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Abstract 
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linkages of price movements with business cycles and financial conditions. A statistical test 
identifies two significant eigenmodes with the largest and second largest eigenvalues. The 
lead-lag relations among domestic prices in the two modes are quite similar, indicating the 
individual prices behave in a collective way. However, the collective motion of prices is 
driven differently, namely, by the exchange rate at the upper stream side in the first mode 
and domestic demand at the lower stream side in the second mode. In contrast, the monetary 
variables play no important role in the two modes. 
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I. Introduction

The economy should be regarded as a system of closely interrelated components. This
is a fundamental idea of complexity science which was established in early 1980’s.
In economics, however, such a view is traced back to Alfred Marshall more than a
century ago, who appealed “The Mecca of the economist lies in economic biology
rather than in economic dynamics”. A living body is a typical example of complex
systems. Mutual interactions of microscopic elements give rise to completely new
phenomena such as collective motion of the components at a macroscopic scale; for
instance, life is an outcome of coherent behavior of molecules. Microeconomics and
macroeconomics had been standing in parallel as two independent disciplines. These
days, however, macroeconomics is absorbed into microeconomics. This is because
macroeconomics is lacking concrete empirical evidences which approve its necessity.

Very recently, an empirical analysis of individual prices of goods and services for
Japan has been carried out (Yoshikawa et al., 2015). The frequency of individual
price changes and synchronization are not constant but instead are time-varying,
while the existing literature (see Klenow and Malin (2010) and references therein)
routinely assumes otherwise. Moreover, they change in clusters, not simultaneously
in the economy as a whole. According to the current standard theory, for instance,
changes in money, supposedly the most important macro disturbance, would affect
all prices more or less uniformly (Klenow and Malin, 2010). We thus recognize a
significant gap between observed facts and theory. Furthermore, examination of
the autocorrelations of individual prices reveals the importance of interdependence
of individual prices with lead-lag relations; prices do not move independently each
other.

The Phillips curve is the earliest empirical indication of a close relationship be-
tween aggregated price dynamics (as measured by inflation rate) and economic con-
ditions (as measured by unemployment rate). It is an urgent issue for the Japanese
economy how to get rid of the long-standing deflation. The Bank of Japan (BOJ)
is drastically increasing the supply of money with inflation targetting. However, no
one has a conclusive answer to the question, which comes first inflation/deflation or
economic growth/recession? The BOJ expects inflation is ahead of economic growth.
We will answer the question by an empirical analysis, which confirms that individual
prices move in a coherent fashion with definite lead/lag relations and elucidates how
business cycles are linked dynamically to the collective motion of prices.

In recent years, some of physicists have paid attention to socioeconomic phenom-
ena. Rapid development of computers and advancement of information processing
technology made it possible to obtain a variety of economic data in large quantities.
The principal component analysis (PCA) and the random matrix theory (RMT) was
successfully combined to detect correlations hidden in multivariate time series data
(Laloux et al., 1999; Plerou et al., 2002; Utsugi et al., 2004; Kwapien and Drozdz,
2012). The RMT serves as a theoretically sound criterion to determine if eigenmodes
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of the correlation matrix are statistically significant; this is the critical issue that the
PCA always encounters. However, the PCA assisted by the RMT is not so capable of
extracting correlation structures with lead/lag relations, because it totally depends
on correlations at equal time. Correlations between time series data are not always
present in a simultaneous manner.

In order to explore dynamic correlations in climate data, the complex Hilbert
principal component analysis (CHPCA) was developed by meteorologists (Horel,
1984; Barnett, 1983; Stein et al., 2011). The CHPCA is based on complexification
of real data using the Hilbert transformation. Lead/lag relations in original data are
manifested in a form of instantaneous phases of the complex time series thus con-
structed. Recently, the RMT has been extended so that it works as a null hypothesis
for the CHPCA. If time series data have appreciable autocorrelations, however, the
RMT criterion tends to predict more significant modes than it should do. This is
because autocorrelations deceive us by giving rise to spurious cross-correlations for
time series of finite length, especially in the case that their length is comparable with
the number of species of data. To overcome such limitation of the RMT, the rota-
tional random shuffling (RRS) method (Iyetomi et al., 2011a) was devised. This is a
numerical method which destroys cross-correlations with autocorrelations preserved
in time series data. Recently, the CHPCA assisted by the RMT or the RRS has been
applied to various multivariate data such as stock market data (Arai et al., 2013)
and world-wide financial data of markets and currencies (Vodenska et al., 2016),

The aforementioned study by Yoshikawa et al. (2015) also took advantage of the
state-of-the-art methodology to analyze lead/lag dynamics of individual prices and
to find out what are the major macroeconomic variables leading to systemic changes
in aggregate prices. The analysis was based on a large set of micro prices at the most
detailed level: prices for 75 imported goods, 420 producer goods, and 335 consumer
goods and services. The data may be too disaggregated to detect possible collective
behavior of prices from a sea of noises. In this study we thereby focus on price indices
of middle classification level: prices for 10 imported goods, 23 producer goods, and
47 consumer goods and services. And we combine the set of prices with indices
of business conditions (leading, coincident, lagging), yen-dollar exchange rate, M2
and Monetary Base. Applying the CHPCA to such integrated data enables us to
elucidate dynamical linkage of comovement of prices with macroeconomic variables.

In the next section, details of the data set used here is given with preprocessing
procedure. In Sec. 3 the CHPCA is reviewed for self-containment of the paper, and
Sec. 4 is devoted to a brief description of the RMT and the RRS for detection of sta-
tistically meaningful eigenmodes. In Sec. 5 the CHPCA results are presented with
an interpretation of correlation structures of the significant eigenmodes in terms of
a simple collective-motion model. In Sec. 6 the paper is concluded. Some mathe-
matical and statistical details are left for the appendices.
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II. Data Set

We have collected the Japanese monthly data of the following categorized individual
prices and macroeconomic variables for the period, January 1985 through December
2016:
• Consumer Price Index (CPI)1 with 47 prices
• Producer Price Index (PPI)2 with 23 prices
• Import Price Index (IPI)3 with 10 prices
• US Dollar to Japanese Yen Exchange Rate (USD/JPY)3

• Index of Business Condition4 with 3 indicators (Leading, Coincident, Lagging)
• Money Stock (M2)5

• Monetary Base
The totally 86 time series with length of 384 months as shown in Tables 1 and 2
were combined into a multivariate data set. Assuming the prices and the economic
variables basically obey geometric brownian motion, we took logarithmic difference
of their time series:

rµ(t) = log10

[
pµ(t+ 1)

pµ(t)

]
, (1)

where pµ(t) (µ = 1, · · · , 86) are the original time series data. Since the CPI data
show jumps when sales tax was imposed (3% in April, 1989) and its rate was raised
(from 3% to 5% in April, 1997 and from 5% to 8% in April, 2014) , we removed
the sales tax effects simply by taking average of the values just before and after
the sales tax shocks. Stationarity of the preprocessed data was then verified by the
Phillips-Perron unit root test; all of the time series data are stationary at the 5%
significance level. Also, the augmented Dickey-Fuller test has verified that most of
the data are stationary except the price #14 (CPI repairs & maintenance) and the
price #41 (CPI personal care services).6

III. Complex Hilbert Principal Component Analysis

Let us suppose that we have N different time series xµ(t) (µ = 1, · · · , N ; t =
1, · · · , T ) of length T , which have been standardized with zero mean and unit vari-
ance in advance. We first obtain complex time series ξµ(t) out of xµ(t) through the
relation,

ξµ(t) = xµ(t) + iyµ(t) , (2)

12015 base Middle classification, Statistics Bureau of Japan.
22015 base Middle classification, excluding consumption tax, Bank of Japan.
3Tokyo market, monthly average, Bank of Japan.
4Composite Index 2015 base, outlier processed, Cabinet Office, Government of Japan
5Time series created by connecting the current M2 statistics and the past M2 + CD

statistics, Bank of Japan.
6The results of the p-value are 0.36 and 0.39 for #14 and #41, respectively.
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where the imaginary part yµ(t) is Hilbert transform of xµ(t) defined by

yµ(t) = − 1

π

∫ ∞
−∞

xµ(u)

t− u
du . (3)

The integration over u in Eq. (3) should be interpreted as Cauchy’s principal inte-
gration. In the actual calculations, we used a discretized version of the Hilbert trans-
formation (Barnett, 1983), which is expressible in terms of the discretized Fourier
transform of xt:

X(k) =
T−1∑
t=0

x(t)e−i
2πkt
T . (4)

The discrete Hilbert transform of xt is given by

y(t) =
T−1∑
t=0

X(k)e−i
π
2 ei

2πkt
T sgn(k − T

2
) , (5)

with

sgn(k − T

2
) =


1 (k > T/2)
0 (k = T/2)
−1 (k < T/2)

. (6)

We thus see that the Hilbert transformation has the effect of shifting the phase of
x(t) at every frequency by π/2 comparing with the inverse Fourier transformation
for x(t):

x(t) =
1

T

T−1∑
k=0

X(k)ei
2πkt
T . (7)

We then construct the complex correlation matrix C̃ from the complex time
series {ξµ(t)}:

C̃ =
1

T
ΞΞ†, (8)

where Ξ denotes N × T data matrix whose component is ξµ(t) and Ξ† is Hermite
conjugate of Ξ.

The complex principal component analysis (CHPCA) computationally amounts
to the eigenvalue problem for C̃. Since C̃ is a Hermitian matrix, its eigenvalues are
real and furthermore positive definite because of the dyadic form (8). On the other
hand, the components of the eigenvectors are complex. The absolute values and
the phases of the eigenvector components provide us with information on strength
of correlations and lead-lag relationships embedded in multivariate time series. The
correlation matrix C̃ is expressible in terms of its eigenvalues and eigenvectors as

C̃ =
N∑
`=1

λ`α`α
†
` , (9)
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where λ` and α` are the `-th eigenvalue and its associated eigenvector, respectively,
and we align the eigenvalues in descending order, that is, λ1 > λ2 > · · · > λN .

Since the eigenvectors α`’s form an orthonormal complete basis set, we can
rewrite ξ(t) represented in the standard basis set {eµ} as

ξ(t) =

N∑
µ=1

ξµ(t)eµ =

N∑
`=1

a`(t)α` , (10)

where
a`(t) = α†` · ξ(t) . (11)

We refer to the coefficient a`(t) as mode signal of the `-th eigenmode. The mode
signals represent temporal behavior of the eigenmodes and their strength is measured
by

I`(t) = |a`(t)|2 . (12)

In addition, we define relative mode intensity Ĩ`(t) by

Ĩ`(t) =
|a`(t)|2∑N
`=1 |a`(t)|2

, (13)

which calculates the fractional contribution of each eigenmode to the overall strength
of price fluctuations at every instant of time. Also we note the following identity due
to mutual orthogonality of α`’s:

ξ(t)† · ξ(t) =
N∑
µ=1

|ξµ(t)|2 =
N∑
`=1

|a`(t)|2. (14)

It is a crucial issue for the CHPCA as well as the PCA how to identify eigenmodes
which are statistically significant. The random matrix theory (RMT) serves as a
sound null hypothesis for such a statical significance test. However, autocorrelations
involved in multivariate data reduce the usefulness of the RMT in removing statistical
noise from them. The rotational random shuffling (RRS) method provides us with a
null hypothesis alternative to the RMT in such a case (Iyetomi et al., 2011a,b). We
impose the periodic boundary condition on each time series to make a “ring” in the
time direction and randomly shuffle the data in a rotational way. The randomization
destroys only cross-correlations preserving autocorrelations. The RRS serves as a
robuster null hypothesis than the RMT. However, we have to numerically solve the
eigenvalue problem of the complex correlation matrix for randomized data in the
RRS.

IV. Results and Discussion

A. Significance test of principal components

We computed eigenvalues of the complex correlation matrix C̃ constructed from the
price data. Figure 1 is a parallel (rank-by-rank) comparison of the actual eigenvalues
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and engenvalues of data after RRS processing (sampled 1000 times). In the eigen-
values after RRS processing, it indicates the average value and standard deviation
σ. Here, the average value +3σ of the eigenvalues after the RRS processing was used
as a criterion of significant eigenvalues. In this criterion, the top seven eigenvalues
are significant. This result shows that the eigenvectors associated with those eigen-
values are regarded as manifestation of statistically meaningful correlations among
individual prices.

Then, we calculated power spectrum of the mode signals associated with α` (` =
1, · · · , 7) as shown in Figure 2. We observe the mode signals of higher order with
` ≥ 3 have large peaks corresponding to seasonal variations.

Table 3 spells out similarity between the two sets of eigenvectors. The one is a set
of the significant eigenvectors α` (` = 1, · · · , 7) obtained for the original data and the
other, that of the significant eigenvectors βm (m = 1, · · · , 6) for seasonally adjusted
data. We prepared the latter by taking year-to-year change of the original time series;
this is the most primitive way for seasonal adjustment. The similarity is measured by
calculating the inner product of α` and βm for all pairs. Its computational details
are given in Appendix A. The similarity measure η between a pair of complex
vectors as defined by (A.2) is a natural extension of the cosine similarity between
real vectors. Since the space of eigenvectors in this study is of very high dimension
(86 dimensions), the p-value corresponding to η = 0.9 takes an extremely small value,
4.94× 10−62. On the other hand, the similarity corresponding to p = 0.05 is 0.186.
An analytic formula for the p-value of the similarity is also given in Appendix A.

We thus see that the first two eigenvectors in both sets are in excellent agreement
with each other. The remainder in the set {α`} has no notable counterparts in
the set {βm}. This is because from the third to the sixth mode signals mainly
describe seasonal components of fluctuations in the original data, not involved in the
seasonally adjusted data. We thereby focus only on the first and second eigenmodes
for the original data. The cumulative contribution ratio of the eigenvalues of those
modes is 18.8 percent. We thus see that about 20% of the total price fluctuations
can be explained by the collective motion of prices free from seasonal variations.

B. Interpretation of the first and second eigenmodes

In Figure 3, the complex components of the first and second eigenvectors are rep-
resented in terms of their absolute values and phases. The absolute value of each
component in a significant eigenvector measures to what extent the corresponding
price contributes to the eigenmode. The phase difference between a pair of com-
ponents in a significant eigenvector represents lead-lag relationship between their
corresponding prices in the eigenmode.

Prices whose components have large magnitude in the eigenvectors play an im-
portant role in their correlation structures. However, limited length of the price
data would allow a component of completely random time series in the eigenvectors
to have finite magnitude. To determine whether prices have statistically relevant
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components or not in the eigenvectors, we reiterated the CHPCA for the price data
to which an auxiliary random time series was added as the 87th component7. We
then determined the 5% significance level for each eigenmode as regards magnitude
of the eigenvector components by collecting 10,000 samples with different random
time series. Although the basic structures of the two eigenvectors are robust against
addition of such a random time series, all of the components are not statistically
meaningful. Here we dismiss components having magnitude below the 5% signifi-
cance level.

Both in the two significant eigenvectors, most prices are distributed just on a half
of complex plane. Such confinement of the phases of prices demonstrates their coher-
ent behavior. In general, the lead-lag relations between prices in phase is not straight-
forwardly translated to lead-lag relations between them in real time. This is because
the CHPCA entirely depends on correlation coefficients averaged over frequency, al-
though information on correlations between time series and their quadrature-phase
companions is retained. In our case, however, we recall the business cycle indicators,
incorporated into the present analysis, have rather clear lead-lag relations in real
time. It is officially said that the leading index is several months ahead of the coin-
cident index, which in turn leads the lagging index by several months to six months.
Collecting these results, we may estimate that phase difference of about 180 degrees
which the components in the eigenvectors roughly span corresponds to 2 years time
difference.

In the first eigenmode, obviously, changes of the exchange rate (#81) induce
changes of domestic prices belonging to the PPI and CPI categories through import
prices. The business cycle indicators, the leading (#82), the coincident (#83), and
the lagging (#84) indices, accompany the exchange rate; the leading index is slightly
ahead of the exchange rate. Also prices of raw materials and energy sources such as
scrap & waste (#70), nonferrous metals (#57), petroleum & coal (#53) and other
fuel & light (#17) synchronize with the exchange rate. And then the remaining
PPI prices react to the financial shocks with some degrees of delay and then the
CPI prices follow. We note the shocks gradually attenuate in the course of their
propagation from upstream to downstream across domestic prices.

In the second eigenmode, on the other hand, domestic demand monitored by the
business cycle indicators is assigned as a driving force for domestic prices. Propa-
gation of shocks across prices does not have such damping behavior as observed in
the first eigenmode. This is understandable because domestic demand is responsible
for the overall economic rise or downturn including changes of prices on downstream
side. The exchange rate and import prices except for price of petroleum, coal &
natural gas (#75) also have components of large magnitude in the second eigen-
vector, but their role is not transparent at all. In fact, the curious relationship
of the exchange rate with the dynamics of domestic prices is nothing more than a
mathematical consequence as shown in Appendix B.

7We refer to this significance test as the auxiliary random variable method.
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Finally, we note that neither of the two monetary variables, money stock (#85)
and monetary base (#86), is an important player in the two eigenmodes. The
magnitude of the components of both variables in the two eigenvectors is below the
5% significance level laid down by the auxiliary random variable method.

C. A comovement of domestic prices

Closer look at the first and the second eigenvectors suggests that the lead-lag rela-
tionship among domestic prices in the two eigenmodes is quite similar to each other.
Figure 5 directly compares phases of the significant domestic prices in the first eigen-
vector with the corresponding phases in the second eigenvector. The prices are well
aligned on the correlation plot.8 It means that there exists robust internal dynam-
ics of domestic prices irrespective of their driving forces, that is, the exchange rate
accompanied by import prices in the first eigenmode and domestic demand in the
second eigenmode. This empirical fact allows us to claim that domestic prices are
interconnected by their mutual interactions to form a chain-like dynamic structure
with definite lead-lag relations.

Let us further concentrate on dynamics of prices in the PPI and CPI categories
by eliminating import prices and macroeconomic variables from our sights. When
the CHPCA is applied to the reduced data set in which only the domestic prices
are retained, only the largest eigenvalue exceeds the upper limit of the largest eigen-
value predicted by the RRS. Figure 6 shows the results for the eigenvalues and the
complex components of the eigenvector associated with the largest eigenvalue. The
eigenvector once again demonstrates collective behavior of domestic prices.

In fact, this collective behavior of domestic prices is quite similar to that re-
vealed by the first and second eigenvectors of the CHPCA for the full data set. The
similarity η, Eq. (A.2), of the first eigenvector of the reduced data set to its two
counterparts in the first and second modes is calculated as 0.962 and 0.863, respec-
tively. This is the reason why only a single principal component is identified as being
significant without import prices and macroeconomic variables. As has been already
remarked, comovement of domestic prices is driven in a different way in the two dom-
inant eigenmodes obtained for the full data set; its driving factor is the exchange
rate, accompanied by import prices, in the first mode and domestic demand in the
second mode. However, shocks propagate across domestic prices sequentially aligned
from upstream to downstream in a universal way, irrespective of the origin of shocks.
This result further ascertains the existence of mutual interactions among domestic
prices leading to such a universal comovement structure of them as schematically
depicted in Figure 7.

8We can also confirm the strong resemblance between the lead-lag relations of domestic
prices in the two eigenmodes by computing the generalized cosine similarity η, Eq. (A.2),
between the corresponding complex vectors. The result is 0.73, which is highly significant
in reference to the similarity between two random complex vectors. The associated p-value
takes an extremely small value, 1.5× 10−23.

9



D. Relationship with business cycles

As indicated by the Phillips curve, in fact, the two significant eigenmodes establish
a strong connection between collective dynamics of individual prices and business
cycles. Furthermore, the business condition indices go ahead of the comovement of
individual prices.

The mode signals, Eq. (11), enable us to see to what extent business cycles are
dynamically linked with comovement of prices in the first and second eigenmodes.
The contribution of the `-th eigenmode to the µ-th component of the multivariate
data set is given by

ξ`,µ(t) = a`(t)α`,µ . (15)

Summation of the contributions over all the eigenmodes restores the original complex
time series ξµ(t):

ξµ(t) =

N∑
`=1

ξ`,µ(t) . (16)

The observed data is the real part of the corresponding complex time series and may
be approximated by the contributions of the first and second eigenmodes:

xµ(t) = < [ξµ(t)] ' < [ξ1,µ(t)] + < [ξ2,µ(t)] . (17)

The original coincident index (µ = 83) is compared with the corresponding con-
tributions of the first and second eigenmodes and their superposition in Fig. 8, where
we show the results obtained by successively accumulating their standardized loga-
rithmic difference to make the comparison more lucid. The economic fluctuations are
decomposable into two components in conjunction with the comovement of prices.
Although the two eigenmodes are responsible only for about 20% of intensity of the
total fluctuations as has been already remarked, they can reproduce quite well the
business cycles as a whole. We thus see that comovement of individual prices are
coupled to the long-term behavior of the economy to a large extent.

It is also true that there are economic peaks and troughs which are associated
with neither the first nor the second eigenmode. During the Lost Decade from 1991
through 2002, there are two such peaks observed in the coincident index. The peak
early in 1997 arises from the economic boom due to the government’s large-scale
economic pump-priming measures and the one late in 2000, from the IT bubble in
Japan. This result confirms that those booming economies were far from recovery
of the real economy. Also, the economic downturn caused by the Great East Japan
Earthquake in March 2011 activated neither of the two eigenmodes, indicating that
the disaster caused no critical damage to the whole economy in Japan. On the other
hand, at the time of the global financial crisis triggered by the collapse of Lehman
Brothers in September 2008, both eigenmodes were strongly excited by the economic
shock. The mode signals clearly differentiate the nature of impact on the Japanese
real economy of the world financial crisis from that of the great earthquake.
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The second-mode component of business cycles should be thereby focused on
more seriously because it gives information on the condition of the whole economy,
i.e, on whether current economic growth is driven by an increase in domestic demand
or not. From Fig. 8, we can learn that the economic upturn toward the crash of
the bubble economy late in 1990 was basically led by the first-mode component.
Also the similar situation is observable immediately after launch of Abe’s second
Cabinet, in December 2012. In corporation with the cabinet, the Bank of Japan has
set the inflation target of 2% with large-scale monetary easing to promote recovery
of the Japanese economy from the long-standing depression. It is clear that so-called
Abenomics was initially successful. However, the doctrine is not so influential on the
economy in the sense that it does not excite the comovement of prices in the second
mode; even the second-mode component began to decline early in 2014. This should
be continued to be monitored.

V. Summary

This study aimed to empirically elucidate collective behavior of individual prices and
its dynamical linkage with macroeconomic variables representing the business and
financial conditions in Japan. For the purpose, we applied the CHPCA to the com-
posite monthly data set constructed from the individual price indices constituting
IIP, PPI, and CPI, the leading, coincident, and lagging indices of business condi-
tions, the yen-dollar exchange rate, the money stock (M2), and the monetary base,
spanning the period from January 1985 to December 2016. The statistical test of the
principal components with the RRS as a null hypothesis combined with the spectral
analysis identified two principal components as being statistically meaningful. The
lead-lag relations among domestic prices in the two modes are quite similar, indicat-
ing the individual prices behave in a collective way. However, the collective motion
of prices is driven differently, that is, by the exchange rate at the upper stream side
in the first mode and domestic demand at the lower stream side in the second mode.
In contrast, the monetary variables play no important role in the two modes.

The empirical evidence for comovement of individual prices and its lead-lag rela-
tionship with business cycles reaffirms the importance of macroeconomics. We also
expect that our findings here provide a sound basis for evidence-based policymaking.
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Appendix A. Similarity Between Complex Vectors

One can measure similarity between two complex vectors v,w with arbitrary phase
factors by

γ(v,w) = min
ϕ

[∥∥∥∥ v

‖v‖
− eiϕ w

‖w‖

∥∥∥∥2
]

= 2(1− η) , (A.1)

with

η =
|u · v∗|
‖u‖‖v‖

, (A.2)

where ‖u‖ stands for the norm of u. The distance γ(v,w) satisfies inequality 0 ≤
γ ≤ 2 (1 ≤ η ≤ 0) and takes γ = 0 (η = 1) only when v and w coincide except for
the degree of freedom of phase factor ϕ. The similarity η between complex vectors
is a natural extension of the cosine similarity between real vectors.

The similarity η Assuming u = (1, 0, · · · , 0) and v = (x1 + iy1, x2 + iy2, · · · , xn+
iyn) without loss of generality, one can calculate η as

η =
r√

r2 +R2
, (A.3)

where

r =:
√
x2

1 + y2
1 , (A.4)

R =:
√
x2

2 + y2
2 + · · ·+ x2

n + y2
n , (A.5)

If each component of v obey the standardized normal distribution, the probability
density function of (r,R) is given by

f(r,R) ∝ rR2n−3e−
(r2+R2)

2 . (A.6)

Then, the relation (A.3) derives the probability density function of η from Eq. (A.6):

f(η) = 2(n− 1)η(1− η2)n−2. (A.7)

Also, one can calculate the p-value corresponding to η from Eq. (A.7) as

p =

∫ 1

η
f(η′)dη′ = (1− η2)n−1 . (A.8)

Figure 9 confirms Eq. (A.7) through comparison with the probability density function
of η between random complex vectors generated by numerical simulations.
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Appendix B. Mathematical Structure of Eigenvectors of Two-variable
Model

In Section IV.B, we observe that the exchange rate and import prices, though they
have large absolute values, lie behind domestic prices in the second mode (Figure
3(b)). In this appendix, we show that it is nothing but a mathematical necessity in
two-variable model. To understand the correlation structures observed in the first
and second eigenmodes, we introduce a simple two-variable model. For this purpose,
we first replace the group motion of domestic prices by a single collective coordinate,
that is, the mode signal of the first eigenmode of the CHPCA applied to the reduced
data set in which only domestic pries are retained. Also we replace the dollar-yen
exchange rate and import prices by another collective coordinate. Adopting the two
collective coordinates reduces the economic system under study to a two-variable
model.

In this two-variable model, the complex correlation matrix C̃ has such a reduced
form as

C̃ =

(
σ1 σ12

σ∗12 σ2

)
, (B.9)

where σ1 and σ2 are the variances of the collective coordinates for domestic prices and
the exchange rate accompanied by import prices, respectively, and σ12 is a complex
correlation coefficient between the two coordinates.

If σ1 and σ2 take an identical value σ, the two eigenvalues λ± are calculated as

λ± = σ ± |σ12| , (B.10)

with their eigenvectors V± given by

V+ =

(
1

exp(−iθ)

)
, V− =

(
1

− exp(−iθ)

)
, (B.11)

where θ is the phase angle of σ12. We see that the relationship between the co-
movement of domestic prices and the exchange rate in V+ is reversed in V−. When
0 < θ < π/2, for example, the exchange rate leads the comovement of domestic prices
with phase difference θ in V+, while the exchange rate follows the comovement of
domestic prices with phase difference π − θ.

In the actual data, we obtain σ1 = 7.81 and σ2 = 7.42. The former is the largest
eigenvalue of the submatrix of C̃ for domestic prices, and the latter, that for the
exchange rate and import prices. Thus, the condition σ1 = σ2 is approximately sat-
isfied. The model with (B.11) of V+ and V− therefore well explains the correlation
structures in the two dominant eigenmodes. The exchange rate drives the comove-
ment of domestic prices in the first eigenmode to fix the phase difference θ between
the two collective coordinates. On the other hand, in the second eigenmode, the
lead-lag relationship of the exchange rate with the comovement of domestic prices
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is automatically determined by π − θ. This is basically what we observe in Figure
3(b). It is simply a mathematical necessity in a two-variable model.

Given this mathematical fact, it is not the end of the story. Because replacement
of the exchange rate by a completely random time series would result in the same
mathematical relation between V+ and V− as long as the condition σ1 ' σ2 is
satisfied. The random time series is fixed to the comovement of domestic prices
at any phase angle. The remaining issue to be addressed is thereby whether the
fixed phase difference θ between the two collective coordinates in the first eigenmode
is statistically significant or not. To test statistical significance of the phase angle
between the comovement of domestic prices and the exchange rate, we reiterated the
CHPCA calculation for the data set in which the exchange rate and import prices
are substituted by a random time series with the variance kept the same; the new
results serve as a null model. The strength of coupling between the two collective
coordinates is represented by the magnitude of σ12 and hence by difference of the two
dominant eigenvalues as shown in Eq. (B.10). Figure 10 demonstrates distribution
of λ1−λ2 in the null model. On the other hand, the actual result for λ1−λ2 is 2.401
and its p-value is given as 0.006 according to the null hypothesis. This comparison
allows us to infer that the fixed phase angle between the comovement of domestic
prices and the exchange rate is statistically meaningful.

In conclusion, the correlation structures in the two dominant eigenmodes are fully
understandable with a two-variable model. And also we confirm that the exchange
rate is certainly a driving factor for the first eigenmode.
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Table 1. List of items for CPI.

ID CPI
1 Cereals
2 Fish & seafood
3 Meats
4 Dairy products & eggs
5 Vegetables & seaweeds
6 Fruits
7 Oils, fats & seasonings
8 Cakes & candies
9 Cooked food
10 Beverages
11 Alcoholic beverages
12 Meals outside the home
13 Rent
14 Repairs & maintenance
15 Electricity
16 Gas
17 Other fuel & light
18 Water & sewerage charges
19 Household durable goods
20 Interior furnishings
22 Bedding
22 Domestic utensils
23 Domestic non-durable goods
24 Domestic services
25 Clothes
26 Shirts, sweaters & underwear
27 Footwear
28 Other clothing
29 Services related to clothing
30 Medicines & health fortification
31 Medical supplies & appliances
32 Medical services
33 Public transportation
34 Private transportation
35 Communication
36 School fees
37 School textbooks & reference books for study
38 Tutorial fees
39 Recreational durable goods
40 Recreational goods
41 Books & other reading materials
42 Recreational services
43 Personal care services
44 Toilet articles
45 Personal effects
46 Tobacco
47 Other miscellaneous
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Table 2. List of items for PPI and IPI with macroeconomic variables.

ID PPI
48 Food, beverages, tobacco & feedstuffs
49 Textile products
50 Lumber & wood products
51 Pulp, paper & related products
52 Chemicals & related products
53 Petroleum & coal products
54 Plastic products
55 Ceramic, stone & clay products
56 Iron & steel
57 Nonferrous metals
58 Metal products
59 General purpose machinery
60 Production machinery
61 Business oriented machinery
62 Electronic components & devices
63 Electrical machinery & equipment
64 Information & communications equipment
65 Transportation equipment
66 Other manufacturing industry products
67 Agriculture, forestry & fishery products
68 Minerals
69 Electric power, gas & water
70 Scrap & waste

ID IPI
71 Foodstuffs & feedstuffs
72 Textiles
73 Metals & related products
74 Wood, lumber & related products
75 Petroleum, coal & natural gas
76 Chemicals & related products
77 General purpose, production & business oriented machinery
78 Electric & electronic products
79 Transportation equipment
80 Other primary products & manufactured goods

ID Macroeconomic variable
81 US Dollar to Japanese Yen Exchange Rate
82 Index of Business Condition Leading Index
83 Index of Business Condition Coincident Index
84 Index of Business Condition Lagging Index
85 M2(seasonally adjusted)
86 Monetary Base (seasonally adjusted)
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Table 3. Similarity η = |α` · β∗m| between the statistically significant eigenvectors α` (` =
1, · · · , 7) obtained for the original data and those βm (m = 1, · · · , 6) for the seasonally
adjusted data.

`\m 1 2 3 4 5 6
1 0.956 0.115 0.039 0.009 0.011 0.053
2 0.063 0.847 0.190 0.122 0.056 0.098
3 0.149 0.312 0.156 0.138 0.065 0.168
4 0.12 0.247 0.171 0.204 0.146 0.215
5 0.025 0.084 0.422 0.198 0.444 0.039
6 0.029 0.034 0.526 0.06 0.151 0.121
7 0.022 0.026 0.047 0.522 0.199 0.511

Table 4. Similarity η = |α′` · γ∗m| between the domestic price portion α′` (` = 1, · · · , 7) of
the statistically significant eigenvectors for the original data and the eigenvector γm (m =
1, · · · , 6) for the domestic price data.

`\m 1 2 3 4 5 6
1 0.939 0.052 0.056 0.097 0.153 0.054
2 0.826 0.099 0.108 0.163 0.268 0.097
3 0.014 0.997 0.045 0.014 0.022 0.013
4 0.053 0.062 0.992 0.023 0.038 0.023
5 0.016 0.023 0.047 0.974 0.167 0.067
6 0.030 0.029 0.044 0.074 0.911 0.245
7 0.020 0.009 0.008 0.062 0.165 0.949
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Figure 1. Parallel comparison of the eigenvalues with the RRS preprocessing (sampled 1000
times). Top and bottom panels show results based on the original data and the seasonally
adjusted data, respectively.
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Figure 2. Power spectral density of the mode signal a`(t) (` = 1, · · · , 7) of the significant
eigenmodes obtained for the original data.
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Figure 3. Lead-lag relationship between components, individual prices and macroeconomic
variables, in the first and second eigenmodes. The horizontal and vertical axes show phase
and absolute value of each component in the eigenmodes, respectively. The dotted line is
a criterion to identify significant components with 5% significance level. Time direction is
from left to right, that is, left components are ahead of right ones in time.
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Figure 4. Results of the CHPCA applied to the original data with a random time series
added. The upper panels show absolute value of each component in the two dominant
eigenvectors, where its mean and ±2σ error bar are plotted. The horizontal dotted line
indicates the significance level of 0.05 determined from statistical variation of the extra
random variable, the 87th component. The lower panels are the density distributions of
absolute value of the extra random component in the two eigenmodes, which determine the
significance level for each mode.
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ing from their mutual interactions with its driving factors, the exchange rate through IPI’s
in the first mode and domestic demand in the second mode.
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Figure 9. Numerical result of the probability density distribution of the similarity η between
86-dimensional random complex vectors for 10,000 samples, compared with the theoretical
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the variance of random time series is kept the same as the original one.
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