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Abstract 

Uncertainty affects investment that involves adjustment costs or time-to-build, resulting in 

dispersion in marginal revenue productivity of capital (MRPK) and consequently in aggregate 

total factor productivity (TFP). This paper sheds new light on this relationship from the 

perspective of product differentiation. Using a simple dynamic model and a large panel dataset 

of manufacturing plants in Japan, we find that while industries with greater time-series volatility 

in revenue-based productivity (TFPR) have greater cross-sectional dispersion of MRPK, such an 

impact is stronger for the industries of less differentiated goods. We also obtain supporting 

evidence that plant-level investment decreases more in response to the volatility in TFPR in the 

industries of less differentiated goods. Based on the structural estimation result, we find that the 

effects of the volatility in TFPR on the aggregate TFP are economically sizable and much larger 

for the industries of less differentiated goods. 
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1. Introduction 

It is now well known that the dispersion in revenue-based productivity (TFPR) across 

firms or plants is quite large even within narrowly defined industries. However, the reasons for the 

dispersion in productivity are still controversial. Many preceding studies posit that the distortions such 

as taxes, regulations, financial frictions, and markups that vary across producers result in the dispersion 

in productivity, which, in turn, cause misallocation of resources and lower aggregate productivity 

(Restuccia and Rogerson, 2008, Hsieh and Klenow, 2009). More recent studies show that uncertainty 

results in the dispersion in revenue-based productivity as it affects investment that involves adjustment 

costs or time-to-build.1  Asker et al. (2014) show that higher time-series volatility in productivity 

shocks results in the greater dispersion in the marginal revenue of capital (MRPK) among plants within 

an industry, even if capital is allocated efficiently from the dynamic view when adjustment costs are 

considered. However, following studies (Kehrig and Vincent, 2019; David and Venkateswaren, 2019, 

among others) obtain mixed results as to the importance of adjustment costs as a source of 

misallocation, as Hopenhayn (2014) stresses in his survey of misallocation. 

Given such controversy, it is useful to provide new evidence on the role of uncertainty in 

the dispersion in TFPR. Figure 1 shows the cross-sectional relationship between the plant-level annual 

changes in MRPK and in TFPR in Japan. These two variables should not be correlated if plants 

immediately adjust their capital at the optimal level that equates MRPK to the marginal cost of capital 

and if no distortions on capital exist and hence the marginal cost of capital is common across plants. 

The figure indicates that these two are positively correlated, suggesting that plants do not adjust capital 

in response to the TFPR shock within a year.2  

 

[Insert Figure 1 here] 

 

Moreover, the effects of uncertainty on investment, and hence on the dispersion in MRPK 

are likely to depend on various firm- and industry-specific factors. Exploring such factors will 

contribute to our understanding to the mechanism through which uncertainty results in the dispersion 

in MRPK and aggregate productivity.  

In this paper, we focus on the industry-level difference in the degree of product 

differentiation as a potential source for the variety in the relationship between the volatility in TFPR 

and the dispersion in MRPK; firms in the industries of more differentiated goods face more stable 

demand, and therefore, reduce investment by less in response to the TFPR shocks, which results in a 

smaller dispersion in MRPK within the industry for the volatility in the TFPR shocks. Despite such 

 
1 Mismeasurement is another potential reason for the dispersion in measured TFPR (e.g., Bils et al., 2021). 
2 We describe the data in Section 4.1 and the definition of TFPR and MRPK in Section 4.2 in detail. Figure 1 depicts 

the plant-level changes in TFPR and MRPK over the period from 2012 to 2013, although we observe a similar 

correlation between the two over the other years in our sample.  
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potential importance, no study examines the role of product differentiation in transmitting the volatility 

in TFPR shocks to the dispersion in MRPK. Therefore, this study aims at providing evidence on to 

what extent uncertainty affects dispersion in MRPK and aggregate productivity depending on the 

product differentiation. Our contribution to the literature is to take product differentiation into account 

when we estimate the effect of uncertainty on the dispersion in MRPK and aggregate productivity.  

We use a simple dynamic model and a large dataset of manufacturing plants in Japan 

covering 1986 to 2013. We find that while industries with greater time-series volatility in TFPR have 

greater cross-sectional dispersion of MRPK, which is consistent with Asker et al. (2014), such a 

relationship is stronger for the industries of less differentiated goods. We also provide supporting 

evidence that the sensitivity of plant-level investment to the volatility in TFPR is higher for industries 

of less differentiated goods. Based on the structural estimation results, we further conduct 

counterfactual experiments to quantify to what extent the effects of the volatility in TFPR on the 

dispersion in MRPK and aggregate productivity depend on the degree of product differentiation. 

Specifically, we assume that the volatility in TFPR decreases by 50%. Then, we find that while the 

dispersion in MRPK decreases almost by 50% regardless of the degree of product differentiation, the 

gains of the aggregate productivity relative to the hypothetical aggregate productivity that would be 

achieved without adjustment costs or time-to-build are 5.6-6.0% for the industries of less differentiated 

goods and 1.4-1.5% for the industries of more differentiated goods.  

The reminder of the paper proceeds as follows. In Section 2, we review the relevant literature 

on the impact of uncertainty on investment and dispersion in MRPK. In Section 3, we present a simple 

model to show how product differentiation affects the relationship between volatility of TFPR shocks 

and dispersion in MRPK. Section 4 describes our data and variables. Section 5 describes the 

methodology for our reduced-form estimation for the dispersion in MRPK and presents the results. 

We further show the regression results for plant-level investment. Section 6 presents the results from 

the structural estimation and the counterfactual experiments. Finally, we conclude the paper with 

discussion of our findings in Section 7. 

 

2. Literature Review 

This study investigates the effects of product differentiation on the relationship between 

uncertainty and dispersion in TFPR, and contributes to the literature on resource misallocation across 

firms and plants. Restuccia and Rogerson (2008) first establish the mechanism by which factor price 

distortion at the firm level reduces allocative efficiency in the aggregate economy. They calibrate U.S. 

data to show the large effect of resource misallocation. Hsieh and Klenow (2009) incorporate 

monopolistic competition into Restuccia and Rogerson’s (2008) model. In Hsieh and Klenow’s (2009) 

framework, resource misallocation depends on the dispersion of marginal revenue products. They find 

that the losses of aggregate TFP due to resource misallocation are larger in China by 30%-50% and 
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India by 40%-60% than in the U.S.  

A number of studies follow Hsieh and Klenow (2009) to specify the underlying mechanisms 

of the dispersion of marginal revenue products. 3  Asker et al. (2014) is one such study, which 

investigates the role of productivity shocks and dynamic production factors on the static variation of 

marginal revenue.4 They use a dynamic investment model to replicate the observed patterns in the 

large dispersion of MRPK. In the reduced-form estimation with nine datasets spanning 40 countries, 

Asker et al. (2014) show that the higher time-series volatility of productivity shocks, measured as the 

variance of productivity growth rates across firms, contributes to larger resource misallocation within 

industries measured as the cross-sectional dispersion of MRPK. Their result suggests that welfare 

gains from reallocating production factors are not as large as implied by static models. Kehrig and 

Vincent (2019) first document that dispersion in MRPK occurs across plants within rather than 

between firms and then build a model in which multi-plant firms optimally allocate resources across 

plants that face idiosyncratic productivity shocks and non-convex adjustment costs of investment. 

Based on this framework, they show that dispersion one-quarter of the total variance of revenue 

products reflects good dispersion in the sense that eliminating frictions increases productivity 

dispersion and raises overall output. David and Venkateswaran (2019) disentangle sources of the 

dispersion in the ratio of value-added to capital into technological and informational frictions and 

various firm-specific factors. They find that adjustment costs and uncertainty explain only a modest 

fraction of the dispersion in Chinese manufacturing firms while adjustment costs account the 

dispersion more for large U.S. firms In addition to uncertainty, capital market frictions such as external 

finance constraints have been investigated as a source of capital misallocation by many researchers 

(e.g., Banerjee and Moll, 2010; Midrigan and Xu, 2014; Moll, 2014). They are also related with this 

study to the extent that financial constraints work as adjustment costs of capital. However, none of 

them focus on the roles of product differentiation.  

Thus, we contribute to the extant literature by taking product differentiation into account 

when we estimate the effect of uncertainty on the dispersion in MRPK. In addition, we estimate the 

effects of uncertainty on aggregate TFP as well as the dispersion in MRPK.  

 

3. Theoretical Framework 

In this section, we posit a simple dynamic investment model to consider how the degree of 

product differentiation affects the relationship between the TFPR volatility and MRPK dispersion. The 

model builds on Dixit and Pindyck (1994), Caballero and Pindyck (1996), Cooper and Haltiwanger 

 
3 See Hopenhayn (2014) and Restuccia and Rogerson (2017) for a survey. Andrews and Cingano (2014) empirically 

study the effects of various kinds of policies on allocative efficiency. Osotimehin (2019) and Hosono and Takizawa 

(2021) extend the Hsieh-Klenow (2009)'s approach to a dynamic setting. Baqaee and Farhi (2019) extend the formula 

of Hsieh and Klenow (2009) to arbitrary input-output network linkages, numbers of factors, microeconomic elasticities 

of substitution, and distributions of distortion wedges. 
4 Da Rocha and Pujolas (2011) also explore the effect of productivity shocks on resource misallocation theoretically. 
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(2006), Bloom (2009), and Asker et al. (2014) in particular. We first describe a model environment 

and proceed to a simplified model that incorporates only time-to-build to analytically solve the model. 

Then we proceed to a more general model that introduces asymmetric adjustment costs between a 

positive and negative investment as well as time-to-build. This is an important extension of Asker et 

al. (2014) because preceding studies point out a significant role of asymmetric adjustment costs in 

generating a negative uncertainty-investment relationship (Caballero, 1991). We numerically solve the 

model that incorporates adjustment costs and simulate it to obtain a testable hypothesis on the role of 

product differentiation in the relationship between the TFPR volatility and the MRPK dispersion. 

 

3.1 Environment 

There are a unit mass of intermediate good producers 𝑖 and a final good producer. The final 

good producer combines differentiated product 𝑄𝑖𝑡 to produce output 𝑄𝑡 using a constant elasticity 

of substitution (CES) production technology: 

 

𝑄𝑡 = (∫(𝐵𝑖𝑡𝑄𝑖𝑡)
𝜀−1
𝜀 𝑑𝑖)

𝜀
𝜀−1

, (1) 

 

where 𝐵𝑖𝑡 denotes a quality of the differentiated product 𝑖 at time t. Eq. (1) leads to the demand 

curve for differentiated good i as 

 

𝑄𝑖𝑡 = 𝐵𝑖𝑡
𝜀−1𝑃𝑖𝑡

−𝜀. (2) 

 

We standardize 𝑃𝑡
𝜀𝑄𝑡 = 1 , where 𝑃𝑡 = (∫(𝑃𝑖𝑡/𝐵𝑖𝑡)

1−𝜀𝑑𝑖)
1

1−𝜀 . Demand elasticity 𝜀  serves as the 

inverse degree of product differentiation and the implied markup, 𝜀/(𝜀 − 1) , as the degree of 

differentiation. Differentiated-good producer i, which we call a plant hereafter, at time t, produces 

output 𝑄𝑖𝑡 using the following constant-returns-to-scale technology: 

 

𝑄𝑖𝑡 = 𝐴𝑖𝑡𝐾𝑖𝑡
𝛼𝐾𝐿𝑖𝑡

𝛼𝐿𝑀𝑖𝑡
𝛼𝑀 , (3) 

 

where 𝐴𝑖𝑡 is the physical productivity shock, 𝐾𝑖𝑡 is the capital input, 𝐿𝑖𝑡 is the labor input, 𝑀𝑖𝑡 is 

materials, and 𝛼𝐾 + 𝛼𝐿 + 𝛼𝑀 = 1. Combining (2) and (3), we obtain sales as 

 

𝑆𝑖𝑡 = Ω𝑖𝑡𝐾𝑖𝑡
𝛽𝐾𝐿𝑖𝑡

𝛽𝐿𝑀𝑖𝑡
𝛽𝑀 , (4) 
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where Ω𝑖𝑡 = (𝐴𝑖𝑡𝐵𝑖𝑡)
1−

1

𝜀 is revenue productivity and 𝛽𝑋 = 𝛼𝑋 (1 −
1

𝜀
) for 𝑋 ∈ {𝐾, 𝐿,𝑀}.5 We call 

𝜔𝑖𝑡 = ln(Ω𝑖𝑡) ⁡ TFPR. That is, 

 

𝜔𝑖𝑡 = (1 −
1

𝜀
) (𝑎𝑖𝑡 + 𝑏𝑖𝑡), (5) 

 

where lower cases denote logs of the variables. Eq. (5) shows that TFPR shocks depend on the 

sum of demand and technology shocks and that a larger 𝜀, or less differentiation, magnifies these 

shocks. The MRPK is defined in logs as 

 

𝑀𝑅𝑃𝐾𝑖𝑡 = ln(𝛽𝐾) + 𝑠𝑖𝑡 − 𝑘𝑖𝑡. (6) 

 

It is easy to show that the optimal capital is proportional to 𝜀𝜔𝑖𝑡 if investment involves 

with no time-to-build or adjustment costs. In this hypothetical setting, therefore, optimal capital 

depends more on productivity if the product is less differentiated (i.e., if 𝜀  is high). In this 

hypothetical setting, therefore, given a magnitude of TFPR shock, larger amount of investment, or 

capital reallocation, is required to achieve the optimal level when the product is less differentiated. 

Now we proceed to a dynamic aspect of the model. We assume that plants can hire labor for 

a wage 𝑃𝐿 and acquire materials at a price 𝑃𝑀 without incurring any adjustment costs in each period. 

This leads to a period profit of 

 

𝜋(Ω𝑖𝑡, 𝐾𝑖𝑡) = 𝜆Ω
𝑖𝑡

1
𝛽𝐾+1/𝜀𝐾

𝑖𝑡

𝛽𝐾
𝛽𝐾+1/𝜀, (7) 

 

where 𝜆 = (𝛽𝐾 + 1/𝜀)(𝛽𝐿/𝑃𝐿)
𝛽𝐿

𝛽𝐾+1/𝜀(𝛽𝑀/𝑃𝑀)
𝛽𝑀

𝛽𝐾+1/𝜀. Capital evolves as 

 

𝐾𝑖𝑡+1 = 𝛿𝐾𝑖𝑡 + 𝐼𝑖𝑡 , (8) 

 

where 𝛿  is one minus the depreciation rate and 𝐼𝑖𝑡  is investment. Eq. (8) incorporates our 

 
5 Our definition of TFPR, Ω𝑖𝑡, is the same as Asker et al. (2014), but different from Hsieh and Klenow (2009)’s. Hsieh 

and Klenow define TFPR as 𝑇𝐹𝑃𝑅𝐻𝐾𝑖 = 𝑃𝑖𝐴𝑖 = 𝑆𝑖/(𝐾𝑖
𝛼𝐾𝐿𝑖

𝛼𝐿𝑀𝑖
𝛼𝑀) if materials are included as a production factor. 

The two definitions are related with each other as 𝑇𝐹𝑃𝑅𝐻𝐾𝑖 = Ω𝑖(𝐾𝑖
𝛼𝐾𝐿𝑖

𝛼𝐿𝑀𝑖
𝛼𝑀)

−
1

𝜀𝑠. We choose our definition because 

Ω𝑖𝑡 is composed of demand and technology shocks and hence can be safely regarded as exogenous shocks. The TFPR 

based on the Hsieh and Klenow’s definition should be used to compute aggregate TFP. Using the terminology of Foster 

et al. (2017), Ω𝑖𝑡 is the regression-residual based TFPR while 𝑇𝐹𝑃𝑅𝐻𝐾𝑖 is the cost-share based TFPR. 
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assumption of one-period time to build.  

We specify the TFPR shock process as the AR(1) process: 

 

𝜔𝑖𝑡 = 𝜇 + 𝜌𝜔𝑖𝑡−1 + σ𝜅𝑖𝑡, (9) 

 

where 𝜅𝑖𝑡 is an i.i.d. random variable, and |𝜌| < 1. Note that we assume that the volatility of TFPR 

shock is independent of 𝜀 despite Eq. (5) in order to compare the dispersion in MRPK across different 

𝜀’s controlling for the dispersion in TFPR shock. 

As is the case with the model of Asker et al. (2014), this model generates no entry or exit 

because any plant can operate with a positive profit due to the decreasing returns to scale in the revenue 

function and the absence of fixed costs. Therefore, the cross-sectional standard deviation of TFPR is 

 

SD(𝜔𝑖𝑡) =
𝜎

√1 − 𝜌2
. (10) 

 

3.2 Time-to-build Model 

To analytically solve the model, we first consider only time-to-build and assume no 

adjustment costs of investment. In this simplified model, the plant’s problem can be written as the 

following two-period problem, 

 

max
𝐾𝑖

E(𝜋(Ω𝑖 , 𝐾𝑖)|Ω−1𝑖) − 𝑃𝐾𝐾𝑖 , (11) 

 

where 𝑃𝐾  denotes the rental cost of capital and 𝜋(Ω𝑖 , 𝐾𝑖)  is defined by Eq. (7). We omit time 

subscript 𝑡 + 1 for brevity and Ω−1𝑖 = Ω𝑖𝑡. Appendix shows that aggregating the output and inputs 

across plants yields aggregate productivity. Comparing the aggregate productivity with and without 

time-to-build yields  

 

𝑇𝐹𝑃𝑟𝑎𝑡𝑖𝑜 =
𝐴

𝐴∗
=

(∫𝑢𝑖

1

1−(1−
1
𝜀
)(1−𝛼𝐾)

𝑑𝑖)

𝜀
𝜀−1

−(1−𝛼𝐾)

(∫𝑢𝑖
𝜀𝑑𝑖)

1
𝜀−1

, (12)

 

 

where 𝐴 and 𝐴∗ respectively denote the aggregate TFPs with and without time-to-build, and 𝑢𝑖 =

𝑒𝜇+σ𝜅𝑖. Suppose further that the shock is log-normally distributed with V(ln𝑢𝑖) = 𝜎2. Then, 
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SD(𝑀𝑅𝑃𝐾𝑖) = (
𝜎

1 − (1 −
1
𝜀)

(1 − 𝛼𝐾)
) (13) 

ln 𝑇𝐹𝑃𝑟𝑎𝑡𝑖𝑜 = −
𝜀𝛼𝐾

1 − (1 −
1
𝜀)

(1 − 𝛼𝐾)
𝜎2. (14)

 

 

Eqs. (13) and (14) show that the inability to adjust capital instantaneously increases the 

dispersion in MRPK and lowers aggregate TFP even though plants dynamically optimize capital. In 

addition, the dispersion in MRPK and aggregate TFP relative to the no-time-to-build case is lower 

when the volatility of TFPR shock is higher and even more so when the product is less differentiated 

(i.e., for higher 𝜀).6 As we will show in Section 3.3, these implications carry over to the more general 

cases where we account for adjustment costs. 

 

3.3 Time-to-build and Adjustment Costs Model 

Now we assume that investment involves adjustment costs composed of the fixed disruption 

cost of investment and convex costs. We consider the possibility that both adjustment cost components 

are asymmetric between positive and negative investment. Specifically, the adjustment cost is 

expressed as 

 

𝐶(𝐼𝑖𝑡, 𝐾𝑖𝑡 , Ω𝑖𝑡) = 𝐼𝑖𝑡 + 𝐶𝐾
𝐹+1{𝐼𝑖𝑡>0}𝜋(Ω𝑖𝑡, 𝐾𝑖𝑡) + 𝐶𝐾

𝐹−1{𝐼𝑖𝑡<0}𝜋(Ω𝑖𝑡, 𝐾𝑖𝑡) 

+𝐶𝐾
𝑄+1{𝐼𝑖𝑡>0}𝐾𝑖𝑡 (

𝐼𝑖𝑡
𝐾𝑖𝑡

)
2

+ 𝐶𝐾
𝑄−1{𝐼𝑖𝑡<0}𝐾𝑖𝑡 (

𝐼𝑖𝑡
𝐾𝑖𝑡

)
2

. (15) 

 

𝐶𝐾
𝐹+ and 𝐶𝐾

𝐹− denote the disruption costs for positive and negative investment, respectively. 𝐶𝐾
𝑄+

 

and 𝐶𝐾
𝑄−

  denote the convex adjustment costs for positive and negative investment, respectively. 

Defining the transition of TFPR Ω𝑖𝑡  as 𝜙(Ω𝑖𝑡+1 ∣∣ Ω𝑖𝑡 ) , we express the plant’s value function in 

recursive form as 

 

𝑉(Ω𝑖𝑡, 𝐾𝑖𝑡) = max𝜋(Ω𝑖𝑡, 𝐾𝑖𝑡) − 𝐶(𝐼𝑖𝑡, 𝐾𝑖𝑡 , Ω𝑖𝑡) + 𝛽∫𝑉(Ω𝑖𝑡, 𝛿𝐾𝑖𝑡 + 𝐼𝑖𝑡)𝜙(Ω𝑖𝑡+1 ∣∣ Ω𝑖𝑡 )𝑑Ω𝑖𝑡+1. (16) 

 

We numerically solve and simulate Eq. (16) to obtain the standard deviation of the log of 

MRPK, SD(𝑀𝑅𝑃𝐾𝑖𝑡), in the stationary state.7 The simulations aim to see the effects of various values 

 
6 If we extend the model to a general equilibrium one, different ε values should result in different real interest rates. 

However, MRPK would still be equalized across firms without frictions and a larger dispersion in MRPK would result 

in a larger TFP loss relative to the frictionless economy (Hsieh and Klenow, 2009). 
7 Specifically, we simulate the model for 10,000 firms over 550 periods and discard data from initial 50 periods. Then 
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of 𝜀  on the relation between 𝜎  and SD(𝑀𝑅𝑃𝐾𝑖𝑡) . In the following simulations, we set all 

parameters except for 𝜎  based on the estimation results from Japanese plant-level data. The 

estimation method we use is described in Section 6.1. For 𝜎, we set arbitrarily from 0.1 to 1.5 although 

the actual average value of 𝜎 is 0.36. Table 1 summarizes our set parameters. We use three alternative 

sets of adjustment cost parameters. In the asymmetric adjustment cost specification, we assume that 

𝐶𝐾
𝐹+ = 𝐶𝐾

𝑄+ = 0, while in the symmetric adjustment cost specification, we impose the restriction that 

𝐶𝐾
𝐹+ = 𝐶𝐾

𝐹− and 𝐶𝐾
𝑄+ = 𝐶𝐾

𝑄−
. Finally, in no adjustment cost specification, we set all the adjustment 

cost parameters at zero. 

 

[Insert Table 1 here] 

 

A. Asymmetric adjustment costs 

We first simulate the asymmetric adjustment cost model. In Table 2, columns labelled 

“Asym AC” show SD(𝑀𝑅𝑃𝐾𝑖𝑡) for⁡the⁡simulated⁡data from this specification. The first panel of 

Figure 2A illustrates that for each 𝜀, SD(𝑀𝑅𝑃𝐾𝑖𝑡) tends to increase with 𝜎, suggesting that higher 

TFPR shock volatility results in grater dispersion in MRPK, which is consistent with Asker et al. 

(2014). Our new finding here is that the slope is steeper as 𝜀 is higher, suggesting that the effect of 

TFPR shock volatility on the dispersion in MRPK is stronger as the product is less differentiated. 

 

[Insert Table 2 here] 

 

To investigate the mechanism that causes such dispersion, we decompose investment into 

the extensive and intensive margins. Specifically, the second and third panels of Figure 2A show the 

fraction of the plants that conduct positive and negative investment, respectively, while the lower-right 

panel of Figure 2A shows the average investment ratio of plants that conduct positive investment. The 

second panel shows that for each 𝜀 , the fraction of the plants that conduct positive investment 

decreases with 𝜎 , suggesting that higher TFPR shock volatility results in a smaller fraction of 

expanding plants. The negative effect of the volatility on the fraction of expanding plants tends to be 

smaller as 𝜀 is higher, that is, as the product market is less differentiated. The third panel shows that 

the effects of the volatility on the fraction of shrinking plants is just the opposite to that of expanding 

plants. The last panel shows that the investment ratio of expanding plants tends to increase as the 

volatility increases, and this positive effect of volatility on the intensive margin of expanding plants is 

stronger as the product market is less differentiated. Although not reported to save space, the absolute 

value of the investment ratio of shrinking plants is relatively small, ranging between 17% and 27%, 

 
we compute SD(𝑀𝑅𝑃𝐾𝑖𝑡) for the pooled 10,000 × 500 firm-period data. We have confirmed that SD(𝑀𝑅𝑃𝐾𝑖𝑡) for 

10,000 firms at any particular period t is close to the counterpart from the pooled data.  
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and do not change significantly as volatility changes. In sum, the extensive margin seems to matter 

both for the volatility-MRPK dispersion relationship and the role of product differentiation on that 

relationship. 

 

[Insert Figure 2 here] 

 

Finally, we investigate how the dispersion in MRPK is related to aggregate productivity. To 

this aim, we compute the aggregate TFP, 𝐴𝑡, using simulated data and compare it with the hypothetical 

aggregate TFP that would be realized if investment did not involve with time-to-build or adjustment 

costs. In this hypothetical setting, it is easy to show that aggregate TFP is 

 

𝐴𝑡
∗ = (∫Ω𝑖𝑡

𝜀 𝑑𝑖)

1
𝜀−1

(17) 

 

Table 3 shows the average ratio of 𝐴𝑡/𝐴𝑡
∗. The higher dispersion in MRPK results in lower 

aggregate TFP relative to the hypothetical TFP. In addition, as 𝜀 is higher, the difference in 𝐴𝑡/𝐴𝑡
∗ 

between low 𝜎 and high 𝜎 becomes larger. 

 

[Insert Table 3 here] 

 

B. Symmetric adjustment costs 

Next, we simulate the symmetric adjustment cost model. In Table 2, columns labelled “Sym 

AC” show SD(𝑀𝑅𝑃𝐾𝑖𝑡) from the simulated data from this specification. Table 2 and the top panel 

of Figure 2B show that SD(𝑀𝑅𝑃𝐾𝑖𝑡) for each 𝜀 is similar to the asymmetric adjustment cost case, 

although SD(𝑀𝑅𝑃𝐾𝑖𝑡) is larger and 𝐴𝑡/𝐴𝑡
∗ is slightly smaller for the symmetric adjustment costs 

than for the asymmetric adjustment costs. 

The mechanism that causes such dispersion in MRPK, however, is different between 

asymmetric and symmetric adjustment costs. The second panel of Figure 2B shows that the share of 

expanding plants tends to increase as the volatility increases. On the other hand, the third panel of 

Figure 2B shows that the share of shrinking plants is very low. As for the intensive margins, the bottom 

panel of Figure 2B shows that the relationship between the investment ratio of expanding plants and 

volatility tends to decrease as the volatility increases, and this negative effect of volatility on the 

intensive margin of expanding plants is weaker as the product is less differentiated. In sum, the 

intensive margin seems to matter both for the volatility-MRPK dispersion relationship and the role of 

product differentiation on that relationship. 
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C. No adjustment costs 

Finally, we simulate the model with no adjustment costs. Note that we still assume the time-

to-build: one-period lag between current-period investment and capital that serves production.  

Table 2 compares SD(𝑀𝑅𝑃𝐾𝑖𝑡)  in the case of no adjustment costs to the cases of 

asymmetric and symmetric adjustment costs. It shows that while SD(𝑀𝑅𝑃𝐾𝑖𝑡) of no adjustment costs 

is slightly smaller than those of asymmetric and symmetric adjustment costs for most of the parameter 

sets we examine, the differences between the cases of no adjustment costs, symmetric adjustment costs, 

and symmetric adjustment costs are small. This finding is not surprising given that the estimated 

parameters of adjustment costs are small. In terms of aggregate TFP relative to the hypothetical TFP, 

𝐴𝑡/𝐴𝑡
∗, it is slightly higher in the case of no adjustment costs than in the cases of asymmetric and 

symmetric adjustment costs. 

The third panel of Figure 2C shows that in the case of no adjustment costs, the share of 

plants that conduct negative investment is much larger than in the cases of asymmetric and symmetric 

adjustment costs. Combining the second and third panels of Figure 2C indicate that, without 

adjustment costs but with time to build, the share of inactive plants (i.e., those plants that do not invest 

or divest) is zero for all of the parameter sets we examine. These results suggest that adjustment costs 

play a significant role in accounting for the distribution of investment. 

In sum, the simulation results suggest that volatility tends to cause greater dispersion in 

MRPK and that product differentiation causes smaller dispersion in MRPK driven by TFPR volatility. 

In addition, the dispersion in MRPK results in lower aggregate TFP relative to the hypothetical TFP 

that would be realized without time-to-build or adjustment costs. Finally, the specification of 

adjustment costs matters for the intensive and extensive margins of investment. We examine whether 

these simulation results are supported empirically by data from Japanese manufacturing plants below.8 

 

4. Data and Variables 

4.1 Data  

Our main data source is the Census of Manufacture conducted by the Ministry of Economy, 

Trade, and Industry (METI) and the Economic Census for Business Activity conducted by the METI 

and the Ministry of Internal Affairs and Communications (MIC) in Japan. The main purpose of the 

annual surveys is to gauge the activities of Japanese plants in manufacturing industries quantitatively, 

including sales, number of employees, wages, materials and tangible fixed assets. The Census covers 

all establishments in years ending with 0, 3, 5, and 8 of the calendar years from 1981 to 2009. For 

other years, the Census covers establishments with four or more employees. The Census of 

Manufacture contains two types of surveys: one for plants with 30 employees or more (Kou Hyou), 

and the other is for plants with less than 30 employees (Otsu Hyou). We construct the panel dataset 

 
8 We use plants and establishments interchangeably throughout this paper. 
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from 1986 to 2013 using the Kou Hyou because the Otsu Hyou does not include some pieces of 

information, including fixed asset. 

To construct the data for output and factor inputs, first, we use each plant’s shipments as the 

nominal gross output and then deflate the nominal gross output by the output deflator in the Japan 

Industrial Productivity Database (JIP) 2015 to convert it into values in constant prices (i.e., real gross 

output 𝑄𝑖𝑡 based on the year 2000. Second, we define the nominal intermediate input as the sum of 

raw materials, fuel, electricity, and subcontracting expenses for the plant’s consigned production. 

Using the Bank of Japan’s Corporate Good Price Index (CGPI), we convert the nominal intermediate 

input into values in constant prices (i.e., real intermediate input 𝑀𝑖𝑡) for 2000. Third, we use each 

plant’s total number of workers as labor input 𝐿𝑖𝑡. 

We construct the data for tangible capital stock as follows. First, we define capital input 𝐾𝑖𝑡 

as the nominal book value of tangible fixed assets from the Census multiplied by the book-to-market 

value ratio for each industry 𝛼𝑠′𝑡 for each data point corresponding to 𝐾𝑖𝑡. We calculate the book-to-

market value ratio for each industry 𝛼𝑠′𝑡 by using the data for real capital stock (𝐾
𝑠′𝑡
𝐽𝐼𝑃

) and real value 

added (𝑌
𝑠′𝑡
𝐽𝐼𝑃

) at each data point taken from the JIP database as follows: 

 

𝑌
𝑠′𝑡
𝐽𝐼𝑃

𝐾
𝑠′𝑡
𝐽𝐼𝑃 =

∑ 𝑌𝑖𝑡
Census

𝑖∈𝑠′

∑ 𝐵𝑉𝐾𝑖𝑡
Census

𝑖∈𝑠′ ∗ 𝛼𝑠′𝑡
 

 

where ∑ 𝑌𝑖𝑡
Census

𝑖∈𝑠′  is the sum of the plants’ value added, and ∑ 𝐵𝑉𝐾𝑖𝑡
Census

𝑖∈𝑠′  is the sum of the 

nominal book value of tangible fixed assets of industry 𝑠′ in the Census.9  

 

4.2 Variable Measurement 

4.2.1 Production Function 

We estimate the sales-generating production function (4) for each 4-digit Japan Standard 

Industrial Classifications (JSIC) using the system generalized method of moments (GMM) estimator 

following Blundell and Bond (2000). Specifically, we estimate the following function: 

 

ln 𝑌𝑖𝑡 = 𝛽𝐾 ln𝐾𝑖𝑡 + 𝛽𝐿 ln 𝐿𝑖𝑡 + 𝛽𝑀 ln𝑀𝑖𝑡 + 𝜂𝑖 + 𝑦𝑒𝑎𝑟𝑡 +𝜔𝑖𝑡 + 𝜀𝑖𝑡 , (18) 

 

where 

 

𝜔𝑖𝑡 = 𝜌𝜔𝑖𝑡−1 + 𝜉𝑖𝑡 , (19) 

 

 
9 The real value added is negative only for the iron and steel industry in 2010. The book-to-market ratio is interpolated 

from the ratio as of 2009 and 2011. 
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|𝜌| < 1, and 𝜀𝑖𝑡 , 𝜉𝑖𝑡~𝑀𝐴(0). 

The left hand-side of equation (18) accounts for the natural logarithm of output produced by 

plant i in period t. As production inputs, ln𝐾𝑖𝑡 denotes the natural logarithm of plant i’s capital input 

at the beginning of period t and ln 𝐿𝑖𝑡 and ln𝑀𝑖𝑡 denote the natural logarithms of labor input and 

intermediate goods, respectively. We measure these variables at the end of period t. Following the 

literature, we include the plant-level fixed effect 𝜂𝑖, year fixed effect 𝑦𝑒𝑎𝑟𝑡, and the TFPR 𝜔𝑖𝑡. We 

assume that 𝜔𝑖𝑡 follows the AR(1) process described by equation (10). The disturbance term, 𝜀𝑖𝑡, 

represents measurement error. This model has a dynamic (common factor) presentation 

 

ln 𝑌𝑖𝑡 = 𝛽𝐾 ln𝐾𝑖𝑡 − 𝜌𝛽𝐾 ln𝐾𝑖𝑡−1 + 𝛽𝐿 ln 𝐿𝑖𝑡 − 𝜌𝛽𝐿 ln 𝐿𝑖𝑡−1 + 𝛽𝑀 ln𝑀𝑖𝑡 − 𝜌𝛽𝑀 ln𝑀𝑖𝑡−1 

+𝜌 ln 𝑌𝑖𝑡−1 + (1 − 𝜌)𝜂𝑖 + 𝑦𝑒𝑎𝑟𝑡 − 𝜌𝑦𝑒𝑎𝑟𝑡−1 + 𝜉𝑖𝑡 + 𝜀𝑖𝑡 − 𝜌𝜀𝑖𝑡−1 (20) 

ln 𝑌𝑖𝑡 = 𝜋1 ln𝐾𝑖𝑡 + 𝜋2 ln𝐾𝑖𝑡−1 + 𝜋3 ln 𝐿𝑖𝑡 + 𝜋4 ln 𝐿𝑖𝑡−1 + 𝜋5 ln𝑀𝑖𝑡 + 𝜋6 ln𝑀𝑖𝑡−1 

+𝜋7 ln 𝑌𝑖𝑡−1 + 𝜂𝑖
∗ + 𝑦𝑒𝑎𝑟𝑡

∗ +𝜔𝑖𝑡 (21) 

 

subject to three non-linear (common factor) restrictions: 𝜋2 = −𝜋1𝜋7, 𝜋4 = −𝜋3𝜋7, 𝜋6 = −𝜋5𝜋7. 

We first obtain consistent estimates of the unrestricted parameters 𝜋 = (𝜋1, 𝜋2, 𝜋3, 𝜋4, 𝜋5, 𝜋6, 𝜋7) and 

V(𝜋) using the system GMM (Blundell and Bond, 1998). Since 𝜔𝑖𝑡~𝑀𝐴(1), we use the following 

moment conditions: 

 

E(𝑥𝑖𝑡−𝑠Δ𝜔𝑖𝑡) = 0 (22) 

E(Δ𝑥𝑖𝑡−𝑠(𝜂𝑖
∗ +𝜔𝑖𝑡)) = 0, (23) 

 

where 𝑥𝑖𝑡−𝑠 = (ln𝐾𝑖𝑡−𝑠 , ln 𝐿𝑖𝑡−𝑠 , ln𝑀𝑖𝑡−𝑠 , ln 𝑌𝑖𝑡−𝑠) and s ≥ 3. Next, using consistent estimates of 

the unrestricted parameters and their variance-covariance matrix, we impose the above restrictions by 

minimum distance to obtain the restricted parameter vector (𝛽𝐾 , 𝛽𝐿 , 𝛽𝑀 , 𝜌) .We first estimate the 

production function, using the data of all plants. Then we drop the 1% tails of TFPR and MRPK as 

outliers in each year and estimate the production function again. 

 

4.2.2 Markup 

From the definition of 𝛽𝑋⁡and the assumption of constant returns to scale, we can derive the 

markup as 𝜀/(𝜀 − 1) = 1/(𝛽𝐾 + 𝛽𝐿 + 𝛽𝑀). Using the industry-level estimates of (𝛽𝐾 , 𝛽𝐿 , 𝛽𝑀), we 

obtain the industry-level, time-invariant markup: 

 

𝑀𝑎𝑟𝑘𝑢𝑝1𝑠 =
1

𝛽̂𝐾𝑠 + 𝛽̂𝐿𝑠 + 𝛽̂𝑀𝑠

. (24) 
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We use this markup measure as a measure of product differentiation. Later, we use an 

alternative measure of markup following De Loecker and Warzynski (2012). We allow adjustment 

costs only for capital, suggesting that the static profit maximization condition holds for materials. 

Therefore, the marginal product of materials, in particular, is equal to its price, which leads to 

 

𝛽𝑀𝑠 =
𝑃𝑀𝑠𝑀𝑖𝑡

𝑆𝑖𝑡
, (25) 

 

where 𝑃𝑀𝑖𝑡 is the price of materials and 𝛽𝑀𝑠 is the output elasticity of materials in industry s. Eq. 

(25) shows that 𝛽𝑀𝑠 is equal to the cost share of materials in sales. Combining Eq. (25) and 𝛽𝑀𝑠 =

(1 − 1/𝜀𝑖)𝛼𝑀𝑠, we obtain the markup as 

 

𝜀𝑖𝑡
𝜀𝑖𝑡 − 1

=
𝛼𝑀𝑠𝑆𝑖𝑡
𝑃𝑀𝑠𝑀𝑖𝑡

. (26) 

 

In practice, we follow the method of replacing 𝛼𝑀𝑠 in Eq. (26) with the estimated value of 

𝛽𝑀𝑠, 𝛽̂𝑀𝑠, and take the median value of the markup among the plants within each industry: 

 

𝑀𝑎𝑟𝑘𝑢𝑝2𝑠 = 𝑀𝑒𝑑𝑖𝑎𝑛(
𝛽̂𝑀𝑠𝑆𝑖𝑡
𝑃𝑀𝑠𝑀𝑖𝑡

) . (27) 

 

We use this industry-level, time-invariant markup measure as a robustness test. 

 

4.2.3 Volatility 

To measure uncertainty, we employ two alternative measures of the volatility of productivity,⁡

𝜔𝑖𝑡. The first is the standard deviation of the productivity shocks across plants within an industry in a 

given year: 

 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦1𝑠𝑡 = SD𝑠𝑡(𝜔𝑖𝑡 −𝜔𝑖𝑡−1), (28) 

 

where 𝑠  denotes the industry of plant 𝑖 . The other measure is based on the assumption that 𝜔𝑖𝑡 

follows the stationary AR(1) process and is defined as 

 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦2𝑠𝑡 = SD𝑠𝑡(𝜔𝑖𝑡 − 𝜌̂𝜔𝑖𝑡−1). (29) 

 

These volatility measures are time variant and defined at the industry level. Note also that 
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multiplicative shocks that are common to all establishments within an industry are absorbed when we 

calculate the standard deviation of the log of TFPR and hence do not have effects on the volatility 

measures. Nonetheless, it turns out that these volatility measures seem to be correlated with aggregate 

uncertainty shocks. Figure 3 depicts 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦1𝑠𝑡 averaged over industries for each year and the 

Japan Policy Uncertainty Index.10 Both 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦1𝑠𝑡 and the Index spike in the late 1990s of the 

Japanese banking crisis, the 2008 global financial crisis, and the 2011 Tohoku Great Earthquake.  

 

[Insert Figure 3 here] 

 

4.2.4 Dispersion in MRPK 

We focus on the standard deviation of 𝑀𝑅𝑃𝐾𝑖𝑡  across plants in industry s in year t: 

SD𝑠𝑡(𝑀𝑅𝑃𝐾𝑖𝑡) as a baseline measure of the dispersion in log of MRPK. The result below is robust to 

whether we use the SD𝑠𝑡(𝑀𝑅𝑃𝐾𝑖𝑡) or V𝑠𝑡(𝑀𝑅𝑃𝐾𝑖𝑡).  

Table 4 summarizes the descriptive sample statistics of the variables. The standard deviation 

of 𝑀𝑅𝑃𝐾𝑖𝑡 across plants in all industries is 1.36, which is larger than the U.S. counterpart (0.98) but 

close to the French, Romanian and Mexican counterparts (1.28, 1.38, and 1.40, respectively) reported 

in Table 2 of Asker et al. (2014). We also report the sample statistics of the dispersion in the marginal 

revenue products of labor and materials, SD𝑠𝑡(𝑀𝑅𝑃𝐿𝑖𝑡)  and SD𝑠𝑡(𝑀𝑅𝑃𝑀𝑖𝑡)  to compare with 

SD𝑠𝑡(𝑀𝑅𝑃𝐾𝑖𝑡) in Table 4, illustrating that SD𝑠𝑡(𝑀𝑅𝑃𝐾𝑖𝑡) > SD𝑠𝑡(𝑀𝑅𝑃𝐿𝑖𝑡) > SD𝑠𝑡(𝑀𝑅𝑃𝑀𝑖𝑡) on 

average. This evidence supports our approach focusing on the adjustment cost of capital rather than 

that of labor or materials.11 

 

[Insert Table 4 here] 

 

To see the time-series movement of the dispersion in log of MRPK, we depict in Figure 4 

the standard deviations of logs of MRPK and the ratio of MRPK to average MRPK in industry for 

each year. The former shows the overall dispersion in MRPK while the latter shows the dispersion in 

MRPK within the industry. Figure 4 shows that while the overall MRPK dispersion tends to decrease, 

the within-industry MRPK dispersion tends to increase over the last three decades.12 

 

[Insert Figure 4 here] 

 

 
10  This index is constructed by the Economic Policy Uncertainty Project, the Asia and Pacific Division of the 

International Monetary Fund (IMF), and the Research Institute of Economy, Trade, and Industry (RIETI) and available 

at http://www.rieti.go.jp/jp/database/policyuncertainty/. See Arbatli et al. (2022) in detail. 
11 Asker et al. (2014) report a similar magnitude of the standard deviation of each input for the U.S. economy (0.81 for 

capital, 0.63 for labor, and 0.54 for materials) (Table 7, pp. 1036). 
12 The hike in 2011-12 possibly reflect the Tohoku Earthquake on March 11, 2011. 

http://www.rieti.go.jp/jp/database/policyuncertainty/


 

 

16 

5. Reduced-form Regression 

In this section, we first conduct reduced-form regression analyses to examine how the time-

series volatility in TFPR affects the cross-sectional dispersion of MRPK depending on the markup. 

Our working hypothesis is that while greater volatility in TFPR results in a larger dispersion in MRPK, 

this effect is stronger in industries with lower markups that represent less differentiation. Next, we 

estimate the plant-level investment. Our working hypothesis is that while greater volatility in TFPR 

results in lower plant-level investment, this negative effect is stronger in industries with lower markups, 

although the exact relationship between the markup and the effect of volatility in TFPR on investment 

may differ between the extensive and intensive margins of investment as we see Figure 2.  

 

5.1 Dispersion in MRPK 

To test the above hypotheses about the dispersion in MRPK, we estimate the following 

baseline specifications: 

 

𝑀𝑅𝑃𝐾⁡𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛𝑠𝑡 = 𝛽𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑠𝑡 + 𝐹𝐸𝑠 + 𝜑𝑠𝑡 (30) 

𝑀𝑅𝑃𝐾⁡𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛𝑠𝑡 = 𝛽1𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑠𝑡 + 𝛽2𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑠𝑡 ∗ 𝑀𝑎𝑟𝑘𝑢𝑝𝑠 + 𝐹𝐸𝑠 + 𝜑𝑠𝑡 . (31) 

 

The unit of observation is industry-year. The dependent variable is the MRPK dispersion measure 

described above. The independent variables are the volatility measures and their interaction with the 

markup. If higher volatility results in larger dispersion in MRPK, 𝛽 should be positive. On the other 

hand, if product differentiation decreases, that is, if the markup is lower, the impact of volatility on the 

dispersion in MRPK should be lower, and hence 𝛽2  should be negative. Because we include the 

industry-level fixed effect, we do not include the markup measure on its own, which is time-invariant.  

We further control for the previous year’s dispersion in MRPK and estimate the following 

equation using the difference GMM in Arellano and Bond (1991): 

 

𝑀𝑅𝑃𝐾⁡𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛𝑠𝑡 = 𝛽0𝑀𝑅𝑃𝐾⁡𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛𝑠𝑡−1 + 𝛽1𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑠𝑡 + 𝐹𝐸𝑠 + 𝜑𝑠𝑡 (32) 

 

In all specifications, we drop the industry-year observations with the volatility variable is higher than 

the top 1 percentile. The standard errors are clustered at the industry level.  

Panel A of Figure 5 plots SD𝑠𝑡(𝑀𝑅𝑃𝐾𝑖𝑡)  and 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦1𝑠𝑡 , indicating that there is a 

positive correlation between these two, which is consistent with the hypothesis that uncertainty 

increases the dispersion in MRPK. To illustrate the role of product differentiation in the volatility-

MRPK dispersion relationship, Panel B of Figure 5, we divide the industries into two depending on 

whether the markups are above or below the median, and depict the relationship between 

SD𝑠𝑡(𝑀𝑅𝑃𝐾𝑖𝑡) and the percentile of 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦1𝑠𝑡. The figure shows that the slope is steeper for the 
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lower-markup industries, suggesting that product differentiation weakens the volatility-MRPK 

dispersion relationship.  

 

[Insert Figure 5 here] 

 

Table 5 reports the baseline estimation results when we use SD𝑠𝑡(𝑀𝑅𝑃𝐾𝑖𝑡)  as a MRPK 

dispersion measure, 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦1𝑠𝑡 as a volatility measure, and 𝑀𝑎𝑟𝑘𝑢𝑝1𝑠𝑡 as a markup measure. 

In Columns (1) and (2), we include only the current volatility measure, finding that higher TFPR 

volatility results in a larger MRPK dispersion regardless of whether we include industry fixed effects 

or not. In Columns (3) and (4), we add the lagged MRPK dispersion and estimate using GMM with 

industry-fixed effects. The one- to three-year lagged MRPK dispersion are all positive and significant. 

Importantly, even with these lagged MRPK dispersion, the current volatility still takes a positive and 

significant coefficient. In Column (6), we add the interaction of markup and volatility to the 

specification in Column (2), and find that the interaction term is negative and weakly significant, 

suggesting that lower markup, i.e., less product differentiation, strengthens the adverse effect of 

volatility on MRPK dispersion. In Columns (7) to (10), we split the industries depending on whether 

the markup is higher or lower than the median. In Columns (7) and (8) we include only the current 

volatility measure, showing that while volatility takes positive and significant coefficients in both 

subsamples, the coefficient is larger for the sample with relatively lower markup. In Columns (9) and 

(10), we add the lagged MRPK and find that volatility takes a positive and significant coefficient only 

for the industries with lower markup. All these results suggest that volatility increases the dispersion 

in and that product differentiation weakens this volatility-MRPK dispersion relationship.  

 

[Insert Table 5 here] 

 

Next, in Table 6, we change the volatility measure from 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦1𝑠𝑡 to 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦2𝑠𝑡 

in Columns (1)-(3) and the markup measure from 𝑀𝑎𝑟𝑘𝑢𝑝1𝑠 to 𝑀𝑎𝑟𝑘𝑢𝑝2𝑠 in Columns (4) and (5). 

We report only the results for OLS estimation of Eqs. (30) and (31); the results for the GMM of Eq. 

(32) are virtually the same. Table 6 shows that the baseline results do not qualitatively change.13 

 

[Insert Table 6 here] 

 

5.2 Plant-level Investment 

 
13 We have thus far implicitly assumed that TFPR shocks are independent across establishments. But TFPR shocks 

may correlate across establishments within a firm. To exclude this possibility, we restrict our sample to the firms with 

single establishments. Using 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦1𝑠𝑡  as a volatility measure and the quartile dummies of 𝑀𝑎𝑟𝑘𝑢𝑝1𝑠𝑡  as a 

markup measure, we again find that the volatility is positive and significant only for the lower markup subsample. 
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To investigate the mechanism through which product differentiation decreases the effects of 

the volatility of TFPR on the dispersion in MRPK, we estimate the extensive and intensive margins of 

plant-level investment. First, to investigate the extensive margin, we run the following linear 

probability model of whether the plant conducts positive investment or not,  

 

1 (
𝐼𝑖𝑡
𝐾𝑖𝑡

> 0.05) = 𝛽1𝑀𝑅𝑃𝐾𝑖𝑡 + 𝛽2𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑠𝑡 + 𝛽3𝑀𝑅𝑃𝐾𝑖𝑡 × 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑠𝑡 + 𝐹𝐸𝑖 + 𝐹𝐸𝑡 + 𝜑𝑖𝑡, (33) 

 

where 𝐼𝑖𝑡  is gross investment measured by tangible fixed assets acquired, and 𝐾𝑖𝑡  represents the 

tangible fixed assets at the beginning of the previous year. We use the threshold value of 0.05 rather 

than 0 because a very small-scaled investment is not likely to involve with time-to-build or adjustment 

costs. The dependent variable is a dummy for positive investment. We drop the plant-year observations 

with negative investment, 𝐼𝑖𝑡/𝐾𝑖𝑡 < 0.05 . We expect that 𝛽1  takes a positive coefficient. On the 

other hand, we expect 𝛽2 to take either negative or positive coefficients depending on whether the 

adjustment costs are asymmetric or symmetric, as the second panels of Figures 2A and 2B show. 

Finally, we expect 𝛽3 to be negative if volatility weakens the plant’s response to the change in MRPK. 

We control for fixed effects in two ways. One is to control for plant and year fixed effects additively, 

and the other is to control for plant and industry-year fixed effects. In the latter specification, we drop 

the single term of 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑠𝑡. We conduct the full sample estimation and the subsample estimation 

where industries are divided into those of more and less differentiated goods depending on whether 

𝑀𝑎𝑟𝑘𝑢𝑝1𝑠 is above or below the median. 

We further estimate the linear probability model of negative investment after dropping the 

observations with positive investment, 𝐼𝑖𝑡/𝐾𝑖𝑡 > 0.05, as follows: 

 

1 (
𝐼𝑖𝑡
𝐾𝑖𝑡

< −0.05) = 𝛽1𝑀𝑅𝑃𝐾𝑖𝑡 + 𝛽2𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑠𝑡 + 𝛽3𝑀𝑅𝑃𝐾𝑖𝑡 × 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑠𝑡 + 𝐹𝐸𝑖 + 𝐹𝐸𝑡 +𝜑𝑖𝑡. (34) 

 

Figure 6 shows the fraction of establishments with positive, zero, and negative investment 

over time. While the average fractions of positive and zero investment are 0.56 and 0.41, respectively, 

the average fraction of negative investment is only 0.03. 

 

[Insert Figure 6 here] 

 

Table 7 reports the results from using 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦1𝑠𝑡 as a volatility measure, though using 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦2𝑠𝑡 leave the results essentially unchanged. Columns (1)-(6) show the results for positive 

investment and Columns (7)-(12) for negative investment. In Columns (1)-(3) and (7)-(9), we control 
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for plant and year-fixed effects additively while in Columns (4)-(6) and (10)-(12), we control for plant 

and industry-year fixed effects. In Columns (1)-(3), 𝛽1 is positive and significant while 𝛽2 and 𝛽3 

are negative and significant, suggesting that while higher MRPK tends to induce positive investment, 

volatility reduces the likelihood of positive investment, and weakens the plant’s response to the change 

in MRPK. To compare Columns (2) and (3), we find that the absolute values of both 𝛽2 and 𝛽3 are 

larger for the industries with lower markup, suggesting that product differentiation weakens the 

negative effect of volatility on investment (as in the asymmetric adjustment cost model) and on the 

sensitivity of investment to MRPK. In Columns (4)-(6), we control for time-varying industry fixed 

effects. 𝛽1 still takes a positive and significant coefficient. 𝛽3 takes a negative coefficient for the 

whole industries and the industries of less differentiated goods, but not for those of more differentiated 

goods. This result suggest that volatility weakens the positive response to MRPK only for industries 

of relatively less differentiated goods. Columns (7)-(12) show that in the case of negative investment, 

only 𝛽1 is negative and significant. 𝛽2 and 𝛽3 are not significant, suggesting that volatility does 

not seem to affect the negative investment or the investment sensitivity to MRPK. 

 

[Insert Table 7 here] 

 

Next, we turn to the intensive margin. We estimate the following equation for the full sample 

and subsamples divided by whether the plant-year conducts positive or negative investment: 

 

𝐼𝑖𝑡
𝐾𝑖𝑡

= 𝛽1𝑀𝑅𝑃𝐾𝑖𝑡 + 𝛽2𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑠𝑡 + 𝛽3𝑀𝑅𝑃𝐾𝑖𝑡 × 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑠𝑡 + 𝐹𝐸𝑖 + 𝐹𝐸𝑡 + 𝜑𝑖𝑡. (35) 

 

We expect 𝛽1 to be positive. As for 𝛽2, we expect it to be positive or negative depending on the 

adjustment costs are asymmetric or symmetric as the last panel of Figures 2A and 2B show. Finally, 

we expect 𝛽3 to be negative if volatility weakens the plant’s response to the change in MRPK. In the 

estimations, we drop the observations with the investment rate is higher than the top 1 percentile. 

Table 8 reports the estimation results for the intensive margin. Columns (1)-(6) show the 

results from the sample of the observations that are included regardless of whether the plant-year 

conducts positive, zero, or negative investment. They show that 𝛽1 is positive and significant, while 

𝛽2 and 𝛽3 are negative and significant only for the industries with smaller markup, suggesting that 

product differentiation weakens the adverse effect of volatility on the intensive margin of investment 

sensitivity to MRPK. Columns (7)-(9) show the results from the restricted sample of plant-year 

observations with positive investment. The results are similar to those in Columns (4)-(6), although 

estimated 𝛽1  is larger for this restricted sample. The negative 𝛽2  for the industries with smaller 

markups does not seem to be consistent with the asymmetric or symmetric adjustment cost models. 
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However, we cannot simply compare the results with the model predictions because threshold level 

above which the investment ratio is regarded as positive is fixed at the 5% level here while the models 

predict a higher threshold with the volatility. Columns (10)-(12) show the results from the restricted 

sample of the observations with negative investment, showing that neither 𝛽1 nor 𝛽3 is significant.  

 

[Insert Table 8 here] 

 

These estimation results show that the volatility in TFPR decreases both the likelihood (i.e., 

extensive margin) and the extent (i.e., intensive margin) of positive investment, and product 

differentiation weakens these adverse effects. The negative impact of the volatility in TFPR on the 

likelihood and extent of positive investment, especially in industries of less differentiated goods, seem 

to result in a large dispersion in MRPK.  

 

6. Structural analysis 

In this section, we aim to quantitatively evaluate the role of product differentiation in 

transmitting the volatility in TFPR to the dispersion of MRPK and aggregate TFP using the model 

described in Section 3. To this aim, we first estimate the model parameters and then use the estimated 

parameters to conduct counterfactual experiments in which the volatility decreases by half.  

 

6.1 Parameters 

Assuming for simplicity that industries have common production technology, adjustment 

technology, and demand elasticity, we use the average estimated values for production function 

parameters, 𝛼𝐾 , 𝛼𝐿 , 𝛼𝑀 , productivity process parameters, 𝜌 , 𝜎 , and demand elasticity, 𝜀 , which 

governs the markup.14 We set the other parameters except for the adjustment cost parameters, 𝜇, 𝛿, 

and 𝛽 at conventional values following, e.g., Asker et al. (2014). Table 1 shows the parameters. 

We estimate the adjustment cost parameters, 𝜃 = (𝐶𝐾
𝐹+, 𝐶𝐾

𝑄+, 𝐶𝐾
𝐹−, 𝐶𝐾

𝑄−)  using a 

minimum-distance procedure similar to that in Cooper and Haltiwanger (2006) and Asker et al. (2014). 

Specifically, we search for 𝜃 that distance between the moments predicted by the model and those 

from the data. The moments we use are the proportion of plant-year observations with the investment 

ratio falling into each of the 5 intervals: 𝐼𝑖𝑡/𝐾𝑖𝑡 < −0.2<, −0.2 < 𝐼𝑖𝑡/𝐾𝑖𝑡 < −0.05 , −0.05 <

𝐼𝑖𝑡/𝐾𝑖𝑡 < 0.05 , 0.05 < 𝐼𝑖𝑡/𝐾𝑖𝑡 < 0.2 , and 0.2 < 𝐼𝑖𝑡/𝐾𝑖𝑡 ; and the standard deviation of the 

investment ratio. We simulate the model forward for 550 years for 10,000 firms and discard the first 

50 years to obtain the stationary moments from the model, which we denote as Ψ(𝜃). As for the actual 

data, we drop the outliers with the investment ratio either below 1 percentile or above 99 percentiles 

to compute the moments, which are denoted as Ψ̂. We adopt a criterion function given by the quadratic 

 
14 These parameters are virtually the same between industries with large markups and those with small markups. 



 

 

21 

form with weighting matrix W: 

 

𝑄(𝜃) = (Ψ̂ − Ψ(𝜃))
′
𝑊(Ψ̂ − Ψ(𝜃)) . (36) 

 

We set 𝑊 = 𝐼, the identity matrix because the scales of the moments are similar. In practice, 

it is computationally too heavy to estimate these four parameters at once. We therefore focus on the 

two restricted models: the asymmetric adjustment cost (Asym AC) model where the restrictions 

𝐶𝐾
𝐹+ = 𝐶𝐾

𝑄+
= 0  are imposed, and the symmetric adjustment cost (Sym AC) model where the 

restrictions 𝐶𝐾
𝐹+ = 𝐶𝐾

𝐹−  and 𝐶𝐾
𝑄+

= 𝐶𝐾
𝑄−

  are imposed. The estimated values for each model are 

reported in Table 1 while the moments from the estimated models and the data are shown in Table 9. 

Just for comparison, we also report the moments from the simulated data of the no adjustment model 

(No AC). The No AC models fit the actual data much worse than the Asym AC and Sym AC models, 

especially in that the fraction of firms with −0.05 < 𝐼𝑖𝑡/𝐾𝑖𝑡 < 0.05 is much larger in the No AC 

model than its counterpart of the actual data. The Sym AC model mimics the proportion of the 

investment ratios falling into the five bins defined above better than the Asym AC model, but the 

standard deviation of the Sym AC model is much smaller than that of the Asym AC model and the 

actual data. Overall, the Asym AC model performs better than the Sym AC model in terms of the 

distance defined by equation (36).  

 

[Insert Table 9 here] 

 

6.2 Counterfactual experiments 

To investigate the effects of the volatility in TFPR on the dispersion in MRPK and aggregate 

TFP, we decrease the volatility⁡𝜎 by half from the value of 0.36 to 0.18 and examine the standard 

deviation of MRPK and the ratio of aggregate TFP to its hypothetical level that would be reached 

without time-to-build or adjustment costs, 𝐴/𝐴∗. We conduct this experiment for different markups 

to quantitatively investigate to what extent the volatility in TFPR affects industry-level TFP depending 

on the degree of product differentiation. Specifically, we choose 𝜀 = 2.45, 3.40, 8.18  so that the 

markup is equal to the average of the industries with their markups above the median, 1.69, the average 

of all industries, 1.42 and the average of the industries with their markups below the median, 1.14.  

Table 10 shows the results from these counterfactual experiments from the asymmetric and 

symmetric adjustment cost models. We first confirm that given the volatility in TFPR 𝜎, the aggregate 

TFP relative to the hypothetical level 𝐴/𝐴∗ is lower as the degree of product differentiation is lower 

(i.e., 𝜀 is higher). Next, we find that regardless of⁡ε or the adjustment cost specifications, decreasing 

volatility by half results in a decrease in SD(MRPK) almost by half. However, the effect on the TFP 
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relative to its hypothetical level depends significantly on the degree of competition. For 𝜀 = 3.40, 

which represents the average of all industries, the relative TFP increases by 2.3% for the Asym AC 

model, while for the less and more competitive industries (𝜀 = 2.45  and 8.18), the relative TFP 

increases by 1.4% and 5.6%, respectively, for the Asym AC model. The counterparts for the Sym AC 

model are slightly larger: 2.5% for 𝜀 = 3.40 , 1.5% for 𝜀 = 2.45 , and 6.0% for 𝜀 = 8.18 . These 

results indicate that industries of less differentiated goods can realize significantly larger TFP gains 

from less uncertainty as compared to industries of more differentiated goods. 

 

[Insert Table 10 here] 

 

７. Conclusion 

Uncertainty affects investment that involves adjustment costs or time-to-build, resulting in 

dispersion in MRPK and consequently in aggregate TFP, depending on the degree of product 

differentiation. Using a simple dynamic model and a large panel dataset of manufacturing plants in 

Japan, we find that while industries with greater time-series volatility in TFPR have greater cross-

sectional dispersion of MRPK, such an impact is stronger for the industries of less differentiated goods. 

We also obtain supporting evidence that plant-level investment decreases more in response to the 

volatility in TFPR in the industries of less differentiated goods. Based on the structural estimation 

result, we find that the effects of the volatility in TFPR on the aggregate TFP are economically sizable 

and much larger for the industries of less differentiated goods. Given that the volatility in TFPR is 

associated with the policy uncertainty index, our results suggest that reducing policy uncertainty has 

heterogeneous impacts on the industry-level TFP depending on the degree of product differentiation.  

While this study sheds new lights on the effects of uncertainty on the allocation of capital 

and aggregate TFP by focusing on the role of product differentiation, some issues are left for future 

work. First, we have focused on the industry-level difference in the degree of product differentiation. 

In fact, plants and firms within a narrowly defined industry produce goods with different degree of 

differentiation. Taking firm-level heterogeneity in the degree of product differentiation is an important 

path for future work. Second, we have not yet explored the durability of uncertainty-driven dispersion 

in MRPK. If the major source of such productivity dispersion is time-to-build, then uncertainty-driven 

dispersion in MRPK may be short-lived. We explore this issue also in future work. 
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Appendix. Analytical solution to the simplified model 

In this Appendix, we first derive aggregate TFP in the case where time-to-build exists, and 

then compare it with the aggregate TFP in the case where capital adjusts without time lag. In the 

presence of time-to-build, plant 𝑖’s problem (11) leads to the following optimal inputs and output: 
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where 𝑢𝑖 = 𝑒𝜇+σ𝜅𝑖𝑡 and time subscript −1 denotes 𝑡 − 1. 

Aggregating inputs and outputs across plants lead to  

 

𝐾 = {(1 −
1

𝜀
) (

𝛼𝐿
𝑃𝐿
)
(1−

1
𝜀
)𝛼𝐿

(
𝛼𝑀
𝑃𝑀

)
(1−

1
𝜀
)𝛼𝑀

(
𝛼𝐾
𝑃𝐾

)
1−(1−

1
𝜀
)(𝛼𝐿+𝛼𝑀)

}

𝜀

∫Ω−1𝑖
𝜌𝜀

𝑑𝑖 {𝐸 [𝑢𝑖

1

1−(1−
1
𝜀
)(𝛼𝐿+𝛼𝑀)]}

𝜀−(𝜀−1)(𝛼𝐿+𝛼𝑀)

 

𝐿 = {(1 −
1

𝜀
) (

𝛼𝐿
𝑃𝐿
)
(1−

1
𝜀
)(𝛼𝐿−1)+1

(
𝛼𝑀
𝑃𝑀

)
(1−

1
𝜀
)𝛼𝑀

(
𝛼𝐾
𝑃𝐾

)
(1−

1
𝜀
)𝛼𝐾

}

𝜀

∫Ω−1𝑖
𝜌𝜀

𝑑𝑖 {E [𝑢𝑖

1

1−(1−
1
𝜀
)(𝛼𝐿+𝛼𝑀)

]}

𝜀−(𝜀−1)(𝛼𝐿+𝛼𝑀)
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𝑀 = {(1 −
1

𝜀
) (

𝛼𝐿
𝑃𝐿
)
(1−

1
𝜀
)𝛼𝐿

(
𝛼𝑀
𝑃𝑀

)
(1−

1
𝜀
)(𝛼𝑀−1)+1

(
𝛼𝐾
𝑃𝐾

)
(1−

1
𝜀
)𝛼𝐾

}

𝜀

∫Ω−1𝑖
𝜌𝜀

𝑑𝑖 {E [𝑢𝑖

1

1−(1−
1
𝜀
)(𝛼𝐿+𝛼𝑀)

]}

𝜀−(𝜀−1)(𝛼𝐿+𝛼𝑀)

 

𝑄 = (1 −
1

𝜀
)
𝜀

(
𝛼𝐾
𝑃𝐾

)
𝜀𝛼𝐾

(
𝛼𝐿
𝑃𝐿
)
𝜀𝛼𝐿

(
𝛼𝑀
𝑃𝑀

)
𝜀𝛼𝑀

{E [𝑢𝑖

𝜀
𝜀−(𝜖−1)(𝛼𝐿+𝛼𝑀)]}

𝜖
𝜖−1

[𝜖−(𝜖−1)(𝛼𝐿+𝛼𝑀)]

{∫𝛺−1𝑖
𝜌𝜖

𝑑𝑖}

𝜖
𝜖−1

. 

 

Substituting these aggregate inputs and output to the definition of aggregate TFP, 𝐴 =

𝑄/(𝐾𝛼𝐾𝐿𝛼𝐿𝑀𝛼𝑀) yields 

 

𝐴 = {∫Ω−1𝑖
𝜌𝜀

𝑑𝑖}

1
𝜀−1

{E [𝑢𝑖

1

1−(1−
1
𝜀
)(𝛼𝐿+𝛼𝑀)]}

𝜀
𝜀−1

[1−(1−
1
𝜀
)(𝛼𝐿+𝛼𝑀)]

. 

 

Next, we turn to the case where there exists no time-to-build. In this case, the optimal inputs 

and output are as follows. 

 

𝐾𝑖
∗ = {(1 −

1

𝜀
) (

𝛼𝐾
𝑃𝐾

)
1−(1−

1
𝜀
)(𝛼𝐿+𝛼𝑀)
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𝛼𝐿
𝑃𝐿
)
(1−

1
𝜀
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𝛼𝑀
𝑃𝑀

)
(1−

1
𝜀
)𝛼𝑀
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𝜀
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𝜌
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𝜀
 

𝐿𝑖
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𝜀
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𝛼𝐿
𝑃𝐿
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𝜀
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𝑃𝑀

)
(1−

1
𝜀
)𝛼𝑀

(
𝛼𝐾
𝑃𝐾

)
(1−

1
𝜀
)𝛼𝐾

}

𝜀

(𝑢𝑖𝛺−1𝑖
𝜌

)
𝜀
 

𝑀𝑖
∗ = {(1 −

1

𝜀
) (

𝛼𝐿
𝑃𝐿
)
(1−

1
𝜀
)𝛼𝐿

(
𝛼𝑀
𝑃𝑀

)
(1−

1
𝜀
)(𝛼𝑀−1)+1

(
𝛼𝐾
𝑃𝐾

)
(1−

1
𝜀
)𝛼𝐾

}

𝜀

(𝑢𝑖𝛺−1𝑖
𝜌

)
𝜀
. 

 

Aggregating these inputs across plants yields 

 

𝐾∗ = {(1 −
1

𝜀
) (

𝛼𝐾
𝑃𝐾

)
1−(1−

1
𝜀
)(𝛼𝐿+𝛼𝑀)

(
𝛼𝐿
𝑃𝐿
)
(1−

1
𝜀
)𝛼𝐿

(
𝛼𝑀
𝑃𝑀
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(1−
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𝜀
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}

𝜀

∫𝛺−1𝑖
𝜌𝜀

𝑑𝑖∫(𝑢𝑖)
𝜀 𝑑𝑖⁡ 

𝐿∗ = {(1 −
1

𝜀
) (

𝛼𝐿
𝑃𝐿
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(1−

1
𝜀
)(𝛼𝐿−1)+1

(
𝛼𝑀
𝑃𝑀

)
(1−

1
𝜀
)𝛼𝑀

(
𝛼𝐾
𝑃𝐾

)
(1−

1
𝜀
)𝛼𝐾

}

𝜀

∫𝛺−1𝑖
𝜌𝜀

𝑑𝑖∫(𝑢𝑖)
𝜀 𝑑𝑖 

𝑀∗ = {(1 −
1

𝜀
) (

𝛼𝐿
𝑃𝐿
)
(1−

1
𝜀
)𝛼𝐿

(
𝛼𝑀
𝑃𝑀

)
(1−

1
𝜀
)(𝛼𝑀−1)+1

(
𝛼𝐾
𝑃𝐾

)
(1−

1
𝜀
)𝛼𝐾

}

𝜀

∫𝛺−1𝑖
𝜌𝜀

𝑑𝑖∫(𝑢𝑖)
𝜀 𝑑𝑖. 

 

Aggregate output must satisfy (1). Substituting plant-level optimal inputs into (1) yields 

 

𝑄∗ = (1 −
1

𝜀
)
𝜀

{(
𝛼𝐾
𝑃𝐾

)
𝛼𝐾

(
𝛼𝐿
𝑃𝐿
)
𝛼𝐿

(
𝛼𝑀
𝑃𝑀

)
𝛼𝑀

}
𝜀

{∫𝛺−1𝑖
𝜌𝜀

𝑑𝑖}

𝜀
𝜀−1

{∫(𝑢𝑖)
𝜀 𝑑𝑖}

𝜀
𝜀−1
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Aggregate TFP without time-to-build is  

 

𝐴∗ = {∫𝛺−1𝑖
𝜌𝜀

𝑑𝑖}

1
𝜀−1

{∫(𝑢𝑖)
𝜀 𝑑𝑖}

1
𝜀−1

 

 

Comparing 𝐴 and 𝐴∗ leads to Eq. (12) in the main text.  
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Figure 1. Establishment-level changes in TFPR and MRPK 

 

Notes: Each dot represents the manufacturing establishment in Japan. The figure shows the changes 

in TFPR and MRPK over the period from 2012 to 2013. 

Source: Authors' calculations, based on the Census of Manufacture (METI) and the Economic Census 

for Business Activity (METI and MIC). 
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Figure 2. Simulation Results 

A. Asymmetric adjustment costs 

SD(𝑀𝑅𝑃𝐾𝑖𝑡) 

 

 

Share of plants with 𝐼𝑖𝑡 < 0 

 

 

 

Share of plants with 𝐼𝑖𝑡 > 0 

 

 

Average 𝐼𝑖𝑡/𝐾𝑖𝑡 for plants with 𝐼𝑖𝑡 > 0 
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B. Symmetric adjustment costs 

SD(𝑀𝑅𝑃𝐾𝑖𝑡) 

 

 

Share of plants with 𝐼𝑖𝑡 < 0 

 

 

Share of plants with 𝐼𝑖𝑡 > 0 

 

 

Average 𝐼𝑖𝑡/𝐾𝑖𝑡 for plants with 𝐼𝑖𝑡 > 0 
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C. No adjustment costs with time to build 

SD(𝑀𝑅𝑃𝐾𝑖𝑡) 

 

 

Share of plants with 𝐼𝑖𝑡 < 0 

 

Source: Authors' calculations. 

 

Share of plants with 𝐼𝑖𝑡 > 0 

 

 

Average 𝐼𝑖𝑡/𝐾𝑖𝑡 for plants with 𝐼𝑖𝑡 > 0 
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Figure 3. Average 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦1𝑠𝑡 and Economic Policy Uncertainty Index 

 

Note: Volatility measure is 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦1𝑠𝑡 = SD𝑠𝑡(𝜔𝑖𝑡 −𝜔𝑖𝑡−1). 

Source: Authors' calculations, based on the Census of Manufacture (METI), the Economic Census for 

Business Activity (METI and MIC), and Arbatli et al. (2022). 
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Figure 4. Dispersion in MRPK 

 

Source: Authors' calculations, based on the Census of Manufacture (METI) and the Economic Census 

for Business Activity (METI and MIC). 
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Figure 5. Volatility and Dispersion in MRPK 

A. All industries 

 

 

B. Divided by markups 

 

Note: Volatility measure is 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦1𝑠𝑡 = SD𝑠𝑡(𝜔𝑖𝑡 −𝜔𝑖𝑡−1). 

Source: Authors' calculations, based on the Census of Manufacture (METI) and the Economic Census 

for Business Activity (METI and MIC).  
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Figure 6. Fraction of establishments with positive, zero, and negative investment. 

 

Notes: Zero investment is defined as the plants of |𝐼𝑖𝑡−1/𝐾𝑖𝑡−1| ≤ 0.05 . Positive and negative 

investment are defined accordingly by the same thresholds. 

Source: Authors' calculations, based on the Census of Manufacture (METI) and the Economic Census 

for Business Activity (METI and MIC). 
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Table 1. Simulation Parameters 

A. Parameters 

  

 

B. Adjustment costs 

 

Notes: Adjustment costs in Panel B are parameters are obtained by the minimum distance estimator. 

Demand elasticity is set as 𝜀 = 2.45, 3.40, 8.18. These values are obtained from the average values 

across the industries with the markup higher and lower than median values, respectively. 

Source: Authors’ compilations. 

  

Value Source

μ 0.000

αK 0.06 Mean of estimates

αL 0.41 Mean of estimates

αM 0.53 Mean of estimates

δ 0.900

β 1/(1+0.065)

pL 0.193 Set to make λ=1

pM 0.193 Set to make λ=1

ρ 0.31 Mean of estimates

σ 0.36 Mean of estimates

No AC Asym. AC Sym. AC

C
F+

K 0 0 0.021

C
Q+

K 0 0 0.299

CF-
K 0 0.021 0.021

C
Q-

K 0 0.092 0.299
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Table 2. Simulation Results of dispersion in MRPK 

 

Notes: This table shows the simulation results. The values represent the dispersion in MRPK, 

SD(𝑀𝑅𝑃𝐾𝑖𝑡). Columns of “No AC”, “Asym AC”, and “Sym AC” show the results with no adjustment 

costs, asymmetric adjustment costs, and symmetric adjustment costs, respectively. 

Source: Authors calculations, based on the parameters in Table 1. 

 

Table 3. Simulation Results in TFP  

 

Notes: This table shows the simulation results. The values represent the TFP ratio, 𝐴/𝐴∗. Columns of 

“No AC”, “Asym AC”, and “Sym AC” show the results with no adjustment costs, asymmetric 

adjustment costs, and symmetric adjustment costs, respectively. 

Source: Authors calculations, based on the parameters in Table 1.  

No AC Asym AC Sym AC No AC Asym AC Sym AC No AC Asym AC Sym AC

0.1 0.22 0.22 0.27 0.29 0.29 0.32 0.55 0.56 0.57

0.2 0.43 0.44 0.49 0.57 0.58 0.62 1.10 1.11 1.15

0.3 0.65 0.66 0.71 0.86 0.87 0.92 1.65 1.67 1.72

0.4 0.87 0.88 0.94 1.14 1.16 1.21 2.21 2.23 2.29

0.5 1.08 1.10 1.16 1.43 1.45 1.50 2.77 2.79 2.86

0.6 1.30 1.32 1.38 1.72 1.73 1.80 3.33 3.36 3.44

0.7 1.52 1.53 1.60 2.01 2.02 2.09 3.89 3.93 4.01

0.8 1.74 1.75 1.83 2.30 2.32 2.39 4.46 4.50 4.59

0.9 1.96 1.97 2.05 2.59 2.61 2.68 5.03 5.07 5.16

1.0 2.18 2.19 2.27 2.88 2.90 2.98 5.60 5.64 5.74

1.1 2.39 2.42 2.50 3.17 3.20 3.28 6.17 6.22 6.31

1.2 2.62 2.64 2.72 3.46 3.49 3.58 6.74 6.79 6.89

1.3 2.84 2.86 2.94 3.75 3.79 3.87 7.31 7.36 7.46

1.4 3.06 3.08 3.17 4.05 4.08 4.17 7.88 7.94 8.04

1.5 3.28 3.31 3.39 4.34 4.38 4.47 8.46 8.51 8.61

σ
ε = 2.45 ε = 3.40 ε = 8.18

No AC Asym AC Sym AC No AC Asym AC Sym AC No AC Asym AC Sym AC

0.1 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99

0.2 0.99 0.99 0.99 0.99 0.99 0.99 0.96 0.96 0.96

0.3 0.99 0.99 0.98 0.98 0.98 0.97 0.93 0.93 0.92

0.4 0.98 0.98 0.97 0.96 0.96 0.96 0.91 0.91 0.90

0.5 0.97 0.97 0.96 0.95 0.95 0.94 0.89 0.89 0.88

0.6 0.96 0.96 0.95 0.94 0.93 0.93 0.88 0.87 0.87

0.7 0.95 0.95 0.94 0.92 0.92 0.92 0.87 0.86 0.86

0.8 0.94 0.94 0.93 0.91 0.91 0.90 0.86 0.86 0.85

0.9 0.93 0.93 0.92 0.90 0.90 0.89 0.85 0.85 0.84

1.0 0.92 0.92 0.91 0.89 0.89 0.88 0.85 0.85 0.84

1.1 0.91 0.91 0.90 0.88 0.88 0.88 0.84 0.84 0.83

1.2 0.90 0.90 0.89 0.88 0.88 0.87 0.84 0.84 0.83

1.3 0.90 0.89 0.89 0.87 0.87 0.86 0.84 0.84 0.83

1.4 0.89 0.89 0.88 0.87 0.87 0.86 0.84 0.84 0.83

1.5 0.88 0.88 0.87 0.86 0.86 0.85 0.83 0.83 0.82

σ
ε = 2.45 ε = 3.40 ε = 8.18
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Table 4. Summary Statistics 

 

Notes: Mean and SD are calculated from the observations from 1 to 99 percentiles. TFPR, MRPK, 

MRPL, and MRPM are the values after the natural logarithms are taken. Zero investment is defined 

as the plants of |𝐼𝑖𝑡/𝐾𝑖𝑡| ≤ 0.05. Positive and negative investment are defined accordingly by the 

same thresholds.  

Source: Authors' calculations, based on the Census of Manufacture (METI) and the Economic Census 

for Business Activity (METI and MIC). 

  

N mean sd min p5 median p95 max

TFPR 1,391,981 5.43 1.10 -6.71 3.65 5.34 7.54 14.24

TFPR growth rate 1,243,841 0.00 0.23 -11.66 -0.35 0.00 0.36 9.11

MRPK 1,333,909 -2.66 1.36 -16.53 -5.22 -2.63 -0.26 10.22

MRPK for zero investment 569,506 -2.85 1.43 -16.39 -5.48 -2.84 -0.31 9.65

MRPK for positive investment 787,808 -2.52 1.29 -16.53 -4.99 -2.50 -0.25 10.22

MRPK for negative investment 34,776 -2.67 1.44 -14.39 -5.30 -2.67 -0.06 7.84

MRPL 1,387,850 6.28 0.86 -6.19 4.64 6.33 7.73 12.47

MRPM 1,389,497 -0.19 0.59 -10.42 -1.06 -0.27 1.05 11.05

Investment rate 1,392,090 0.18 0.31 -31.16 -0.01 0.07 0.85 140,463

Number of plants 13,503 88 122 1 4 41 368 2,681

Volatility1 12,842 0.36 0.25 0.00 0.08 0.30 0.91 3.83

Volatility2 12,842 0.36 0.15 0.00 0.12 0.35 0.65 3.15

SD(MRPK) 11,734 1.00 0.26 0.02 0.59 0.98 1.53 4.33

SD(MRPL) 12,985 0.69 0.19 0.00 0.39 0.67 1.07 2.10

SD(MRPM) 13,177 0.53 0.23 0.00 0.21 0.49 1.00 3.46

Fraction of zero investment 13,503 0.41 0.18 0.00 0.13 0.40 0.70 1.00

Fraction of positive investment 13,503 0.57 0.18 0.00 0.26 0.57 0.86 1.00

Fraction of negative investment 13,503 0.02 0.03 0.00 0.00 0.02 0.08 1.00

Markup1 491 1.42 0.51 -32.06 0.97 1.29 2.47 10.93

Markup2 491 0.80 0.29 -0.10 0.33 0.79 1.33 5.96

Capital elasticity 491 0.04 0.05 -0.39 -0.03 0.04 0.13 0.31

Labor elasticity 491 0.30 0.15 -0.85 0.05 0.31 0.55 1.41

Materials elasticity 491 0.40 0.14 -0.05 0.16 0.40 0.62 1.03

Variable

Plant level

Industry level (time-variant)

Industry level (time-invariant)



 

 

39 

Table 5. Baseline Estimation Results for the Dispersion in MRPK 

 

Notes: Robust t-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1. In Columns (7) and (9), the 

sample comprises the industries with the markup lower than median value. In Columns (8) and (10), 

the sample comprises the industries with the markup higher than median value. 

Source: Authors' estimations, based on the Census of Manufacture (METI) and the Economic Census 

for Business Activity (METI and MIC). 

  

Dependent variable: SD(MRPK) (1) (2) (3) (4) (5)

Method OLS OLS GMM GMM GMM

Volatility1 0.148*** 0.0760*** 0.0231** 0.0241** 0.0286***

(5.176) (4.340) (2.488) (2.551) (2.925)

Lag1 SD(MRPK) 0.430*** 0.427*** 0.453***

(27.07) (26.14) (25.65)

Lag2 SD(MRPK) 0.0585*** 0.0582***

(5.004) (4.774)

Lag3 SD(MRPK) 0.0292**

(2.491)

Industry fixed effect no yes yes yes yes

Observations 11,207 11,207 10,665 10,239 9,814

Adjusted R-squared 0.013 0.441

Sample all all all all all

Dependent variable: SD(MRPK) (6) (7) (8) (9) (10)

Method OLS OLS OLS GMM GMM

Volatility1 0.0808*** 0.0903*** 0.0624*** 0.0372*** 0.0122

(4.769) (3.482) (2.627) (2.706) (0.967)

Volatility1*Markup -0.00358*

(-1.750)

Lag1 SD(MRPK) 0.375*** 0.550***

(18.51) (27.81)

Industry fixed effect yes yes yes yes yes 

Observations 11,207 5,558 5,649 5,276 5,389

Adjusted R-squared 0.441 0.367 0.512

Sample all
small

markup

large

markup

small

markup

large

markup
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Table 6. Robustness Checks for the Dispersion in MRPK 

  

Notes: Robust t-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1. In Columns (2) and (4), the 

sample comprises the industries with the markup lower than median value. In Columns (3) and (5), 

the sample comprises the industries with the markup higher than median value. 

Source: Authors' estimations, based on the Census of Manufacture (METI) and the Economic Census 

for Business Activity (METI and MIC). 

  

Dependent variable: SD(MRPK) (1) (2) (3) (4) (5)

Method OLS OLS OLS OLS OLS

Volatility measure Volatility2 Volatility2 Volatility2 Volatility1 Volatility1

Markup measure Markup1 Markup1 Markup1 Markup2 Markup2

Volatility 0.185*** 0.268*** 0.111** 0.0919*** 0.0621***

(4.159) (3.875) (2.053) (3.391) (2.758)

Industry fixed effect yes yes yes yes yes

Observations 11,317 5,626 5,691 5,549 5,658

Adjusted R-squared 0.437 0.373 0.503 0.519 0.365

Sample all
 small

markup

large

markup

 small

markup

large

markup
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Table 7. Plant-level Estimation for Investment Status 

 

Notes: Robust t-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1. In Columns (2), (5), (8) and 

(11), the sample comprises the plants in the industries with the markup lower than median value. In 

Columns (3), (6), (9), and (12), the sample comprises the plants in the industries with the markup 

higher than median value. In addition, the sample is limited for the plants with positive and zero 

investment in Columns (1)-(6). The sample is limited for the plants with negative and zero investment 

in Columns (7)-(12). 

Source: Authors' estimations, based on the Census of Manufacture (METI) and the Economic Census 

for Business Activity (METI and MIC).  

Positive vs zero (1) (2) (3) (4) (5) (6)

MRPK 0.0950*** 0.109*** 0.102*** 0.126*** 0.130*** 0.127***

(26.57) (30.40) (19.59) (68.11) (47.69) (48.41)

Volatility1 -0.0676*** -0.0839*** -0.0373**

(-6.253) (-7.728) (-2.670)

MRPK*Volatility1 -0.0233*** -0.0279*** -0.0119*** -0.00824** -0.0162*** -0.00335

(-6.538) (-7.278) (-3.039) (-2.304) (-2.941) (-0.713)

Plant fixed effect yes yes yes yes yes yes

Year fixed effect yes yes yes no no no

Industry-year fixed effect no no no yes yes yes

Observations 1,185,147 622,315 558,119 1,185,138 622,307 558,118

Adjusted R-squared 0.274 0.280 0.279 0.289 0.292 0.292

Sample all
 small

markup

large

markup
all

 small

markup

large

markup

Negative vs zero (7) (8) (9) (10) (11) (12)

MRPK -0.00695*** -0.00813*** -0.00675*** -0.00814*** -0.0105*** -0.00735***

(-5.686) (-4.809) (-3.514) (-4.845) (-4.164) (-3.206)

Volatility1 0.00274 0.00536 -0.00435

(0.366) (0.508) (-0.363)

MRPK*Volatility1 0.000859 0.00350 -0.00217 -0.00350 0.000276 -0.00488

(0.374) (1.093) (-0.601) (-0.906) (0.0498) (-0.865)

Plant fixed effect yes yes yes yes yes yes

Year fixed effect yes yes yes no no no

Industry-year fixed effect no no no yes yes yes

Observations 254,082 126,503 123,288 252,770 125,859 122,610

Adjusted R-squared 0.262 0.269 0.258 0.268 0.273 0.267

Sample all
 small

markup

large

markup
all

 small

markup

large

markup
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Table 8. Plant-level Estimation for Investment Ratio 

 

Notes: Robust t-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1. In Columns (2), (5), (8) and 

(11), the sample comprises the plants in the industries with the markup lower than median value. In 

Columns (3), (6), (9), and (12), the sample comprises the plants in the industries with the markup 

higher than median value. In addition, the sample is limited for the plants with positive investment in 

Columns (7), (8), and (9). The sample is limited for the plants with negative investment in Columns 

(10), (11), and (12). 

Source: Authors' estimations, based on the Census of Manufacture (METI) and the Economic Census 

for Business Activity (METI and MIC). 

  

(1) (2) (3) (4) (5) (6)

Sample investment status all all all all all all

MRPK 0.0813*** 0.0978*** 0.0851*** 0.116*** 0.126*** 0.113***

(18.01) (22.01) (14.63) (72.08) (51.29) (50.98)

Volatility1 -0.0535*** -0.0757*** -0.0156

(-5.542) (-7.149) (-1.420)

MRPK*Volatility1 -0.0200*** -0.0267*** -0.00698* -0.0132*** -0.0248*** -0.00258

(-6.268) (-7.823) (-2.007) (-4.504) (-5.451) (-0.640)

Plant fixed effect yes yes yes yes yes yes

Year fixed effect yes yes yes no no no

Industry-year fixed effect no no no yes yes yes

Observations 1,254,884 660,618 589,640 1,254,884 660,618 589,640

Adjusted R-squared 0.137 0.148 0.142 0.157 0.163 0.158

Sample all
 small

markup

large

markup
all

 small

markup

large

markup

(7) (8) (9) (10) (11) (12)

Sample investment status positive positive positive negative negative negative

MRPK 0.174*** 0.178*** 0.177*** -0.00383 -0.000326 0.0197

(71.35) (49.85) (49.49) (-0.182) (-0.00924) (1.332)

MRPK*Volatility1 -0.0205*** -0.0242*** -0.0110 -0.0490 -0.170 0.0561

(-4.419) (-3.640) (-1.568) (-0.758) (-1.165) (1.243)

Plant fixed effect yes yes yes yes yes yes

Industry-year fixed effect yes yes yes yes yes yes

Observations 692,832 372,331 316,035 11,944 6,381 4,845

Adjusted R-squared 0.183 0.187 0.188 0.001 0.000 0.180

Sample all
 small

markup

large

markup
all

 small

markup

large

markup
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Table 9. Moments from actual and simulated data 

  

Note: “No AC”, “Asym AC”, and “Sym AC” denote the moments of simulated data from no 

adjustment cost model, asymmetric adjustment cost model, and symmetric adjustment cost model, 

respectively. 

Source: Authors' calculations, based on the Census of Manufacture (METI) and the Economic Census 

for Business Activity (METI and MIC). 

  

Moments Actual No AC Asym AC Sym AC

I/K<-0.2 0.01 0.19 0.05 0.00

-0.2<I/K<-0.05 0.02 0.16 0.05 0.00

-0.05<I/K<0.05 0.41 0.12 0.44 0.46

0.05<I/K<0.2 0.30 0.13 0.17 0.30

0.2<I/K 0.26 0.41 0.29 0.24

SD(I/K) 0.30 0.46 0.25 0.11

Squared Difference 0.216 0.025 0.038
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Table 10. Counterfactual experiments 

A. Asymmetric adjustment cost 

 

 

B. Symmetric adjustment cost 

 

Source: Authors' estimations, based on the Census of Manufacture (METI) and the Economic 

Census for Business Activity (METI and MIC). 

ε = 2.45 ε = 3.40 ε = 8.18

σ=0.36

SD(MRPK) 0.79 1.04 2.01

TFP/Efficient TFP 0.98 0.97 0.91

σ=0.18

SD(MRPK) 0.39 0.52 1.00

TFP/Efficient TFP 1.00 0.99 0.97

% change 

SD(MRPK) -50.3% -49.9% -50.1%

TFP/Efficient TFP 1.4% 2.3% 5.6%

ε = 2.45 ε = 3.40 ε = 8.18

σ=0.36

SD(MRPK) 0.85 1.09 2.06

TFP/Efficient TFP 0.98 0.97 0.91

σ=0.18

SD(MRPK) 0.45 0.56 1.03

TFP/Efficient TFP 0.99 0.99 0.96

% change 

SD(MRPK) -47.4% -48.5% -49.9%

TFP/Efficient TFP 1.5% 2.5% 6.0%
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