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Abstract 

This paper presents the first systematic disambiguation result of all Chinese patent 

inventors in the State Intellectual Property Office of China (SIPO) patent database from 

1985 to 2016. We provide a method of constructing high-qualitative training data from lists 

of rare names and evidence for the reliability of these generated labels when large-scale and 

representative hand-labeled data are crucial but expensive, prone to error, and even 

impossible to obtain. We then compare the performances of seven supervised models, i.e., 

naive Bayes, logistic, linear discriminant analysis (LDA) and quadratic discriminant 

analysis (QDA), as well as tree-based methods (random forest, AdaBoost, and gradient 

boosting decision trees), and found that gradient boosting classifier outperforms all other 

classifiers with the highest F1-score and stable performance in solving the homonym 

problem prevailing in Chinese names. In the last step, instead of adopting the more popular 

hierarchical clustering method, we clustered records with the density-based spatial 

clustering of applications with noise (DBSCAN) based on the distance matrix predicated 

by the GBDT classifier. Varying across different testing data and parameters of DBSCAN, 

our algorithm yielded a F1-score ranging from 93.5%-99.3% with splitting error within the 

range 0.5%-3% and lumping error between 0.056%-0.37%. Based on our disambiguated 

result, we provide an overview of Chinese inventors’ regional mobility 
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1. Introduction 

After 30 years of rapid growth (over 18% on average), patents applied to the State Intellectual 

Property Office of China (SIPO) is promised to become the largest patent database in the world 

within 3~5 years. Although some valuable indicators like citations are absent, this huge dataset 

holds abundant information for studying technology, innovation, and entrepreneurship in China. 

Patent data of USPTO (the United States Patent and Trademark Office), EPO (European Patent 

Office), and JPO (Japan Patent Office) have served as a major source of evidence for empirical 

studies about knowledge production and spillover through co-inventing networks, inventor 

mobility, and technological cooperation for a long time. And endeavors on disambiguating patent 

inventor data which is initiated by Hall (Hall et al., 2001; 2007), Torvik (Torvik & Smalheiser, 

2009), Singh (Singh, 2005), Lissoni (Lissoni, et al., 2016) and Fleming (Fleming, 2007; 2009) 

have pushed the frontier of studies extending from firm-level to inventor-level. In contrast to 

these fruitful innovation studies, individual-level researches on Chinese inventors remains rare. 

A major obstacle is the lack of disambiguated inventor data.  

Name disambiguation, or entity resolution, is a problem of identifying “who owns which”, 

namely, drawing a boundary for all patents (or papers) owned or participated by the unique 

person while excluding others that do not belong to. According to Ventura et al., disambiguation, 

which links records of unique entities (people or organization) within a single dataset (find 

duplicate entities), can be considered as a subset of the broader “record linkage” problem that 

link records of unique entities across multiple datasets (Ventura et al., 2015).  

Disambiguation is a preliminary and fundamental step of micro-level research on topics 

involving inventors’ productivity, mobility, and collaboration network or linkage with external 

datasets of papers or surveys. When searching the name “张伟” (Zhang Wei) in the SIPO 

database, for example, you will receive 9,680 patent records. Obviously, as a common name in 

China, these patents could not be invented by one person. Without extra information, we do not 

even know whether two patents under the same name refers to the same person or two distinct 

ones. Analysis depending on such kind of data would be highly questionable. In addition to 
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benefiting the academic community1, disambiguation of inventors’ names could also yield more 

accurate querying results and assist head-hunters in identifying unknown but productive and 

talented engineers, discovering potential cooperation partners or business opportunities, or assist 

governments and research institutes in constructing invention profiles of inventors and evaluate 

organizations and inventors’ performances. 

Nearly any form of disambiguation would encounter these two types of challenges: the 

synonym problem, in which the same person appears with several distinct names because of 

name change, abbreviations, typos, or misspelling, and the homonym problem (the polysemes, or 

the common name problem), i.e., many distinct people are referred by one same name (Han et 

al., 2017; Louppe et al., 2016; Müller et al., 2017). As Chinese names barely have middle names 

and abbreviations and thus less variant, the synonym problem, although very common in names 

written in English, is relatively trivial2 in Chinese texts. Thus, considerable efforts of extent 

disambiguation work were devoted to compare the similarity of first and middle names and 

finding an appropriate blocking strategy to capture variants of names as much as possible. In 

Chinese names, the most prevailing and troublesome problem is the homonym problem. The 

National Population Census in 2000 shows 84.77％of the population has one of the top 100 

family names in China, whereas in the United States it is 16.4% (Wikipedia3, (Kim, Khabsa, & 

Giles, 2016). Specific to patent inventors, there are 0.61 million records (4.20%) referred by 

                                                 

 

1 Disambiguation of inventors would open new research areas and provide micro-level evidences for empirical 

studies. For example, it can help identify the most productive (“star”) engineers (prolific or with higher influence) 

and examine factors that influence organizational or inventor’s productivity, and enable the tracking of inventors’ 

patenting careers and mobility among institutions and regions, thus allowing scholars to examine the determinants of 

inventor mobility and its impact on knowledge spillover or firm performance. It can offer evidence for knowledge 

flow through inventor mobility and collaboration network as well. 

2
  In the rare name dataset, only 0.2~0.25% record has synonym problem and we suppose this problem in the whole 

dataset would be fewer than 0.2% as rare names are prone to be misspelled or miswritten and common name 

constitute a larger portion.  

3 https://en.wikipedia.org/wiki/List_of_common_Chinese_surnames  

https://en.wikipedia.org/wiki/List_of_common_Chinese_surnames
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names corresponding to 500~1000 patents and 0.96 million records (6.56%) referred by names 

with 500~9680 patents in SIPO dataset, all of which are much higher than that in USPTO and 

JPO, as summarized in Table 1.    

(Table 1) 

Although a very small portion of disambiguated Chinese inventors from USPTO and 

PATSTAT are available4, the presence of East Asian names in large quantities and those distinct 

characteristics listed above are acknolowleged as the primary challenge for the US-centric or 

Europe-centric methodologies (Tang & Walsh, 2010; Wang et al., 2012; Li et al., 2014). Some 

disambiguation practices hold that East Asian names, especially Chinese names, should be 

processed separately or at least add the ethnic dimension of inventors to improve the 

disambiguating accuracy (Chin et al., 2014). Furthermore, when Chinese names written in 

Chinese characters are translated into Latin characters, they lose their valuable identifying 

properties, and Type II error (falsely predicate two different persons as the same one) would 

increase significantly. Accordingly, directly working on original Chinese names is supposed to 

produce better classification results.  

In addition to those common challenges and unique problems caused by the characteristics 

of Chinese names, Chinese patent dataset also contain no information on inventors’ addresses 

and the citation relation provided by inventors or applicants, which are two important and 

necessary components in major patent datasets across the world5 and weighty features to 

improve disambiguating accuracy (Ferreira, Gonçalves, & Laender, 2012). To fill in the lacked 

                                                 

 

4 In USPTO data cleaned and disambiguated by PatentsView, there are 61,465 inventors locating in China. Data checked from 

http://www.patentsview.org/web/#search&loc=China&loc-type=inventor on 2017.12.31. Considering the data coverage, 

unknown accuracy and potentially high error rate of existing results about Chinese inventors in databases such as USPTO or 

PATSTAT, a disambiguation of Chinese inventor names processed according to their own characteristics is still necessary. 

5 Degree of precision of inventors’ location information vary among different intellectual property offices: for example, USPTO 

offers state-level while EPO and JPO have detailed address even including room number or street number. Inventors can choose 

whether to report their work or home address. Lacking this data would obstruct studies involving tracking geographical 

information. Concerning the citation data of Chinese patents, SIPO began to provide examiner-added citations for patents granted 

after 2008. Nonetheless, currently, no inventor- or applicant-added citation is available.  

http://www.patentsview.org/web/#search&loc=China&loc-type=inventor
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dimension of inventors’ addresses, we adopted the location (including geographical coordinates 

and addresses parsed six administrative levels) of the first applicant in SIPO patent dataset as a 

substitute.  

Finally, in contrast to the disambiguation of papers which has millions of labeled records 

(Louppe et al., 2016), labeled data of patents is few and precious. While disambiguation work 

conducted on USPTO dataset to which many scholars contributed up to 5 training and testing 

data from different industries or technological fields (of course, most of them belong academic 

inventors)6, we have no data for training a model and evaluating classification results. Of course, 

because all of these data are not collected for disambiguation purpose, as Ventura et al. (2015) 

have argued, models trained and evaluated on these datasets yield varying scores and suffer bias 

toward some industry or prolific academic inventors. To overcome these shortages and biases 

and to provide a reliable database for academic and industrial analysis, we selected 66,248 rare 

names which correspond to 402,339 inventor-patent records, as well as 21,073 inventor-patent 

records participated by 1,314 academic and industrial inventors from a broad range of 

technological fields.  

In this article, we present 1) the first systematic disambiguation of Chinese inventors with 

machine learning algorithms customized according to characteristics of Chinese names; 2) a 

comparison of seven supervised learning classifiers and their performances with different 

training sets and input features; 3) a discussion about performances of different clustering 

method (hierarchical clustering vs. DBSCAN) on Chinese names; and 4) evidence for utilizing 

statistically generated data as substituting for hand-labeled records in training models when 

large-scale, representative and low-biased hand-labeled records are difficult to collect. Besides, 

we also analyze Chinese inventors’ international and regional mobility based on the 

disambiguated results. 

                                                 

 

6 In May ~ September, 2015, PatentsView hold a disambiguation workshop and competition to improve the value 

and utility of USPTO patent dataset. They gathered these dataset could be downloaded from the following website: 

http://www.patentsview.org/workshop/participants.html#data   

http://www.patentsview.org/workshop/participants.html#data
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Besides the methodological part, we contribute to the research community the following 

datasets: 1) A cleaned dataset of Chinese inventors with the ethnic classification (Chinese, 

Japanese, or other foreign names); 2) The first harmonized applicant name based on the string 

similarity of applicant names’ stems and the geolocation information of the first applicant. We 

hope this result would benefit works aiming at linking firm financial and other information with 

SIPO patent database. And 3) a hand-labeled dataset with low-bias towards particular industries 

for evaluating and comparing performances of disambiguation methodologies. 

This paper is organized as follows: Section 2 provides a thorough review of disambiguating 

works and algorithms in the order of algorithms’ type, time of publishing, and datasets scholars 

worked upon. In section 3, we describe our data and methodology step by step. Section 4 

evaluates our algorithm’s performance both before and after the clustering stage with F1-score , 

as well as the splitting error (similar to Type I error, falsely predicting two identical records as 

different) and lumping error (similar to Type II error, falsely predicting two distinct records as 

the same)7 on testing data. We also compare seven kinds of widely used supervised classifiers 

and their performance with three kinds of training sets. We present results of selecting the most 

appropriate training data, the best combination of features and model after 5-fold & 10-fold 

cross-validation. Based on our disambiguated result, we then provide an overview of Chinese 

patent inventor dataset and some analysis about inventors’ mobility in section 5. The last section 

concludes.  

2. Literature Review 

Disambiguation of persons’ names originates from the demand of digital libraries (DL) in 

disambiguating authors of papers. Frankly speaking, all works that disambiguating patent 

inventors are built on the pioneering explorations and abundant methods proposed by researchers 

in the area of DL. Ferreira et al. (2012) provided a thorough review of methods on author 

disambiguation before 2012, including heuristic approaches (Pereira et al., 2009), supervised 

                                                 

 

7 Please check Section 3.3 for details.  
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methods like Naïve Bayes probability model and Support Vector Machine (SVM) of Han et al., 

(2004), Hierarchical Naïve Bayes Mixture Model (Han et al., 2005), SVM-DBSCAN (Huang et 

al., 2006), Random Forest (Treeratpituk & Giles, 2009), as well as unsupervised methods like K-

way spectral clustering model (Giles, Zha, & Han, 2005). However, since there are many 

differences in demands and type of information available (different format of names, lacking 

information like inventors’ address and citation) between these two tasks, this article mainly 

focuses on works conducted on patents.  

Based on whether an algorithm makes use of labeled records to train its models, methods for 

disambiguation could be classified as supervised and unsupervised. Simply speaking, when all 

input data are labeled records (have a known result), the method belongs to supervised learning, 

and unsupervised learning refers to the situation in which there is no labeled input data. Semi-

supervised is something in-between: its input data is a mixture of both labeled and unlabeled 

records. In unsupervised learning, disambiguation is treated as a clustering issue (Wang et al., 

2012), while in supervised learning, it is a binary classification problem in the first step and then 

records could either be clustered according to some particular threshold or based on affinity or 

distance matrix predicted by classifier trained with labeled data.  

However, before machine learning techniques arose, methodologies adopted, such as that of 

Singh (2005), Trajtenberg et al., (2006), Fleming et al. (2007), Jones (2009), Cassi & Carayol 

(2009) and Raffo & Lhuillery (2009), etc., are mainly rule- and threshold-based: i.e., based on 

expert knowledge, researchers develop a set of rules, add some ad hoc weights and thresholds to 

determine whether two records should be linked (Ventura et al., 2015). Since most of rule-based 

methods or heuristic approaches often lack training data, they are usually classified as a kind of 

unsupervised method. However, they could either be supervised or unsupervised according to 

whether they make use of training data. For instance, Pezzoni et al.’s (2014) name their method 

as supervised rule-based method as they used two datasets in training their thresholds. At the 

same time, a typical disambiguation algorithm is composed of four components as presented in 
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Figure 1: 1) Blocking, 2) Computing similarity scores (or similarity profiles)8, 3) Combining 

scores of many different dimensions into a single distance with or without a trained classifier, 

and 4) Clustering (or author assignment in (Ferreira et al., 2012). The parsing/cleaning-

matching-filtering procedure of rule-based (heuristic) approach summarized by Raffo & 

Lhuillery (Raffo & Lhuillery, 2009) could find their correspondence to blocking and computing 

of similarity scores. Because the boundary between rule- or threshold-based approaches with 

machine learning approaches is fuzzy, we would introduce the former separately and regard it as 

a prototype or early-stage of machine learning approaches.  

(Figure 1) 

Table 2 summarizes existing work according to this definition. For more information about 

their self-reported evaluation scores, please check the Appendix 1 at the end of this article.  

(Table 2) 

        To date, most of disambiguation works and approaches are conducted upon USPTO 

inventor data. And it is also on USPTO data disambiguation algorithms gain diversity and 

significant improvements in accuracy, speed, and sophistication. For disambiguation works on 

international patent databases, like PATSTAT9, the rule- or threshold- based approach prevails as 

representative training sets with small biases towards large patent-filing countries like US, Japan, 

and China is extremely hard to obtain. 

2.1 Rule-based approach  

Research teams in Bocconi University, represented by Pezzoni & Lissoni, have been dedicated to 

the cleaning and disambiguation of inventors of PATSTAT for more than a decade. Since their 

                                                 

 

8 Blocking is a step that widely adopted for computation-intensive works. It is not an indispensable component.  

Disambiguation methods could differ from each other at each step. Rule- and threshold-based approach in the early-

stage usually lacks the blocking or similarity profile building step. 

9   Worldwide Patent Statistical Database (PATSTAT) is the major data source for European and global patents 

which is released by EPO periodically. 
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dataset construction and disambiguation work made use of different raw data sources, it went 

through many names from “EP-INV” to “APE-INV” (Pezzoni et al., 2014). Their algorithm for 

disambiguating inventors, named as “Massacrator”, evolves from purely unsupervised rule-based 

method in the beginning (Lissoni et al. 2006) to supervised rule-based method which finds the 

threshold of being match (1, positive case) or non-match (0, negative case) by comparing its 

results with two benchmark datasets of academic inventors. Although their precision rate 

between  56%~92% and a recall rate between 93%~54% seems pretty bad compared works that 

claim their precision and recall are all above 90% or even 98%, on the one hand, it reflects the 

disadvantage of rule-and threshold-based approaches to machine-learning techniques. On the 

other hand, it is quite understandable as PATSTAT patent database covers patent records from 

many countries with various languages, it is remarkably difficult to capture all name variants by 

a rule or collect a representative training set to lower the splitting error across different 

languages. 

Pezzoni et al., (2014) also indicate that thresholds chosen based on inventors’ addresses are 

sensitive to data quality while those based on co-inventor networks yield more robust results. 

Morrison et al. thus overcame this problem and proposed a simple and unified rule to 

disambiguate 8.5 million patents of EPO, patents under the Patent Cooperation Treaty (PCT) and 

USPTO based on high-resolution geographical information (Morrison, Riccaboni, & Pammolli, 

2017). Although they made use of other patent information along with inventor names and 

addresses, this approach made strong assumptions and relies heavily on the role of inventor 

address in determining linkage results.  

Among the fruitful works adopting rule-based methods, it is Tang & Walsh (2010) who 

began to give special attention to the homonym problem predominant in Chinese names. They 

built an “ASE” algorithm (approximately structural equivalent) that disambiguates inventors 

based on the citation relation (“bibliometric fingerprints”). Han et al., (2017) improved this 

method and disambiguated Chinese authors with semantic fingerprints (keyword metadata or 

research topics) extracted from text, co-authors and institutional information.  

In the case of Chinese inventors, Gupeng Zhang and his team made a rough disambiguation 

of SIPO inventor data between 2000 and 2009 in their study of inventor network in China 
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(Zhang, Guan, & Liu, 2014). Instead of selecting Chinese inventors by name, they filtered out 

0.188 million patents with addresses in China and provided a detailed description of their rules. 

Their rules are as follows: to begin with, they divide patent data into 330 cohorts according to 10 

applications a years and 33 provinces where the first applicant locates in, and then identify 

inventors within these 330 cohorts. For inventors with the same name, if they also have the same 

job and address, they are identified as the same person. For those who do not satisfy this 

requirement, check whether they have a similar technological field or common co-inventors. 

After these steps, 1% names with only two patents remain. They identified 0.89% inventors by 

connecting the firms that these inventors serve to check their work experience via phone call. 

The rest 0.11% are omitted from the database as the ratio is relatively small and would not have 

large impacts on their empirical result.(Zhang et al., 2014)   

Gupeng Zhang’s team provided the first and unique attempt to disambiguate Chinese 

inventors with SIPO data. Unfortunately, they did not provide their data or evaluation of their 

method. Many technical details need discussion10. However, as disambiguation is not their focus 

but just a way of data construction, no further critiques should be imposed on their achievement. 

In addition to the common problem of the rule-based method and its large lumping error, the 

sheer bulk of patent data (4.9 million patents with 14.68 million inventor-patent records during 

1985-2016) which increases with incredible speed has rendered this approach inefficient and 

infeasible.   

In summary, the rule-based method is simple, intuitive and lower in computational burden 

while it usually relies on expert knowledge and simplifies complex situations by a set of rules. 

These rules often contain strong assumptions or assign the decisive rule to some particular 

                                                 

 

10 What need to be discussed about Zhang et al.’ method are: first, they did not mention how they solve the 

transitivity problem of inventors across different years and provinces as it is natural for inventors to move across 

different places and change affiliations. Second, there could be hundreds of thousand people share a common name 

within a province in China. Consequently, if they adopt province as the address there would be very high lumping 

errors. Third, still, their phone call visit of inventors’ firms is not direct investigation of patent participation or 

ownership. Human judgment is still necessary for their last step. 
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features. However, there are neither perfect rules nor such determinant features. There are always 

exceptions that could not be captured by the combination of rules. Such assumptions, which are 

easily violated in the real world, lead to systematic errors and bias unevaluated in results. This 

explains partly why rule-based methods are usually beaten and gradually substituted by machine 

learning approaches, for which neither too much domain knowledge nor rules with strong 

assumptions are required. 

2.2 Semi-supervised learning  

After trying the rule-and threshold-approach in 2006 and 2009, Lee Fleming and his team 

members proposed the first semi-supervised algorithms on inventors with a measurement of its 

performance in 2014 (Li et al., 2014). Their pioneering work in 2014 followed Torvik et al.’s 

Author-ity approach (Torvik et al., 2005; Torvik & Smalheiser, 2009), which selects a list of rare 

names according to the number of patents that each full name corresponds to and constructs 

matching and non-matching pairs based on this list. Mixed with this statistically generated 

artificially labeled records, they applied their Naïve Bayes classier as well as some ad hoc rules 

to disambiguate 9 million inventor-patent records. Naïve Bayes classifier is very suitable for big 

datasets like patent databases, and it usually outperforms other approaches by its speed, 

simplicity, and accuracy. They also evaluate this method with 1,169 inventor-patent records filed 

by 95 eminent academic inventors from engineering and biochemistry fields.  

By opening their data and code to the public, they not only provide a large-scale and wide-

covering data to support inventor-related empirical studies but also inspire more scholars to 

apply or refine this methodology into different datasets. Ikeuchi et al. (2017), for example, 

applied their customized algorithm of Li et al. (2014) to all Japanese inventors in JPO.  

Semi-supervised learning from these statistically generated labeled records would usually 

receive more information near the decision boundary for classification and thus yield better 

results compared to a set of decision-rules or unsupervised learning. However, its Achilles' heel 

also lies in these statistically generated labeled records: first of all, the selected rare names are 

only rare within patent data, while that may not be the case in the real world. For the SIPO 

database, we cannot say that those 0.7 million unique names that correspond to only one patent 

record (or the 0.15 million unique names corresponding to two records) are rare or rarer 
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compared to names corresponding to several hundreds of records. Second, the “highly likely” to 

be matches and non-matches are built according to their similarity of assignees and addresses. 

However, perhaps this clear boundary delineated with rules about two or three features could not 

capture the non-linear boundary between two classes. In a word, labels generated from these 

rules would either contain many mistakes due to exceptions to rules or being too simple to be 

classified. Therefore, these mistakes would either be reflected and amplified into or provide little 

information for disambiguation results. Luckily, Ikeuchi et al. (2017) provide a promising 

solution on these statistically generated labels by extracting rare names from telephone directory 

during 2000-2012.  

2.3 Supervised learning   

As more scholars delve into studies about inventors, their manually collect data would contribute 

valuable data for training and evaluating disambiguation methods. Based on 98,762 labeled 

records of industrial inventors in optoelectronics (OE, provide by Akinsanmi et al. (2011)) and 

53,378 records of academic life scientists (ALS, provided by Azoulay et al. (2011)), Ventura et 

al. proposed the first supervised learning method with the random forest classifier and single 

linkage hierarchical clustering algorithm on USPTO dataset (Ventura et al., 2015). Their 

comparisons with other approaches illustrate that random forest classifier yield the lowest errors 

consistently among multiple supervised classifiers and their supervised algorithm outperformed 

the rule- and threshold-based approach adopted by Li et al. in 2007 and 2009 (Fleming et al., 

2007; Lai & Fleming, 2011) as well as the semi-supervised approach proposed by Li et al. in 

2014 on subsamples (not the full)11 of OE dataset.  

Ventura et al. also decomposed their results by training and testing their model of purely 

industrial inventors (OE), purely academic inventors (ALS), and a mix of them (OE+ALS), and 

discussed sources of bias in previous algorithms. Their comparison results manifest that dataset 

composed purely of academic inventors could neither serve as a qualified training set as it carries 

                                                 

 

11 In fact, Li et al.’s (Li et al., 2014) semi-supervised approach out-performed Ventura et al's,  (2015) supervised 

approach slightly on the full data of OE and ALS.  
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insufficient information and thus have higher error rates on unknown data, nor serve as qualified 

testing set because it’s much easier to be classified and the real error rate based it would be 

underestimated. However, it is also these defects of their data prevented them from applying 

their algorithm trained on the OE data on the full USPTO data: these two datasets are not 

collected for disambiguation (so they missed patents belonging to the same inventor but filed 

outside of these two industries) and they have large bias towards one particular industry or 

prolific academic inventors. Otherwise, new defects and bias in this training set would be further 

introduced into disambiguation results.   

On September 2015, PatentsView held a disambiguation competition among six teams12. 

Nicholas Monath and Andrew McCallum’s “Discriminative Hierarchical Coreference” algorithm 

won the contest, and now their method has been incorporated into PatentsView’s disambiguation 

algorithm and results (Monath & McCallum, 2016). 

Before Ventura et al. (Ventura et al., 2015), Treeratpituk & Giles(Treeratpituk & Giles, 

2009) already demonstrated how random forest outperform other techniques such as SVM. They 

disambiguated 4 million paper authors (12 million paper-author records) within 24 hours with 

the random forest as a pairwise classifier and used DBSCAN to cluster records (Khabsa, 

Treeratpituk, & Giles, 2014). They then improved this methodology and applied it to 1.2 million 

USPTO inventor records, the whole process of which was conducted within 6.5 hours (Kim et 

al., 2016). With the same training and testing sets provided by PatentsView’s workshop, Kim’s 

team claim they achieved a better pairwise F1score (98.82% on average) over five testing sets 

than that of Monath and McCallum (98.27% on average). Moreover, teams participating in 

PatentsView’s workshop also report a running time of 7 hours for the entire process13. According 

to papers and other public information available, the time spent on disambiguation of the main 

                                                 

 

12 http://www.patentsview.org/community/workshop-2015  

13  These data is received from http://slideplayer.com/slide/8193569/ .The running time ranges according to the 

amount of data being processed, configuration of computer (memory, CPU and speed of hard disk) and algorism 

(language and quality of codes, blocking strategy, number of features involved, etc.)  

http://www.patentsview.org/community/workshop-2015
http://slideplayer.com/slide/8193569/
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patent database (USPTO, PATSTAT, JPO, and SIPO) with machine learning approach ranges 

from 3.5 to 10 hours on consumer-level PC or entry-level workstation (Kim et al., 2016). In other 

words, the advantage of rule-based approaches over other algorithms in terms of speed is 

shrinking and disappearing.  

In addition to random forest, scholars also tried other ensembled tree methods like 

AdaBoost and Gradient Tree Boosting (Wang et al., 2012) in author disambiguation and receive 

excellent results. Louppe et al., (2016), for instance, applied Gradient Boosting classifier and 

hierarchical linkage clustering to disambiguate authors of high-energy physics14.  

To wrap up, existing studies demonstrate that supervised methods achieve better results over 

other approaches when high-quality training set is available. (Ferreira et al., 2012; Han et al., 

2017) Conversely, if the training data has large biases, these biases would also be propagated in 

results as Ventura et al. (Ventura et al., 2015) had criticized on other approaches. The quality of 

training samples has become the bottleneck of supervised learning algorithms. Under the 

circumstance that large-scale hand-labeled data is costly to collect and contains sizable bias, 

could the rare name data provide a promising solution as a training set? Which datasets should be 

used when both of them have defects?  

2.4 Unsupervised learning 

As shown Figure1, the last step of disambiguation is grouping records either based on predefined 

similarity functions or learned from a classifier. There are four kinds of extensively used 

clustering algorithms: 1) Partitioning: which cluster records based on the pre-specified number of 

clusters, for example, K-Means clustering technique. 2) Hierarchical clustering, which clusters 

records iteratively in a hierarchical way. 3) Density-based clustering, for instance, Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN) (Huang et al., 2006; Kim et al., 2016) 

and 4) Spectral clustering (Giles et al., 2005).  

                                                 

 

14 To be more accurate, disambiguation algorithm could be either supervised, semi-supervised or unsupervised at both the 

classification and clustering stage, as manifested in figure 1. Louppe et al.'s, (2016) method is semi-supervised in the clustering 

step.  
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After Li et al. (2014), Lee Fleming’s team members also tried the unsupervised K-Means 

clustering algorithm in inventor disambiguation and automated the processing (including 

cleaning, parsing and disambiguation of assignee and inventors) of all weekly updated USPTO 

data (Balsmeier et al., 2015). However, except that of (Huang et al., 2006; Kim et al., 2016), the 

majority of disambiguation work adopt the single linkage hierarchical clustering to cluster 

inventors based on distance matrix, as hierarchical clustering does require pre-specified number 

of clusters and it could also resolve the transitivity of pairwise matches. By recasting transitivity 

as density reachability in DBSCAN, Huang et al., (2006) suggest that DBSCAN could solve this 

problem effectively.  

3. Methodology   

3.1 Data  

3.1.1 SIPO patent data 

The data we work on is the invention patent dataset offered by SIPO from 1985 to Dec.31, 2016. 

It contains the application number, names, and addresses of applicants, inventors, IPC code, title, 

abstract, claims, lawyer and other information of 6.25 million unique patents. After laborious 

preprocessing, such as removing extra spaces, strange symbols, and samples generated during 

recognizing from original patent files, we integrate these separate datasets into a huge one 

composed of 18.66 million inventor-patent records. Here we set the patent-inventor pairs (the 

patent authorship, or inventorship) as the unit of data and name it as “ida_seq” (generated by 

combining application id with inventor’s sequence in this patent) for short.  

From the SIPO inventor dataset, we then filter out 1.8 million Chinese names (including 

inventors from some Asian countries like Korea and Japan whose names cannot be differentiated 

with Chinese names15, as well as ethnical minorities in China). Chinese names are distinguished 

                                                 

 

15 Korean and Japanese names could be identified from Chinese ones easily if they are written in English. However, 

for names written in Chinese, distinguish them simply by names’ properties is formidable if no extra information is 

available.  



16 

 

 

from those of Japanese & other countries names by the characteristics of names such as whether 

there are points inside names, length of characters, their family names and so on. Among the 

14.675 million Chinese inventor-patent records, only 13.97 million must be disambiguated as 

there are 0.7 million names referring to only one patent. Table 3 summarize our classification 

rule and statistics of data. It also reveals that the common name problem is most severe among 

Chinese names and thus an ethnicity-sensitive name processing is necessary for disambiguation 

records involving enormous Chinese names.  

(Table 3) 

3.1.2 The hand-labeled data 

To calibrate our algorithm, we manually labeled patents of 1,314 inventors in the following way: 

first, we search for inventors reporting patents they owned or participated in by keywords “专利” 

(patent) and then filter out those who really list the exact patent number by searching keywords 

“CN”, “ZL” (part of application or publication number) or “专利号” (patent id) from CV or 

online profiles of academic inventors posted on university websites, and resume of job seekers 

from trustworthy online recruiting platforms like Liepin.com and LinkedIn. According to 

information like patent number, inventors’ working careers and news about the inventor and 

his/her inventions, we then label patents with their corresponding inventor’s name in SIPO. 

Based on these web pages we labeled 21,073 inventor-patent records with 929 unique names 

covering both academic and industrial inventors under the principle of selecting samples as 

random and diversified as possible. During and after the data-collection, 5 rounds of manual 

checks based on original self-reported information, patent data and similarity scores with other 

records were executed to ensure accuracy. The lesson we learned from these repeated check and 

correction of hand-annotated data is that manual labeling is tedious, prone to mistakes, full of 

uncertainty (because it highly depends on the availability of inventor’s information on the 

internet) and sometimes outplayed by computers when the information is too much to be 
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processed by the human brain. Unavoidably, we added our judgments into this collection process 

when self-reporting data are dubious, incomplete or fail to be updated16.  

Limited by the availability of public self-reported data on patent inventorship, especially 

those from industries, we obtain a dataset composed of more academic inventors than industrial 

inventors and the majority of academic inventors concentrated within Zhejiang University, 

Shanghai Jiao Tong University, or being a fellow of the Chinese Academy of Science (CAS) or 

Chinese Academy of Engineering (CAE) which signifies the status of academic elite in China. 

Inventors from some second- or third-tier universities like Northwestern Polytechnic University 

were also included, albeit their numbers are relatively smaller. Records under industrial inventors 

cover firms with a wide range of size, location, and industries. Although they only constitute 

23.68% of hand-labeled inventorship records, this part of data is more diversified and 

representative. Interestingly, in contrast to Ventura et al.’s (2015) discovery, China’s academic 

inventors tend to be three times prolific than inventors from industry.   

Comparison pairs in which two inventor-patent records have the same id and label are 

defined as “match” and those who do not are “non-match”. To have enough “non-match” 

instances, we fetched all samples sharing the same name with records in our hand-labeled data 

and then the sample size rise to 128,753 inventor-patent records. 

This hand-labeled data avoids the problem in existing works mentioned above: it was 

collected for the aim of disambiguation, has little bias towards one particular industry, covers 

both academic and industrial inventors, contains records with name changes and typos, and it is 

similar to the unlabeled records remained in entire SIPO Chinese inventor data. Admittedly, 

these data are not 100% accurate as we did not connect with inventors in person and added our 

                                                 

 

16 To illustrate, when two records have the same name, we would judge whether they refer to the same person based 

on inventor’s self-introduction, working career, self-reported patents and patents’ information in SIPO like whether 

they have the same applicant, number of co-inventors, title and abstract of patents. When we are not certain about 

the result, we would continue to search for other public information like news to find extra evidence. For those 

judgement made with under 95% confidence, we would simply give up labeling this person. 
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judgment for those confusing instances. In addition, its amount is limited compared to the size of 

the vast majority of unlabeled ones. The data constitutes only 0.92% of all 13.96 million records 

that need to be disambiguated.  

3.1.3 The rare name data 

Following Ikeuchi et al.’s (2017) suggestion, this paper also constructed a dataset with much 

larger amount and lower bias automatically: the rare name data. We constructed this dataset by 

combining Chinese inventors’ name list of SIPO with a list of rare names fetched from “same 

name” websites which provide the information about the counts of people with a particular same 

name in China17. We also made use of other public online information related and removed 

Korean names mixed in this list manually. To filter out a precise list of rare names, we impose a 

rather strong criterion: only names belonging to Chinese names and corresponding to at most one 

person in China would be accepted as rare.  

Even though the rare name data is more representative and larger in quantity, it has some 

differences with the remaining SIPO inventor data. First of all, while it is easy to construct 

positive or matching pairs from this rare name data since all records under the same or very 

similar rare names belong to the same unique person, negative or non-matching pairs are 

insufficient. Here we build non-matching pairs by comparing one rare name with other different 

names. Accordingly, the rare name data is different from the remaining unlabeled records which 

would be compared within the block of the same or very similar names. Furthermore, these 

artificially constructed non-matches would have lower similarity score and thus easily identified 

as non-matches. To avoid our models just learn from this “easy” distinction, we added one to the 

number of common inventors for all non-matches. As a result of such limitations existing within 

the rare name data, we would only use it as the training data.  

                                                 

 

17 We select the list of rare names by combining information about the number of people one name corresponding to 

in China from websites like  http://www.sosuo.name/tong/ , public data offered by Guozhengtong on  

(http://zhaoren.idtag.cn/samename/searchName!searchIndex.htm) and free services provided by province and city-

level public security bureau. Unfortunately, Guozhengtong had stopped the public access to this website in 2017.    

http://www.sosuo.name/tong/
http://zhaoren.idtag.cn/samename/searchName!searchIndex.htm
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Table 4 displays the repressiveness of these two datasets in terms of applicants’ type and 

Table 5 provide a brief description of them, including the large SIPO Chinse inventor database. 

From these two tables, it is not difficult to figure out that these two datasets are superior to many 

other datasets discussed in the last section in quantity and low-biasness, although they also suffer 

from some shortcomings.  

(Table 4) & (Table 5) 

3.2 Disambiguation algorithm  

Building on experiences of these efforts above, we devise our algorithm with the following four 

steps:  

(Figure 2) 

3.2.1 Blocking  

A full comparison of each of 13.96 million records with all other patents means that we must 

compute the similarity of 98 trillion pairs, which would impose extremely high and unnecessary 

computational burden. Blocking, which means dividing inventor-patent records into disjoint 

subsets according to some rules and conducting comparisons within each block, is a popular 

strategy to reduce computational complexity (Li et al., 2014; Louppe et al., 2016; Ventura et al., 

2015). 

A good blocking rule should maintain a balance between computational complexity and the 

maximum recall. Extent works that disambiguate inventor names written in alphabet usually 

block by surnames plus the first 1, first 3 characters of or the entire first names18. While it’ is 

tempting to capture instances like typos or misspelling by blocking records with surnames in 

                                                 

 

18 Studies of Milojević et al. (2013), Louppe et al. (2016) argues that blocking by the combination of surname plus 

first character of the first name could achieve higher disambiguating accuracy of papers. To patents, a narrower 

blocking strategy such as surname plus the first three characters of first name would be more ideal as inventors 

usually register their full names on patent documents. (Ventura et al., 2015) 
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Chinese characters plus the pinyin format of first names19, the exponentially increased 

computational burden and the surging false positive errors (lumping errors) forced us to abandon 

this option. In line with Ikeuchi et al., (2017), we blocked records by inventors’ exact full names 

and did not make any separation between first names and family names. This means all records 

with the same Chinese name could have a chance to be compared with each other within the 

same block while those with different names are deemed as different persons. Using this 

narrower blocking rule, the computational complexity decreases to 1.98 billion with a small rise 

in the false negative errors.  

In SIPO inventor data, there are 490 common names referring to more than 1,000 patent 

records (7% of all records). Different from solutions that limit the maximum size of a block to be 

1,000 (Ventura et al., 2015), we argue that no constraints like this should be imposed on Chinese 

names as this would incur vast splitting errors for those prolific inventors.  

3.2.2 Building similarity Vector  

With all primitive and derived information available, this step transforms inventor-patent records 

within a block into a similarity vector which compares their degree of similarity and then judges 

whether two inventor-patent records are match or non-match. This vector of similarity scores is 

called similarity profile, and it can be computed with heuristics like the number of items (e.g., 

coauthor names) shared or functions like Levenshtein distance, Jaro-Winker distance, cosine 

similarity, Euclidean distances, Manhattan distance, etc. 

As mentioned above, Chinese patent dataset lacks the inventors’ location information to 

distinguish inventors and track their mobility. Here we utilize the sole location information 

available: the address of the first applicant. In SIPO, raw data of applicant address is a string 

without being parsed into the hierarchical administrative level in China: i.e., the country – 

                                                 

 

19 With such a blocking rule, intentional or unintentional name variants, typos like “但智刚” vs. “但智钢” could 

have a chance to be compared and be classified as the same person. However, names like “励士峰” and “励土峰” 

would have no opportunity to be compared thus splitting error arises.  



21 

 

 

province – city – district - road/village - road-number- room number. To calculate the of 

graphical similarity between two records, first, we fetched the latitude and longitude of 

applicants’ locations in China from Baidu Map’s public API, including their degree of 

confidence with their geocoding results. Then we input these latitude-longitude coordinates and 

received a 7-level parsed information detailed up to the exact building and room number level 

via their “reverse geocoding” services. Meanwhile, we also compare the Levenshtein distance of 

two records address in string format incase geocoding is wrong or when Baidu Map has low 

confidence on the result.   

For inventors’ affiliations, we compute the number of shared elements of two records’ 

applicants as well as the string similarity of their first applicant (all by the stem of applicants 

names). To capture as much information about inventors’ affiliation as possible, we also 

harmonized applicant’s name with the string similarity of applicant name and their geographical 

location. For details of applicants’ harmonization, please see the Appendix 2.  

Although the IPC codes have covered information about the technological field that 

inventors relate to, it is a little general, and we assume that the concrete contents of an invention 

would also assist in the linkage decision. To the best of our knowledge, only Kim et al.’s (2016) 

work leveraged information about title. Whereas they use the number of words shared among 

two comparing records, we adopt the string similarity of two titles. Additionally, we also 

extracted two keywords from the title with the Term Frequency-Inverse Document Frequency 

(TF-IDF) algorithm and compared their string similarity. For all the string comparisons we 

adopted the Levenshtein distance instead of Jaro-Winkler distance as the former could have 

better differentiating results for short text written in Chinese characters while the latter is more 

suitable for measuring distances of short texts in alphabet writing.  

For the detailed definition of features, please refer to Table 6.  

(Table 6) 
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3.2.3 Model Selection and Evaluation  

This step combined similarity scores from many different dimensions into a single one and 

supervised learning approach usually sets the predicted probability for non-matchness as the 

distance between two records.  

Before throw into machine learning classifiers, we performed some preprocessing like 

normalization of these features into [0,1] range to make sure the model uninfluenced by 

differences of the unit and range among features. In addition, as our training set is imbalanced 

(more 0 than 1), oversampling for training data would avoid the estimates being influenced by 

this uneven distribution and improve performances of some classifiers. To avoid overfitting, we 

also split our labeled data into training-validation-testing set and conducted all feature selection, 

model comparison and fine-tuning of hyper-parameters within training and validation set.      

According to the no-free-lunch theorem in machine learning, there is no such model that 

always outperform all other models on all datasets. To find the best model of our disambiguation 

task, we tried seven kinds of supervised learning classifiers, i.e., Naïve Bayes models, logistic 

regression, Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) as 

well as 3 kinds of tree-based method, i.e., Random Forest, AdaBoost, and Gradient Boosting 

Decision Tree (GBDT). Other popular models like K-Nearest Neighbors (KNN), Support Vector 

Machine (SVM) and Multi-Layer Perceptron (MLP) were abandoned due to the long-training 

time and insignificant gain on performances.20  

To test the reliability of the rare name data, we designed the following experiment with 5-

fold & 10-fold cross-validation to evaluate the quality of training set and our model performance:  

1) The rare name data as training set and 20% of hand-labeled data as testing set;  

2) The 80% randomly selected data from hand-labeled dataset as training and the rest 20% 

as testing set;  

                                                 

 

20 Our practice confirms opinions of previous studies in that classifiers like SVM (Ventura et al., 2015) and instance-based 

algorithms like KNN are inappropriate for disambiguation algorithms involving large-scale pairwise comparisons with high 

computational complexity.   
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3) The mix of rare name data and 80% randomly selected data in hand-training data as 

training set while the rest 20% as testing data.   

This process is repeated 5 times until all points within hand-labeled data serve as the testing 

data only once. To avoid higher accuracy generated by records with the same name existing both 

within training and validating sets, we split record pairs according to their IDs (i.e., inventors’ 

names).   

We then applied the winner model trained on the selected training data (in our case, the 

combination of all rare name data with hand-labeled data) to the remaining unannotated data and 

predicate the possibility for two record pairs to be match and non-match. The probability for 

non-match was adopted as the distance between a pair and transformed into distance matrix for 

clustering records.  

3.2.4 Clustering  

Although much more popular, hierarchical linkage clustering performs poorly in our experiment. 

Due to the vast differences on shapes of dendrogram generated for records even with the same 

blocking size, we could not find an appropriate threshold that achieves a satisfying result for 

records with the same blocking size (let alone the global optimal) with hierarchical linkage 

clustering. Perhaps a threshold adaptive to the shape of clusters such as the “semi-supervised 

adaptive-height snipping of the hierarchical clustering tree” (Obulkasim, Meijer, & van de Wiel, 

2015) would assist in solving this problem. On the contrary, clusters with arbitrary shapes are 

just where density-based clustering method like DBSCAN shines. For DBSCAN, it is 

unnecessary to pre-specify the number of clusters, easier to adjust parameters and it could form 

clusters according to the shape of clusters. Additionally, it allows the existence of noise, i.e., it 

would generate singular clusters with only one element that fits well with the fact that the 

majority of inventors only participated in the invention of one patent. Therefore, we choose 

DBSCAN to cluster records. 

The last problem for clustering is choosing parameters for grouping the same individual into 

a cluster. There are two substantive parameters in DBSCAN: Eps (ε, the maximum radius of the 

neighborhood) and MinPts (the minimum number of points required to form a dense region). It is 
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these parameters that determine the final assignment of identifiers to records. Simply speaking, 

the larger the Eps, the large the lumping error and the smaller the splitting error, and vice versa. 

In searching for the best parameters, we tried both the supervised learning based on the rare 

name data and the unsupervised searching based on the Silhouette score, which is defined as  

𝑠 =  
𝑏 − 𝑎

max (𝑎, 𝑏)
 

where a refers to the mean intra-cluster distance and b refers to the mean distance between a 

sample and all other points in the next nearest cluster. To find the optimal (range of) parameters, 

we first search within a very a broad range [0.01,0.99] with large steps and then gradually reduce 

the learning step.  

3.3 Evaluation metrics 

Evaluation of methods could be conducted at such four levels: inventors’ names, individuals 

(predicated clusters of patent-inventor records) and pairs of patent-inventor records. To date, 

scholars have tried the individual-level or pairwise-level evaluation metrics like B-Cubed score 

(Louppe et al., 2016), error metrics like Type I (false positive) and II errors (false negatives) 

(Pezzoni et al., 2014), precision-recall rate (Raffo & Lhuillery, 2009) or their harmonic mean, 

the F1-score (adopted in PatentsView’s contest). To achieve a low and balanced result between 

two types of errors, and to compare with previous studies, this paper adopted the more popular 

F1-score weighted by the number of instances for each label to choose and evaluate a model’s 

performance, since the distribution of matching and non-matching cases is unbalanced. F1-score 

is defined as the harmonic mean of precision and recall rate:   

 

 

where 

 

 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=   

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
=   

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 



25 

 

 

When weighted F1-score are too close to support the model selection decision, AUC score, 

which the area under the Receiver Operating Curve (ROC), would be also referenced since our 

testing data is unbalanced. At the same time, we also provide the splitting and lumping errors of 

our method. This intuitive is proposed by Tovik and Smalheiser (VETLE I. Torvik & 

Smalheiser, 2009) and then adopted by (Li et al., 2014) and thus Ikeuchi et al. (2017).  

According to Tovik and Smalheiser (VETLE I. Torvik & Smalheiser, 2009), splitting error refers 

to the error when an ID referring to a single person is split into many different inventor IDs and 

lumping error denotes the situation in which many different inventors are assigned with the same 

ID. Nonetheless, as an individual-level metrics, this error metric is defined according to the 

percentage of individuals erroneously mapped to the largest cluster of records. It only focuses on 

the largest cluster and thus fails to consider the number and size of all the clusters. Therefore, we 

adopt Ventura et al.’s (Ventura et al., 2015) revised version of Tovik and Smalheiser (VETLE I. 

Torvik & Smalheiser, 2009) and measure our errors at the pairwise level:   

 

 

 

 

Apparently, the lumping error shows the prevalence of false positives, i.e., the situation in 

which we falsely classify records into positive (in our case, the match) and the splitting error 

represent that of false negative.  

4. Results 

4.1 Feature selection & Parameter tuning  

After holding out 10% of names from hand-labeled data, we compared the weighted F1 score of 

the following seven models (keeping all hyper-parameters the same) with feature combination 1) 

6 basic features: common member of applicants and co-inventors, similarity in IPC class and 

group, first applicant’s address and string similarity of title; 2) 6 features in 1) plus two keywords 

𝑆𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 =
# 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑎𝑠 𝑛𝑜𝑛 − 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
 =  

𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

𝐿𝑢𝑚𝑝𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 =
# 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑎𝑠 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
  =  

𝐹𝑃

𝑇𝑃 + 𝐹𝑁
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extracted from title; 3) 6 features plus two highly correlated features (i.e., app_i with app_s, geo 

with address_s); and 4) all 10 features.  

(Figure 3) 

The comparison results presented in Figure 3 indicate that, in general, models with more 

features could have better scores. Second, the effects of two keywords extracted from titles could 

improve the result, but their effect is much fewer compared to the string similarity of applicant 

and address. This is explained by the fact that most of the similarity score of keywords is 0. 

Third, for tree-based models, adding features correlated with existing ones would have 

complementary effects and thus improve the model, while this is not the case for other models. 

This is not surprising as unlike linear models and Naïve Bayes model which assume the 

independence of features, tree-based methods do not have such assumptions and they could 

handle correlated features efficiently. 

(Figure 4) 

The scaled Gini statistics for features’ relative importance of GBDT in determining 

classification results is depicted in Figure 4. In conformity with our prediction, the number of 

shared applicants by two comparison pairs is the most critical feature, and the similarity of 

geolocation ranks the second. This is consistent with Ventura et al.’s (2015)findings. Keywords 

and IPC group have very limited contribution. In addition, the number of shared co-inventors did 

not as play as much importance as that in Monath & McCallum’s work. This confirms our 

assumption that no feature has the deterministic influence on the classification result and when 

the shared member of co-inventors are two or more common names, it is possible that two 

records refer to two distinct persons.  

4.2 Comparison of supervised models  

Figure 3 already displays that GBDT yield the best result with different combinations of features. 

Result presented in Table 7 confirms this conclusion with a comparison of models with 5-fold 

cross-validation performed on three kinds of training-testing sets, while everything else 

(including the testing data) is kept the same. Based on these two tables, we summarize our model 

selection results as follows: first, among these models, Gradient Boosting classifier achieved the 
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highest scores across different training sets. In consequence, we would choose the GBDT 

classifier to predict the distance between two records in the final model due to its stable and 

extraordinary performance, insensitive to the scale and robustness to outliers.  

 (Table 7) & (Table 8)   

To test the validity of this conclusion, we performed 10-fold cross-validation (Table 8) with 

different groups of names as testing data. Here the basic trend holds while the combination of 

two dataset yield slightly lower scores compared to purely using the rare name data as training 

set. What’s more, there are also slight improvements as a result of increased training data and 

fewer testing data.  

(Table 9)  

Table 9 presents the detailed results of models when we use the rare name data as training 

set and 80% of the remaining hand-labeled data as the testing set. Results measured in AUC 

score is consistent with those measured with F1-score. Second, all models yield a much larger 

splitting error compared to lumping error (all above 10%). This is similar to the results of 

disambiguation work conducted on USPTO and EPO which means we are more prone to falsely 

split the same person into different IDs. As argued by Fegley & Torvik, (2013) and Pezzoni et 

al., (2014), large splitting error and smaller lumping error (i.e., high precision and low recall 

rate) would have a small negative impact on co-inventor network metrics or other classification 

of inventors compared to the opposite combination.  

4.3 Evaluation of algorithms with different training data 

The second significant point that Table 7 & 8 provide is: as training set, compared to the hand-

labeled data with small size and biases, the more objective rare name data could be a qualified 

substitute for artificially annotated data. This justifies the reliability of the rare name data 

collected independently of patent information when the time-consuming hand-labeling could 

only result in small amount of data with biases. Furthermore, training models with a 

heterogeneous but larger dataset set (a combination of rare name data with 80% from hand-

labeled dataset) could improve the result compared to only utilizing rare name data as the 

training set. This proves that, on the one hand, our model would benefit from more data, and on 
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the other hand, hand-collected data could complement the rare name data in providing 

information about those “difficult” cases close the non-linear decision boundary.  

        Scores reported above are only evaluation before the clustering step. To test the accuracy of 

our full algorithm, we split the hand-collected data into Hand554 which composed of 554 fully-

labeled names with Handremain. Here we retained the model (with all other hyper-parameters 

unchanged) with 3 kinds of training sets but clustered with different eps (with MinPts set as 1). 

As stated in Section 3.2.4, we tried both the supervised and unsupervised method to choose 

parameters of DBSCAN. The searching result based on rare name data suggest an eps of 0.11 

between [0.10, 0.12] while Silhouette scores for some randomly selected samples suggest 0.0375 

within the range of [0.03, 0.04]. The final decision should be determined by the authors 

according to their research topics. Here we present evaluation of our full algorithms with 

different eps in Table 10:  

(Table 10) 

        First of all, this result on different training set seems to be in contradiction with results 

before clustering in that the Handremain could have the best scores compared to rare name as 

training set. Here we argue that these results depend on methods of splitting and distribution of 

both training and testing data. Though a little lower, the rare name data still could yield results 

compatible with hand-labeled data as the training data.  

        Second, our searching of the optimal value of eps demonstrates we can achieve very high 

F1 scores (above 99%) at the expense of increasing lumping errors. While the F1-score rise 

above 99%, the AUC score declines below 90%. The main purpose of constructing this dataset is 

to serve inventor-level academic research, for which a large splitting error would not have huge 

influence on empirical results. Accordingly, though we take no preference for any type of errors 

in the classifying stage, we choose a very conservative threshold and prefer lowering lumping 

errors in final results to avoid generating too much “fake mobility”. 

        Third, both F1-scores and AUC scores get higher while the splitting and lumping errors 

become much smaller compared to those evaluated before clustering. To conclude, based on all 

scores we received, we claim our algorithm could yield a satisfying F1-score ranging from 
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93.5%~99.3% (including before or after clustering) with splitting error within the range 

0.5%~3.2% and lumping error 0.05%~0.37%.  

5. Inventor mobility in China  

From 1.8 million inventor names, we identified 3.99 million unique persons. Based on this result, 

here we present some preliminary findings on the regional mobility of Chinese inventors. In this 

section, we take all inventors with Chinese names (regardless of their location inside or outside 

of mainland China) whose location has changed at least once. Since there is no information about 

inventor address, we use the address information of their first applicant. In addition, it should be 

noted that the identification of mobile inventor depends on the granularity of location 

information. For example, an inventor moving accross cities may not be mobile ones at province 

level, since she moves within the same province.  

Figure 5 shows the count of inventors by province, as well as their mobility across 

provinces. Beijing, Jiangsu, and Guangdong are top three provinces in terms of the numbers of 

inventors. It also exhibits that the numbers of inventors moving in and moving out are relatively 

larger in Beijing, as compared to Jiangsu and Guangdong. Shanghai, Shandong, and Zhejiang 

follow these top three provinces. Figure 6 displays the net number of inventors moving across 

provinces. Actually, large cities like Beijing and Shanghai are losing inventors (negative net 

numbers), while the provinces surrounding such cities, such as Jiangsu, Zhejiang, and Anhui, 

gain a lot. In addition, Sichuan and Fujian provinces show a relatively large gain, while northeast 

regions such as Liaoning, Jilin, and Heilongjiang are losing.  

(Figure 5) and (Figure 6) 

Moving forward, we focus on three cities, Beijing, Shanghai and Shenzhen, the three largest 

cities in terms of patent applications in China. These three cities are different in many aspects. 

Beijing is a capital city where many public research institutes and high-quality universities are 

located, while Shenzhen is a commercial city which has been developed as a production site of 

foreign firms based in Hong Kong (Mao & Motohashi, 2016). Shenzhen hosts major high-tech 

firms, such as Huawei, ZTE, BYD, and Tencent. Shanghai is also a large commercial city, where 

the presence of multinationals is relatively large (Dang et al., 2017).As revealed in Table 11, the 
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inventor mobility rate in Beijing and Shenzhen is more than 10%, while that of Shanghai is 

around 7%. In addition, the share of inventors working at start-up firms (defined by applicants of 

private firms that started to file patents after 2009) is relatively large in Shenzhen as compared to 

the other two cities.  

(Table 11) 

Table 12 looks at the matrix of inventor mobility including these three cities, the other 

places in China and outside China. Table 13 exhibits the share of the places of origin of 

inflowing inventors in three cities. Shenzhen attracts more people from Beijing and Shanghai, 

while the share of other places of origin for inventors in China is the largest in Beijing. In terms 

of foreign returnee, Shanghai has the largest share, followed by Shenzhen.  

(Table 12) and (Table 13) 

6. Discussion 

6.1 Conclusion 

Disambiguation of Chinese inventors has become the bottleneck of inventor-level studies and is 

widely accepted as a huge challenge for existing US-Centric or English-names-centric 

algorithms as Chinese names barely have the typical middle names or name variants, and its 

common name (homonym) problem is more severe than English names. This problem becomes 

increasingly urgent along with the fast expansion of Chinese authors and inventors recently. 

While some rule-based methods disambiguating Chinese authors of papers have been proposed 

(Han et al., 2017; Tang & Walsh, 2010), method utilizing machine learning approach based on 

their own characteristics is unavailable yet. In this paper, we created the first systematic 

framework for disambiguating names of applicants and inventors in SIPO database for academic 

and business analysis. Compared to the disambiguation of USPTO or EPO patent database, 

which emphasizes on linking different spellings into the same unique individual (the synonym 

problems) and usually assigns all people with the same name as the same person thereby create 

fake mobility, here we highlight that the “name game” played on Chinese inventors should focus 

on identifying different person with the same common name.  
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In this article, we choose the supervised learning approach because of its higher accuracy. 

For supervised learning, better training samples usually beat better algorithms and thus a high-

quality training data is crucial. Learning from Li et al.(Li et al., 2014), Ventura et al. (2015) and 

Ikeuchi et al.(2017) , we overcome flaws in existing works and provide evidence for the 

reliability of labeled training data constructed from rare name list as a substitute for hand-labeled 

data when large-scale and representative labels are expensive, prone-to-error and even 

impossible to collect. Our results demonstrate that after several rounds of cleaning, an artificially 

generated data based on a list of rare names filtered from extra data sources could provide even 

better classification results compared to the hand-labeled data which might be more accurate but 

much smaller in size and containing larger bias. A combination of the real and generated datasets 

in which both have defects could have complementing effects and improve the result. This 

evidence is not only beneficial for disambiguating East-Asian names but could also be applied to 

disambiguating names of other countries where name information in national level census data or 

basic information of citizens are public or easier to access. While being able to produce accurate, 

large-scaled and low-biased training set quickly, this method is also easy to update21 and covers 

complex situations of inventors like regional and international mobility, participating in inter-

disciplinary inventions or completely changing the industry they work within.  

Scores received from 5 and 10-fold cross-validation manifest that Gradient Boosting 

classifier have the best and most stable performances across different training sets with different 

combination of features. Therefore, it was chosen to train the model and predict distances 

between records. We also propose that DBSCAN outperform hierarchical clustering in clustering 

records on the SIPO patent dataset in its simplicity, scalability to blocks with varying size and 

flexible shapes.  

Evaluation before and after clustering demonstrates our algorithm can yield a satisfying F1-

score ranging from 93.5%~99.3% with final splitting error within the range 0.5%~3.2% and 

                                                 

 

21 Update the manually-annotated data means relabeling each inventor again thus pose another severe problem for training data 

within supervised learning, as pointed out by Ferreira, Gonçalves, & Laender, (2012) 
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lumping error between 0.05%~0.37%, depending on the testing set and different parameters of 

clustering. We believe this result is good enough be adopted in academic research.  

6.2 Limitations and future directions 

We only extracted and disambiguated Chinese inventors and left Non-Chinese names 

unprocessed. But disambiguation in practice are usually mixed of inventors or scholars from 

various ethnic or cultural backgrounds. For such kind of tasks, training a classifier to predict the 

ethnicity of inventors and adding these extra features of ethnicity may provide a better solution. 

Second, as mentioned previously, though we have tried to control the biases in the hand-labeled 

dataset and make it as random and representative as possible, it still contains biases like self-

reporting bias, bias toward prolific inventors and university professors. Third, considering our 

blocking strategy rules out situations like name changing, typos, etc., our actual error rate would 

be slightly larger than reported in this paper. Fourth, without extra information, it is hard for 

human beings and computers to distinguish records with the same name and affiliation given the 

data available because neither their location nor technological dimension (classifications or 

contents) could have large differences. Therefore, for inventors from large companies like China 

National Petroleum Corporation (中国石油天然气集团) which has 1,512,048 employees, 

Huawei about 180,000 personnel22 or even large and famous universities like Zhejiang 

University, the lumping error would be larger than those from smaller applicants. Features 

representing the size of applicant measured by the number of employees or number of patents 

filed might contribute to solving this problem (Torvik & Smalheiser, 2009). Finally, as 

disambiguation work usually consists of a small portion of labeled data and a vast majority of 

unlabeled ones, semi-supervised learning, which makes use of the distribution of unlabeled data, 

also has great potential. It’s worthwhile to be tried in the future.   

                                                 

 

22   All obtained from http://www.fortunechina.com/fortune500/c/2017-07/20/content_286807.html and Huawei’s 

official website in 2017. 

http://www.fortunechina.com/fortune500/c/2017-07/20/content_286807.html


33 

 

 

Acknowledgement 

This work is mainly supported by The Research Institute of Economy, Trade and Industry’s 

(RIETI) under the project of Empirical Analysis of Innovation Ecosystems in Advancement of 

the Internet of Things (IoT), NSFC-JSPS Scientific Cooperation Program between China and 

Japan (No.71711540044) and National Natural Science Foundation of China (No. 71503123). 

We also appreciate Dr. Ikeuchi Kenta’s insightful suggestions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 

 

 

References 

Akinsanmi, E. O., Fuchs, E., & Reagans, R. E. (2011). Economic Downturns, Technology 

Trajectories and the Careers of Scientists. Retrieved from 

https://smartech.gatech.edu/handle/1853/42529 

Azoulay, P., Zivin, J. S. G., & Sampat, B. N. (2011). The Diffusion of Scientific Knowledge 

Across Time and Space: Evidence from Professional Transitions for the Superstars of 

Medicine (Working Paper No. 16683). National Bureau of Economic Research. 

https://doi.org/10.3386/w16683 

Balsmeier, B., Chavosh, A., Li, G. C., Fierro, G., Johnson, K., Kaulagi, A., ... & Fleming, L. 

(2015). Automated disambiguation of us patent grants and applications. Fung Institute for 

Engineering Leadership Unpublished Working Paper. 

Cassi, L., & Carayol, N. (2009). Who’s Who in Patents. A Bayesian approach. Retrieved from 

https://hal-paris1.archives-ouvertes.fr/hal-00631750/document 

Chin, W.-S., Zhuang, Y., Juan, Y.-C., Wu, F., Tung, H.-Y., Yu, T., … Lin, C.-J. (2014). 

Effective String Processing and Matching for Author Disambiguation. Journal of 

Machine Learning Research, 15, 3037–3064. 

Dang, J., Mao, H., and Motohashi, K. (2017). Physically Proximate or Culturally Cohesive? 

Geography, Ethnic Ties and Innovation in China. Working Paper. 

Fegley, B. D., & Torvik, V. I. (2013). Has Large-Scale Named-Entity Network Analysis Been 

Resting on a Flawed Assumption? PLOS ONE, 8(7), e70299. 

https://doi.org/10.1371/journal.pone.0070299 



35 

 

 

Ferreira, A. A., Gonçalves, M. A., & Laender, A. H. F. (2012). A Brief Survey of Automatic 

Methods for Author Name Disambiguation. SIGMOD Rec., 41(2), 15–26. 

https://doi.org/10.1145/2350036.2350040 

Fleming, L., King, C., & Juda, A. I. (2007). Small Worlds and Regional Innovation. 

Organization Science, 18(6), 938–954. https://doi.org/10.1287/orsc.1070.0289 

Giles, C. L., Zha, H., & Han, H. (2005). Name disambiguation in author citations using a K-way 

spectral clustering method. In Proceedings of the 5th ACM/IEEE-CS Joint Conference on 

Digital Libraries (JCDL ’05) (pp. 334–343). https://doi.org/10.1145/1065385.1065462 

Hall, B. H., Jaffe, A. B., & Trajtenberg, M. (2001). The NBER Patent Citation Data File: 

Lessons, Insights and Methodological Tools (Working Paper No. 8498). National Bureau 

of Economic Research. Retrieved from http://www.nber.org/papers/w8498 

Hall, B. H., Thoma, G., & Torrisi, S. (2007). The Market Value of Patents and R&d: Evidence 

from European Firms. Academy of Management Proceedings, 2007(1), 1–6. 

https://doi.org/10.5465/AMBPP.2007.26530853 

Han, H., Giles, L., Zha, H., Li, C., & Tsioutsiouliklis, K. (2004). Two supervised learning 

approaches for name disambiguation in author citations. In Proceedings of the 2004 Joint 

ACM/IEEE Conference on Digital Libraries. (pp. 296–305). 

https://doi.org/10.1109/JCDL.2004.240051 

Han, H., Xu, W., Zha, H., & Giles, C. L. (2005). A Hierarchical Naive Bayes Mixture Model for 

Name Disambiguation in Author Citations. In Proceedings of the 2005 ACM Symposium 

on Applied Computing (pp. 1065–1069). New York, NY, USA: ACM. 

https://doi.org/10.1145/1066677.1066920 



36 

 

 

Han, H., Yao, C., Fu, Y., Yu, Y., Zhang, Y., & Xu, S. (2017). Semantic fingerprints-based author 

name disambiguation in Chinese documents. Scientometrics, 111(3), 1879–1896. 

https://doi.org/10.1007/s11192-017-2338-6 

He, Z., Tong, T., Zhang, Y., & He, W. (2017a). Construction of a database linking SIPO patents 

to firms in China’s Annual Survey of Industrial Enterprises 1998-2009. Working Paper. 

Retrieved from https://sites.google.com/site/sipopdb/home/sipo---asie 

He, Z., Tong, T., Zhang, Y., & He, W. (2017b). SIPO - Chinese listed firms - Chinese Patent 

Data Project. Journal of Economics & Management Strategy. Retrieved from 

http://dx.doi.org/10.7910/DVN/CF1IXO 

Huang, J., Ertekin, S., & Giles, C. L. (2006). Efficient Name Disambiguation for Large-Scale 

Databases. In Knowledge Discovery in Databases: PKDD 2006 (pp. 536–544). Springer, 

Berlin, Heidelberg. https://doi.org/10.1007/11871637_53 

Ikeuchi, K., Motohashi, K., Tamura, R., & Tsukada, N. (2017). Measuring Science Intensity of 

Industry using Linked Dataset of Science, Technology and Industry Discussion. 

Dissucssion papers 17056, Research Institute of Economy, Trade and Industry (RIETI). 

Khabsa, M., Treeratpituk, P., & Giles, C. L. (2014). Large scale author name disambiguation in 

digital libraries. In 2014 IEEE International Conference on Big Data (Big Data) (pp. 41–

42). https://doi.org/10.1109/BigData.2014.7004487 

Kim, K., Khabsa, M., & Giles, C. L. (2016). Inventor name disambiguation for a patent database 

using a random forest and DBSCAN. In 2016 IEEE/ACM Joint Conference on Digital 

Libraries (JCDL) (pp. 269–270). 

https://ideas.repec.org/s/eti/dpaper.html
https://ideas.repec.org/s/eti/dpaper.html


37 

 

 

Lai, R., D’Amour, A., & Fleming, L. (2011). The careers and co-authorship networks of U.S. 

patent-holders, since 1975. Retrieved from 

https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/12367 

Li, G.-C., Lai, R., D’Amour, A., Doolin, D. M., Sun, Y., Torvik, V. I., … Fleming, L. (2014). 

Disambiguation and co-authorship networks of the U.S. patent inventor database (1975–

2010). Research Policy, 43(6), 941–955. https://doi.org/10.1016/j.respol.2014.01.012 

Lissoni, F., Sanditov, B., & Tarasconi, G. (2006). The Keins Database on Academic Inventors: 

Methodology and Contents (KITeS Working Paper No. 181). KITeS, Centre for 

Knowledge, Internationalization and Technology Studies, Universita’ Bocconi, Milano, 

Italy. Retrieved from https://econpapers.repec.org/paper/cricespri/wp181.htm 

Louppe, G., Al-Natsheh, H. T., Susik, M., & Maguire, E. J. (2016). Ethnicity Sensitive Author 

Disambiguation Using Semi-supervised Learning (pp. 272–287). Presented at the 

International Conference on Knowledge Engineering and the Semantic Web, Springer, 

Cham. https://doi.org/10.1007/978-3-319-45880-9_21 

Mao, H., & Motohashi, K. (2016). A Comparative Study on Tenant Firms in Beijing Tsinghua 

University Science Park and Shenzhen Research Institute of Tsinghua University. Asian 

Journal of Innovation & Policy, 5(3), 225–250. https://doi.org/10.7545/ajip.2016.5.3.225 

Milojević, S. (2013). Accuracy of simple, initials-based methods for author name 

disambiguation. Journal of Informetrics, 7(4), 767–773. 

https://doi.org/10.1016/j.joi.2013.06.006 

Morrison, G., Riccaboni, M., & Pammolli, F. (2017). Disambiguation of patent inventors and 

assignees using high-resolution geolocation data. Scientific Data, 4. 

https://doi.org/10.1038/sdata.2017.64 



38 

 

 

Müller, M.-C., Reitz, F., & Roy, N. (2017). Data sets for author name disambiguation: an 

empirical analysis and a new resource. Scientometrics, 111(3), 1467–1500. 

https://doi.org/10.1007/s11192-017-2363-5 

Obulkasim, A., Meijer, G. A., & van de Wiel, M. A. (2015). Semi-supervised adaptive-height 

snipping of the hierarchical clustering tree. BMC Bioinformatics, 16, 15. 

https://doi.org/10.1186/s12859-014-0448-1 

Pereira, D. A., Ribeiro-Neto, B., Ziviani, N., Laender, A. H. F., Gonçalves, M. A., & Ferreira, A. 

A. (2009). Using Web Information for Author Name Disambiguation. In Proceedings of 

the 9th ACM/IEEE-CS Joint Conference on Digital Libraries (pp. 49–58). New York, 

NY, USA: ACM. https://doi.org/10.1145/1555400.1555409 

Pezzoni, M., Lissoni, F., & Tarasconi, G. (2014). How to kill inventors: testing the 

Massacrator© algorithm for inventor disambiguation. Scientometrics, 101, 477–504. 

https://doi.org/10.1007/s11192-014-1375-7 

Raffo, J., & Lhuillery, S. (2009). How to play the “Names Game”: Patent retrieval comparing 

different heuristics. Research Policy, 38(10), 1617–1627. 

https://doi.org/10.1016/j.respol.2009.08.001 

Singh, J. (2005). Collaborative Networks as Determinants of Knowledge Diffusion Patterns. 

Management Science, 51(5), 756–770. https://doi.org/10.1287/mnsc.1040.0349 

Tang, L., & Walsh, J. P. (2010). Bibliometric fingerprints: name disambiguation based on 

approximate structure equivalence of cognitive maps. Scientometrics, 84(3), 763–784. 

https://doi.org/10.1007/s11192-010-0196-6 



39 

 

 

Torvik, V. I., & Smalheiser, N. R. (2009). Author Name Disambiguation in MEDLINE. ACM 

Transactions on Knowledge Discovery from Data, 3(3). Retrieved from 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805000/ 

Torvik, V. I., Weeber, M., Swanson, D. R., & Smalheiser, N. R. (2005). A probabilistic 

similarity metric for Medline records: A model for author name disambiguation. Journal 

of the American Society for Information Science and Technology, 56(2), 140–158. 

https://doi.org/10.1002/asi.20105 

Trajtenberg, M., Shiff, G., & Melamed, R. (2006). The “Names Game”: Harnessing Inventors’ 

Patent Data for Economic Research (Working Paper No. 12479). National Bureau of 

Economic Research. https://doi.org/10.3386/w12479 

Treeratpituk, P., & Giles, C. L. (2009). Disambiguating Authors in Academic Publications Using 

Random Forests. In Proceedings of the 9th ACM/IEEE-CS Joint Conference on Digital 

Libraries (pp. 39–48). New York, NY, USA: ACM. 

https://doi.org/10.1145/1555400.1555408 

Ventura, S. L., Nugent, R., & Fuchs, E. R. H. (2015). Seeing the non-stars: (Some) sources of 

bias in past disambiguation approaches and a new public tool leveraging labeled records. 

Research Policy, 44(9), 1672–1701. https://doi.org/10.1016/j.respol.2014.12.010 

Wang, J., Berzins, K., Hicks, D., Melkers, J., Xiao, F., & Pinheiro, D. (2012). A boosted-trees 

method for name disambiguation. Scientometrics, 93(2), 391–411. 

https://doi.org/10.1007/s11192-012-0681-1 

Zhang, G., Guan, J., & Liu, X. (2014). The impact of small world on patent productivity in 

China. Scientometrics, 98(2), 945–960. https://doi.org/10.1007/s11192-013-1142-1 

 



40 

 

 

Appendix 1 Results of existing disambiguation work on inventors of patents 

(Table 14) 

Appendix 2 Applicant standardization  

Applicant name standardization is an obstacle that nearly all researchers would encounter if they 

desire to make use of Chinese patent data or link it with external data sources. Since this is also a 

disambiguation or record linkage task, thus our framework on disambiguating inventors could 

easily transplant to the harmonization of applicants’ names. However, instead of suffering from 

the common name problem, what the harmonization of applicant name has to deal with is the 

synonym problem: its goal is to cover the name variant, changing of firm names and typos of the 

same applicant as accurate as possible.  

We harmonized Chinese applicant names according to their characteristics: i.e., a typical 

Chinese Firm name is usually composed 4 parts—Province/city + name stem+ industry+ type 

(e.g., 深圳/TCL/数字技术/有限公司). While purely relying on the name or geocoding could go 

wrong, high similarity in both 2 dimensions indicates higher probability of matching. Here we 

compared both the rule-based and supervised learning method to standardize firm and university 

names. Although supervised learning method performs a little better than rule-based, the rule-

based approach is applicable due to its simplicity and empirical studies usually do not have such 

high requirement for accuracy. The steps are as follows:  

1) Preprocessing: removing spaces and name suffix like “股份有限公司”, “有限公司”, “(北

京)”, “研究所”, “研究院” while keeping address prefix “北京”, “深圳”, “大学”. This is 

because for many applicants, especially universities (e.g. “北京大学”, “浙江大学”, etc.), the 

address prefix is their sole identifier.  

2) Stemming: extract the most special words in a name with TF-IDF algorithm: “万达”, “中兴

通讯”, “TCL”, “ABB”. For wrong keywords which extracted industry mistakenly, some 

manual check and extraction by places and length of names are involved.  
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3) Block by the stem, applicant type and generating comparing pairs: to make sure 

comparison happens only among applicants with the same word stem and type. From 0.380 

million unique applicant names, we generated 5.54 m record pairs to compare. 

4) Comparing record pairs:  to link records in or between data sources.  

5) Cluster with thresholds directly or predicating distances based on trained models and 

clustering with distance matrices (similar to steps in inventor disambiguation). We 

collected three datasets of SIPO’s patent data linked with external firm information for 

training and testing the algorithms: one is linked to firms on National Equities Exchanges and 

Quotations (NEEQ) with our manually disambiguated results, the second is SIPO’s linked 

data with Chinese listed firms (“Main Board”) and the last is linked with the Annual Survey 

of Industrial Enterprises (ASIE) (He et al., 2017a, 2017b). The latter two datasets is provided 

the Chinese Patent Data Project (CPDP) 23.   

 

Appendix 3 Comparison of our definition of similarity profile with existing work 

Since our task has more common points with the disambiguation of Japanese names, here we 

present differences between our definition of features with that of Ikeuchi et al. (2017):  

(Table 15) 

 

 

 

 

 

                                                 

 

23 These two datasets could be downloaded from https://sites.google.com/site/sipopdb/home/SIPO_listed and 

https://sites.google.com/site/sipopdb/home/sipo---asie  

https://sites.google.com/site/sipopdb/home/SIPO_listed
https://sites.google.com/site/sipopdb/home/sipo---asie
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Tables & Graphs 

Table 1: Statistics and distribution of the blocking size in SIPO, JPO and USPTO  

Blocking 

size24 

SIPO 

To 2016.12 

JPO 

To 2014.3 

USPTO (last+ first 3) 

To 2017.08 

1-100 10,458,586 71.27% 10,309,875 83.16% 11,572,770 77.36% 

100-500 2,637,172 17.97% 1,970,057 15.89% 2,413,536        16.13% 

500-1000 616,617 4.20% 83,038 0.67% 469,805         3.14% 

1000-max  963,109 6.56% 34,850 0.28% 503,541         3.37% 

Total 14,675,484  12,397,820  14,959,652  

Source: Authors’ calculations based on SIPO, IIP and PatentsView datasets.   

 

Figure 1 Our taxonomy and classification of methodologies 

                                                 

 

24 Here the blocking size refers to the number of patent one name corresponding to. Here names within SIPO and JPO are 

blocked by full names while those in USPTO is blocked by the combination of last name with first 3 characters of first name. 
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Source: Authors  

 

 

 

 

Table 2: Literature review: existing works on the disambiguation of patent inventors 
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Source: Authors  

 

 

 

 

Methodology  Author  Application Training 

Set 

Algorithms Evaluation 

 

 

 

 

 

 

Rule-based 

(Heuristic) 

Hall, 2001 All applicants 

in USPTO 

NA String match 

of assignees 

First public dataset of 

disambiguated 

assignees 

(Zhang et al., 

2014) 

SIPO 2000-

2009 

NA String 

matching of 

applicant, 

province, IPC 

class 

First and unique 

attempt on 

disambiguating Chinese 

inventors available 

Pezzoni et 

al., 2014 

PATSTAT 

2011 

 

NA Similarity 

profile + ad 

hoc threshold 

and weight 

First systematic 

disambiguation of 

PATSTAT data  

Morris, 2017 PATSTAT 

2014 

NA using high-

resolution 

geocoding data 

Simple, straightforward 

rules that disambiguate 

assignee and inventors 

at the same time  

 

 

 

Semi-

supervised 

Li & Lee 

Fleming, 

2014 

Full USPTO Statistically 

generated 

labels with 

rare names 

as a part of 

input data 

Naïve Bayes + 

ad hoc rules 

automatically 

generated 

training sets 

Pioneering work based 

on machine-learning 

method 

Ikeuchi et 

al., 2017 

Japanese 

inventors in 

JPO 

Rare name 

data as a 

part of input 

data 

Naïve Bayes + 

ad hoc rules 

First systematic 

disambiguation of 

Japanese patent data 

Supervised Ventura, 

et.al., 2015 

Small subset 

of USPTO 

Optoelectro

nics (OE) +  

Academic 

life 

scientists 

(ALS) 

Random Forest 

+ Hierarchical 

clustering 

First supervised method 

while the training set 

belongs to one industry 

and have large bias 

when applying to whole 

USPTO dataset 

Unsupervised Balsmeier et 

al., 2016 

 Weekly 

updated Full 

USPTO 

 NA K-Means 

clustering 

Completely automated 

process 
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Table 3: Summary of nationality identified by names in full SIPO patent inventor data  

 

Source: Authors’ calculation based on SIPO  

 

Table 4: Representativeness measured by the type of records and statistics of hand-labeled 

data and rare name data 

 Mean of 

patent-

owned 

Hand-labeled 

labeled  

Hand-labeled & 

unlabeled under 

the same name  

Rare 

names  

All records 

remained  

Individual 57.19 2.03% 6.21% 10.82% 9.44% 

Firm 32.68 23.68% 53.31% 54.22% 57.55% 

University 92.01 60.48% 29.54% 24.73% 22.99% 

Research 

Institute 

62.27 13.80% 10.94% 10.23% 10.02% 

Total number  21,073 128,753 402,339 14,144,365   

Median  56 16 3 4 

Mean   86.45 138.59 6.073 12.66 

Skewness   2.225 8.13 13.77 49.96 

Kurtosis  8.655 84.56 377.86 4492.06 

Range   [2,484] [2,7167] [2,635] [2,9680] 

Std. Dev.   94.43 528.52 12.17 57.61 

Source: Authors’ calculation based on SIPO 

Names of 

country 

Unique 

patents 

Unique 

names 

Inventor-

patent pairs 

Ratio

% 

Ida_seq 

/names 

Max Criteria 

Chinese 

(Korean, 

Taiwanes

e, etc.)  

4.9 m 1.84 m 14,685,617 78.90 7.96 9680 No points within name, 

do not have a Japanese 

Family name and the 

length of name equal to 

or lower than 4 

characters 

Western 

(all other 

countries) 

0.90 m 1.17 m 2,492,036 13.39 2.14 509 With a point in names,  

e,g., “P·T·贾特”, “D·罗

布” 

Japanese  0.57 m 0.35 m 1,435,067 7.71 4.05 1402 With typical Japanese 

Family name   e.g. “伊藤

彰浩”, “毒岛真”  

In Total  6.25 m 3.3 m 18,612,720 100    
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Table 5: Statistics of hand-collected data, rare name data and all Chinese inventors in 

SIPO  

 Hand-labeled data Rare name data SIPO Chinese 

inventors 

# of unique person 1,314 66,248 NA 

# of unique names 929 66,248 1.84 million  

# of unique patents  16181 376,429 4.93 million  

# of inventor-patent 

records 

21,073 402,339 14.68 million 

13.97 million 

# of inventor-patent 

records with unlabeled  

128,753 402,339 14.68 million 

13.97 million 

# of comparison pairs  1.73 million 12.27 million  1.98 billion  

# of non-matches 0 

# of matches 1 

0      1,099,550 

1       629,993 

0      6,133,152 

1      5,927,216 

NA  

Source: Authors’ calculation based on SIPO 

 

Figure 2 Flowchart of our algorithm 
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Source: Authors  
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Table 6: Definition of features in similarity profile  

Feature groups Feature Definition 

Applicants  app_i 

app_s  

# of common members of applicants  

String similarity of first applicants’ names    

Co-inventors inventor_i # of shared inventor’s names of two records 

Technological fields ipc_c 

ipc_g 

# of common members of IPC class 

# of common members of IPC group  

Technological content of 

patents 

title  

keyword 1  

keyword 2 

String similarity of titles 

String similarity of first keyword 

String similarity of second keyword  

Address address_s  

geo  

String similarity of addresses  

0 from a different country 

1 from the same country  

2 from the same province 

3 from the same city 

4 from the same district 

5 from the same road or village   

6 have the same latitude and longitude  

Source: Authors  

Figure 3: Feature selection: F1-score received with 4 kinds of combination of features  

 

90

91

92

93

94

95

96

Gaussian NB Logistic LDA QDA Random

Forest

AdaBoost Gradient

Boosting

F1-score with 4 kinds of features

With 6 features 8 features: 6 + kw1+kw2

8 features: 6 + app_s & address_s 10 features: 8 + app_s & address_s
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Source: Authors’ calculations based on our algorithm.   

Figure 4: Gini importance of features in Gradient Boosting Classifier  

 

Source: Authors’ calculations based on our algorithm.   

 

 

Table 7: Pairwise F1-score from 5-Fold Cross-validation and comparison of models with 3 

kinds of training sets (Evaluation before clustering) 

          Training set     

 

Models 

(1) 

80% of Hand-

collected 

(2) 

Rare name 

(3) 

Mixed training set: 

Rare name + 80% 

of hand-collected 

Naïve Bayes  92.23557 92.085072 92.173541 

Logistic Regression 92.54353 92.808226 89.980191 

LDA 90.44477 90.122986 92.84446 

QDA  91.94083 92.052651 92.054074 

Random Forest 91.69556 91.817041 92.324427 

AdaBoost 92.94519 91.561233 91.799894 

Gradient Boosting 93.13849 93.285912 93.362207 

Source: Authors’ calculations based on our algorithm.   

 

329233.2671

49388.51011

23384.29163

21924.30642

15352.51611

11892.93099

2869.212184

1567.570249

1491.013725

640.684742

0 50000 100000 150000 200000 250000 300000 350000

app_i

geo

ipc_c

address

inventor_i

app_s

title

ipc_g

keyword1

keyword2

Gini Feature Importance
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Table 8: Pairwise F1-score from 10-Fold Cross-validation and comparison of models with 3 

kinds of training sets (Evaluation before clustering) 

          Training set     

 

Models 

(1) 

80% of Hand-

collected 

(2) 

Rare name 

(3) 

Mixed training set: 

Rare name + 80% 

of hand-collected 

Naïve Bayes 89.64731 92.34737 92.44074 

Logistic Regression 90.76750 93.10603 93.10967 

LDA 88.59201 90.41615 90.27762 

QDA  89.40703 92.31727 92.32215 

Random Forest 89.46714 92.22502 92.69485 

AdaBoost 89.24354 91.81432 92.35146 

Gradient Boosting 91.25289 93.48601 93.44492 

Source: Authors’ calculations based on our algorithm.   

 

Table 9: Pairwise Score with rare name + 80% of hand-collected as training set 

(Evaluation before clustering) 

 F1 Score AUC Score Splitting Error  Lumping Error 

Naïve Bayes 92.173541 90.97826 14.88665 2.978167 

Logistic  89.980191 87.2324 25.21166 0.286963 

LDA 92.84446 91.26537 16.4657 0.944021 

QDA  92.054074 90.96794 14.47707 3.408231 

Random Forest 92.324427 91.22295 14.03578 3.318383 

AdaBoost 91.799893 90.31288 17.05161 2.183577 

Gradient Boosting 93.362207 92.36092 12.93609 2.254097 

Source: Authors’ calculations based on our algorithm.   

Table 10: Comparison of models with 3 kinds of training sets (Evaluation after clustering) 

EPS Training set Testing set F1 Score 

% 

AUC 

Score % 

Splitting 

Error % 

Lumping 

Error % 

0.0375 Rare Handfull554 97.5844 96.4675 3.1765 0.05071 

0.11 Rare Handfull554 97.6336 96.7583 3.0938 0.05405 

0.0375 Handremain Handfull554 97.7592 95.9661 2.8564 0.08310 

0.11  Handremain Handfull554 97.7129 95.8715 2.9262 0.08500 

0.375 Handremain Handfull554 99.1963 89.8351 0.6493 0.31381 

0.55 Handremain Handfull554 99.1133 88.2222 0.5602 0.36669 

0.0375 Rare + Handremain Handfull554 97.6642 95.8770 3.0048 0.08357 

Source: Authors’ calculations based on our algorithm.   
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Figure 5: Number of inventors at province level 

 

Source: Authors’ calculations based on our disambiguation result.  
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Figure 6: Net flows of inventors moving across provinces 

 

Source: Authors’ calculations based on our disambiguation result.  

 

Table 11: Moving ins and outs for three cities 

  Initial 
From 

outside 

To 

outside 
Current 

Share of 

Startup 

Beijing 330,681 36,323 36,951 330,053 21% 

Shanghai 242,091 14,363 15,100 241,354 24% 

Shenzhen 128,197 15,114 15,438 127,873 30% 

 

Source: Authors’ calculations based on our disambiguation result.  
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Table 12: Mobility matrix of three cities 

From/To Beijing Shanghai Shenzhen 
Other 

China 
Foreign Total 

% of 

move 

out 

# of 

inventors 

Beijing 0 2,802 4,229 29,910 10 36,951 10.8% 341,606 

Shanghai 2,832 0 1,398 10,861 9 15,100 6.1% 247,644 

Shenzhen 4,209 1,385 0 9,803 41 15,438 11.6% 132,976 

Other China 29,264 10,166 9,344 0 111 48,885 2.2% 2,198,947 

Foreign 18 10 69 155 0 252 0.1% 276,503 

Total 36,323  14,363  15,040  50,729  171     

% of move-in 10.6% 5.8% 11.3% 2.3% 0.1%    

# of inventors 341,606 247,644 132,976 2,198,947 276,503    

 

Source: Authors’ calculations based on our disambiguation result.  

 

Table 13: The place of origin of moving in inventors for start-up firms 

From/To Beijing Shanghai Shenzhen 

Beijing - 19.5% 28.1% 

Shanghai 7.8% - 9.3% 

Shenzhen 11.6% 9.6% - 

Other China 80.6% 70.8% 62.1% 

Foreign 0.0% 0.1% 0.5% 

 

Source: Authors’ calculations based on our disambiguation result.  
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Table 14: Results of existing disambiguation work on inventors 

 

 

 

                                                 

 

25In this table we document authors’ self-reported scores or error rates just for references. Nonetheless, no 

judgements about quality of these methods should be made based on this table as they work on different dataset and 

evaluated with different testing data of different size, as well as different evaluating methods.   

 Authors Dataset  Methodology and 

models 

claimed 

Splitting 

Errors25 

claimed 

Lumping 

Errors 

F1 Score 

Fleming et al., 2007 

Lai et al., 2009 

USPTO Rule-based Precision: 

96.1% 

Recall: 

97.3% 

 

Morris et al., 2017  EPO,  

PCT, 

USPTO 

Rule-based  

based on high-resolution 

geocoding data 

10.5% 9.5%    

Pezzoni et al., 2014 PATSTAT Rule-based Precision: 

88% 

Recall:  

68% 

 

Ventura et.al., 2015 Subset of 

USPTO 

Optoelectronics +  

Academic life scientists; 

Random Forest + 

Hierarchical clustering 

2.09% 1.26%  

Li et al., 2014  

 

 

USPTO 

Naïve Bayes + ad hoc 

rules with automatically 

generated training sets 

3.26% 2.34% 3rd party’s 

result:  

92.7314% 

Kim et al., 2016 Random Forest + 

DBSCAN 

Precision: 

>99% 

Recall: 

97% 

98.37% 

Monath 

&McCallum, 2017 

Graph-based method   98.16% 

Ikeuchi et al., 2017 JPO Naïve Bayes + ad hoc 

rules 

2.41% 0.29%  

Balsmeier et al., 

2016 

USPTO K-Means clustering    
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Table 15: Comparison of our definition of similarity profile with that of Ikeuchi et al. 

(2017) 

 Ikeuchi, et al., 2017 Ours 

Inventor name  1 if names are completely same. 
0 otherwise. 

The same  

Applicants 3 if applicant identification numbers are 

equal. 
2 if applicant names are same. 
1 if either applicant identification 

number or applicant name are not 

available. 
0 if both applicant identification 

numbers and names are different. 

# of shared members of 

harmonized applicant names 

# of shared members of 

applicant names 

String similarity of first 

applicants’ names    

Address  5 if matched at land number extension 

(go-level). 
4 if matched at land number (banchi-

level). 
3 if matched at city block (chimei-

level). 
2 if matched at municipality-level. 
1 if matched at prefecture-level. 
0 otherwise. 

string (address) 

 
6 Latitude-longitude  
5 Sub road/village level  
4 road/village 
3 district  
2 city-level  
1 province-level  
0  Country  

Co-inventors’ 

names  
# of shared co-inventors, where more 

than 6 common co-inventors is set to a 

maximum value of 6. 

# of shared inventors, but no 

Maximum 

Technology 

class 
4 if main IPCs are same at 4 digit level. 
3 if main IPCs are same at 3 digit level. 
2 if main IPCs are same at 1 digit level. 
1 if main IPCs are not available. 
0 if main IPCs are completely different. 

# of shared IPC class  
# of shared IPC group  

Title  NA  String similarity of whole title 
String (keyword 1) 
String (keyword 2) 

Source: Authors and Ikeuchi et al., 2017 
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