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Abstract: This paper investigates the effects of graduate education on inventive performance, as well 

as the underlying mechanisms, using inventor life-cycle data to focus on the factors affecting the 

capability of an inventor to absorb and combine diverse external knowledge. In order to control for 

endogeneity in the choice of graduate education, we use as an instrument the unemployment rate of 

college graduates in the year preceding the graduation of the focal inventor, as well as in the academic 

field in which the inventor is specialized. Our first-stage estimation results show that a college student 

who graduates under adverse labor market conditions chooses much more frequently to pursue a 

graduate degree. This instrument is also likely to satisfy the exclusion restriction, since our dependent 

variables are long-run inventor activities. We find that graduate education induced by this instrument 

significantly enhances inventive performance, as measured by the level and scope of forward citations 

and the number of patent applications. It also significantly enhances the scope of knowledge exploited 

for inventive processes, both in the use of scientific knowledge as well as in the scope of knowledge 

cited in the prior patent literature.  
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1. Introduction 

Human resources are often seen as the central pillar of the creation of inventions and, therefore, of 

knowledge-based economic growth. On the theoretical front, endogenous growth theory identifies the 

number of highly educated persons in a society as a key determinant of the growth rate (as pioneered 

by Romer 1990). Many countries, including emerging as well as developed countries, have expanded 

graduate education programs (master’s and PhD courses) based on this view (OECD 2016, p.146). 

Despite the widespread belief in graduate education’s role in enhancing inventive performance, there 

is surprisingly little empirical support for this conjecture1 . Furthermore, existing studies have not 

focused on how graduate education programs affect inventors’ skills and their innovation processes.  

To fill these gaps, we analyze the effects of graduate education not only on inventive 

productivity, but also on the scope of knowledge sources that inventors use in their inventive processes. 

We expect that obtaining higher education enhances their inventive performance. We also expect that 

graduate education improves their inventive process by enabling them to learn how to absorb and 

combine knowledge from more diverse sources. The ability to absorb scientific advances seems to be 

of particular importance as a determinant of the innovative capability of a firm (Cohen and Levinthal 

1990; March 1991). Further, since innovation is often based on recombinations of existing knowledge 

(Schumpeter 1934; Weitzman 1998), one can expect that the inventive performance of the better 

educated will be higher than those with less education, if the former can combine existing knowledge 

more effectively. On the other hand, successful technologies and ideas have often been noted to arise 

without being influenced by existing science or knowledge (Price 1965). 

To confirm these expectations, we focus on detailed Japanese inventor information derived 

from the RIETI Inventor Survey. We gathered all the available life-cycle patent applications these 

inventors had applied for the Japan Patent Office in order to capture the histories of their inventive 

activities. The two databases are then matched using inventor’s name, address and other details. We 

obtain the data on individuals’ final educational degrees and their demographic information mainly 

from the RIETI Inventor Survey. Further, we measure the scope of knowledge that inventors utilize 

and their inventive performance using patent applications and their citation data, which are commonly 

recognized as useful indicators. One advantage of using Japanese patent data is that typical Japanese 

companies have a much higher patenting propensity than their US counterparts (Cohen et al. 2002); 

also, the JPO publishes all patent applications, like the EPO, but in contrast with the USPTO. Therefore, 

we can more easily trace the profiles of inventors’ inventive activities than is possible with other patent 

data sources2. 

                                                      
1 One notable exception is Toivanen and Väänänen (2016), but they focus on undergraduates rather than graduates or 
PhDs.  
2 A comparison of similar studies that gather inventors’ overall life-cycle patents shows that the number of patents per 
inventor in our sample is 39.1, which is much higher than 14.7 in Hoisl (2007) using EPO patent data and 1.2–1.4 in 
Toivanen and Väänänen (2012), using data on US patent applications made by Finnish inventors. The number of patents 
per inventor depends on the time window on which a study focuses. For example, Toivanen and Väänänen (2012) used 
1988–1996, which is half the length of our study period, covering 1991–2007. Consequently, the mean of patenting in 
our study is more than 40 times larger than that of their study. 
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Obtaining causal evidence on such educational effects is challenging, because the choice of 

level of education by an individual is endogenous to the unobserved characteristics of each such person. 

We expect that individuals with high ability will generally choose higher levels of education, due to 

the higher returns they anticipate from this investment. To control for this endogeneity, we propose to 

use as an instrument the unemployment rate of college graduates in the year preceding the graduation 

of the focal inventor, as well as within the academic field in which the inventor is specialized3 . 

Choosing to go to graduate school seems to be an important choice for college graduates who face a 

negative labor market situation at the time of graduation, since they can occupy their time with 

graduate school until the labor market recovers. Prior studies found that labor market conditions affect 

enrolment for graduate school and PhD courses in the US (Bedard and Herman 2006; Johnson 2013; 

Shu et al. 2012). Further, Kondo (2007) finds a negative correlation between labor market conditions 

and the propensity to go to college of high school students in Japan. Thus, we can expect that labor 

market conditions for college graduates significantly influence the probability that college graduates 

go to graduate schools. This instrument, based on the labor market conditions at the time of college 

graduation, is also likely to satisfy the exclusion restriction for the long-run inventive activities studied, 

since we use a common window (1992 to 2007) for assessing the long-run inventive outputs of all 

inventors, using cohort dummies4. Our study provides several validations of this exclusion restriction.  

In the estimation, we find that higher unemployment rates at that age and in that field 

significantly increased the inventor’s choice of seeking a graduate degree. Further, this finding satisfies 

robustness checks5. After controlling for the endogeneity of the choice for graduate school education, 

we find that graduate education significantly enhanced invention performance, measured by the level 

and the scope of forward citations (referred to as the “generality” of a patent) and the number of patent 

applications. It also significantly enhanced the scope of knowledge exploited for inventions, 

comprising the use of scientific knowledge as well as the scope of the technical knowledge disclosed 

in prior patent documents (“originality”). These results indicate that a government policy supporting 

students who wish to acquire higher degrees will have a substantial impact on national innovative 

capability. Interestingly, our study suggests that a recession has a positive impact on future innovative 

performance through encouraging students to enter graduate school. The results also suggest that 

employing graduates with higher degrees will strengthen the capability of a firm to absorb broader 

                                                      
3 This idea is borrowed from labor economics literature (Heckman, Lochner and Todd 2006; Neumark 2002). Heckman 
et al. (2006) proposed the local unemployment rate as an attractive instrument for years of education in a wage equation, 
since this variable affects the opportunity cost for further education, but not the long-term income performance. 
4 While a temporary demand-side shock to the college graduate labor market would affect the educational choice of a 
college graduate, this study assesses inventors’ performances based on their patent applications made from 1992 to 
2007, a common window for all inventors under our study. Thus, most of the focal inventors face a common external 
environment in terms of market demand and technological opportunity. As a result, such temporary demand-side shocks 
will significantly affect the long-run performance of an inventor, relative to that of an inventor with only an 
undergraduate degree, only through the choice of going to a graduate school. 
5 We find similar results using local labor market conditions as an instrument as a robustness check. Our preferred 
instrument is the unemployment rate for the corresponding academic subject level, because the college graduate labor 
market is essentially national. At the same time, however, we do find that local labor market conditions also affect 
undergraduate students’ choices.  
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knowledge, as well as enhancing its inventive productivity. 

 The rest of the paper is organized as follows. The next section provides a brief review of the 

literature on the relationship between education and inventive activities. Section 3 describes the data 

and section 4 provides estimation methods. Section 5 presents the results, while section 6 discusses 

the results and explains the conclusions.  

 

2. Brief review of prior literature 

Attaining graduate education seems to enhance the understanding of inventors of the knowledge stock 

available and improve their ability to explore ideas and new knowledge, including greater familiarity 

with the research tools available to address frontier research questions. As Jones (2009) indicated, if 

the “burden of knowledge” has become a critical barrier against successful innovation, inventors must 

spend more time or money to acquire state-of-the-art technology and training to absorb different 

technological knowledge. Attending a master’s or PhD program may be one important channel for 

achieving this. Stephan (2011) comprehensively discussed how PhDs working in industry contribute 

to economic growth, quoting the former president of the National Academy of Sciences saying that 

“the real agents of technology transfer from university laboratory were the students who took jobs in 

the local biotech industry.” Thus, one can expect that corporate researchers with PhDs contribute to 

bring fresh knowledge from scientific communities to industry (Cockburn and Henderson 1998). In 

this view, graduate education will increase inventive performance by accumulating existing 

knowledge and enhancing absorptive ability with respect to scientific knowledge. 

Only a few studies explore the relationship between attaining advanced education and 

subsequent research output. Mariani and Romanelli (2007) and Kim, Lee and Marschke (2004) find 

that inventors with PhD degrees make significantly greater numbers of patent applications, compared 

with those with high school degrees. However, Hoisl (2007) shows that PhD inventors do not generate 

more patent applications than non-PhDs, in terms of the life-cycle productivity of inventors. With 

respect to quality, Schettino, Sterlacchini and Venturini (2008) report that patent quality increases with 

the level of education. In contrast, Mariani and Romanelli (2007) find that there is no significant 

difference in the level of citations per patent across education levels. Further, Shu et al. (2012) find 

that the labor market conditions at graduation of MIT students affect their subsequent patent output; 

and conclude that this positive correlation comes from their intensive accumulation of human capital 

after graduation, such as attending graduate school, although they do not directly assess the effects of 

graduate education. Finally, Onishi and Nagaoka (2012) use life-cycle data of Japanese inventors and 

find that inventors who attained graduate degrees have higher productivity in terms of patent quantity 

and quality. Unfortunately, since the above studies do not address the endogeneity of educational 

choice, the positive correlation between graduate degree and higher patent productivity might have 

come from inventors’ innate ability or from omitted variables affecting both attaining a PhD degree 

and patent outputs.  

Recently, Toivanen and Väänänen (2016) use Finnish inventor level data to analyze whether 
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increased opportunities for engineering university education through establishing technical 

universities have enhanced the propensity to patent in Finland. They use the geographical distance to 

university engineering education and its policy-induced reduction over time as the instruments driving 

educational choice and controlling for its endogeneity. The results show significant causal effects of 

university education on patent numbers and quality. Surprisingly, their study also shows a negative 

selection bias: that is, those who have a high innate propensity for invention have a lower propensity 

to study at a technical university. However, importantly, it remains to be investigated whether such 

findings can be extended to graduate education, to establish whether obtaining graduate degrees by 

college graduates is a more crucial issue for inventive activities than obtaining college degrees by high 

school graduates, as well as assessing how graduate education enhances inventive performance. 

As for the effects of education on knowledge consolidation, Gruber, Harhoff and Hoisl 

(2013) empirically show that inventors with a scientific education tend to generate inventions that 

recombine knowledge across technological domains more than inventors with an engineering 

education. Further, they also find that inventors with higher educational attainment (especially PhDs) 

have higher ability and skill to recombine different technologies, irrespective of the field of education. 

Giuri and Mariani (2013) show that PhD holders gain more knowledge from geographically far distant 

places than do less educated inventors. Unfortunately, these studies fail to rule out the possibility that 

such correlations are driven by the endogenous choices of students with higher innate ability to choose 

to obtain higher levels of education. Our study fills this gap by considering the causality between 

advanced education and the utilization of knowledge sources. 

  

 

3. Data 

To examine the effect of educational attainment on inventive performance, we captured detailed 

individual information and developed an invention life-cycle profile database for more than 2,300 

Japanese inventors. The data on inventor-level information (level of education, field of study, 

employment year, and gender) came from the RIETI Inventor Survey. This survey sent questionnaires 

to quasi-randomly selected patent inventors requesting their demographic information as well as 

details of their inventive processes6. The patents selected for the survey were applied for in the period 

1995–2002. The effective response rate of the survey is 30.9% and 5,278 inventors responded. We 

also gathered the entire stock of patent applications of these inventors in their life-cycle up to 2014 

and matched the survey responses to this patent database, based on the inventor’s name, address, and 

patent applicant information. We obtained the patent data from the IIP patent database, which covers 

                                                      
6 Around 70% of the focal patents are selected from triadic patents (granted in the US and applied for both in Japan and 
at the European Patent Office), which accounted for less than 10% of the patent applications in Japan. The rest are 
selected from non-triadic patents, which is close to a pure random sampling of the population. This indicates that the 
survey oversamples the respondent inventors having high ability. For a more detailed description of the sampling 
method, see Nagaoka and Tsukada (2007). 
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all patent applications made to the Japan Patent Office since 19647. To identify the patents invented 

by the focal inventors in the survey—that is, to treat a unique person by avoiding persons with the 

same name—we focus on inventors whose name are rare, judged by using the telephone directory8. 

We define a name as rare if it is listed only once in the telephone directory. Further, we used only those 

patent applications whose inventor’s name appears for only one company. This procedure makes 

disambiguation very tight, because the probability of different persons with same name appearing 

more than once in a particular company is then quite low, given that such a name appears nowhere 

else. To confirm our procedure, we manually checked whether all patents gathered are matched to 

genuine inventors based on the survey and patent information. 

We exclude inventors who graduated with two years of college or less from our sample, 

because we cannot specify their academic subject in the survey. We also exclude inventors who 

qualified for their PhD degree only through their PhD dissertation, because they need neither to enter 

PhD programs nor to obtain any formal education from graduate school. Further, some samples were 

dropped in the process where the survey was matched to the unemployment rate data of college 

students, which is commonly available from 1970. In order to match the unemployment rate of 

graduates across the inventors’ subjects, we had to drop a few inventors whose subjects could not be 

matched to a database for academic subjects. We also dropped some inventors who were born after 

1970, because they have not had much time to obtain higher degrees. After this process, our final 

sample is 2,308, among which bachelor’s degree holders account for 47%, master’s degree holders for 

44%, and PhD holders for 9% (see Table A1). 

To measure the patent output performance and the knowledge sources involved in the related 

inventive activities, we use two patent citation datasets. One is prior patent documents cited by 

inventors (not by patent examiners) in their patent documents. The other is non-patent literature cited 

by them in the documents. These two datasets are all collected by a text-mining procedure from text 

databases of patent documents. We obtain these noteworthy data from Alife-Lab9. Unfortunately, since 

the text database is only available from patents that were disclosed after around 1991, we have to limit 

the patent outputs collected to those years since 1992. Further, we place an upper bound on the year 

of application to 2007 in order to solve the truncation problem involved with the use of forward 

citations; this procedure means we can use a five-year citing period for all patent applications in 

counting the frequencies of forward citations. That is, our time interval for aggregating inventors’ 

overall patent outputs for the following econometric analysis is the period from 1992 to 2007, which 

forms a common window for all inventors under our study. Thus, most of the focal inventors face a 

common external environment in terms of market demand and technological opportunities10. Finally, 

                                                      
7 The IIP patent database is provided by the Institute of Intellectual Property (IIP). This database includes bibliographic 
information on patents applied for at the Japan Patent Office. The database was first described by Goto and Motohashi 
(2007) and has been updated almost yearly by the IIP. The version we use in the study includes patent applications up 
to 2014. 
8 We use the 2002 edition of the database provided by Nippon Telegraph and Telephone Corporation (NTT). 
9 This database is available at: www.alife-lab.co.jp/patdb/construction.html. 
10 A large majority (around 80%) of the inventors entered the labor market before the window period. Even if we use a 
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since the length of experience varies according to the cohort year, we control for cohort year effects 

by cohort dummies. 

We obtain data on the unemployment rate of new graduate students from the School Basic 

Survey (SBS), which provides official statistics compiled by the ministry of education, culture, sports, 

science and technology. The survey gathers information annually on new graduate students from all 

universities in Japan, including the number of students who obtain jobs by their graduation date and 

the overall number of graduates11. The SBS defines unemployed college graduates as those who are 

neither employed nor self-employed and do not go to graduate school when they graduate from college. 

Using the survey results, we calculate the unemployment rate of college students in a given year and 

in the relevant academic subject field for each focal inventor. The denominator is all graduates minus 

those students who had jobs before graduation. 

 

 

4. Empirical strategy 

4.1 Basic specification 

To examine the effect of higher education on patent performance, we estimate the following regression 

model: 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  𝑜𝑜𝑜𝑜 𝐾𝐾𝐾𝐾𝑜𝑜𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑠𝑠𝑜𝑜𝑠𝑠𝑜𝑜𝑠𝑠𝐾𝐾𝑖𝑖 = 𝛼𝛼0 + 𝛼𝛼1𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝐸𝐸𝐸𝐸𝐸𝐸𝑜𝑜𝐾𝐾 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐾𝐾𝑎𝑎𝐾𝐾𝐾𝐾𝐸𝐸𝑠𝑠𝑖𝑖 + 𝛿𝛿′𝑍𝑍𝑖𝑖 + 𝜀𝜀𝑖𝑖      (1)                        

 

We regress patent output and knowledge source indicators of inventor i on our education 

variable and other control variables. To measure inventive outputs, we employ three indicators: 

forward citation weighted patent counts, the number of patent applications, and their generality. The 

number of forward citations received is a standard inventive quality indicator for inventive outputs 

(Hall, Jaffe and Trajtenberg 2005; Haroff, Scherer and Vopel 1999). To cope with a truncation problem 

in that more recent patents are systematically less cited, because the number of potential patents that 

may cite prior patents decreases due to the fact that they have not yet been applied for or published, 

we count citations within five years from the application. In addition, we introduce cohort dummies 

for inventors, as explained later. We calculate the logarithm of the total number of patent applications 

made between 1992 and 2007, weighted by the number of forward citations to capture inventive 

productivity. This provides a measure of each inventor’s life-cycle productivity that synthesizes both 

the quality and quantity of inventive performance. In contrast, the logarithm of the number of patent 

applications we use reflects inventive performance in term of quantity12.  

                                                      
subsample that excludes those inventors who entered the market after 1992, the basic results of our econometric analysis 
do not change (details available on request).  
11 The response rate of the survey is 100%. These data cover all college graduates in Japan. 
12 Using a fixed window for all inventors may result in underestimating these two performance measures for those 
inventors with graduate degrees, because they tend to work longer as inventors. In fact, the average length of the 
inventive career (the duration from the first year of invention to the last observed year of invention) for our sample 
inventors is 17.7 years for inventors with bachelor’s degrees, 18.1 years for those with master’s degrees, and 18.3 years 
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The generality variable we use is the variable obtained by squaring the share of forward 

citations made by patents across diversified technological areas in the total number of forward citations, 

then summing the resulting numbers (i.e., obtaining the Herfindahl index) and finally subtracting this 

sum from one, first introduced by Trajtenberg, Jaffe and Henderson (1997). We use the International 

Patent Classification (IPC) subclass classification to capture technological areas. This variable 

becomes low if the citations for the patent come from narrow technological areas. A higher generality 

score shows that a patent had a broader impact on subsequent inventive activities.  

We define the following three variables to capture the scope of knowledge source indicators: 

the ratio of patents citing non-patent literature, the originality, and the self-citation rate. We first 

calculate the ratio of the number of patents citing non-patent literature to the number of patents. A 

significant number of inventors cite non-patent literature in their patent documents to clarify their 

inventions. This literature almost entirely comprises scientific journals (Narin, Hamilton and Olivastro 

1997; Meyer 2000; Tamada et al. 2006). If highly educated inventors have more capability to absorb 

scientific knowledge for their inventive activities, they will cite more scientific literature in their 

patents than others. One of the important roles of higher education is to develop the capability of the 

students to understand scientific advances, and the cutting edge of such knowledge is generally 

embodied in the scientific literature. We argue that non-patent literature cited in a patent is one 

appropriate indicator to measure the outcome of higher education attainments13. 

The originality is calculated by the same procedure as for the generality indicator, but using 

backward citations. This index is low if a patent mostly cites patent literature in the same technological 

area and is high in cases where a patent cites prior patent literature across many technological areas. 

This variable is often used to measure the extent of recombination of knowledge across different 

technology domains. If highly educated inventors obtain knowledge from broader technological areas, 

educational attainment will be positively associated with this variable. 

We use the external citations per patent to capture utilization by the focal inventor of the 

relevant knowledge held by external inventors during the inventive process. Allen (1984) emphasized 

that researchers often gain information by communicating with external researchers. This variable 

captures these absorptions of external knowledge. We calculate it as the number of citations made to 

patents of other companies relative to all citations. Thus, if inventors cite more external patents in their 

patents, this indicator becomes high and vice versa.  

We use two education attainment variables in equation (1). One is to count formal education 

years above college for each degree; a master’s course is two years and a PhD course is five years. 

The baseline is a bachelor’s degree. We further use a master’s degree or higher dummy, which has the 

value one if the inventor attends master’s or PhD programs, otherwise zero. This variable captures the 

                                                      
for those with PhDs, if we do not impose the window (1992 to 2007). As is shown in Table A1, these values decline to 
13.7 years, 13.5, years, and 12.7 years respectively once we impose the window. However, the effects are not so large, 
although a bias from this source works against us finding the positive effects of graduate education on inventive 
performance. 
13 However, since this measure varies by technological area, we will control for major technology areas. 
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average effect of advanced degrees. 

We use the following covariates to control for spurious correlations between inventive 

performance and level of education. First, we use cohort dummies based on the first year of 

employment, to control for experience effects on inventive performance as well as truncation effects 

of forward citations. This also controls for variations in general economic conditions for inventive 

activities across cohorts of inventors. Further, we use a female dummy that is set to one if an inventor 

is female, otherwise zero. Finally, we also use six major technological area dummies, based on the 

focal patents in the survey in the estimations, to control for the effects of the variations of technological 

opportunities on incentives for higher education, as well as on the propensity to cite scientific literature. 

The importance of scientific knowledge as a source of invention is different across technological areas; 

for example, scientific journals are more important in life sciences than in mechanical areas, and the 

probability of an inventor acquiring graduate degrees is also higher in the former area. 

 

4.2 Identification 

Since students with high innate ability are more likely to gain from higher education, they are more 

likely to pursue graduate education. If this is the case, the positive association between education and 

inventive productivity may not come from education, but from ability. This endogenous choice 

problem will distort the OLS estimator for equation (1). To obtain a consistent estimator, the 

instrumental variable approach is appropriate. As we have discussed above, we use the unemployment 

rate of college graduates in academic subject j in year t as an instrument, as shown in the following 

first stage equation: 

 
𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝐸𝐸𝐸𝐸𝐸𝐸𝑜𝑜𝐾𝐾 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐾𝐾𝑎𝑎𝐾𝐾𝐾𝐾𝐸𝐸𝑠𝑠𝑖𝑖 = 𝛾𝛾0 + 𝛾𝛾1𝑈𝑈𝐾𝐾𝐾𝐾𝑎𝑎𝑈𝑈𝐾𝐾𝑜𝑜𝑈𝑈𝑎𝑎𝐾𝐾𝐾𝐾𝐸𝐸 𝑜𝑜𝐸𝐸𝐸𝐸𝐾𝐾 𝑜𝑜𝑜𝑜 𝐸𝐸ℎ𝐾𝐾 𝑠𝑠𝑜𝑜𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝐾𝐾𝑜𝑜𝐸𝐸𝐸𝐸𝑠𝑠𝐸𝐸𝐸𝐸𝐾𝐾𝑠𝑠𝑗𝑗𝑗𝑗 

+𝛿𝛿′𝑍𝑍𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑗𝑗𝑗𝑗                                 (2) 

 

We use 33 academic subjects as j14, belonging to four major academic subjects (engineering, natural 

science, health science and agriculture) and others15. The students’ decision year as t is given by the 

year when the focal inventor is 21 years old. We assume that college students decide to go to graduate 

school or enter the labor market at the age of 21 years, when typical college students have one year 

before their college graduations. In other words, we assume that the students forecast the next year’s 

labor market based on the current market situation. This seem a very reasonable assumption in Japan, 

because the majority of students enter the university at 18 years of age and graduate when they are 22 

years old16. Further, since entrance examinations for graduate schools take place in the first half of the 

                                                      
14 The list of subjects and the sample are presented in Table A2; 98.8% of inventors are from four major academic 
subjects in the sample.  
15 The unemployment rate for each academic subject is an aggregated rate for all universities (the SBS does not provide 
data at university level). This is suitable as an instrument that is supposed to measure overall labor market conditions.  
16 For example, more than 94% students who enrolled at universities in 1980 (the middle generation of our sample) 
graduated high school in 1980 or 1979, and 86% of them graduated four years later, according to the SBS. That is, 
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graduation year, they need to choose before the last year of graduation. Thus, our assumption seems 

reasonable under the Japanese education system.  

The instrument for education attainment must satisfy the two conditions that it is correlated 

with education, while being uncorrelated with the error terms of the second-stage equation for 

inventive performance and knowledge combination. Intuitively, the labor market conditions of an 

inventor in the decision year affect the student’s choice on whether to enter the labor market or to go 

to a graduate school; and previous studies empirically confirm this relationship (Bedard and Herman 

2006; Johnson 2013; Kondo 2007; Shu et al. 2012). In addition, we have designed the dataset and its 

specification so that we can assume that the labor market situation that students encountered at 21 

years of age affects future inventive activities only through the students’ education choice (exclusion 

restriction). First, it is important to note that the unemployment rates used as instruments are for 

college graduates who are one year older than those in our sample; since the Japanese education system 

does not have any grade-skipping programs, the instrument is not affected by our sample inventors’ 

behavior.  

One potential threat to this assumption is that the unemployment rate of college graduates 

from a given academic subject may be correlated with the students’ ability in studying this subject or 

with future technological opportunities generated from scientific advances in that academic area. For 

an example, an academic subject experiencing rapid scientific progress may attract capable students 

or may provide education that would enable the exploitation of greater technological opportunities in 

the future. While college students are more likely to pursue graduate degrees in such academic subjects, 

unemployment may also be high due to the lag between scientific advances and industrial investment. 

In this case, a high unemployment rate may be correlated with high future inventive activities through 

inventor ability or future technological opportunities. To control for such correlations between labor 

market conditions and inventor ability across academic subjects, we normalized the unemployment 
variable using the average 𝜇𝜇𝑗𝑗 and standard deviation 𝜎𝜎𝑗𝑗 for unemployment rate in each subject j as 

follows:  

 
𝑁𝑁𝑜𝑜𝑜𝑜𝑎𝑎𝐸𝐸𝐾𝐾𝐸𝐸𝑁𝑁𝐾𝐾𝐸𝐸 𝑠𝑠𝐾𝐾𝐾𝐾𝑎𝑎𝑈𝑈𝐾𝐾𝑜𝑜𝑈𝑈𝑎𝑎𝐾𝐾𝐾𝐾𝐸𝐸 𝑜𝑜𝐸𝐸𝐸𝐸𝐾𝐾 𝑜𝑜𝑜𝑜 𝐸𝐸ℎ𝐾𝐾 𝐾𝐾𝑜𝑜𝐸𝐸𝐸𝐸𝑠𝑠𝐸𝐸𝐸𝐸𝐾𝐾𝑠𝑠𝑗𝑗𝑗𝑗 =

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑗𝑗 𝑟𝑟𝑟𝑟𝑗𝑗𝑈𝑈 𝑈𝑈𝑜𝑜 𝑗𝑗ℎ𝑈𝑈 𝑔𝑔𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝑟𝑟𝑗𝑗𝑈𝑈𝑔𝑔𝑗𝑗𝑗𝑗−𝜇𝜇𝑗𝑗
𝜎𝜎𝑗𝑗

      (3) 

 

The instrument for education for each academic subject thus has a standardized variation across years 

after controlling for the average level of unemployment rate of each academic field. In addition to 

normalization, we introduce a trend for each academic subject and also substitute the instruments 

based on academic subjects by those based on regional variations in our robustness analysis (section 

5.3). 

                                                      
almost all high school students go to college immediately after graduation, and most of them graduate college in four 
years. 
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The second potential source of correlations between the labor market situation that students 

encounter before graduation and future inventive activities is that companies might hire graduates of 

higher ability in a recession, or students with higher ability may be more able to find new inventor 

jobs under the bad economy, if hiring is limited. If the inventors who graduated during the recession 

were positively selected above the others, they would be more productive even if they did not attend 

graduate school; this will bring an upward bias in the IV estimation. On the other hand, if hiring 

practice for researchers is stable across business cycles, or if there exists significant ex-post mobility 

of workers across jobs, the number and the ability of the inventors who have college degrees could be 

independent on the labor market situation at their graduation. Focusing on this issue, Shu et al. (2012) 

use data on MIT students to show that the unemployment rate at graduation does not affect whether a 

graduate ultimately becomes an inventor or not; and this rate affects future inventive outputs only 

through human capital accumulation. 

To assess this possibility in Japan, we regressed the number of inventors aggregated for each 

cohort of college graduates on the unemployment rate in the year preceding graduation. The 

estimations additionally include the time trend and its square to control for the variation of population 

size in each cohort. We also include academic field dummies to control for inherent differences in the 

numbers of inventors across fields. The results are presented in Table A3. We do not find any 

significant correlation between the two variables 17 . This also verifies that recession in the year 

preceding graduation does not affect students’ long-run probability of ultimately becoming an inventor 

in Japan, consistent with the results of Shu et al. (2012). Furthermore, to assess the average quality of 

inventors with only a bachelor’s degree across economic conditions in Japan18, we estimated a reduced 

form regression for the invention performance of inventors with bachelor’s degrees in the sample. If 

college graduates with higher capability tend to become inventors during recessions, the 

unemployment rate of college students should be positively associated with the absorption of broader 

knowledge sources and patent productivity. We do not find such correlations, as will be reported in 

Table 9 in section 5.3.  

Finally, it is important to note that the estimator of our IV method is best interpreted as the 

local average treatment effect (LATE) rather than the average treatment effect (ATE), as suggested by 

Imbens and Angrist (1994), because the impact of the unemployment rate of college graduates on 

attainment of advanced education is likely to be heterogeneous across them. That is, our estimator for 

graduate education presents the average effect for the compliers who reacted to the labor market 

condition, and otherwise, they had chosen to enter the labor market.  

Tables 1 and 2 show the summary statistics and the correlation matrix between major 

variables, respectively. 

                                                      
17 We use all respondents of the RIETI inventor survey, rather than the estimation sample, to count the number of 
inventors in each year and field. 
18 This concern is important in Japan too, since existing studies find that recession has long-term effects on the careers 
of such graduates in Japan (Kondo 2007; Genda, Kondo and Ohta 2010). 
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5. Results 

5.1 Inventive performance 

Table 3 reports the results of OLS and IV estimations for inventive outputs across educational 

attainments, controlling for the cohort dummies (the employment year dummies) and six major 

technological area dummies. We use two education level indicators (one for graduate education years 

and another for master’s degree or higher), and three dependent variables (the number of patents 

weighted by the number of forward citations, the number of patent applications, and the generality 

indicator) to capture the potential impacts of variations in education attainment on inventive 

performance. In the OLS estimation, the two education variables are all strongly significant and 

positive for these three dependent variables in columns (1), (3), (5), (7), (9), and (11).  

As we explained above, these estimated coefficients will be biased by the inventors’ own 

choices with respect to their level of education, although we can still use these results as benchmarks 

for assessing the selection bias in the OLS regression. Our instrument for education attainment will 

overcome the endogenous selection problem of education. Table 4 shows the results of the first stage 

of the instrumental variable estimation. The dependent variables are the two education indicators. The 

normalized unemployment rate of college graduates is positively correlated with higher education 

attainment in columns (1) and (2), indicating that when students perceive that many senior students 

cannot find jobs by their graduation, they tend to choose graduate education programs. These results 

strongly support our prediction that college graduates avoid entering the job market during a recession. 

One major concern in IV methods is a weak instrument problem. In order to confirm whether the weak 

instrument problem is serious or not, we also show the F statistics testing for weak instruments. The 

F statistics are 40.9 for education year and 33.2 for master’s degree or higher dummy, showing that 

the weak instrument problem is not serious in the estimations. Overall, we do not have to be concerned 

about weak instruments.  

The results for the second stages of the scope of knowledge sources are shown in columns 

(2), (4), (6), (8), (10), and (12) of Table 3. The first stages of the estimation are equivalent to the results 

of Table 4. The coefficients for the education year and master’s degree or higher dummy are all positive 

and strongly significant for forward citation weighted patent counts and the number of patent 

applications in columns (2), (4), (6), and (8). This indicates that highly educated inventors have higher 

patent productivity in terms of both simple patent counts and quality-adjusted patent counts, even after 

controlling for endogeneity issues. Further, education variables are also significantly positive for 

generality in columns (10) and (12), indicating that inventors with higher education degrees affect 

broader technological domains through knowledge spillover than do inventors with lower educational 

attainments.  

Interestingly, the comparison between OLS and IV estimations in Table 3 shows that the 

coefficients for education year and master’s degree and higher dummies in the IV estimations are 
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slightly higher than those in the OLS estimations. This is similar to a finding in a study regarding the 

choice of going to college in Finland reported by Toivanen and Väänänen (2016), who focused on the 

differences between inventors with high school or less education and those with university degrees, 

although the negative selection in our estimations is much smaller than in their results and perhaps 

more plausible19. They interpret a negative selection bias in OLS estimations as indicating that “those 

who have a high innate propensity for invention have a lower propensity to study at a technical 

university.” Our explanation of such negative selection for graduate education by corporate inventors 

with ability is as follows. We ordinarily expect positive selection (students with higher innate 

capability will choose graduate education), since such students can gain more from graduate education. 

However, this scenario may only hold for undergraduate students who wish to pursue academic careers. 

Our sample does not cover these students. The best undergraduate students who intend to pursue 

industrial research careers may wish to find jobs in private firms immediately after college graduation. 

Japanese companies mainly recruited college graduates even as corporate researchers until 1990s. 

Large private companies in Japan often provide more excellent environments for researchers in terms 

of budgets and apparatus than do universities. They also often encourage excellent young corporate 

researchers to obtain PhDs based on work done in the firms20. In this situation, students with better 

capability may have found good industrial research jobs upon college graduation, while less capable 

students may have tended to choose to go to graduate school, bringing a negative selection bias in the 

OLS regression for corporate researchers.  

 Interestingly, students who chose to go to graduate school during recessions are likely to 

have somewhat weaker intrinsic motivation for science than others. Table A4 shows the results using 

the strength of their scientific motivation for their focal patents as the dependent variable in the IV 

estimation. Since the RIETI Inventor Survey provides information about their motives for initiating 

research projects, in the form of a five-point Likert scale for Scientific motivation behind the focal 

patent, we constructed a dummy variable such that if inventor chose “very highly motivated” or 

“highly motivated,” the variable is set to one, otherwise to zero. The education variables are positive 

and highly significant for this dummy variable in the OLS estimations. In contrast, these variables are 

no longer significant in the IV estimations. This shows that the inventors who went to graduate school 

due to recession have lower scientific motivation than the others. These results provide support for the 

findings of Roach and Sauermann (2010) that PhD holders with a weak taste for science tend to choose 

careers in industry. This suggests that students with high innate ability, but a lower taste for science, 

went to graduate school during the recession. 

 

5.2 Scope of knowledge sources and the first-stage estimations 

                                                      
19 Toivanen and Väänänen (2016) find an increase of between two and three times for the university degree dummy in 
IV estimations compared with the results of OLS estimations. 
20 Onishi and Nagaoka (2012) find that PhD holders who obtained their degree only by dissertation have similar patent 
productivity to formal PhDs over the inventors’ life-cycle perspective in Japan. 
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Next, we examine the effect of education attainment on the scope of knowledge sources exploited in 

inventive activities. Table 5 reports the results for three knowledge exploitation indicators (the ratio of 

patents citing non-patent literature, the originality indicator, and the non-self-citation rate), using both 

OLS and IV estimations. The two education variables are all positive and highly significant for patents 

citing non-patent literature ratio in columns (1)–(4). This shows that inventors with higher degrees 

exploit the scientific literature significantly more for its inventive qualities, thanks in causal terms to 

higher education. Further, the education variables are also significantly positive for originality (more 

diverse combinations of knowledge embodied in patent literature) in columns (5)–(8), showing that 

highly educated inventors exploit knowledge from broader technological domains than do less 

educated ones. In contrast, while the non-self-citation rate is positively associated with all education 

attainments in OLS estimation, this variable become insignificant in IV estimation. We do not find 

that inventors with higher degrees adopt outside knowledge more than inside knowledge. Taken 

together, inventors with more than bachelor’s degrees are more likely to combine scientific and 

technological knowledge from broader sources in their inventive processes, even after controlling for 

the selection bias.  

 We also find that the coefficients for education in IV are much higher than those in OLS 

estimations, showing that over the entire business cycle, inventors attaining advanced education due 

to weak labor market conditions exploit broader external knowledge (more scientific knowledge and 

broader technological knowledge) in their inventive processes than do average inventors who go to 

graduate school or PhD programs.  

 

5.3 Robustness check 

To assess the robustness of our findings, we conducted a number of robustness checks. One looks at 

the effects of variations of trends across academic subjects. The rate of unemployment for college 

students could be affected by long-term technological or industry trends, rather than temporary 

business shocks. Technologically stagnant academic fields or academic sectors catering for declining 

industries attract less capable students, while college graduates from such sectors tend to have high 

unemployment. Thus, variations in such trends can drive both the variations in unemployment rate of 

college graduates and the inventive performance of inventors across academic subjects, irrespective 

of the level of graduate education. This results in spurious correlations between IVs and the error terms 

in equation (1). To cope with this concern, we added time trends for each subject to equation (1) with 

IVs in Table 6. The results are very similar to those in Tables 3 and 5. Interestingly, the non-self-

citation rate turns to be significant and positive in columns (11) and (12) in Table 6. 

 Further, we also use the active job opening ratio at the regional level as an instrument. The 

job opening ratios in the regions are obtained from the report of the Employment Service Agency21. 

Our data are obtained from 47 regions in Japan. We normalize these by subtracting the average job 

                                                      
21 Our sample becomes small since we do not find old data on job opening ratios at regional level.  
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opening ratio in each region from the variable and dividing the values by their standard deviation. This 

process controls for time-invariant heterogeneity across regions. In the first stages, the local job 

opening ratios are all significant and negative for education variables, as reported in Table 7. A 

recession at the local level affects undergraduates’ educational choices. Further, F statistics against 

weak instruments are high in two estimations (education year: 27.4, and master’s degree and higher: 

32.6). Table 8 shows the results in the second stages. The results remain similar to those in Tables 3 

and 5. These results confirm that a recession affects graduates’ choices for educational attainment, and 

their education level also affects their future invention productivity and their knowledge sources. 

Finally, the unemployment rate of college graduates may be directly associated with patent 

outputs, because only students with high innate ability can obtain jobs as inventors during a recession, 

and this may create an upward bias for the coefficients of education variables in IV estimations. To 

examine whether superior students selectively become inventors in a bad economy, we estimate a 

reduced form of equations (1) and (2), using only the sample of inventors with bachelor’s degrees. If 

better undergraduates become inventors during a recession, the unemployment rate of college 

graduates will become significant and positive in such estimations. As shown in Table 9, the 

coefficients for the unemployment rate are small and insignificant. This shows that unemployment 

rate is not directly associated with patent outputs and knowledge utilization of these inventors with 

bachelor’s degrees as final degrees. That is, the average quality of college graduates in recessions is 

not different to that in other periods. 

 

 

6. Conclusion 

This paper investigated the effects of graduate education on the absorption of a diverse range of 

knowledge sources and on inventive performance, using inventor life-cycle data. To control for the 

endogeneity of educational attainments, we use the unemployment rate of college graduates in the year 

prior to that of graduation in their academic subjects as an instrument. Our estimation results show 

that a higher unemployment rate at that time and in a given academic field significantly increases the 

probability of inventors choosing to graduate school, including PhD programs. In particular, university 

students tend to go to graduate education during a recession. We find that the inventive productivities 

of inventors with higher graduate education induced by this instrument are higher than those with less 

education, in terms of both simple and quality-adjusted patent counts; and highly educated inventors 

also tend to affect sequential inventions in broader technological areas. We further find that these 

inventors cite a wider range of scientific literature and more diverse fields of prior patents. These 

findings are robust to the replacement of instruments based on variations among academic fields by 

those based on regional variations. 

These results suggest that a policy encouraging students to go to a graduate school in science 

and engineering seems to play a significant role as an innovation policy. It genuinely enhances 

invention performance; it also enhances the absorptive capability of a firm for handling scientific 
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knowledge and broader technical information. In fact, the positive association between higher 

educational attainment and higher productivity and knowledge exploitation understates the genuine 

contribution of advanced degrees, given the negative selection effects. This evidence supports the 

recent trend of expanding higher education programs in many countries. This trend will accelerate 

economic growth in the long run. 

Interestingly, our results show that the recession gives students an opportunity to accumulate 

new knowledge. Our results depend on the decisions of students to put off entering the labor market 

during times of recession, in order to wait for better labor market conditions. The results indicate that 

inventors who chose graduate school even for such reasons become high performers on average in the 

inventive process. Given such an educational effect on inventive outcomes and negative selection, a 

recession contributes to future innovative activities through more choices by capable students for 

higher education. While Shu et al. (2012) have empirically shown the possibility of this recession 

effect, using unique data, our results improve our understanding of the process in terms of both 

causality and detailed knowledge production mechanisms, using an economy-wide sample. The 

findings of our study indicate that graduate education will enhance inventive productivity more 

effectively than will internal company training systems such as on-the-job training, partly because 

highly educated inventors have higher absorptive ability to obtain broader knowledge. This also offers 

new evidence to guide firm innovation strategy. Our results suggest that hiring researchers with 

advanced graduate degrees leads to strengthening the corporate ability to absorb broader scientific and 

technical knowledge. This will contribute to enhancing absorptive capacity to maintain a competitive 

advantage at firm level. 
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Table 1 Summary statistics 

 
 

 

Table 2 The correlation matrix 

 
 

 

 

  

Mean Std. Dev. Min Max

Forward citation weighted patent counts 64.7 96.0 1 2006

The number of patent applications 39.3 46.0 1 606

Generality 0.1 0.1 0 0.4

Patents citing non-patent literature ratio 0.1 0.2 0 1

Originality 0.1 0.1 0 0.5

Non-self-citation rate 1.2 1.9 0 37.6

Education years 1.3 1.5 0 5

Master's degree or higher 0.5 0.5 0 1

Female 0.02 0.1 0 1

Normalized unemployment rate of college graduates -0.5 0.5 -1.8 2.5

Normalized local job open ratios 0.4 1.0 -1.5 3.0

Science motivation 0.6 0.5 0 1

a. b. c. d. e. f. g. h. i. j. k. l.

a. Forward citation weighted patent counts 1.00

b. The number of patent applications 0.83 1.00

c. Generality 0.46 0.41 1.00

d. Patents citing non-patent literature ratio 0.14 0.05 0.17 1.00

e. Originality 0.44 0.33 0.56 0.33 1.00

f. Non-self-citation rate 0.40 0.16 0.26 0.33 0.60 1.00

g. Education years 0.09 0.07 0.16 0.44 0.21 0.16 1.00

h. Master's degree or higher 0.12 0.08 0.16 0.37 0.23 0.19 0.85 1.00

i. Female -0.01 -0.02 0.02 0.05 0.02 0.04 -0.01 -0.02 1.00

j. Normalized unemployment rate of college graduates 0.08 0.08 0.03 0.08 0.06 0.03 0.09 0.04 -0.07 1.00

k. Normalized local job opening ratios -0.06 -0.09 -0.04 -0.01 -0.04 -0.01 -0.01 0.01 0.09 -0.47 1.00

l. Science motivation 0.05 0.05 0.11 0.14 0.10 0.05 0.13 0.09 -0.01 0.03 -0.03 1.0
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Table 3 The OLS and IV estimations for the inventive performance  

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

OLS IV OLS IV OLS IV OLS IV OLS IV OLS IV

1.320** 1.571** 1.031** 1.339*** 0.006*** 0.006**
(0.387) (0.616) (0.331) (0.468) (0.001) (0.003)

4.050** 5.496** 3.135** 4.683*** 0.016*** 0.022**
(1.117) (2.335) (0.952) (1.709) (0.004) (0.010)

0.224 0.270 0.442 0.608 -0.184 -0.128 -0.018 0.160 0.011 0.011* 0.011* 0.012**
(2.011) (1.739) (1.908) (1.544) (1.467) (1.279) (1.399) (1.164) (0.006) (0.006) (0.005) (0.006)

13.467*** 5.266*** 13.026*** 5.129** 11.063*** 4.505*** 10.740*** 4.388*** 0.058*** 0.014** 0.059*** 0.013**
(0.731) (1.982) (0.806) (2.012) (0.622) (1.587) (0.684) (1.605) (0.002) (0.006) (0.003) (0.006)

Cohort dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Technological area dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Adj.R 2 0.062 0.063 0.058 0.059 0.066 0.058

F statistics 40.94 33.18 40.94 33.18 40.94 33.18

Observations             2308 2308 2308 2308 2308 2308 2308 2308 2308 2308 2308 2308

* p<0.1, ** p<0.05, *** p<0.01

Standard errors are clustered by 6 technological areas in parentheses. First stages of each estimation are in Table 4.

Female

Constant

Education years

Master's degree or higher

Forward citation weighted patent counts The number of patent applications Generality
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Table 4 The result of first-stage estimations 

   

 

 

(1) (2)

Education
years MD or higher

0.507*** 0.145***
(0.079) (0.025)

-0.137 -0.101
(0.124) (0.095)

0.829** 0.262**
(0.326) (0.119)

Cohort dummies Yes Yes

Technological area dummies Yes Yes

F statistics 40.94 33.18

Observations             2308 2308

Standard errors are clustered by 6 technological areas in parentheses.

* p<0.1, ** p<0.05, *** p<0.01

Female

Normalized unemployment rate
of college graduates

Constant
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Table 5 The OLS and IV estimations for the scope of knowledge sources 

    
 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

OLS IV OLS IV OLS IV OLS IV OLS IV OLS IV

0.057*** 0.103*** 0.009*** 0.017*** 0.146** 0.253
(0.005) (0.032) (0.002) (0.004) (0.048) (0.154)

0.134*** 0.362*** 0.028*** 0.060*** 0.595** 0.884
(0.018) (0.131) (0.007) (0.018) (0.174) (0.645)

0.079* 0.087*** 0.083** 0.109*** 0.005 0.007 0.007 0.010 0.347 0.367 0.389 0.422
(0.031) (0.031) (0.026) (0.036) (0.012) (0.011) (0.011) (0.009) (0.537) (0.456) (0.504) (0.396)

0.145*** 0.280** 0.156*** 0.271** 0.076*** 0.022 0.072*** 0.021 1.785*** 1.120*** 1.629*** 1.098***
(0.008) (0.125) (0.013) (0.125) (0.004) (0.013) (0.005) (0.014) (0.109) (0.046) (0.133) (0.068)

Cohort dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Technological area dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Adj.R                    0.271 0.222 0.128 0.132 0.070 0.080

F statistics 40.94 33.18 40.94 33.18 33.18 0.222

Observations             2308 2308 2308 2308 2308 2308 2308 2308 2308 2308 2308 2308

* p<0.1, ** p<0.05, *** p<0.01

Patents citing non-patent literature ratio Originality Non-self-citation rate

Female

Constant

Standard errors are clustered by 6 technological areas in parentheses. First stages of each estimation are in Table 4.

Master's degree or higher

Education years
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Table 6 The IV estimations with time trends across academic subjects 

 

 
  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

2.812*** 1.034** 0.011*** 0.115*** 0.026*** 0.465**
(0.450) (0.328) (0.004) (0.027) (0.005) (0.187)

3.873** 7.138*** 0.015*** 0.361*** 0.081*** 1.455**
(1.116) (1.154) (0.004) (0.100) (0.021) (0.699)

0.086 0.066 -0.432 0.503 0.007 0.007 0.070** 0.103** 0.001 0.008 0.131 0.262
(1.964) (2.165) (1.684) (1.546) (0.007) (0.007) (0.035) (0.045) (0.010) (0.012) (0.334) (0.304)

4.710*** 12.152*** 10.240*** 4.134*** 0.010*** 0.051*** 0.267* 0.268** 0.013*** 0.013** 0.908*** 0.909***
(1.272) (0.767) (0.577) (1.272) (0.002) (0.004) (0.137) (0.129) (0.004) (0.006) (0.251) (0.220)

Cohort dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Technological area dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Academic subject time trends Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

                 

F statistics 41.61 30.93 41.61 30.93 41.61 30.93 41.61 30.93 41.61 30.93 41.61 30.93

Observations             2308 2308 2308 2308 2308 2308 2308 2308 2308 2308 2308 2308

Standard errors are clustered by 6 technological areas in parentheses.

* p<0.1, ** p<0.05, *** p<0.01

The number of patent
applications Generality

Patents citing non-patent
literature ratio Originality Non-self-citation rate

Education years

Master's degree or higher

Female

Constant

Forward citation weighted
patent counts
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Table 7 The result of first-stage estimations using local job opening ratios as an instrument 

  

 

 

(1) (2)

Education
years MD or higher

-0.264*** -0.092***
(0.050) (0.016)

-0.163 -0.093
(0.132) (0.095)

0.710*** 0.273***
(0.010) (0.005)

Cohort dummies Yes Yes

Technological area dummies Yes Yes

F statistics 27.39 32.58

Observations             2011 2011

Standard errors are clustered by 6 technological areas in parentheses.

* p<0.1, ** p<0.05, *** p<0.01

Normalized local job opening
ratios

Female

Constant
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Table 8 The IV estimations with local job opening ratios as an instrument  

 

  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

1.854** 1.693** 0.010*** 0.106*** 0.017*** 0.192
(0.926) (0.811) (0.004) (0.020) (0.006) (0.240)

5.326* 4.865** 0.030*** 0.305*** 0.048*** 0.553
(2.718) (2.414) (0.010) (0.064) (0.018) (0.679)

0.221 0.416 -0.085 0.092 0.011* 0.012** 0.091*** 0.102*** 0.006 0.008 0.378 0.398
(1.828) (1.708) (1.300) (1.217) (0.006) (0.006) (0.034) (0.034) (0.012) (0.011) (0.556) (0.560)

2.460*** 2.321*** 1.783*** 1.656*** 0.014*** 0.014*** 0.094*** 0.086*** 0.038*** 0.037*** 0.946*** 0.932***
(0.623) (0.709) (0.545) (0.632) (0.003) (0.003) (0.014) (0.018) (0.004) (0.005) (0.183) (0.197)

Cohort dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Technological area dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

                 

F statistics 27.39 32.58 27.39 32.58 27.39 32.58 27.39 32.58 27.39 32.58 27.39 32.58

Observations             2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011

* p<0.1, ** p<0.05, *** p<0.01

Originality Non-self-citation rate

Standard errors are clustered by 6 technological areas in parentheses. First stages of each estimation are in Table 7.

Female

Constant

Forward citation
weighted patent counts

The number of patent
applications Generality

Education years

Master's degree or higher

Patents citing non-
patent literature ratio
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Table 9 The OLS results for reduced form estimations with inventors with bachelor’s degrees 

 

  

(1) (2) (3) (4) (5) (6)

Forward citation
weighted patent

counts

The number of
patent applications Generality

Patents citing non-
patent literature

ratio
Originality

Non-self-citation
rate

0.059 0.090 0.000 0.015 0.003 -0.018
(0.655) (0.531) (0.005) (0.016) (0.004) (0.127)

-0.380 -1.013 0.005 0.077 0.014 1.048
(3.242) (2.498) (0.010) (0.070) (0.026) (1.043)

16.307*** 13.179*** 0.071*** 0.286*** 0.107*** 2.441***
(0.302) (0.248) (0.003) (0.009) (0.002) (0.072)

Cohort dummies Yes Yes Yes Yes Yes Yes

Technological area dummies Yes Yes Yes Yes Yes Yes

                 

Adj.R 2 0.06 0.06 0.02 0.13 0.11 0.05

Observations             998 998 998 998 998 998

Standard errors are clustered by 6 technological areas in parentheses. The estimation sample is limited for BA holders.

* p<0.1, ** p<0.05, *** p<0.01

Normalized unemployment rate of
college graduates

Female

Constant
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Table A1 Summary statistics by education 

 

 

Table A2 Academic subjects 

  

N
Avereage

Patenting terms

Forward citation
weighted patent

counts

The number of
patent applications Generality

Patents citing non-
patent literature

ratio
Originality

Non-self-citation
rate

13.70 51.18 34.64 0.04 0.07 0.03 0.79
(2.38) (69.66) (44.09) (0.05) (0.13) (0.05) (1.01)

13.49 75.84 42.67 0.06 0.19 0.06 1.55
(2.44) (117.05) (47.31) (0.05) (0.23) (0.08) (2.43)

12.74 82.02 47.49 0.08 0.42 0.08 1.52
(2.85) (92.11) (47.51) (0.06) (0.30) (0.08) (1.93)

Standard deviation is in parentheses.

Bachelor's degree 1,093

Master's degree 1,016

PhD degree 199

Major academic subject Academic subject N

Engineering Mechanical Engineering 463

Applied Physics 77

Applied Chemistry 399

Metallurgical engineering 80

Management engineering 10

Nuclear Engineering 11

Craftsmanship 1

Aviation engineering 10

Mining studies 1

Textile engineering 23

Vessel engineering 11

Telecommunications Engineering 539

Civil engineering / construction engineering 16

Other engineering 238

Science Physics 99

Biology 15

Mathematics 12

Chemistry 130

Other science 34

Health science Pharmacy 21

Dentistry 2

Medicine 10

Other health science 2

Agriculture Agriculture 1

Agrochemical chemistry 37

Agricultural engineering 7

Forest Industry 22

Fisheries Science 5

Veterinary medicine / Animal husbandry 5

Others Other natural science 15

Commerce / Economics 2

Law / Political Science 4

Other Social science 6
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Table A3 The OLS results for determination of the number of sampled inventors 

  

 

  

The number of inventors

-0.66
(0.451)

150.20***
(28.689)

-0.04***
(0.007)

Academic field dummies Yes

                 

Adj.R 2 0.84

Observations             452

* p<0.1, ** p<0.05, *** p<0.01

Normalized unemployment rate of
college graduates

Time trend

Time trend^2

Robust standard errors are in parentheses. The number of
inventors is that they were 21 years old in year t and in academic
subject j .
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Table A4 The results for scientific motivation in the OLS and IV estimations 

  

 

(1) (2) (3) (4)

OLS IV OLS IV

0.038*** 0.022
(0.002) (0.038)

0.066*** 0.077
(0.011) (0.135)

-0.029 -0.032 -0.028 -0.027
(0.114) (0.104) (0.112) (0.100)

Cohort dummies Yes Yes Yes Yes

Graduation year dummies Yes Yes Yes Yes

                 

Adj.R 2 0.021 0.013

F statistics 49.89 38.57

Observations             2283 2283 2283 2283

Standard errors are clustered by 6 technological areas in parentheses.

* p<0.1, ** p<0.05, *** p<0.01

Female

Education years

Master's degree or higher

Scientific motivation dummy
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