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Abstract 

 Since firms are interrelated via customer-supplier relationships, the bankruptcy of a firm may lead to the 
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bankruptcies by the contagion effect. In fact, by simulating our model, we find that the reach of bankruptcy 
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1 Introduction

One of the characteristic features of our modern economy is the interdependence of firms through var-
ious relationships. For example, firms purchase and sell goods simultaneously and these customer-supplier
relationships generate a huge complex network. Since transactions between customers and suppliers are
frequently performed on trade credit, the relationships imply that firms are exposed to counterparty risk,
that is, a payment default of a firm’s results in significant losses on its supplier. One bankruptcy of a firm
may leads to another subsequent bankruptcy and cause bankruptcy propagation on the network.

In recent years, the importance of network structure has received increasing attentions, especially in
theoretical macroeconomic literature. As theoretically shown by e.g., Acemoglu et al. (2012, 2015, 2017)
and Baqaee (forthcoming), if a network has hub firms, idiosyncratic shocks to hub firms do not die out but
spread on the network, causing substantial aggregate fluctuations. In particular, regarding to systemic risk
and network structure, the non-monotonicity of relationship between the network density and bankruptcy
propagation has been pointed out by e.g., Gai and Kapadia (2010), Gai et al. (2011), and Elliott et al. (2014).1

Imagine as an extreme case that a network has no network ties and firms are completely independent of
each other. In this case, since there is no shock propagation channel, bankruptcy does not spread. As
network ties are added to this network, firms becomes more susceptible to other firms, and therefore, the
risk of bankruptcy propagation increases. However, as the underlying network approaches to the other
extreme, i.e., a complete network in which firms are connected to all other firms, bankruptcy is unlikely
to spread because bankruptcy shocks are not concentrated but immediately diluted in the economy. Put
differently, adding network ties contributes to bankruptcy propagation when the network is very sparse
whereas it prevents bankruptcy propagation when the network is highly connected. Even if the contagion
effect is present at the firm level, it does not immediately imply that a non-negligible fraction of firms in the
economy are forced into bankruptcy because its likelihood depends on the network structure. Therefore, to
assess the risk of bankruptcy propagation on a network, both the magnitude of the contagion effect at the
firm level and an empirical network structure must be considered simultaneously. This paper tackles this
problem.

Figure 1: Bankruptcy propagation on a customer-supplier network.

Note: Arrows represent the flow of money, e.g., firm A is a supplier of firm B, which is a supplier of firms
C, D, and E.

This paper uses two comprehensive data in Japan. The first one is about customer-supplier relationships
of more than one million firms in Japan, which enables us to identify the customers and suppliers of a firm.
The second one is bankruptcy records over April 2013 and February 2017, which includes the bankruptcy
date and identity of bankrupt firms. By merging these two dataset, we can trace how bankruptcy spreads
on the customer-supplier network. First, by applying the survival analysis, we quantify the contagion effect
at the firm level, that is, we measure an increase in the bankruptcy probability of a surviving firm facing
bankruptcy of customers and/or suppliers. We find that the contagion effect is economically and statistically

1Related to this literature, the structure of financial networks, e.g., interbank networks, has been discussed for evaluating
systemic risk. See Allen and Gale (2000); Dasgupta (2004); Leitner (2005); Brunnermeier and Pedersen (2008); Allen et al.
(2012); Billio et al. (2012); Bigio and La’O (2016); Glasserman and Young (2015); Cabrales et al. (2017); Gofman (2017); for a
review, Glasserman and Young (2016) and Benoit et al. (2017).
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significant; for example, if the half of the customers of a firm go bankrupt, the bankruptcy probability of the
firm approximately triples. Next, based on the estimates and the empirical network, we measure the impact
of the contagion effect at the aggregate level, that is, we analyze the size of bankruptcy propagation on the
network. We find that in most cases, the simulated size of bankruptcy propagation is very limited, in spite
of a significant contagion effect at the firm level.

This contrast between at the firm and aggregate level is due to network structure. The empirical customer-
supplier network shows high connectivity and most of firms are directly or indirectly. In particular, they are
connected with short path length (the average path length is less than 5). This means that, regarding the
systemic risk and network structure, the empirical network is close to the complete network, and therefore,
bankruptcy shocks are immediately diluted before causing another bankruptcy. In other words, the customer-
supplier network prevents—rather than contributes to—large-scale bankruptcy propagation.

Our paper is closely related to Boissay and Gropp (2013) and Jacobson and Schedvin (2015), in which
detail information of bankrupt firms are examined. Focusing on the amount of trade credit extended to
bankrupt firms, they show that debtor bankruptcies significantly increase the bankruptcy risk of creditors.
Our paper complements their analysis in that our dataset contains not only customer-supplier relationships
of bankrupt firms but surviving firms, which enables us to analyze the underlying network including bankrupt
and surviving firms. In particular, our finding that network structure plays a role of preventing bankruptcy
propagation contrasts with the argument in Boissay and Gropp (2013) that the existence of deep pocket (i.e.,
firms providing additional trade credit to financially constrained customers) is a key factor in preventing
bankruptcy propagation. Our finding gives another explanation of why large-scale bankruptcy propagation
does not occur in reality.

The rest of this paper is organized as follows.. Section 2 describes our data and show the features of the
empirical customer-supplier network. Section 3 shows the results of survival analysis. Section 4 examines
the aggregate impact of the contagion effect. Section 5 concludes.

2 Data

Our analysis uses two proprietary datasets complied by Tokyo Shoko Research Ltd (TSR): bankruptcy
records from April 1st, 2013 to February 28th, 2017, and customer-supplier relationships of approximately
one million firms in Japan. Bankruptcy records includes bankrupt firms with total debt geq ten millions yen,
which contains the bankruptcy date, firm’s attributes and financial information such as total debt.2 The
number of bankruptcies during the sample period is 35, 945. Figure 2 shows the time series of the number
of bankruptcies on a daily basis.

TSR network data contains the identity of firms’ important customers and suppliers (up to 24 firms
in each category) as well as a set of firm characteristics such as sales, location and industry.3 In addition,
financial information from financial statements is available for about 25% of the firms. We exclude firms (with
two-digit Japan Standard Industrial Classification (JSIC) codes in parentheses) operating in the divisions
agriculture and forestry (01-04), finance and insurance (62-67), education and learning support (81-82),
medical, healthcare and welfare services (83-85), and all subsequent sectors (86-99). Moreover, we exclude
very small firms with sales less than ten millions yen. Our analysis is based on network data in 2014, but
because firms that went bankrupt prior to 2014 are excluded from the 2014 data, we complement the network
by adding bankrupt firms and their network ties in the 2012 data. Namely, we study firms that survive in
2014 (and may go bankrupt in subsequent years) and firms that go bankrupt prior to 2014, and consider a
customer-supplier network generated by these firms. Our final data consists of 1, 080, 977 firms and 14, 670
bankruptcies.

2Bankruptcy in our data is defined as either (1) suspension of bank transactions (2) bankruptcy under the corporate reha-
bilitation law (3) bankruptcy under the bankruptcy act law, (4) voluntary reduction of debts (Nai-Seiri) (5) special liquidations
(6) bankruptcy under the civil rehabilitation law. In Japan, if a firm defaults on its payment twice within six months, its
transaction with banks are legally prohibited (Case (1)). In Case (4), a firm privately negotiates with its debtors for debt
reduction to rebuild its business. In Cases (2), (3), (5), and (6), bankruptcy date is the one on which a firm files a bankruptcy
petition in the court.

3We assume that there is a customer-supplier relationship between firms i and j if at least either firm reports the relationship.
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Figure 2: Time series of bankruptcy frequency in Japan.
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Note: The horizontal axis is the number of working days since April 1st, 2013. There are 960 working days
by February 28th, 2017. The sample average of bankruptcy frequency over our sample period is 37.44.

2.1 Descriptive statistics

Table 1 reports descriptive statistics of firm characteristics for (A) all firms (B) firms whose financial
information is available (C) bankrupt firms (D) bankrupt firms whose financial information is available. An
important empirical feature of the firm size distribution is that it is very rightly skewed. Figure 3 shows
the complementary cumulative distribution function (CCDF) of sales and employees in the log-log scale,
that is, the fraction of firms with firm size ≥ s for some s. It suggests that the firm size distribution has
a fatter tail, which is roughly approximated by a straight line. This empirical feature is called Zipf’s law
in the literature (cf. Axtell (2001) and Gabaix (2009)). To be precise, Zipf’s law means that firm size S
approximately follows a power law tail:

Pr(S > s) ∼ s−β , for large s, (1)

where exponent β is close to 1. By using Hill’s method, we estimate exponents β (s.e. in the parentheses)

and find that β̂ = 1.03 (0.015) for sales and β̂ = 1.28 (0.018) for employees, respectively. Consistent with the
previous literature, the exponent is close to 1, especially when firm size is measured by sales. This means
that firm size is very heterogeneous and there exists extremely large firms.

(C) of Table 1 shows descriptive statistics for bankrupt firms. The sample means of firm size measured by
employees and sales are 12.58, and 401.31 millions yen, respectively, and smaller compared to (A). However,
this does not imply that all of the bankrupt firms are small. In fact, as shown in Figure 4 and 5, the CCDF
of sales, employees, and total debts for bankrupt firms are fat-tailed and approximated by a power law. This
means that, similar to the case for all firms, firm size for bankrupt firms are very heterogeneous and some
extremely large firms go bankrupt.

In (B) and (D) of Table 1, we report total assets and ratios of profits, cash holdings, account payables,
account receivables, current liabilities, and total liabilities to total assets as well as basic firm characteristics.
(B) shows that the sample means of the ratios of account receivables and payables are 22.6% and 15.2%,
suggesting that firms extend and receive a nonnegligible amount of trade credit. In other words, trade
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credit can be an important channel through which suppliers are affected by bankruptcy of their customer.
As expected, comparison between (B) and (D) shows that bankrupt firms are lower-ranked by TSR (lower
credit score), less profitable, and more heavily encumbered with short-term and total debt. For account
receivables, the sample means for (B) and (D) are 22.6% and 24.5%, which means that bankrupt firms
extend more trade credit to their customers. Although this is consistent with the trade credit channel
hypothesis, the difference of the ratio of account receivables between all firms and bankrupt firms does not
seem large.

Figure 3: CCDF of firm size for all firms.
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Note: The left (right) panel shows the CCDF of sales (employees). Hill’s estimates (s.e. in the parenthesis) for exponent β are

β̂ = 1.025 (0.0145) for sales and β̂ = 1.277 (0.0181) for employees, respectively.

2.2 Network structure

This subsection describes the structure of a customer-supplier network of the 1, 080, 977 firms in Japan.
This network consists of 3, 946, 446 customer-supplier relationships, and each relationship constitutes a di-
rected network tie (from customer i to supplier j) in the network. One of the important features of the
customer-supplier network is its sparsity. The empirical network shows that the network density, which is
defined by the number of actual network ties divided by the maximum of network ties (i.e., N(N − 1) for
N firms), is very low; the network density is 0.000338%, that is, only 0.000338% of all possible network ties
actually exist. Consistent with the sparsity, Table 2 reports descriptive statistics of in- and out-degree of the
network for each firm, that is, the number of customers and suppliers for each firm. It shows that most of
firms have a limited number of customers and/or suppliers. For example, more than 90% of the firms have
less than 10 customers. However, similar to the firm size distributions, the in- and out-distributions are very
rightly skewed and the right tails follow a power law as shown in Figure 6. It suggests that both in- and
out-degrees are very heterogeneously distributed across firms and there exist hub firms having ties to many
other firms.

Another important feature of the network is its connectivity, which is particularly important in analysis of
bankruptcy propagation because a high connectivity means that there are paths through which bankruptcy
shocks potentially spread. We consider two concepts of network connectivity: weak and strong connectivity.
A subnetwork is called a weakly connected component (WCC) if any pair of firms in the subnetwork is
directly or indirectly connected. Similarly, a subnetwork is called a strongly connected component (SCC)
if any pair of firms in the subnetwork has a directed path between the two firms. Note that direction of
network ties are explicitly considered in the SCC but not in the WCC. In particular, firms i and j in the
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Table 1: Descriptive statistics of firm characteristics.

Mean Median S.D. 10th 90th NA’s

(A) All firms (1, 080, 977 firms)

Age 34.373 32 17.633 12.000 58 1646
Employees 20.247 5 277.083 2.000 29 10270
Sales (in a million yen) 1100.627 90 32634.330 19.853 800 0
Credit-score 46.496 46 5.510 40.000 53 883

(B) Firms with accounting data
(263, 455 firms)

Age 34.949 33.000 17.417 13.000 59.000 66
Employees 43.011 8.000 408.160 2.000 58.000 1560
Sales 2992.649 169.286 58896.016 27.665 2294.990 0
Credit-score 49.048 49.000 6.627 41.000 58.000 129
Total assets (a million yen) 3491.373 111.552 84102.955 12.517 1900.175 0
Ratios in percentage of total assets

Profits 0.049 0.028 1.244 −0.077 0.194 1
Cash holdings 0.269 0.218 0.212 0.039 0.579 1
Account receivables 0.226 0.188 0.190 0.006 0.495 1
Account payables 0.152 0.095 0.343 0.000 0.369 1
Current liabilities 0.489 0.361 1.782 0.094 0.814 1
Total liabilities 0.910 0.742 2.412 0.230 1.399 1

(C) Bankrupt firms (14, 670 firms)

Age 33.678 31.000 16.792 13 57 3
Employees 12.575 6.000 40.017 2 25 8
Sales (a million yen) 401.309 125.483 2635.560 30 700 0
Credit-score 44.116 45.000 4.802 38 49 291
Total debt (a million yen) 376.536 94.000 6151.496 21 550 352

(D) Bankrupt firms with accounting data
(1, 587 firms)

Age 34.096 32.000 17.598 12.000 58.400 0
Employees 17.843 8.000 64.198 3.000 35.000 1
Sales 844.803 199.780 5086.017 41.002 1353.588 0
Credit-score 43.940 45.000 5.460 38.000 50.000 47
Total assets (a million yen) 636.617 142.758 3384.478 22.291 1098.178 0
Total debt (a million yen) 641.959 168.000 4111.922 39.000 1043.700 27
Ratios in percentage of total assets

Profits −0.050 0.008 0.366 −0.213 0.075 0
Cash holdings 0.117 0.068 0.138 0.008 0.270 0
Account receivables 0.245 0.193 0.210 0.010 0.562 0
Account payables 0.227 0.141 0.379 0.000 0.498 0
Current liabilities 0.695 0.502 1.003 0.149 1.232 0
Total liabilities 1.575 1.042 2.154 0.712 2.665 0

Note: Credit score given by TSR is within the range of 0 − 99 and decreasing when the firms is poor. Account receivables is
defined as the sum of three items: notes receivable-trade, accounts receivable-trade, and accounts receivable from completed
construction contracts. Account payables is defined as the sum of three items: notes payable-trade, accounts payable-trade,
and accounts payable for construction contracts.
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Figure 4: CCDF of firm size for bankrupt firms.
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Note: The left (right) panel shows the CCDF of sales (employees). Hill’s estimates (s.e. in the parenthesis) for exponent

β̂ = 1.151 (0.0515) for sales and β̂ = 1.386 (0.0620) for employees, respectively.

Figure 5: CCDF of total debt for bankrupt firms.
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Note: Hill’s estimates (s.e. in the parenthesis) for exponent β is β̂ = 0.992 (0.0444).

Figure 6: CCDF of in- and out-degree.

Note: The left (right) panel shows the CCDF of in-degree (out-degree). Hill’s estimates (s.e. in the parenthesis) for exponent

β are β̂ = 1.317 (0.0186) for in-degree and β̂ = 1.326 (0.01875) for out-degree, respectively.
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Table 2: Descriptive statistics of in- and out-degree.

Mean Median S.D. 10th 90th

All firms

in degree 3.651 1 26.308 0 7
out degree 3.651 1 26.079 0 7
total degree 7.302 3 43.799 0 14

Bankrupt firms

bank in degree 3.110 2 5.330 0 7
bank out degree 3.354 2 7.468 0 8
bank total degree 6.465 4 10.590 1 14

Note: Total degree is defined as the sum of in- and out-degree.

SCC have both directed paths from i to j and j to i, the SCC can be seen as a loop structure in the network.
We find that the largest WCC of the customer-supplier network accounts for 79.70% of all the firms. In

other words, in spite of the sparsity of the network, a majority of firms are directly or indirectly connected
through customer-supplier relationships and constitutes a large connected component. Figure 7 visualizes
(a part of) the largest WCC of the customer-supplier network, showing that the largest components firms
across different sectors. For the SCC, 39.91% of all the firms constitute the largest SCC. In light of the loop
structure of the SCC, bankruptcy shocks can propagate and be further amplified by circulating in the SCC.
Furthermore, Figure 8 shows the distribution of network distance between connected firms, that is, how far
firms are apart from each other on the network if there is a directed path connecting the firms. Although
only large firms are considered in Figure 8, it shows that firms are connected with a short path, for example,
the average of path length is 3.851. In short, firms are not only connected but highly-connected with short
path length.

Lastly, we report network correlation of firm characteristics in Table 3. One might be concerned that
apparent bankruptcy propagation may be due to the correlation of firm characteristics between connected
firms. For example, if low-performance firms are connected, they go bankrupt simultaneously without any
contagion effects. To measure the correlation of firm characteristics, Table 3 reports the assortativity measure
ρ proposed by Newman (2002, 2003) for sales, employees, credit-score by TSR, and network degree. It shows
that on average, the customer-supplier network is disassortative mixing, that is, larger and high-performance
firms are likely to be connected with smaller and low-performance firms, and vice versa. In other words,
it is unlikely that a group of bad firms are concentrated locally on the network and result in a spurious
bankruptcy propagation.

Table 3: Network correlation.

Sales Employees Credit score Degree

Assortativity measure ρ −0.0610 −0.1415 −0.158 −0.0904

Note: Assortativity measure ρ, which is defined by Newman (2002, 2003), is the correlation coefficient between connected firms
and within the range of −1 ≤ ρ ≤ 1. ρ > 0 (< 0) represents assortativity (disassortativity). For sales, assortativity measure
ρ of log10(sales) is calculated. For employees, assortativity measure ρ of log10(employees +1) is calculated to deal with firms
with zero employees.

2.3 Subnetwork of bankrupt firms

Next, we consider a subnetwork consisting of only bankrupt firms (14, 670 bankrupt firms). Namely, we
leave bankrupt firms and network ties between them from the underlying customer-supplier network. If large-
scale bankruptcy propagation occurs, bankrupt firms must be connected and constitute a large connected
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Figure 7: WCC of the customer-supplier network.

Note: The largest WCC consisting of firms with sales ≥ 106 is shown (86, 833 firms). The color of circles represents the

firm’s industry (1-digit). Blue, red, green, yellow and black represents wholesale & retail trade, represents manufacturing,

construction, transport & postal activities, and real estate & goods rental & leasing. Other sectors are colored by grey.
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Figure 8: Distribution of network distance.
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Note: 6, 480 firms are considered, that is, network distance between 6, 480 × 6, 479 = 41, 983, 920 pairs are calculated. The

sample mean of path length is 3.851 and its s.d. is 0.959.

component in this subnetwork.
However, we find that in sharply contrast to the underlying customer-supplier network, this subnetwork

of bankrupt firms shows disconnectivity. First, a majority of firms (88.71% of the bankrupt firms) in this
subnetwork are isolated, that is, they have no network tie to another bankrupt firm. By definition, these
isolated bankruptcies are not involved with any bankruptcy propagation. Next, by excluding these isolated
bankrupt firms, we focus on remaining bankrupt firms having at least one network tie to other bankrupt
firms. Figure 2 shows this subnetwork, which consists of 1, 656 bankrupt firms and 1, 072 network ties among
them. It shows that while small-scale bankruptcy propagations are observed as shown in Figures 10 and 11,
the subnetwork constitute of many small connected components. In contrast to the underlying customer-
supplier network, this subnetwork has no large connected component. Indeed, the left panel of Figure 12
reports that the distribution of the size of weakly connected components, showing that for most cases, the
size is 2, that is, two bankrupt firms with a network tie between them. In spite of high-connectivity of the
underlying customer-supplier network, the size of empirical bankruptcy propagation is very limited.

Moreover, we consider the diameter of each connected component, which is the maximum length of
shortest paths among pairs of connected bankrupt firms in the connected component. If a substantial
contagion effect works and a firm’s bankruptcy triggers its supplier’s bankruptcy and in turn the bankruptcy
of a supplier of the supplier, the connected component would be characterized by long diameter from the
initial bankruptcy and the end point of bankruptcy propagation. The right panel of Figure 12 shows the
distribution of the diameter across connected components, suggesting that the observed diameter are very
short. Even for the largest connected components, its diameter is 3. In short, there is a sharp contrast
between the underlying customer-supplier network and the subnetwork of bankrupt firms; the former is
characterized by high connectivity and the latter is characterized by low connectivity.

3 Survival Analysis

This section performs a statistical analysis to measure the contagion effect. Our model is an extension
of the conventional survival analysis with interaction effects, that is, the effect of the bankruptcy of a
customer/supplier.
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Figure 9: Subnetwork of bankrupt firms.

Note: Bankrupt firms and network ties between the bankrupt firms are kept from the entire customer-supplier network.

Disconnected parts are gathered at the center of the figure for illustrative purposes.

Figure 10: Examples of bankruptcy propagation.

Note: These are parts of the subnetwork in Figure 9. The number in the circle represents its bankruptcy date (the number of

working days since April 1st, 2013). In panel (a), three customers of a common supplier went bankrupt each on dates 456, 578,

and 672. The supplier then went bankrupt on date 743. In panel (b), the common customer first went bankrupt (on date 495)

and two suppliers then went bankrupt (on dates 511 and 636, respectively). In panel (c), the bankruptcy on date 373 precedes

two bankruptcies on the dates 403 and 902, but the firm that went bankrupt on date 903 has two other bankrupt customers

(on dates 734 and 842). Subsequently, a supplier of this firm went bankrupt on date 926.

11



Figure 11: Example of bankruptcy propagation.

Note: This is the largest part in Figure 9, which includes 35 bankrupt firms.

Figure 12: Cluster size and diameter.
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Note: In the left panel, the histogram of cluster size of the bankrupt firms subnetwork is shown. The sample mean is 2.432,
s.d. is 1.628, and the maximum cluster size is 35. In the right panel, the probability distribution of diameter of each cluster is
shown. The sample mean is 1.125, s.d. is 0.376, and the maximum diameter is 4.
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3.1 Econometric model

Our model consists of two components: Markov property and Cox’s proportional hazard function. Let us
assume discrete time t = 0, 1, ..., T . Markov property means that the probability that firm i = 1, ..., n goes
bankrupt on date t is determined by the state St−1 on date t − 1, which includes macroeconomic variables
Xt−1, firm-specific factors Yi,t−1 for i, and the firm status Zt−1 (Zi,t−1 = 1 if the firm is dead and 0
otherwise) on date t− 1. To be precise, the probability of the stochastic process {Zt}1≤t≤T over the entire
period is written as follows:

P (Z1≤t≤T ∈ A1≤t≤T |S0) = P (Z1 ∈ A1|S0) · P (Z2 ∈ A2|S1) · · · P (ZT ∈ AT |ST−1) (2)

Here, P (Zt ∈ At|St−1) is the probability of bankruptcy on date t − 1 conditional on the state St−1. By
Markov property, the probability over the entire period is the product of bankruptcy probability on each
date.

Second, we assume that the bankruptcy probability on each date P (Zt ∈ At|St−1) is described by Cox’s
proportional hazard model. Namely, the hazard rate for firm i (i.e., the bankruptcy probability of firm i on
date t), hi, takes the following functional form:

hi(St−1) := λ0 · exp(θTX ·Xt−1 + θTY ·Yi,t−1 + θTZ · gi(Zt−1)) (3)

where parameters θ := (θX ,θY ,θZ) represents the effects of explanatory variables on the bankruptcy prob-
ability. Function g captures the effect of other firms on firm i’s bankruptcy probability. For example, when
the effect from customer side is considered, function g counts the number of bankrupt firms among the i’s
customers Ci, i.e., gi(Zt−1) =

∑
j∈Ci

Zj,t−1/NCi , where NCi is the number of customers at the initial point.
Given the hazard rate hi, the bankruptcy probability on date t, P (Zt ∈ At|St−1), is written as follows:

P (Zt ∈ At|St−1) :=
∏
i∈It

hi(St−1)δi,t(1− hi(St−1))1−δi,t , (4)

where It represents the set of surviving firms, and δi,t is an indicator function taking the value of 1 if firm i
goes bankrupt on date t and 0 otherwise. The log-likelihood function logL for the parameters θ is given as
follows:

logL(θ|z0≤t≤T ,x0≤t≤T ,yi,0≤t≤T ,∀i) := logP (z0≤t≤T |θ;x0≤t≤T ,yi,0≤t≤T )

Our estimated parameters θ are given by the maximum likelihood method:

θ̂ := arg max
θ

logL(θ|z0≤t≤T ,x0≤t≤T ,yi,0≤t≤T ,∀i)

3.2 Contagion Effect

For estimation, we decompose our sample periods into two parts (see Figure 13). Bankrupt firms in the
first part (April 1st, 2013 to September 30th, 2014) is used as part of the initial condition S0 in Equation (4).
Given this initial condition, we analyze how bankruptcy spreads on the network for the subsequent periods.

Figure 13: Sample periods.

Taking into the limitation of our data, we consider the following two specifications:

(I) All firms: Firm age, size, credit-score by TSR, industry and location dummies are used as Yi,t.
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(II) Firms with financial variables: In addition to the variables used in Model (I), five financial ratios (profit
rate, ratio of account receivables/payables to total assets, short-term and long-term leverage ratios) to
control capital structure are included in Yi,t.

In both models, the quarterly GDP growth rate is used for Xt to control for the macroeconomic shocks
to bankruptcy probability. For g(Zt), we use the ratios of bankrupt customers/suppliers on date t (denoted
by gd and gs, respectively). The remaining firms, which are not analyzed as dependent variables, are used
as exogenous variables, that is, these firms are used to calculate gd and gs.

Table 4 reports the estimation results. Column (I) shows that the coefficient for gd is 1.931, which is
statistically and economically significant. For example, if 50% of customers go bankrupt, the bankruptcy
probability increases by a factor of exp(1.931×0.5) = 2.63. In addition, the results suggest that the contagion
effect from the customer side is larger than from the supplier side. This is consistent with the trade credit
channel hypothesis in Boissay and Gropp (2013), that is, the trade credit is a source of the contagion effect.
Column (II) shows the results for the model with financial variables, suggesting that even if we control for
the heretogeneity of capital structure, the results are essentially the same as Model (I). Therefore, these
results confirm that the contagion effect actually works and is an important factor of bankruptcy.

Table 4: Estimation results.

Model (I) All firms (II) Firms with financial variables

Contagion gd 1.931∗∗∗ 2.250∗∗∗

Contagion gs 1.168∗∗∗ 1.110∗∗∗

Firm attributes Yes Yes
Macro var. Yes Yes
Industry FE Yes Yes
Location FE Yes Yes
Financial ratios Yes

pseudo-R2(:= 1 − logL
logL0

) .0177 .0446

# firms 1, 048, 487 210, 850

Note: Coefficient of the contagion effect. Standard errors estimated by the observed Fisher information matrix are in paren-
theses. Firm attributes include firm age, firm size measured by the logarithm of the number of employees, and credit rating
assigned by TSR. Accounting information means the four ratios: profit/total assets, account receivables/total assets, current
liabilities/total assets, and total liabilities/total assets.

4 Aggregate impact

In this section, we turn our attention to the aggregate impact of the contagion effect. In subsection
4.1, by simulation method, we compare our model with the contagion effect and null model without the
contagion effect. In subsection 4.2, we examine the role of network structure in bankruptcy propagation by
using firm-level Leontief inverse matrix..

4.1 Simulations

To analyze the aggregate impact of the contagion effect θZ , we simulate our model with and without
the contagion effect. The number of simulations for each model is 3,000. For comparison, we consider for
each simulation the number of bankruptcies, the number of isolated bankruptcies (i.e., no ties to another
bankrupt firm), the maximum size of the connected components, the maximum diameter for directed and
undirected cases.

Simulation results are given in Figure 5. Compared to the null model, the contagion effect seems to
contribute to bankruptcy propagation, but the increase is very small. In other words, the results imply
that the significant contagion effect at the firm level does not necessary mean the occurrence of large-scale
bankruptcy at the aggregate level. The network structure explains the reason.
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Table 5: Simulation comparison.

Mean S.D. min max

Model with contagion

# bankruptcies 8441.260 102.599 8251.000 8637.000
# isolated bankruptcies 0.891 0.005 0.882 0.901
Maximum size of the WCC 102.920 71.152 30.000 392.000
Maximum diameter (directed) 5.320 1.301 4.000 9.000
Maximum diameter (undirected) 10.880 3.657 7.000 24.000

Model without contagion

# bankruptcies null 8364.580 105.271 8180.000 8590.000
# isolated null 0.898 0.006 0.883 0.908
Maximum size of the WCC 104.100 80.821 23.000 420.000
Maximum diameter (directed) 5.320 1.203 4.000 9.000
Maximum diameter (undirected) 10.200 2.955 6.000 18.000

4.2 Bankruptcy propagation and network structure

To analyze how likely and fast the network propagates shock, we consider the following equation (cf.
Elliott et al. (2014)):

z = αW′z + e,

Here, W := {wij}i,j=1,...,N is the weigth matrix, in which 0 ≤ wij ≤ 1 is positive if firm i is a customer of
firm j and 0 otherwise. e is initial shocks, and decaying rate α satisfies 0 ≤ α < 1. Namely. this equation
describes the propagation of initial shocks e through W and can be seen as a static version of our model.
By simple algebra, the equation can be written as

z = (I− αW′)−1e.

Solution z to this equation represents the resultant firms’ states given initial shocks e and propagation by
W. Multiplier L := (I − αW′)−1 is Leontief’s inverse matrix, which can be expanded by the sum of an
infinite series:

L =

∞∑
k=0

αkW′k.

Each term in this equation represents different stage of propagation. For example, W′e represents direct
shocks from their customers (the first stage propagation) and W′2e represents indirect shocks from customers
of their customers (the second stage propagation). By using empirical network data, we explicitly calculate
the k-th stage propagation W′ke.

The right panel of Figure 14 shows the mean, 95th, 97th, 99th and 99.9th percentile values of the cross-
sectional distribution of W′ke. It suggests that these values rapidly decrease as the stage k increases. This
means that as the path length between indirectly connected firms becomes longer (3 or 4 path lengths), the
effect from the indirect firms immediately die out. Because of this property, bankruptcy does not propagate
because the negative shocks immediately disappear before causing another bankruptcy. This property is
closely related with the high-connectivity of the network discussed in Section 2. Since the network is highly
connected, there are a large number of indirect suppliers for each firm. Conversely, from the viewpoint of the
indirect supplier, an indirect customer which goes bankrupt is just one of such many indirect customers, and
therefore, the effect of the bankruptcy is negligible. We also consider the effect from supply side in Figure 15
and from both sides in Figure 16, and confirm that the results are similar to Figure 14. These results show
that the high-connectivity reduces—rather than contributes—the risk of bankruptcy propagation.

15



Figure 14: Leontief inverse matrix for demand shocks.
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Note: The left panel show the sum of indirect shocks across firms, i.e., :=
∑

i(W
′ke)i×1. The right panel show the mean, 95th,

97th, 99th and 99.9th percentile values of the cross-sectional distribution of (W′ke)i×1 over i.

Figure 15: Leontief inverse matrix for supply shocks.
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Figure 16: Leontief inverse matrix for both demand and supply shocks.

2000

4000

6000

0 2 4 6 8 10
stage

s
u
m

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10
stage

va
lu

e

variable

Mean
95th
97th
99th
99.9th

5 Concluding Remarks

The importance of customer-supplier networks has received increasing attention in recent years. One
of important examples in which network plays a crucial role is the bankruptcy propagation via customer-
supplier relationships. A firm’s bankruptcy may lead to a considerable loss on its suppliers and force them
into bankruptcy, resulting in a severe economic downturn. The assessment of such risk is important from
both research and policy perspectives.

This paper tackled this issue by exploiting a comprehensive dataset of more than one million firms and
five million transaction relationships as well as bankruptcy records. This dataset enables us to trace how
bankruptcies spread on the network. We developed a statistical model similar to survival analysis and
estimate the contagion effect. We found that the contagion effect is significant, and in particular, the effect
from the demand side is larger than from supply side, consistent the trade credit channel hypothesis. At the
firm level, the contagion effect is an important factor in corporate bankruptcy.

However, this does not necessarily imply that one bankruptcy trigger subsequent bankruptcy cascades
and causes nonnegligible aggregate fluctuations. This is because bankruptcy propagation is determined by
the combined effects of the contagion effect at the firm level and network structure. We found that by
simulating our model, the aggregate impact of the contagion effect is negligible. Since the network is highly
connected, bankruptcy shocks immediately diluted before causing another bankruptcy. In other words, due
to the network structure, bankruptcy shocks are immediately absorbed by an aggregate economy. Our results
suggest that the potential risk of severe economic downturn by bankruptcy propagation, which is often used
to justify policy intervention, has been overemphasized in reality.

The network sometimes becomes a vehicle propagating shocks, and sometimes a firewall preventing shock
propagation. With the increasing use of big data recently, an in-depth examination at the firm level has
become possible and the detail network structure has been revealed. Further analysis based on detail firm
level information has become crucial for the better understanding of the aggregate behavior of complex
systems. Our finding contributes to this promising area.
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