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1 Introduction

During the past few decades, a series of studies have revealed a number of remarkable statistical

regularities in industrial dynamics: the positive skewness and fat-tailedness of firm size distributions

(e.g., Axtell (2001), Gabaix (2009)), Laplace shape of firm growth rate distributions (e.g., Stanley

et al. (1996), Bottazzi et al. (2002, 2007, 2011), Bottazzi and Secchi (2006)) and productivity

dispersion (e.g., Dosi et al. (2016); for review, see, e.g., Dosi et al. (2017)). Surprisingly, it has

been shown that these stylized facts are quite robust and hold across sectors and countries as well

as time periods, highlighting universal properties of industrial dynamics. The importance of these

statistical regularities cannot be overstated because they give us an important clue to understanding

of underlying mechanism. The aim of this paper is to make a contribution to this literature by

presenting another new empirical regularity in market share dynamics. Applying a newly introduced

statistical method called compositional data analysis (CDA) to Japanese manufacturing firms, we

find remarkable distributional features in market share dynamics which have not been addressed

in the existing literature.

There has been a strand of literature empirically analyzing market share dynamics (e.g., Geroski

and Toker (1996), Davies and Geroski (1997), Mazzucato (2000, 2002), Mazzucato and Parris

(2015), and Sutton (2007) ), which gives us insight into how market structure evolves over time.1

This type of analysis, however, is prone to suffer from difficulties caused by the constraint: the sum

adds up to unity,
∑D

i=1 xi = 1, where xi denotes market share of firm i. In the previous studies, this

constraint has not been explicitly taken into account and the conventional multivariate statistical

methods developed for the D-dimensional real space RD has been applied to data. However, as

explained in the following, this procedure leads to biased results. A constellation of market shares

of D firms should be viewed as a point on the (D−1)-dimensional hyper-plane given by
∑D

i=1 xi = 1

rather than RD. In order for graphical understanding of this constrained nature, a 3-dimensional

case (i.e., D = 3) is depicted in Figure 1, where sample points are plotted not in RD but on the

triangle representing the plane x1 + x2 + x3 = 1.

For an illustration of how this constraint causes difficulties, let us consider correlation analysis

as in Sutton (2007), where he examines the correlation coefficient between market share changes

1Among them, Sutton (2007) is closest to the aim of this paper. Sutton (2007) uses a large and disaggregated
data set on Japanese manufacturing firms and tries to find new statistical regularities that holds universally.
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Figure 1: 3-dimensional case.

of the top 2 firms, finding that it is close to 0. Suppose that there are three firms in a market,

each of which has an equal market share, and our focus is to examine the relation between firms

1 and 2. Let Xi and xi, i = 1, 2, 3 be the sales and the shares of the three firms, respectively (i.e.,

x1 = x2 = x3 = 1/3). We assume that the sales of each firm grow independently and the growth

rate follows a normal distribution: The sales of a firm in the next year are given by εiXi and εi

is drawn from N (1, σ2i ). Since the growth rates, ε1 and ε2, are drawn independently, the sample

correlation coefficient is close to 0 (see Figure 2, in which Corr(ε1, ε2) = −.000790). Thus, the

sample correlation coefficient gives us an insight into the underlying mechanism.

How about market share? Given the sales of the three firms and their growth rates, the growth

rate of market shares, ε∗i , can be obtained as follows: for each i, ε∗i := εiXi∑
j=1,2,3 εjXj

/xi = 3εi∑
j=1,2,3 εj

because of the equal market shares. The sample plots of ε∗1 and ε∗2 with different values of σ3 and

correlation coefficients are given in Figure 3. Panel (a) and (b) in Figure 3 suggests that when σ3 is

not large, that is, the variance of ε3 is not large, the sample correlation coefficient shows a negative

value even though the growth rates of sales are independent with each other as shown Figure 2.

This is due to a negative bias by the constraint of market share because an increase in a firm’s

share must be offset by decreases in other firms’ shares.2

2Formally, this bias is described as follows. From the constraint and its expectation, we have

x1 − E[x1] + x2 − E[x2] + ...+ xD − E[xD] = 0.
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Figure 2: Scatter plot of sales growth, ε1 and ε2. In this simulation, σ1 = σ2 = .1 and the number
of samples is 500. The sample correlation coefficient is −.000790.

In contrast, when σ3 is large, the market shares of firms 1 and 2 have to increase and decrease

together to offset the fluctuation of the firm 3 market share. Because of this effect, the sample

correlation coefficient becomes positive, Corr(ε∗1, ε
∗
2) = .580, as shown in Figure 3(c). Note that

the underlying relation between firms 1 and 2 is exactly the same as in Figure 2, that is, inde-

pendence. Since these positive and negative values of sample correlation coefficients are caused

by the constraint, it is seriously misleading to interpret them as an evidence of some economic

mechanism. The point is that the bias depends on the behavior of firm 3 even if our focus is on the

relation between firms 1 and 2. Since the correlation coefficient is biased to the unknown extent,

it is impossible to obtain implications about firms’ relation from the correlation analysis.3 Given

By multiplying both sides of this equation by x1 − E[x1] and taking expectation, we obtain

Var(x1) + Cov(x1, x2) + ...+ Cov(x1, xD) = 0

Cov(x1, x2) + ...+ Cov(x1, xD) = −Var(x1) (< 0),

where Var and Cov denote the variance and covariance, respectively.
3One might say that this difficulty can be avoided by using data free from such a constraint as

∑n
i=1 xi = 1.

Indeed, Coad and Teruel (2012) follow this strategy and inspect firm growth measured by employees, sales, and value
added instead of market share. They find the uncorrelated growth rates of rival firms, consistent with Sutton’s finding.
However, another problem arises concerning this type of analysis. Let us suppose a market whose size fluctuates due
to demand shocks. Market expansion and contraction may lead to the comovement of sales of firms and a positive
correlation between sales, but this positive correlation cannot be interpreted as evidence of a complementary relation
between rival firms. In other words, even a fiercely competitive relationship can be positively biased due to the
fluctuation of market size.

The point in our analysis is that we focus on the relative market position: Market share captures how a firm’s
position changes compared with its rivals.
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the fundamental role of correlation coefficient in statistical analysis, this suggests that we need an

alternative approach to uncover empirical regularities in market share dynamics.
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(a) σ3 = .01.
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(b) σ3 = .1.
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(c) σ3 = .4.

Figure 3: Scatter plot of market share growth, ε∗1 and ε∗2. The sample correlation coefficients are
given by (a) −.798 (b) −.526 and (c) .580, respectively. Note that the sales of the two firms ε1 and
ε2 used to obtain ε∗1 and ε∗2 are exactly the same as the ones in Figure 2. The only difference in σ3
yields differences in these panels.

To overcome these difficulties, we introduce CDA in this paper, which enables us to obtain

implications of market share dynamics without the bias mentioned above. In particular, by defining

new operators, CDA enables us to use statistical concepts such as mean, variance, distribution and

the central limit theorem on the space of market shares. We apply CDA to market share data on

Japanese manufacturing firms and explore statistical properties of market share dynamics. To the

best of our knowledge, this paper is the first application of CDA to the comprehensive market share

data.

Our analysis shows that the distribution of market share change displays a remarkable feature:

The distribution does not follow a Gaussian but a Laplace-like tent-shaped distribution with a fatter

tail. This distribution is closely related with the findings of firm growth rate distribution. This

shape of the distribution implies that market share change cannot be described by an accumulation

of small shocks. Rather, lumpy jumps than completely transform the market structure are crucial

in market share dynamics. Namely, such a radical change in market structure is relatively frequent.

Interestingly, with some exceptions, this statistical feature can be observed across different sectors.

Furthermore, this property can be observed when we focus on the relation between the top subgroup

and lower-ranked firms. Therefore, our analysis shows that this statistical property captures an
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essential feature of market share dynamics.

The rest of paper is organized as follows. Section 2 introduces CDA and shows its applicability

to the analysis of market share dynamics. Section 3 applies CDA to market share data of Japanese

manufacturing firms. In particular, Section 3.2 analyzes the top 2 firms and explore its distributional

properties. Section 3.3 extend our analysis to the multivariate case (the top 5, 6, and 7 firms) and

analyze its marginal distribution. Section 4 concludes this paper. Appendix A summarizes the

method of outlier detection employed in our analysis.

2 Compositional Data Analysis (CDA)

CDA is a rapid growing field in statistics and explicitly takes into account the fact that the

components sum up to unity: x1 +x2 + ...+xD = 1. The difficulty concerning correlation discussed

above is called spurious correlation, which is firstly pointed out by Pearson (1897). The spurious

correlation is by no means pathological in real applications. In the field of geology, which is one of

the main application fields of CDA, a series of papers (e.g., Chayes (1960)) have confirmed that the

spurious correlation is widespread in the literature. Given the importance of compositional data

and the obvious constraint, it is surprising that problems related to the spurious correlation have

remained unnoticed in other fields including economics.4 The spurious correlation becomes serious

especially in the analysis of market share. Suppose that our interest lies in whether the properties

of the dynamics of market share depend on market concentration, which is one of the fundamental

issues in the early literature (see the Introduction). However, it is problematic to compare the

correlation coefficients with different concentrations because the bias by the constrained nature of

market share also depends on the concentration. There is no easy way to distinguish correlation

representing the underlying economic relation from the bias.

Related to the spurious correlation, the identification of the boundary of relevant markets

is another problem which makes an analysis based on the conventional correlation questionable.

While the boundary of a market has been explicitly given in most of the theoretical studies and its

identification has been viewed as a technical one, this problem turns out to be serious to empirical

4One exception in the economic literature is a series of studies by Fry et al. (1996, 2000), in which they apply
CDA to budget share models of households’ expenditure. However, to our knowledge, no study has applied CDA to
market share data in the existing literature on industrial organization.
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researchers.5 Moreover, it is in practice unavoidable that some firms are missing, which means that

the boundary of a market is misspecified. Any reliable analysis of market share should be robust to

the misspecification of a boundary, but the conventional correlation does not satisfy this property.

In contrast, CDA overcomes these difficulties in a consistent manner.

In the 1980s, a series of papers in the statistical literature have tackled the difficulties of com-

positional data and these efforts have culminated in the seminal work by Aitchison (1986), who

develops an axiomatic approach satisfying a set of fundamental principles. Among them, a prin-

ciple called subcomposition coherence in CDA literature is worth mentioning in our analysis. A

subcomposition is defined to be a subset of components; for example, if there are D firms in

a market and we have D shares of firms, x1, x2, ..., xD,
∑D

i=1 xi = 1, the shares of two firms,

x
′
1 := cx1, x

′
2 := cx2, x

′
1 + x

′
2 = 1, where a constant c is introduced so that the sum is unity,

is a subcomposition of the full composition. The subcomposition coherence means that results

obtained from the subcomposition are coherent with those obtained from the full composition.

The conventional correlation does not satisfy this principle whereas CDA does, which is one of our

motivations to use CDA. In the 2000s, the approach has been further elaborated and generalized

by several statisticians (for reviews, see Pawlowsky-Glahn and Buccianti (2011), Pawlowsky-Glahn

et al. (2015)). Following this line of literature, we apply CDA to market share dynamics in this

paper.

Let us begin with notations. We define a sample space called simplex as follows:

SD :=
{

x = (x1, x2, ..., xD) : xi > 0(i = 1, 2, ..., D),

D∑
i=1

xi = 1
}

As noted above, the difficulties related to compositional data arise from the fact that the structure

of SD is different from that of the real sapce RD. For example, the simplex is not a vector space

with + and · : ∃x,y ∈ SD and a ∈ R such that ax + y /∈ SD. It means that we cannot discuss

a linear combination such as linear regression and principal component analysis because a linear

combination may not be an element in SD. Namely, the operations, + and ·, are not suited for SD.

What are operations in SD playing the role of + and · in RD? These operations called perturbation

5See, e.g., Kaplow (2015). It is common that the boundary of a market is defined in terms of competition, that
is, firms are in a market if they compete against each other. However, competition is a concept difficult to define and
sometimes depends on the boundary itself.
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(denoted by ⊕) and powering (�) are defined as follows:

x⊕ y := C(x1y1, x2y2, ..., xDyD), α� x := C(xα1 , xα2 , ..., xαD),

Cx :=
( x1∑D

i=1 xi
,

x2∑D
i=1 xi

, ...,
xD∑D
i=1 xi

)
,

where the operation C is called closure.

It should be noted that the two operations ⊕ and � have economic meaning, especially in the

context of firm growth models. Suppose that the firm growth process follows Gibrat’s law, that is,

the sales of firm i, si,t, grow proportionally to its previous sales:6

si,t = εi,tsi,t−1, (1)

where εi,t is a growth shock independent from its previous sale. Exprssing sales of firms in terms

of market share (i.e., xt := C(st)), equation (1) is written as follows:

xt = xt−1 ⊕ εt.

Thus, the shares xt can be seen as the sum of the previous shares and a growth shock with the

operation ⊕. As in the same manner, the difference of shares between successive years can be

defined as follows: xt 	 xt−1 := xt ⊕ (−1)� xt−1 = εt.
7

As in the conventional linear regression and principal component analysis, the orthogonality

needs to be defined in SD for further analysis. We introduce Aitchison inner product in SD as

follows:

〈x,y〉A :=
1

D

∑
i<j

log
xi
xj

log
yi
yj

6In the literature on firm growth, it is well-known that Gibrat’s law provides a good fit to empirical data, especially
for large firms. See, e.g., Coad (2009).

7In a different strand of literature, a replicator model is used to describe the path of firm growth (see, e.g.,
Mazzucato (2000), See ICC Dosi et al 2017 footnote 4 ):

dsi,t
dt

= λisi,t, st = s0 · exp(λt),

where λ = {λ1, λ2, ..., λD} is a constant vector representing the competitiveness of firms. The equation above can be
written in terms of ⊕ and � as follows:

xt = x0 ⊕ t� exp(λ).

Thus, the replicator model can be seen as a straight line in SD with angle exp(λ).
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The induced distance is given by

dA(x,y) := ‖x	 y‖A =

√
1

D

∑
i<j

(
log

xi
xj
− log

yi
yj

)2

The meanings of the inner product and distance become clear by considering a transformation from

SD to RD. First, we define the centered log-ratio (clr) transformation:

v = clr(x) := log
[ x1
gm(x)

,
x2

gm(x)
, ...,

xD
gm(x)

]
, gm(x) =

( D∏
i=1

xi

)

with inverse,

x = clr−1(v) := C exp(v).

The clr transformation has several useful properties; for example, it preserves the structure given

by perturbation and powering, that is,

clr((α� x)⊕ y) = αclr(x) + clr(y).

Furthermore, the Aitchison inner product and distance can be simplified by the clr transformation:

〈x,y〉A = 〈clr(x), clr(y)〉, dA(x,y) = d(clr(x), clr(y)) =

√√√√ D∑
i=1

(clri(x)− clri(y))2,

where 〈·, ·〉 and d(·, ·) are the usual inner product and Euclidean distance in RD, respectively. Thus,

by the clr transformation, ⊕, �, 〈·, ·〉A, and dA(·, ·) in SD correspond to +, ·, 〈·, ·〉, and d(·, ·) in RD,

providing a Euclidean structure to SD. This means that we are able to deal with elements in SD

as if they are variables in RD with the usual operations. However, it should be noted that clr(x)

has a new constraint,
∑D

i=1 clri(x) = 0, that is, the transformed data are collinear. To overcome

this disadvantage, Egozcue et al. (2003) introduce the isometric logratio (ilr) transformation.

The ilr transformation is essentially equivalent to choosing an orthonormal basis on the hyper-

plane H := {v ∈ RD :
∑D

i=1 vi = 0} by, for example, the Gram-Schmidt algorithm. Formally, this

is defined as follows: let {e1, e2, ..., eD−1} be an orthonormal basis of SD, i.e., 〈ei, ej〉A = δij . For

a fixed orthonomal basis, the ilr transformation is given as follows:

9



x∗ = ilr(x) := (〈x, e1〉A, 〈x, e2〉A, ..., 〈x, eD−1〉A)

x = ilr−1(x∗) := ⊕D−1i=1 x
∗
j � ei.

The ilr transformation gives the coordinates of x represented in RD−1. Analogous to the clr

transformation, the ilr transformation satisfies the following relations:

ilr((α� x)⊕ y) = αilr(x) + ilr(y).

〈x,y〉α = 〈ilr(x), ilr(y)〉, dα(x,y) = d(ilr(x), ilr(y))

Note that x ∈ SD is transformed into x∗ ∈ RD−1 by ilr and x∗ has no additional restriction. x∗ is

a variable in RD−1 and therefore the conventional multivariate statistics in RD−1 can be directly

applied to x∗. In short, our strategy consists of the following steps (see Table 1):8

1. Variables in SD, that is, market share in our analysis, are transformed into RD−1 by ilr.

2. Multivariate statistical analysis in RD−1 (e.g., principal component analysis (PCA) and clus-

ter analysis) are carried out on the transformed variables.

3. The results are inversely transformed to the original space SD by ilr−1.

ilr ilr−1

SD =⇒ RD−1 =⇒ SD
Compositional data Multivariate statistical analysis Interpretation

Table 1: Working on coordinates.

In the next section, market share dynamics is examined based on this strategy.

8This strategy is called the principle of working on coordinates in the CDA literature. See, e.g., Mateu-Figueras
et al. (2011).
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3 Market Share Dynamics

3.1 Data

Our dataset consists of annual observations of market shares of Japanese manufacturing firms

over the period of 1980–2009. The source of our data is Market Share in Japan, published by Yano

Research Institute Ltd.9 The classification corresponds roughly to 6-digit commodity classification

for the Census of Manufactures in Japan, in which manufacturing goods are classified into 2,363

markets.10 This source is unique in that the unit of analysis is market: we obtain market composi-

tion and the names of firms for each market. While databases used in previous works (e.g., Coad

and Teruel (2012)) have detailed information on firms’ attributes, firms are classified to a single

sector according to their main activity. However, not a few firms, especially large firms, supply

more than one product. In contrast, our database focus on markets rather than individual firms,

and firms supplying more than one product appear across multiple markets in our dataset.

The choice of markets examined in our analysis is based on two criteria: the length of the time

series and the number of firms in a market. Since we focus on markets existing over a long period

rather than emerging or disappearing markets, we restrict our attention to markets with more

than 25-annual observations over the period of 1980–2009.The sectors and the number of markets

examined in our analysis are given in the following sections.

3.2 Distribution of market share growth

In this section, we focus on the top 2 firms and examine market share growth defined by

εt := xt	xt−1. As we have discussed above, we can define the distribution of market share growth

by CDA. Based on this method, we explore its distributional properties in the following analysis.

We first transform ε = (ε1, ε2) in S2 into a one-dimensional variable in R by the ilr transfor-

mation: ilr(ε) = 1√
2

log( ε1ε2 ).11 Figure 4(a) shows the kernel density estimate of pooled market

9This data source is the same one used in Sutton (2007) and Kato and Honjo (2006).
10Hereafter, we call 6-digit classification markets (e.g., heavy bearing rings) and 3-digit classification (e.g., iron &

steel) sectors.
11The explicit form of the ilr representation is obtained as follows. First, we transform ε by the clr transformation:

clr(ε) = (log ε1
gm(ε)

, log ε2
gm(ε)

) with log ε1
gm(ε)

+ log ε2
gm(ε)

= 0. Second, we choose an orthonormal basis in this space.

Since the dimension of this space is 1, the choice of an orthonormal basis is either 1√
2
(1,−1) or 1√

2
(−1, 1) in R2.

The former is chosen here. Finally, taking an inner product with this basis, we obtain the ilr representation of ε,
ilr(ε) = 1√

2
log( ε1

ε2
).

11



share growth, ilr(ε), over 1980–2009, aggregated across over all the sectors. Descriptive statistics

is given in Table 2. The first to be noticed is that the mean of ilr(ε) is very close to 0, which

corresponds to the neutral element λ2 = (12 ,
1
2) in SD. Since ε = λ2 does not change its relative

position in the next year, that is, x ⊕ λ2 = x, market share growth is on average like a fair coin

tossing: The chances of taking market share away from its rival are fiftyfifty. Regarding distribu-

tional properties, Figure 4(a) clearly suggests the significant departure from normality:12 Rather,

the distribution is leptokurtic (tent-shape) and has fatter tail than that of Gaussian distribution.

Namely, compared with a Gaussian distribution, we often observe drastic change in market struc-

ture with non-negligible probability. Moreover, this shape of the distribution is stable over time:

Figure 4(b) plots kernel density estimates of ilr(ε) in different years, showing similar tent-shaped

distributions.

This finding is closely related to stylized facts of the distribution of firm growth rates. In the

existing literature, it is empirically known that the distribution of firm growth rates does not follow a

Gaussian but a Laplace distribution, which is similar to the one shown in Figure 4.13 Interestingly,

this statistical feature is observed at a disaggregated level and the shape of distributions across

different sectors shows a surprising degree of homogeneity. This remarkable regularity implies that

firm growth cannot be described by an accumulation of small independent shocks: if firm growth

is a consequence of many small shocks, the distribution of firm growth rate would be Gaussian by

the central limit theorem, which contradicts the stylized fact. Rather, the Laplace shape and the

fatter tail implies that firm growth is characterized by lumpy jumps: Namely, drastic change in

market structure is not rare but relatively common.

While the relationship with rivals is not taken into account in the literature on the distribution of

firm growth rates, Figure 4 captures the statistical properties of change in relative market position.

The same argument as in firm growth rates applies to the market share growth: market share

dynamics cannot be characterized by gradual and smooth change. Rather, significant episodes of

complete transformation of the market structure are relatively frequent.

To further characterize the shape of the empirical distributions, we consider a family of dis-

tributions called Subbotin distributions, which are used to describe firm growth rate distribution

12The null hypothesis of normality is rejected at 1 percent significance level by Anderson-Darling normality test.
13See a series of papers by G. Bottazzi and his coauthor (e.g., Bottazzi et al. (2002, 2007, 2011)). For theoretical

explanations of the Laplace distribution, see Bottazzi and Secchi (2006) and Arata (2014).
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Figure 4: Kernel density estimation and fitted density functions. In (a), market share growth
over the period 1980–2009 is pooled. “Empirical” refers to the kernel density estimation with
Gaussian kernel. Bandwidth is chosen following the method in Scott (1992), using factor 1.06.
“Gaussian”(“Subbotin”) refers to the Gaussian (Subbotin) fit. In (b), kernel density estimations
in 5 different years are plotted. Estimation method is the same as in (a).

(see, e.g., Bottazzi and Secchi (2006)). The probability density function of Subbotin distributions

is given as follows:

p(x) :=
1

2ab
1
b Γ(1 + 1/b)

exp
(−(|x− µ|b)

bab

)
, (2)

where µ is a location parameter, a is a scale parameter, and b represents the shape of the distribu-

tion. Subbotin family includes Gaussian (b = 2) and Laplace distributions (b = 1) as special cases.

Thus, a smaller value of b, especially b < 2, indicates the fatness of the tail. Maximum likelihood

estimates (MLE) of a and b are reported in Table 2. This shows that the parameter b is not only

lower than 2 (Gaussian case) but lower than 1 (Laplace case).14 The tail of ilr(ε) is significantly

fatter than that of a Laplace distribution. As noted above, leptokurticity and fat-tailedness are

remarkable characteristics of the distribution of market share growth.

Next, we analyze this shape of the distribution at more disaggregated level, that is, each of the

10 3-digit sectors are considered separately. In Figure 5, all the 30 years of market share growth

are pooled together under the stationary assumption. MLEs for each sector are given in Table 3.

14The null hypothesis of b = 1 is rejected for all cases at 1 percent significant level by the loglikelihood ratio test.
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# obs. mean s.d. a b

Pooled 9273 -0.00189 0.222 0.0448 ( 0.00076 ) 0.5507 ( 0.0112 )
1980 296 -0.00232 0.109 0.0464 ( 0.00385 ) 0.6986 ( 0.06988 )
1985 290 -0.01407 0.149 0.0524 ( 0.00433 ) 0.7737 ( 0.08236 )
1990 308 -1e-05 0.089 0.0253 ( 0.00245 ) 0.4455 ( 0.04333 )
1995 311 0.01124 0.128 0.0314 ( 0.00283 ) 0.5294 ( 0.05017 )
2000 320 0.00631 0.093 0.0498 ( 0.00399 ) 0.6957 ( 0.0683 )
2005 325 0.00563 0.114 0.0493 ( 0.00401 ) 0.673 ( 0.06651 )

Table 2: Descriptive statistics and MLE. The 5th and 6th column shows the MLEs of the parameter
a and b (standard error in parenthesis).

Figure 5 and Table 3 show that the distribution in all sectors except Transportation Equipment is

tent-shaped as in the aggregate case: the parameter b is close to or smaller than 1. While we can

observe some heterogeneity across sectors, especially Gaussian shape in Transportation Equipment,

we can say that a tent-shaped distribution can be observed at a disaggregated level and the tent-

shape observed at the aggregated level is not a mere statistical effect of aggregation. In most of

the sectors, drastic and radical change in market structure is a frequent phenomenon.
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Figure 5: Kernel density estimations. Market share growth over the period 1980–2009 are pooled
under the assumption that the distributions are stationary.

Finally, we use the variance of ε as an index of market mobility and examine its relation

14



# obs. mean s.d. a b

Iron Steel 581 0.00131 0.215 0.079 ( 0.00423 ) 1.1672 ( 0.1036 )
Gen. Mach. 3605 -0.00137 0.18 0.0368 ( 0.00101 ) 0.5069 ( 0.01469 )
Tran. Equip. 264 -0.00235 0.164 0.1429 ( 0.01066 ) 2.1911 ( 0.37765 )
Prec. Mach. 658 -0.00112 0.222 0.0465 ( 0.00277 ) 0.6225 ( 0.04468 )
Elec. Mach. 883 -0.00222 0.165 0.0389 ( 0.00204 ) 0.5662 ( 0.03327 )
Chem. 501 -0.00114 0.508 0.096 ( 0.00631 ) 1.1132 ( 0.12801 )
Food 880 -0.00979 0.228 0.0414 ( 0.0022 ) 0.5772 ( 0.03448 )
Paper 283 0.00405 0.188 0.0643 ( 0.0052 ) 0.8731 ( 0.09771 )
Pharma. 1102 -0.00115 0.202 0.0594 ( 0.00256 ) 0.7867 ( 0.04605 )
Cosm. 515 -0.00374 0.202 0.0407 ( 0.00291 ) 0.5255 ( 0.04033 )

Table 3: Descriptive statistics and MLE. Thus, this is the variance of the transformed data in RD−1.
The 5th and 6th column shows the MLEs of the parameter a and b (standard error in parenthesis).

with market concentration.15 In a strand of literature focusing on evolutionary aspects of market

structure (e.g., a series of studies by Mazzucato), the variability of market share (i.e., market

mobility) and market concentration are viewed as important indexes characterizing the evolutionary

stage of a market.16 In particular, in order to describe market mobility, several indexes have been

used in the literature (e.g., market share instability in Mazzucato (2002)) but suffer from the bias

caused by the constrained nature of market share. In contrast, the variance of ε captures the

variability of market share by definition and is free from the bias by virtue of CDA.

In order to examine the dependence of the variance on its concentration, we decompose our

sample data of ε for each industry by the median of its concentration. Here, the concentration is

defined to be the sum of shares of the two firms. Obtaining the two subsets with higher and lower

concentrations, we compare the two variances. The results are given in Table 4. Roughly speaking,

15The variance of ε can be defined based on the Aitchison distance:

Var[ε] :=
1

D

∑
i<j

Var
[
log

εi
εj

]

=

D∑
i=1

Var[clri(ε)]

=

D−1∑
i=1

Var[ilri(ε)]

Thus, this is the variance of the transformed data ilr(ε) in RD−1. For later purpose, the variance is defined in a more

general form. For D = 2, the first line of the equation above becomes Var[ε] = 1
2
Var

[
log ε1

ε2

]
.

16For example, in an early stage, there are many firms in a market, that is, low market concentration and market
share is instable (e.g., high entry-exit rate). As it become mature, market competition forces inefficient firms out of
the market (high market concentration) and their market shares become stable.

15



the results in Table 4 shows that these sectors can be classified into three groups:

• Group 1: Iron & Steel, Transportation Equipment, Chemical, Food, and Paper. The variance

of the growth ε becomes larger when market concentration is high.

• Group 2: General Machinery, Precision Machinery, and Electrical Machinery. The variance

is less dependent on market concentration.17

• Group 3: Pharmaceutical and Cosmetics. The variance becomes larger when market concen-

tration is low.

While these two market indexes are important to describe the status of market, we cannot find

a simple relationship between these two indexes in our analysis. The inter-sectoral heterogeneity

of the relation between is quite large: Group 1 shows a positive relationship and Group 3 shows a

negative relationship. In contrast, as shown in Figure 6, in which kernel density estimation of the

two subgroups are plotted, we can observe tent-shaped distributions in both subgroups (i.e., high

and low concentrations), similar to the ones in Figure 5. In this sense, the tent-shaped distribution is

a rather robust feature of market share dynamics. Specifically, Figure 6(c) shows the kernel density

estimates of sectors in Group 2 and suggests that the shape of the distribution is insensitive with

respect to market concentration. Focusing on the sectors in Group 2 and extending our analysis to

multivariate cases, we further explore the distributional properties of market share growth.

3.3 Who competes against whom?

We have so far analyzed the univariate case (i.e., market share growth of the top 2 firms). In

this section, we extend our analysis to a multivariate case, that is, market share dynamics of the

top 5, 6, and 7, and then explore distributional properties of εt := xt 	 xt−1. By increasing the

dimension, we can consider more complex relation among firms. For example, consider the following

question: Is an increase in a firm’s share offset by a decrease in the share of another particular firm?

If two particular firms compete for market share against each other, market share change would

occur within the two firms keeping other firms’ shares unchanged. To explore such relation among

17While the tests for general machinery show the statistically significant difference of the two variances by the large
number of observations, the point estimates show that the difference is relatively small. Thus, general machinery is
classified into group 2. Precision machinery is classified into group 2 because its robust estimates of the ratio (.875)
is relatively close to 1.

16
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Figure 6: Kernel density estimations. In (a), kernel density estimations of market share growth with
low concentration in Group 1 and 3 are plotted. In (b) kernel density estimations of market share
growth with high concentration in Group 1 and 3 are plotted. In (c), kernel density estimations of
market share growth of both subgroups in Group 2 are plotted. Estimation method is the same as
in Figure 4.
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Industry Ratio of var. Robust F-test Levene F-K Median(%)

Iron & Steel .678 .620 .00108 .0221 .0170 54.8
General Machinery 1.141 1.412 .00635 .0177 .00435 44.2

Transportation Equip. .579 .527 .00256 .0247 .0282 69.9
Precision Machinery .667 .875 .000299 .0952 .251 62.1
Electrical Machinery .831 .579 .0550 .0223 .00344 40.2

Chemical .327 .191 < 2.2e-16 4.40e-08 5.63e-10 57.5
Food .695 .578 .000202 .0151 .0180 51.6

Paper .475 .329 1.67e-05 .00221 .00138 47.4
Pharmaceutical 1.474 2.88 7.46e-06 3.35e-05 7.86e-07 36.8

Cosmetics 1.402 2.24 .00862 .0928 .122 63.4

Table 4: Ratio of the two variances and tests for equality. The second column shows the ratio
of variances (variance for low concentration markets divided by variance for high concentration
markets) based on the classical method. The third column shows the ratio of variances based on
a robust method. The fourth column is the p-value derived from the F-test of equality of the two
variances. The fifth (sixth) column is the p-value derived from Levene’s (Fligner-Killeen) test. The
seventh column is the median of market concentration at which our samples are decomposed.

firms, we first perform compositional PCA and cluster analysis to ε of the top 5 firms. Based on

these results, we examine the marginal distribution of ε. Since these methods implicitly assume

homogeneity of covariance structure, we focus on sectors in group 2 based on the results in the

previous section: general machinery, precision machinery, and electrical machinery.18 Descriptive

statistics are given in Table 5. As in the previous section, the mean of ε is very close to the neutral

element λD := ( 1
D ,

1
D , ...,

1
D ). On average, the relative market position has no information about

market share growth in the next year. In other words, in terms of market share, a market leader

has no advantages/disadvantages.

Next, we perform compositional PCA, which is done as follows: We first transform ε in S5 to

ilr(ε) in R4. Next, we apply PCA to ilr(ε), that is, we estimate the location vector and covariance

matrix of ilr(ε). Finally, we apply singular value decomposition.19 In this analysis, we focus on two

principal components (PCs). Following the convention in the CDA literature, the PCs are inversely

transformed to the clr representation for interpretation.

Results are shown in Figure 7. Arrows in these figures represent clr coordinates of the two

PCs.20 Figure 7 clearly shows that links between ε1 and ε2 (and ε3) are short, indicating that the

18Another reason of this choice is the number of observations in each sector.
19We use a robust method developed by Filzmoser et al. (2009).
20If the clr coordinates of the two PCs are represented as (a1, a2, ..., aD) and (b1, b2, ..., bD), the coordinate of the
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# markets # obs. Mean, 1st 2nd 3rd 4th 5th 6th 7th

Top 5 firms
Gen. Mach. 1843 0.201 0.200 0.199 0.200 0.200
Pre. Mach. 102 0.200 0.199 0.201 0.201 0.199
Elec. Mach. 656 0.199 0.199 0.200 0.201 0.201

Top 6 firms
Gen. Mach. 1052 0.167 0.166 0.165 0.167 0.166 0.170
Elec. Mach. 431 0.165 0.166 0.167 0.167 0.168 0.166

Top 7 firms
Gen. Mach. 483 0.143 0.143 0.141 0.143 0.142 0.145 0.144
Elec. Mach. 212 0.141 0.142 0.143 0.143 0.147 0.141 0.143

Table 5: Descriptive statistics. The first column the number of markets. The second column the
number of pooled market share growth. The rest of columns refers to the sample mean represented
in SD.

shares of firms ranked 1 and 2 (and 3) move up and down together. Namely, when the largest

firm succeeds to increase its market share, the market share of the second largest firm is likely to

increase and their increases are offset by decrease of the market shares of lower-ranked firms. Put

differently, the subgroup of the top 2 (or 3) firms competes against the lower-ranked firms (4th or

5th) for market share. The same picture can be observed by cluster analysis shown in Figure 8.21

Figure 8 shows that the top 2 or 3 firms are clustered as close components and distant from the

lower-ranked firms.

Interestingly, this property can be observed even when we increase the number of firms con-

sidered. In Figures 9 and 10, we perform the same analysis with additional firms. Figure 9 shows

the compositional PCA and cluster analysis to ε := (ε1, ε2, ...., ε6) of the top 6 firms for general

machinery and electric machinery.Figure 10 is the results of the top 7 firms for the same sectors.

Both figures show that the shares of the top 3 (or 4) firms are likely to move up and down together.

As in the case of 5 firms, the subgroup of the top firms competes against the lower-ranked firms

(6th or 7th) for market share.

Next, we examine the distribution of ε based on this finding. While the distribution of ε in SD

can be, in principle, expressed by the corresponding distribution in RD−1, its density estimation

becomes practically difficult as the number of dimension increases: Especially when the number of

head of arrow X1 in Figure 7 is (a1, b1).
21Here, the distance between two components is measured by var log( εi

εj
), based on which the components are

clustered. For detail, see ...
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(c) Electrical Machinery.

Figure 7: Compositional principal component analysis. The proportions of variance explained by
the two PCs are (a) 65.5%, (b) 71.2%, (c) 69.2%, and
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Figure 8: Cluster analysis.
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(a.2) Cluster analysis. Genaral Machinery.
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(b.2) Cluster analysis. Electric Machinery.

Figure 9: Compositional PCA and cluster analysis. The number of firms is six. The proportions
of variance explained by the two PCs are (a.1) 58.0%, (b.1) 66.0%.
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Figure 10: Compositional PCA and cluster analysis. The number of firms is seven. The proportions
of variance explained by the two PCs are (a.1) 44.4%, (b.1) 52.4%.
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observations is not so large, the density estimation becomes unreliable. Thus, in the remainder of

this section, we focus on marginal distributions. As in the usual case in multivariate analysis, there

are an infinite number of ways of choosing an orthonormal basis represented in RD. Taking into

account the finding above, we consider an orthonormal basis {ei}1≤i≤D−1 whose two elements are

given as follows:

e1 =

√
D − 1

D

( D−1︷ ︸︸ ︷
1

D − 1
,

1

D − 1
, ...,

1

D − 1
,−1

)
, e2 =

√
D − 2

D − 1

( D−2︷ ︸︸ ︷
1

D − 2
,

1

D − 2
, ...,

1

D − 2
,−1, 0

)

Its coordinate represented by this basis is y1 =
√

D−1
D log

(ε1ε2...εD−1)
1

D−1

εD
and y2 =√

D−2
D−1 log

(ε1ε2...εD−2)
1

D−2

εD−1
. Since these coordinate is the logratio of the geometric mean of the top

subgroup to a lower-rankd firm, y1 and y2 capture the most variable part of ε. The distributional

properties of y1 and y2 are shown in Figure 11, where we can observe a tent-shaped distribution

similar to the ones found in the previous section. MLEs of the parameters of Subbotin family are

reported in Table 6, which suggests that the parameter b is close to or smaller than 1. This implies

that market share changes between the top subgroup and lower-ranked firms are characterized as in

the case of the top 2 firms discussed in the previous section: Episodes of lumpy jumps are relatively

frequent.

4 Conclusions

As previous studies have shown, statistical regularities are an important clue to further un-

derstanding of industrial dynamics. Market share representing relative market position is also an

important variable but the constrained nature of market share as compositional data has impeded

us from using conventional multivariate statistics. To overcome this difficulty, this paper applies the

recently developed method called CDA to market share data and explores its statistical properties.

To the best of our knowledge, this is the first application of CDA in this literature. We have shown

that the space structure introduced by CDA has a natural interpretation in the context of firm

growth models, which justifies our usage of CDA for the analysis of market share dynamics.

We have found that the distribution of market share growth displays a remarkable feature: the

distribution does not follow a Gaussian but a tent-shaped distribution with a fatter tail, which is

24



0.1

1

10

−0.2 0.0 0.2

market share growth

d
e
n
s
it
y

sector

Gen. Mach. 1

Gen. Mach. 2

Prec. Mach. 1

Prec. Mach. 2

Elec. Mach. 1

Elec. Mach. 2

(a) The top 5 firms.

0.1

1

10

−0.2 0.0 0.2

market share growth

d
e
n
s
it
y

sector

Gen. Mach. 1

Gen. Mach. 2

Elec. Mach. 1

Elec. Mach. 2

(b) The top 6 firms

0.1

1

10

−0.2 0.0 0.2

market share growth

d
e
n
s
it
y

sector

Gen. Mach. 1

Gen. Mach. 2

Elec. Mach. 1

Elec. Mach. 2

(c) The top 7 firms.

Figure 11: Marginal distributions. ”Gen. Mach. 1” stands for the marginal distribution of y1 in
General machinery.
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obs. mean s.d. a b

Top 5 firms
Gen. Mach.(4,1) 1843 -0.00083 0.148 0.0551 ( 0.00196 ) 0.6766 ( 0.03107 )
Gen. Mach.(3,1) 1843 0.00125 0.137 0.0517 ( 0.00181 ) 0.6483 ( 0.02738 )
Prec. Mach.(4,1) 102 0.00743 0.209 0.0896 ( 0.01277 ) 0.8971 ( 0.19305 )
Prec. Mach.(3,1) 102 -0.00187 0.166 0.0658 ( 0.009 ) 0.8562 ( 0.16032 )
Elec. Mach.(4,1) 656 -0.00728 0.135 0.0568 ( 0.00319 ) 0.7667 ( 0.05805 )
Elec. Mach.(3,1) 656 -0.00816 0.115 0.0517 ( 0.0029 ) 0.7248 ( 0.05139 )

Top 6 firms
Gen. Mach.(5,1) 1052 -0.02173 0.188 0.0647 ( 0.00297 ) 0.7254 ( 0.04385 )
Gen. Mach.(4,1) 1052 0.00322 0.146 0.0539 ( 0.00253 ) 0.6585 ( 0.0386 )
Elec. Mach.(5,1) 429 0.00345 0.149 0.0571 ( 0.00401 ) 0.7105 ( 0.06245 )
Elec. Mach.(4,1) 429 -0.01017 0.133 0.0583 ( 0.00399 ) 0.7957 ( 0.07458 )

Top 7 firms
Gen. Mach.(6,1) 483 -0.00934 0.157 0.0677 ( 0.00428 ) 0.8463 ( 0.07408 )
Gen. Mach.(5,1) 483 -0.01512 0.18 0.0671 ( 0.00441 ) 0.7578 ( 0.06535 )
Elec. Mach.(6,1) 212 -0.00039 0.17 0.0807 ( 0.00749 ) 0.9534 ( 0.13309 )
Elec. Mach.(5,1) 212 0.01665 0.202 0.0674 ( 0.00633 ) 0.8697 ( 0.11321 )

Table 6: MLEs of marginal distributions. For explanation, see Table 2.

closely related with the findings of firm growth rate distribution. This shape of the distribution

implies that market share growth cannot be described by an accumulation of small shocks: Rather,

lumpy jumps are crucial in market share dynamics. Put differently, it suggests that radical change in

market structure is relatively frequent. Interestingly, with some exceptions, this statistical feature

can be observed across different sectors.

We extend our analysis to the multivariate case. The analysis of the top 5, 6, and 7 firms shows

that there is a particular relation among firms: The main part of the total variation of market

share growth is explained by one between the subgroup of the top firms and the lower-ranked

firms. Seeing the marginal distribution describing this relation, we have found that a tent-shaped

distribution similar to the case of the top 2 firms emerges. As in the analysis of the top 2 firms,

market share change between the top subgroup and lower-ranked firms is also characterized by a

lumpy type behavior.

Our analysis implies that the distribution of market share growth has a remarkable feature

and a drastic transformation of market structure is rather frequent. Such implications based on

statistical properties of observed data help us further investigate industrial dynamics theoretically.

This paper has added a new finding to this literature.
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Appendix

A Outliers

For detecting outliers in our samples, we follow the approach developed by Filzmoser and Hron

(2008). In this approach, the Mahalanobis distance (MD) based on the Minimum Covariance

Determinant (MCD) estimates for location and covariance matrix are used as a criteria for outliers.

Since the squared MD follows the χ2
D−1 distribution under the normality assumption of samples,

the .975 quantile of
√
χ2
D−1 is used as the cut-off value in the literature.

We compute the MD values for every sample and plot them in Figure 12. The solid line refers to

the cut-off values corresponding to the .975 quantile. It should be noted, however, that our samples

do not seem to follow normal distribution (see Figure ??) and therefore samples above the line may

be due to the departure from normality. If so, removing all samples above the cut-off value would

be too excessive. In our analysis, we decide to only remove extreme samples which are visually

isolated from the main cloud of samples. For the analysis in Section 3.2 and Section 3.3, the cut-off

values are MD = 7 and MD = 20, respectively. Although the choice of the cut-off value by visual

inspection is debatable, we have confirmed that our conclusion does not significantly depend on

the choice of the cut-off values.
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Figure 12: Outlier detection.
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