed from these two measures are very
different, suggesting that the conventional practice to obtain revenue-based quantities from the revenue divided by
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The cost approach has some disadvantages as well. First, to use the cost approach, "obtaining

capital costs is usually the practical sticking point" (Syverson, 2011). To overcome this problem,

we use Hall and Jorgenson’s (1967) approach and impute capital costs from the opportunity costs

of holding capital assets. Although this method is applied to national- or industry-level studies

(Caballero and Lyons, 1992; Barkai, 2016; Karabarbounis and Neiman, 2018), it has rarely been

applied to firm- or plant-level data. Once we compute capital costs at the plant level, a measure of

product markup can be derived from the revenue divided by total cost. This measure is intuitive

because the revenue divided by total cost is identical to the output price divided by marginal cost

when scale elasticities are unity. Second, to theoretically derive markups from the cost approach,

we need to impose all the first-order conditions. This implicitly assumes that producers optimize

labor, capital, and intermediate inputs simultaneously for each year. This assumption could be

inconsistent with the timing assumption that is traditionally presumed in the literature (Olley and

Pakes, 1996). As discussed by Ackerberg et al (2015), it may take longer to hire labor and install

capital than to purchase intermediate inputs. As such, we think that markups derived with the

cost approach are appropriate in the medium to long run.

In this paper, we use plant-level data from the Census of Manufacture and compute markups

from the cost approach, as well as various measures from the production approach. The Census

of Manufacture is an annual survey conducted by the Ministry of Economy, Trade and Industry

(METI). The advantage of this database is that we can combine plant-level production variables

with product-level price and quantity variables over the relatively long period of 1986—2010. Our

estimates of markups computed with the cost approach suggest that, on average, product markups

increased over the period from 1.18 in 1988 to 1.33 in 2008. The markups computed with the

cost approach are much smaller in levels and standard deviations than those computed with the

production approach. For example, the standard deviation is 0.43 in 2008 for those estimated with

the cost approach, and is 1.42 for those estimated with the production approach (i.e., the physical

quantity-based Cobb-Douglas revenue production function).

We also examine the theoretical relationship implied in the duality problem (Hall, 1988; Roeger,

1995; Hall, 2018): Markups are related systematically to output prices, unit costs, production scale,

and productivity. We perform this exercise for markups calculated based on the cost approach, as

industry-level deflators cannot identify markups accurately.

2



well as for four types of markup measures based on the production approach. Overall, the estimates

computed with the cost approach are consistent with the theoretical predictions. Markups are

positively related to output prices, production sizes, and productivity, and negatively related to

unit costs, suggesting that product markups measured from the cost approach capture the evolution

of markups arising from market power and marginal costs. The estimates from the production

approach, however, do not strongly follow in the same manner: Some are positively related to

unit costs, and others are negatively related to output prices. Among the markups computed with

the production approach, those estimated from output elasticities of intermediate inputs are much

more consistent with those estimated from output elasticities of labor.

Using data over the 1990s and 2000s, several studies (Klitgaard, 1999; Kiyota, Nakajima, and

Nishimura, 2009; Obstfeld, 2009; Fukao and Nishioka, 2019) examine markup dynamics in Japan

and show that markups declined over the period. Their findings are very different from our study.

There are several potential reasons why we find increasing trends of markups and they find declining

trends in markups. First, our plant-level data do not include data for headquarters for multi-plant

firms. Therefore, we could underestimate total costs. Second, we use only the sample that covers

all manufacturing plants that have 30 or more employees. The exclusion of small-size enterprises

could overestimate markup trends of ours. Among these studies, Kiyota et al’s (2009) theoretical

and empirical contributions are closely related to those in the present study. However, we differ

from their approach on several points. First, we use revenue production functions and do not use

value added production functions. As shown in Basu and Fernald (1997), value added production

functions are not valid when producers operate in imperfectly competitive markets. Second, we use

Hall and Jorgenson’s (1967) approach, and impute capital costs according to the opportunity costs

of holding capital assets, whereas Kiyota et al (2009) use observed accounting values of depreciation

as capital costs.

The rest of the paper proceeds as follows. In the second section, we explain our strategy

for deriving the markup measure from the cost approach. In the third section, we discuss the

development of data for capital costs. In the fourth section, we describe the data, and in the fifth

section, we examine the evolution of product markups in the Japanese manufacturing sector. In

the sixth section, we also examine how markups from various measures are related to market power

and marginal costs. In the seventh section, we discuss our conclusions.
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2 The Cost Approach of Measuring Markups

This follows Diewert and Fox (2008) and develops an approach that measures product markups

without estimating production functions. We assume that a plant that produces a single product

i at time t uses a production function that converts three inputs (labor Lit; capital Kit; and

intermediate inputs Mit) into real output (Qit). The corresponding input prices, wit, rit, and pit,

are strictly positive and exogenous for producers. There variables are plant-specific because each

plant can choose distinct range and composition of each input (e.g., a different set of skill in labor).

Following Basu and Fernald (1997) and Diewert and Fox (2008), we assume that scale elasticities

(ρi) do not change over time. In particular, we use the following production function:

Qit = Ωit [Fit (Lit,Kit,Mit)]
ρi (1)

where we impose product-specific technique, Fit (·), is differentiable and homogeneous of degree one,

but can evolve over time, and Ωit is a Hicks-nuetral productivity measure that captures technological

progress.

To derive a measure of markups for each product i, we use the following profit maximization

problem:

max
Lit,Kit,Mit

PitQit − [witLit + ritKit + pitMit] .

If all inputs are observable and optimally chosen, an expression of product markup can be

derived from the first-order conditions and Euler’s rule2:

µit = ρi
PitQit

witLit + ritKit + pitMit
(2)

To derive equation (2), we impose an assumption that all inputs are optimally chosen. As

discussed in Ackerberg et al (2015), it may take longer time to hire labor and install capital than

to purchase intermediate inputs. Therefore, our measure of product markup can be thought of the

medium- to long-run values.

2For example, we have the following first order condition for labor: ρi
µit

∂Fit(·)/Fit(·)
∂Lit/Lit

= witLit
PitQit

. Using all the first
order conditions and the property of homogeneous of degree one in Fit(·) for each time t, we can apply Euler’s rule
to obtain equation (2).
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In this paper, we estimate markups from the revenue (PitQit) divided by total cost (witLit +

ritKit + pitMit). Strictly speaking, the revenue divided by total cost is markup only if ρi = 1;

however, as long as researchers are interested in the changes in markups, ρi would disappear with

time differencing or would be captured by product-specific fixed effects. Intuitively, our measure

of markups is straightforward. When constant returns to scale is assumed, product markup is the

output price divided by marginal cost. When increasing (decreasing) returns to scale is estimated,

the revenue divided by total cost would underestimate (overestimate) markup levels by ρi.

An alternative expression of equation (2) is the cost share of labor (αLit = witLit/(witLit +

ritKit+pitMit)) divided by revenue share of labor (α̃Lit = witLit/PitQit) adjusted by scale elasticity:

µit =
ρiα

L
it

α̃Lit
. (3)

Because output elasticity of labor is ρiαLit, equation (3) corresponds to De Loecker and Warzyn-

ski’s (2012) and De Loecker et al’s (2016) production approach where product markup is derived

from the output elasticity of an input (i.e., labor) divided by revenue share of that input. In

principle, the two equations (2) and (3) are theoretically consistent. And, empirical discrepancies

between these two measures depend solely on how well production function parameters or cost

shares of inputs can approximate output elasticities.

To understand how market power and marginal costs can influence markups derived from equa-

tion (2), we use the following cost minimization problem similar to Roeger (1995), which is dual to

the profit maximization problem above, and derive an alternative form of product markups:

min
Lit,Kit,Mit

witLit + ritKit + pitMit − λit
[
Qit − Q̄it

]
.

Using all the first-order conditions, we can derive total cost cit to produce a local target output

level, Q̄it, as a function of input prices and productivity:

cit = Ω
−1/ρi
it Q̄

1/ρi
it Git (wit, rit, pit) (4)

where Git (·) is unit cost function, which is a dual form of production function Fit (·).

Because Fit (·) is homogeneous of the first degree, Git (·) is also homogeneous of the first degree.

Moreover, the dual measure of markup (e.g., Hall, 2018) can be obtained from the output price
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(Pit) divided by marginal cost (mcit):

µit = ρi
Pit

Git (·)Q̄
1−1/ρi
it Ω

1/ρi
it . (5)

Equation (5) suggests that product markup derived from equation (2) is positively related to

output price (Pit) that reflects the market power and productivity (Ωit) that reduce marginal costs,

but negatively related to unit cost (Git (·)). Markup depends also on the scale of producing product

i (Qit); when scale elasticity is greater (less) than one, µit would increase (decrease) with Qit.

3 Capital Costs

We estimate user costs of capital from opportunity costs of holding capital assets. This approach—

the ex-ante approach—was proposed by Hall and Jorgenson (1967) and has applied to the country-

or industry-level studied including Caballero and Lyons (1992), Barkai (2016), and Karabarbounis

and Neiman (2018). The RIETI Japan Industrial Productivity (JIP) database (Fukao et al, 2007)

also compute capital costs using the same approach.

Consider that Kk
it is the quantity of the kth capital service to product good i in time t, and

rkt is its corresponding user cost. We also introduce the following notation: I
k
it is the quantity of

the kth investment good newly acquired to produce good i in time t, and pkt is its corresponding

price. Following the perpetual inventory method, the cumulated stock of past investments in the

kth capital good has the following property:

Kk
it = (1− δk)Kk

i,t−1 + Ikit (6)

where δk is the depreciation rate of the kth investment good, which is derived from the RIETI JIP

database.

Then, we can have the following equation:

rktK
k
it = pktK

k
it

(
it + δk −∆pkt /p

k
t

)
(7)

where it is the country-level risk free interest rates (i.e., government bond rate derived from the

International Financial Statistics of the International Monetary Fund), and ∆pkt /p
k
t is the rate of

6



capital gain or loss on the kth investment good from the RIETI JIP database.

By summing across all types of capital services, we can obtain capital costs to produce good i

in time t: ∑
k
rktK

k
it =

∑
k
pktK

k
it

(
it + δk −∆pkt /p

k
t

)
. (8)

The primary problem to obtain capital costs from this approach is that we do not observe the

capital stock data at the plant level. Therefore, we use the following strategy to estimate the initial

capital stock.

First, we obtain the total capital stock for the three distinct types of capital assets: (1) non-

residential buildings and structures; (2) machinery and equipment; and (3) transport equipment

by using the following equation to obtain the initial values of capital stocks:

Kk
t=1986 =

Ikt=1986
δk + gk

(9)

where Ikt=1986 =
∑

i I
k
i,t=1986, and g

k is the average annual growth rate in real investments over the

period of 1986-2010.

By applying equation (6) at the aggregate level, we can create total capital stocks (Kk
t ) in the

manufacturing sector for each year. To allocate capital stocks to each plant, we use the plant-level

book values for tangible assets (Ait) to allocate total real stocks of capital into each plant:

Kk
it = Kk

t

Ait∑
iAit

. (10)

Because each plant appears to the data in different date, the initial years differ across plants.

After obtaining the initial values of capital stocks from equation (10), we use equation (6) to develop

the plant-level stocks of real capital. When plants do not invest, their capital stocks decline with

depreciation.

4 Data

4.1 The Census of Manufacture

We use plant-level data from the Census of Manufacture and compute product markups with vari-

ous methods. The Census of Manufacture is an annual survey conducted by the METI. Plant-level
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variables, such as shipments, employment, wage bills, spending on intermediate inputs (materi-

als, fuel, electricity, and domestic outsourcing), and investments are from the plant subset; and

product-level variables, such as shipments and physical quantities, are from the product subset. In

the analysis, we use only the sample that covers all manufacturing plants that have 30 or more

employees. Although we do not include smaller plants, the data cover around 80% of Japanese

plants in terms of total outputs. Over the period 1986—2010, we have 1,253,294 observations at the

plant level. On average, we have around 50,000 plants for each year. The product-level data that

include prices and quantities, however, are not rich. The information on products is reported in the

Census of Manufacture’s 6-digit classification system. There are approximately 2,000 products, of

which quantity information is available for around 800 products. After we merge the product-level

data with the plant-level data, we have 324,780 observations. The observations decrease further to

67,000 once we limit the sample to single-product plants.

Table 1 reports the summary statistics for the years 1988, 1998, and 2008. The data reported

in this table do not include product-level information. One notable finding in the table is that the

average size of Japanese manufacturing plants increases, whereas the number of plants decreases.

There are 55,769 plants in 1988, but 44,198 plants in 2008. The decline is substantial over the

1998—2008 period. The average sale, however, increases by 58% from 4 billion Japanese Yen in

1988 to 6 billion Japanese Yen in 2008.

4.2 Cost Shares

The evolution of cost shares has important implications for the evolution of production techniques

because the cost share represents the output elasticities when producers optimize all the production

inputs. For example, if the underlying production technique is a Cobb-Douglas production function

(i.e., the output elasticities are constant), the cost shares and the output elasticities are constant

over time. Therefore, the cost shares of labor and capital do not change in the Cobb-Douglas

production function. However, if the production techniques deviate from the Cobb-Douglas pro-

duction function, then the cost shares could increase or decrease, depending on various factors,

including changes in the composition of the inputs, substitutability and complementality between

inputs (e.g., a CES or translog form), and structural changes in production techniques (e.g., an

industry shifts to using a capital- or intermediate inputs—intensive technique).
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Table 2 reports the summary statistics of cost shares for the years 1988, 1998, and 2008. The

cost shares of labor are stable over the period: 27.9% in 1988, with a slight increase to 28.7% in

2008. Similar to the cost shares of labor, the labor shares—labor compensation divided by value

added—are also stable, 52.7% in 1988, with a slight decrease to 51.4% in 2008. The results differ

from global evidence of declining trends in labor shares. For example, Karabarbounis and Neiman

(2014) show that labor shares decline because the cost of capital relative to labor decline over

the 1980—2010 period. One notable finding is that the cost shares of capital decline and those of

materials increase. The average cost share of capital is 13.7% in 1988, and decreases to 5.3% in

2008. This decline is offset by the increase in the cost shares of materials. The average cost share

of materials increases from 45% in 1988 to 52% in 2008. Low inflation and interest rates after the

asset bubble economy burst in 1992 could be responsible for the declining trend in the cost shares

of capital. The cost shares of materials, however, increase due probably to increasing reliance on

outsourcing after China’s accession to the World Trade Organization.

5 Markup Estimates

In this paper, we use the revenue divided by total cost to approximate plant-level markups. To

better understand how our estimates of product markups differ from those estimated with the

production approach, we also estimate the constant returns to scale Cobb-Douglas production

functions at the 2-digit industry level. Similar to Lu and Yu (2015), we estimate two sets of

parameters: one derived from product-level physical quantities for single-product plants; and the

other from the conventional method by using the revenues divided by industry-level output deflators

from the RIETI JIP database (Fukao et al, 2007). To estimate all the parameters of the production

function, we use Ackerberg et al’s (2015) generalized method of moments (GMM) procedure. See

the appendix for detailed discussions of our estimation strategy. Lu and Yu (2015) find that

the output elasticities computed from these two different measures of prices are quite different.

However, we find that the output elasticities appear to be similar although we do not estimate the

translog forms.
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5.1 Summary Statistics

Table 3 reports the summary statistics for the markup estimates based on the cost approach. In

1988, the markup estimates are centered on a mean of 1.18 and a median of 1.12 with a standard

deviation of 0.31. Over the next 20 years, the mean shifts to 1.28 in 1998 and to 1.33 in 2008, and

the standard deviation increases slightly to 0.37 in 1998 and to 0.43 in 2008. Using the production

approach, we have a slightly larger mean around 1.5—1.9 and larger standard deviations ranging

from 1.1 to 1.5. There are several reasons why the markup estimates from the cost approach

have smaller standard deviations. First, even within the same industry, plants may use different

production techniques. Thus, it is diffi cult to fit all plants within an industry into a one-size-

fits-all production function. Second, we use the constant returns to scale Cobb-Douglas sectoral

production functions for the production approach. This Cobb-Douglas form could be problematic

because we do not take into account the interaction terms across the production inputs.

5.2 Cost Approach versus Production Approach

Figure 1 is a set of histograms of the markup estimates in the years 1988, 1998, and 2008. The

histograms show that the shape of the distribution is remarkably stable over the years. Figure 2

shows the histograms of four kinds of markups in 1998 estimated based on the production approach.

They differ by (1) whether the markups are estimated using elasticities of labor (panels A and B) or

of intermediates (panels C and D) and (2) whether the production function is estimated using the

revenue divided by industry-level deflators (panels A and C) or product-level physical quantities

(panels B and D) as real outputs. Note that we refer to the output elasticities estimated from the

revenues divided by industry-level deflators (product-level physical quantities) as revenue (quantity)

elasticities. Our results suggest that the differences in the markup distributions by the revenue- and

quantity-based production function estimates appear to be small. The mean of the markups based

on the revenue elasticity of labor (intermediates) is 1.91 (1.53); that based on the quantity elasticity

of labor (intermediates) is 1.81 (1.49). In addition, the standard deviation of markups based on

the revenue elasticity of labor (intermediates) is 1.55 (1.33), which is slightly higher than that

based on the quantity elasticity of labor (intermediates): 1.41 (1.28). These statistics suggest that

the choice of output elasticity between labor versus intermediates seems to make somewhat larger

differences in the shape of the markup distributions. In addition, judging from the histograms, the

10



estimates based on the output elasticities of the intermediate inputs tend to have a longer upper

tail compared to those that used the output elasticities of labor.

Figure 3 plots the mean and median of markups over years. Panel A plots those of markups

based on the cost approach. Panels B and C show those of markups using quantity elasticities

of labor and intermediates, respectively. The three kinds of markups have different trends. The

time trend of the markups based on the cost approach is increasing overall, in terms of the mean

and the median. However, the trend of markups based on quantity-based output elasticities of

labor decreases in the 1990s and increases in the 2000s, and the trend of the markups based on

quantity-based output elasticities of intermediates is the opposite.

Next, we examine correlations across various markup measures. In doing so, we regress the first

difference of the log of the markup on the first difference of the log of another markup estimate.

Table 4 reports the results. The standard errors are clustered at the industry level. Using the

measure of markups based on the cost approach as a dependent variable, the coeffi cients of the

measures of markups based on the production approach are all positive and statistically significant

with the coeffi cients ranging from 0.40 to 0.53. Among them, the coeffi cients of the measures of

markups that use output elasticities of intermediate inputs are larger than those that use output

elasticities of labor. In other words, markups estimated from the cost approach are statistically

close to those estimated from the production approach with intermediate inputs as a flexible input.

Interestingly, interchanging the dependent and independent variables results in larger coeffi -

cients. For example, regressing the markups from quantity elasticities of labor on those from the

cost approach, the coeffi cient is 0.77. Similarly, using the markups from quantity elasticities of

intermediates as a dependent variable results in a coeffi cient of 1.02. These results suggest that

the markups from the revenue-cost ratios have fewer measurement errors than markups computed

with the production approach.

Another noteworthy point in Table 4 is that the markups using revenue- and quantity-based

production function estimations are highly correlated. The coeffi cient of the markup using quantity

elasticities of labor (intermediates) is 0.97 (0.99) for the markup using revenue elasticities of labor

(intermediates). This result may be surprising given the intuition in previous works that emphasizes

the importance of quantity-based markup estimates (Lu and Yu, 2015).
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5.3 Price Elasticities of Demands and Market Shares

Before exploring the determinants of markups, we examine the determinants of prices. In Table 5,

we report the ordinary least squares (OLS) estimates of regressing the changes in the log of product

prices on changes in the measures of market share. We use two measures of market share. One is to

take the simple average of the product-wise share of the plant’s shipments in the total shipments of

all plants in the year. The other is to take the average of the same product-wise share weighted by

the shipment value of a product. As for the measures of prices, in columns (1) and (3), we use the

average product prices in the plant. The price data come from the product-level data of the Census

of Manufacture, in which products are measured in 6-digit codes. Columns (2) and (4) restrict the

samples to single-product plants and use the product prices. In all specifications, the coeffi cients of

the market share are positive and statistically significant. The coeffi cient implies that an increase

of 10 percentage points in the market share is associated with an increase of 3.0 to 4.6 percentage

points in the product price. The findings suggest that producers with higher market shares (i.e.,

market power) tend to charge higher prices.

In this paper, we estimate markups from producer-side information. However, extant studies use

demand-side information and examine markup dynamics; see, for example, Feenstra and Weinstein

(2017). For the convenience of the analysis, we use the following inverse demand function:

Pit = Pit(Qit) (11)

and obtain the demand-side measure of product markups:

µit =
εit(Qit)

εit(Qit)− 1
(12)

where price elasticity of demand is εit(Qit) = − (∆Qit/Qit) / (∆Pit/Pit).3

In Table 6, we estimate the price elasticity of demand. In columns (1) and (2), we regress the

changes in product-level price on changes in the log of physical quantity. We also include the log

of unit cost as a control variable. To develop unit cost, we follow Hall (2018) and use the average

of the normalized log input prices, weighted by the plant’s cost shares. The price of intermediate

3Higher price elasticity of demand indicates higher competition, and perfect competition means εit(Qit) is close
to ∞.
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inputs is measured at the industry-year level and is obtained from the RIETI JIP database (Fukao

et al., 2007). The results from the full sample is reported in column (1), and those from the sample

of single-product plants is in column (2). In both specifications, the coeffi cients are negative

and statistically significant: -0.38 for the full sample and -0.70 for the sample of single-product

plants. The corresponding demand-side markups from equation (12) are bit too high: 1.61 and

3.33, respectively. For endogeneity concerns, we use Arellano-Bond’s (1991) generalized method

of moments (GMM) of estimating dynamic panel data by treating the growth of quantity as an

endogenous variable.4 The results from the sample of single-product plants are reported in columns

(3) and (4) without or with the control variable of log unit cost. While we find that the coeffi cients

of log quantity are still negative and statistically significant, the coeffi cients decline significantly to

0.07 and 0.19 after controlling for the endogeneity concerns. And, the corresponding demand-side

markups are 1.08 and 1.23, much closer to the supply-side values. Lastly, we use an alternative

measure of price, industry-level price deflators from the RIETI JIP database. The results are

shown in columns (5) and (6) and indicate that the coeffi cient sign of price becomes positive and

statistically significant.

5.4 Decomposition of the Markup Dynamics

In this section, we empirically examine the relationship implied in equation (5) that relates markups

to output prices, unit costs, production scales, and productivities. We perform this exercise for the

markups calculated from the cost approach, as well as for the four kinds of markup measures based

on the production approach, as used above. As for the measure of prices, we have two alternatives.

One is to use the product prices in product-level data by focusing on plants that produce a single

product. The other is to use the industry deflators from the RIETI JIP database. Unit cost is

measured in the same way as described above. Production scale is measured either by physical

quantities focusing on single-product plants or by the total real revenues of the plants. Measures of

TFP depend on production functions and measures of real outputs. For the analysis using the cost

approach, we use the cost share of each input (labor, capital, and intermediates) to calculate the

revenue-based TFP measure. For the analysis using the production approach, we use the estimated

output elasticities to calculate the TFP measures. If the output elasticities are estimated using

4 In this paper, we use two step approach for estimation and robust standard errors.
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physical quantities, we use the quantity-based TFP measures.

Table 7 reports the results. Panel A shows the results for markups based on the cost approach.

In columns (1) to (6), we use the simple OLS specification using the first differences for all variables.

In this way, we eliminate any time-invariant unobserved component at the plant level, including

scale elasticity (ρi). Standard errors are clustered at the industry level. In all of the equations,

the coeffi cients of the log of price are positive and statistically significant for the product- and

industry-level measures of prices. When we include all regressors, the coeffi cients are 0.34 and 0.54

for the product- and industry-level price measures, respectively.5

As predicted, the coeffi cients of the log of unit cost are all negative and statistically significant,

ranging from —0.37 to —0.18 depending on the specifications. The coeffi cients of production scale,

measured either by the log of quantity or the log of total real revenues, are positive and statistically

significant in all equations, suggesting that scale matters for product markups. Finally, as our theory

implies, the coeffi cients of TFP are positive and statistically significant in all equations. Overall,

the results are consistent with the model prediction in equation (5).

For endogeneity concerns about price and quantity choice, in columns (7) to (12), we use the

Arellano-Bond (1991) differenced GMM method for estimating dynamic panel data, again using the

first difference for all variables. In column (7), we specify price as an endogenous variable without

controlling for quantity and productivity. The coeffi cient of price is negative and not statistically

significant. However, as in column (8), when we include the log of quantity as an endogenous

variable, we have positive and statistically significant coeffi cients for price and quantity. In column

(9), we include TFP as an exogenous variable. The coeffi cients for price (0.23), quantity (0.24), and

TFP are all positive and statistically significant. The results are similar when we use the industry-

level price deflators as shown in columns (10) to (12). In summary, the results are qualitatively

unchanged with the differenced GMM method.

In panel B, we show the results for markups based on revenue elasticities of labor. Columns

(1) through (6) are the results for the OLS of the first differences of the variables. The coeffi cients

of the output price, scale effect, and TFP are all as predicted, but the coeffi cients of unit cost are

positive and statistically significant in all regressions. This feature remains even in columns (7) to

(12) when we use the differenced GMM method.

5Note that the samples also differ between these equations. In the regressions using establishment-level prices, we
restrict the sample to single product producers.
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Panel C reports the results for markups based on the quantity-based output elasticity of labor.

The results share the same feature as those in panel B: The coeffi cients of unit cost are positive

and statistically significant. In addition, the coeffi cients of (quantity-based) TFP are estimated to

be negative when we use plant-level prices.

In panel D, we show the results for markups based on revenue elasticities of intermediate inputs.

In columns (1) to (6), the results of OLS of the first differences are mostly reasonable as predicted,

except that the coeffi cients of the log of industry-level price are either negative or close to zero,

and the coeffi cients of unit cost are positive. In addition, even when we use the plant-level price,

the estimated coeffi cients size of price and the log of unit cost are somewhat small, 0.13 and —0.18,

respectively. In columns (7) to (12), the results of the GMM estimates are shown. The coeffi cients

of price are either not statistically significant or are negative in all specifications. When we use

product-level price, the coeffi cients of unit cost are negative and statistically significant, but the

coeffi cients of quantity turn out to be negative and not statistically significant. Using industry-level

price, the coeffi cients of unit cost are positive and statistically significant, and the coeffi cients of

the scale are negative.

Panel E reports the results for markups based on the quantity elasticity of intermediate goods.

The basic features of the results are the same as in panel D for markups based on the revenue

elasticity of intermediate goods. In the OLS estimates, the coeffi cients of industry-level price and

unit cost are inconsistent with the model prediction. In GMM, the coeffi cients of product- and

industry-level prices are negative or close to zero.

Overall, only the results for the cost approach for markups appear to be robust and consistent

with the theoretical predictions.

6 Conclusion

Researchers have documented that the evolution of product markups has important implications for

macroeconomic dynamics, including inequality, profitability of corporations, and net entry of firms.

However, thus far, the trends and distributions of markups have been very different, depending

on how the markups are computed. This paper uses plant-product matched data from Japan and

theoretically and empirically compares two alternative measures of product markups. One measure

is De Loecker and Warzynski’s (2012) state-of-the-art approach that estimates markups from the
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output elasticities of an input divided by that input’s revenue share. An alternative measure we

propose in this paper derives markups from the revenue divided by the total cost. The markups

derived from the latter approach are consistent with theoretical predictions: The markups increase

as their market power increases and as their marginal costs decline. Future research should improve

our empirical measures of markups and apply these measures to examine what influences markup

dynamics and its implications for macroeconomic dynamics in Japan.

Appendix

Production Function Estimations

In this paper, we follow the approach proposed by Ackerberg et al (2015) and estimate the Cobb-

Douglas production function. Their approach examines firm-level dynamics of productivity inno-

vations, which is based on the works by Olley and Pakes (1996) and Levinsohn and Petrin (2003).

The CRS Cobb-Douglas production function, F [ln(Lit), ln(Kit), ln(Mit)], is estimated in two

stages. In the first stage, we use the timing assumption that plants need more time to optimally

hire labor and install capital than purchase intermediate inputs. Because of this timing assump-

tion, a plant’s demand for intermediate inputs depends on its productivity and the predetermined

employment and the current stock of capital:

ln(Mit) = ht [ln(Ait), ln(Lit), ln(Kit)] .

Following Ackerberg et al (2015), we assume that the above equation can be inverted:

ln(Ait) = h−1 [ln(Lit), ln(Kit), ln(Mit)] .

We then approximate ln(Qit) with the second-order polynomial function of the four variables

in the first stage:

ln(Qit) = h−1 [ln(Lit), ln(Kit), ln(Mit)] + lnF (Lit,Kit,Mit)

≈ Φ [ln(Lit), ln(Kit), ln(Mit)] + εit. (13)

16



After the first stage equation is estimated, we obtain the fitted value of equation (13), Φ̂, and

compute the corresponding value of productivity for any combination of parameters. When we

estimate the CRS Cobb-Douglas production function, we need to identify two parameters: output

elasticities of labor and capital.

This enables us to express the log of productivity ln(Āit) as the fitted log output from equation

(14) minus the logged contribution of all three inputs in F̂ [ln(Lit), ln(Kit), ln(Mit)]:

ln(Āit) = Φ̂t − F̂ [ln(Lit), ln(Kit), ln(Mit)] . (14)

Our GMM procedure assumes that plant-level innovations to productivity, ζit, do not correlate

with the predetermined choices of inputs. To recover ζit, productivity for any set of parameters, Āit,

follows a non-parametric first-order Markov process, and then we can approximate the productivity

process with the third order polynomial:

ln(Āit) = γ0 + γ1 ln(Āi,t−1) + γ2
[
ln(Āi,t−1)

]2
+ γ3

[
ln(Āi,t−1)

]3
+ ζit.

From this third order polynomial, the innovation to productivity, ζit, can be estimated for a

given set of the parameters. Since the productivity term, ln(Āit), can be correlated with the current

choices of flexible inputs, ln(Lit) and ln(Mit), but it is not correlated with the predetermined

variable, ln(Kit), the innovation to productivity, ζit, will not be correlated with ln(Kit), ln(Li,t−1),

and ln(Mi,t−1). Thus, we create the moment condition and search for the optimal combination of

the parameters by minimizing the sum of the moments using the weighting procedure proposed by

Hansen (1982) for plausible combinations of parameters.
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Figures and Tables 

Figure 1. Histogram of Markups based on Cost Approach 

Panel A (1988) 

 

Figure 1. (cont.) Panel B (1998) 
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Figure 1. (cont.) Panel C (2008) 

 

 

Figure 2. Histogram of Markups based on Production Function Approach 

Panel A (1998). Labor, Revenue-based 
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Figure 2. (cont.) Panel B (1998). Labor, Quantity-based 

 

 

Figure 2. (cont.) Panel C (1998). Material, Revenue-based 
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Figure 2. (cont.) Panel D (1998). Material, Quantity-based 

 

 

Figure 3. Time-trend of markups 

Panel A. Cost approach 
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Figure 3. (cont.) Panel B. Production Function Approach (Labor, Quantity-based) 

 

Figure 3. (cont.) Panel C. Production Function Approach (Material, Quantity-based) 
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Table 1. Summary statistics 

 

 

 

 

 

Table 2. Cost shares 

 

 

 

 

 

 

 

 

obs mean total

unit (1988=1) unit (1988=1) unit (1988=1)

1988

    sales (millions Yen) 55,769 1 3,989 1 222,451,108 1

    value added (millions Yen) 55,769 1 1,629 1 90,844,020 1

    employment (headcounts) 55,769 1 124 1 6,918,674 1

    capital stock (millions Yen) 55,594 1 2,406 1 133,757,496 1

    area (square meters) 55,758 1 237 1 13,229,466 1

1998

    sales (millions Yen) 51,735 0.93 4,881 1.22 252,530,331 1.14

    value added (millions Yen) 51,735 0.93 2,049 1.26 106,009,412 1.17

    employment (headcounts) 51,735 0.93 124 1.00 6,404,855 0.93

    capital stock (millions Yen) 47,858 0.86 2,909 1.21 139,211,648 1.04

    area (square meters) 51,735 0.93 158 0.67 8,198,994 0.62

2008

    sales (millions Yen) 44,198 0.79 6,291 1.58 278,032,513 1.25

    value added (millions Yen) 44,198 0.79 2,243 1.38 99,132,313 1.09

    employment (headcounts) 44,198 0.79 134 1.08 5,920,985 0.86

    capital stock (millions Yen) 37,309 0.67 2,782 1.16 103,790,429 0.78

    area (square meters) 44,198 0.79 174 0.73 7,695,698 0.58

1988 1998 2008

obs mean sd obs mean sd obs mean sd

cost shares

  employment 55,594 0.279 0.180 47,858 0.309 0.179 37,309 0.287 0.178

  capital 55,594 0.137 0.112 47,858 0.089 0.078 37,309 0.053 0.057

  intermediate inputs

     materials 55,594 0.450 0.243 47,858 0.464 0.238 37,309 0.521 0.238

     fuel 55,594 0.010 0.017 47,858 0.009 0.018 37,309 0.017 0.036

     electricity 55,594 0.019 0.024 47,858 0.021 0.025 37,309 0.024 0.029

     outsourcing 55,594 0.106 0.136 47,858 0.108 0.141 37,309 0.098 0.138

labor share in value added 55,210 0.527 0.324 51,221 0.538 0.360 43,750 0.514 0.508
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Table 3. Markup summary statistics 

 

 

 

 

Table 4. OLS regressions across markup measures 

 

 

 

 

 

 

 

 

1988 1998 2008

obs mean sd obs mean std.dev obs mean std.dev

Cost approach 55,091 1.177 0.310 47,413 1.276 0.365 36,970 1.328 0.431

Production approach

  Revenue-base

    Labor 55,005 1.825 1.338 47,352 1.679 1.235 36,914 1.913 1.550

    Material 55,005 1.578 1.359 47,352 1.624 1.313 36,914 1.533 1.335

  Quantity-base

    Labor 50,145 1.726 1.258 42,988 1.581 1.134 33,705 1.814 1.418

    Material 50,145 1.557 1.348 42,988 1.599 1.292 33,705 1.495 1.285

Cost app Revenue, Labor Revenue, Material Quantity, Labor Quantity, Material

Cost approach

   Constant -0.011 (0.001) -0.004 (0.001) -0.011 (0.001) -0.004 (0.001)

   ln(markup) 0.777 (0.013) 1.022 (0.009) 0.777 (0.014) 1.021 (0.009)

   R-squiared 0.309 0.537 0.309 0.531

Revenue-base, Labor

   Constant 0.009 (0.001) 0.003 (0.001) 0.000 (0.001) 0.003 (0.001)

   ln(markup) 0.398 (0.012) 0.057 (0.015) 0.967 (0.005) 0.049 (0.017)

   R-squiared 0.309 0.003 0.941 0.003

Revenue-base, Material

   Constant 0.005 (0.000) -0.006 (0.001) -0.006 (0.001)

   ln(markup) 0.525 (0.026) 0.058 (0.017) 0.057 (0.018)

   R-squiared 0.537 0.003 0.003

Quantity-base, Labor

   Constant 0.009 (0.001) 0.000 (0.001) 0.003 (0.001) 0.003 (0.001)

   ln(markup) 0.397 (0.012) 0.973 (0.004) 0.055 (0.016) 0.064 (0.015)

   R-squiared 0.309 0.941 0.003 0.004

Quantity-base, Material

   Constant 0.005 (0.000) -0.006 (0.001) 0.000 (0.001) -0.006 (0.001) 0.000 (0.001)

   ln(markup) 0.521 (0.028) 0.050 (0.019) 0.993 (0.002) 0.065 (0.018) 0.999 (0.001)

   R-squiared 0.531 0.003 0.992 0.004 0.992
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Table 5. Price and market share 

 
 

 

 

Table 6. Price elasticity of demand 

 

 

 

 

 

 

 

 

 

  

Devepndent variable = D. log price

(1) (2) (3) (4)

OLS OLS OLS OLS

Full Single Full Single

sample product sample product

D.Market share 0.466 0.392 0.339 0.300

(0.168) (0.125) (0.129) (0.115)

obs 291,223 72,958 291,223 72,958

R-squared 0.000 0.001 0.000 0.000

Market share IIMarket share I

Devepndent variable = D. log price

(1) (2) (3) (4) (5) (6)

OLS OLS GMM GMM GMM GMM

Product-level price Product-level price Industry price deflator

-0.381 -0.700 -0.071 -0.186 0.118 0.052

(0.022) (0.028) (0.020) (0.022) (0.002) (0.002)

0.494 0.253

(0.028) (0.006)

obs 291,223 72,958 65,576 62,232 487,995 458,588

R-squared 0.221 0.602 - - - -

# of IV - - 552 553 551 552

D.log quantity

D.log unit cost
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Table 7. Markup determinants 

 

 

 

 

 

 

 

A. Cost approach

(1) (2) (3) (4) (5) (6)

OLS OLS OLS OLS OLS OLS

Product-level price Industry price deflator

0.030 0.278 0.339 0.108 0.363 0.541

(0.005) (0.024) (0.030) (0.026) (0.021) (0.020)

-0.184 -0.343 -0.366 -0.261 -0.228 -0.275

(0.054) (0.044) (0.040) (0.030) (0.040) (0.043)

0.288 0.356 0.396 0.541

(0.023) (0.029) (0.010) (0.008)

0.000 0.029 0.000 0.038

(0.001) (0.000)

obs 68,716 68,716 67,724 505,080 505,080 490,049

R-squared 0.007 0.214 0.332 0.003 0.296 0.481

log price

log cost

log scale

log tfp

A. Cost approach (cont.)

(7) (8) (9) (10) (11) (12)

GMM GMM GMM GMM GMM GMM

Product-level price Industry price deflator

0.264 0.251 0.205 0.319 0.313 0.262

(0.022) (0.020) (0.019) (0.008) (0.007) (0.007)

0.000 0.151 0.238 0.086 0.212 0.379

(0.014) (0.015) (0.017) (0.010) (0.009) (0.009)

-0.117 -0.311 -0.318 -0.195 -0.327 -0.426

(0.021) (0.021) (0.022) (0.014) (0.011) (0.011)

0.151 0.249 0.125 0.230

(0.010) (0.013) (0.004) (0.005)

0.024 0.026

(0.001) (0.005)

obs 63,092 63,092 62,512 458,588 458,588 449,016

# of iv 553 829 830 552 828 829

lagged markup

log price

log cost

log scale

log tfp
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B. Production approach (Revenue-base, Labor)

(1) (2) (3) (4) (5) (6)

OLS OLS OLS OLS OLS OLS

Product-level price Industry price deflator

0.042 0.432 0.447 0.061 0.468 0.501

(0.007) (0.033) (0.036) (0.033) (0.053) (0.056)

0.672 0.431 0.425 0.431 0.491 0.520

(0.089) (0.046) (0.047) (0.071) (0.054) (0.058)

0.450 0.467 0.643 0.703

(0.033) (0.036) (0.010) (0.006)

0.000 0.004 0.000 0.010

(0.001) (0.000)

obs 67,700 67,700 66,763 498,215 498,215 483,695

R-squared 0.025 0.305 0.310 0.006 0.433 0.461

log price

log cost

log scale

log tfp

B. Production approach (Revenue-base, Labor) (cont.)

(7) (8) (9) (10) (11) (12)

GMM GMM GMM GMM GMM GMM

Product-level price Industry price deflator

0.481 0.359 0.349 0.518 0.423 0.418

(0.019) (0.018) (0.016) (0.007) ( .007) (0.007)

0.004 0.199 0.229 0.042 0.209 0.242

(0.022) (0.025) (0.023) (0.014) (0.013) (0.014)

0.556 0.324 0.311 0.354 0.076 0.056

(0.034) (0.031) (0.030) (0.019) (0.015) (0.015)

0.294 0.312 0.216 0.237

(0.017) (0.017) (0.007) (0.007)

0.011 0.011

(0.003) (0.001)

obs 62,020 62,020 61,471 451,450 451,450 442,177

# of iv 553 829 1,100 552 828 1,100

lagged markup

log price

log cost

log scale

log tfp
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C. Production approach (Quantity-base, Labor)

(1) (2) (3) (4) (5) (6)

OLS OLS OLS OLS OLS OLS

Product-level price Industry price deflator

0.040 0.431 0.440 -0.012 0.379 0.241

(0.007) (0.034) (0.037) (0.044) (0.059) (0.083)

0.672 0.431 0.439 0.490 0.526 0.546

(0.089) (0.046) (0.049) (0.077) (0.057) (0.071)

0.452 0.465 0.641 0.732

(0.033) (0.036) (0.010) (0.015)

0.000 -0.003 0.000 0.005

(0.001) (0.000)

obs 67,918 67,918 66,982 438,460 438,460 66,982

R-squared 0.025 0.309 0.312 0.250 0.439 0.480

log price

log cost

log scale

log tfp

C. Production approach (Quantity-base, Labor) (cont.)

(7) (8) (9) (10) (11) (12)

GMM GMM GMM GMM GMM GMM

Product-level price Industry price deflator

0.473 0.359 0.359 0.571 0.501 0.432

(0.019) ( .017) (0.017) ( .005) (0.005) (0.009)

0.004 0.204 0.221 0.029 0.234 0.288

(0.022) (0.025) (0.027) (0.010) (0.009) (0.021)

0.555 0.320 0.319 0.273 -0.057 0.102

(0.034) (0.031) (0.032) (0.014) (0.012) (0.022)

0.295 0.289 0.206 0.250

(0.017) (0.018) (0.004) (0.009)

-0.007 0.001

(0.001) (0.000)

obs 62,248 62,248 61,702 874,677 874,677 250,282

# of iv 553 829 830 552 828 829

lagged markup

log price

log cost

log scale

log tfp
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D. Production approach (Revenue-base, Material)

(1) (2) (3) (4) (5) (6)

OLS OLS OLS OLS OLS OLS

Product-level price Industry price deflator

0.017 0.110 0.131 -0.088 -0.048 0.040

(0.005) (0.022) (0.023) ( .038) (0.036) (0.038)

-0.066 -0.124 -0.180 0.122 0.127 0.060

(0.059) (0.073) (0.072) (0.081) (0.086) (0.081)

0.107 0.131 0.063 0.104

(0.021) (0.022) (0.017) (0.016)

0.000 0.047 0.000 0.059

(0.003) (0.006)

obs 67,929 67,929 66,976 496,503 496,503 482,502

R-squared 0.001 0.021 0.112 0.000 0.004 0.107

log price

log cost

log scale

log tfp

D. Production approach (Revenue-base, Material) (cont.)

(7) (8) (9) (10) (11) (12)

GMM GMM GMM GMM GMM GMM

Product-level price Industry price deflator

0.323 0.323 0.297 0.416 0.447 0.402

(0.017) (0.017) (0.016) (0.008) (0.007) (0.007)

0.034 -0.011 0.011 -0.143 -0.168 -0.020

(0.016) (0.019) (0.016) (0.014) (0.013) (0.013)

-0.175 -0.144 -0.168 0.123 0.150 0.027

(0.023) (0.026) (0.024) (0.019) (0.016) (0.015)

-0.052 -0.028 -0.112 -0.032

(0.013) (0.011) (0.006) (0.006)

0.026 0.056

(0.003) (0.000)

obs 62,158 62,158 61,596 449,445 449,445 440,622

# of iv 553 829 1,100 552 828 829

log cost

lagged markup

log price

log scale

log tfp
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E. Production approach (Quantity-base, Material)

(1) (2) (3) (4) (5) (6)

OLS OLS OLS OLS OLS OLS

Product-level price Industry price deflator

0.017 0.111 0.157 -0.121 -0.087 -0.313

(0.005) (0.022) (0.024) (0.040) (0.037) (0.065)

-0.071 -0.129 -0.194 0.077 0.080 0.040

(0.058) (0.072) (0.071) (0.081) (0.085) (0.070)

0.109 0.116 0.056 0.225

( .021) (0.023) (0.017) (0.027)

0.000 0.044 0.000 0.042

(0.003) (0.003)

obs 68,135 68,135 67,177 436,796 436,796 67,177

R-squared 0.001 0.022 0.105 0.000 0.004 0.126

log tfp

log price

log cost

log scale

E. Production approach (Quantity-base, Material) (cont.)

(7) (8) (9) (10) (11) (12)

GMM GMM GMM GMM GMM GMM

Product-level price Industry price deflator

0.319 0.321 0.297 0.424 0.476 0.372

(0.017) (0.016) (0.016) (0.006) (0.005) ( .009)

0.026 -0.013 0.061 -0.147 -0.172 -0.167

(0.015) (0.019) ( .019) (0.010) (0.009) (0.017)

-0.176 -0.147 -0.231 0.088 0.148 0.034

(0.024) (0.026) (0.026) (0.013) (0.011) (0.018)

-0.052 0.003 -0.104 -0.072

( .013) ( .012) (0.003) ( .006)

0.039 0.022

(0.001) (0.000)

obs 62,373 62,373 61,808 872,529 872,529 250,572

# of iv 553 829 830 552 828 829

log tfp

lagged markup

log price

log cost

log scale
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