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Abstract 
This paper presents new indicators measuring the science intensity of industry in Japan, linking a 

scientific paper database (science), patent information (technology), and economic census data 

(industry). The new indicators reflect the interaction between science and industry, via academic 

patenting activities, which cannot be measured by an existing indicator of science linkage: non-

patent literature (NPL) citations by patents. As the academic sector gets more involved in patenting 

activities, its scientific knowledge is being utilized by industries that are not categorized as science-

based. Additionally, it was revealed that scientific knowledge has been increasingly used for 

industrial innovation over the last 10 years across all academic disciplines. Our study reiterates that 

public support of science is essential for industrial innovation. 
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1. Introduction  

A scientific foundation has become increasingly integral to the industrial innovation 
process. For example, genome science has substantially changed the research and 
development (R&D) process of the pharmaceutical industry. Miniaturization of the large-
scale integrated circuit (LSI) fabrication process requires an understanding of the nano-
level physicality of its materials. Furthermore, advancements in information technology 
have a significant impact on society and the economy; in particular, “big data” analysis 
contributes to the scientific understanding of business and management activities. Since 
science sectors, such as universities and public research institutes (PRIs), are heavily 
subsidized by public money, there is a growing interest in measuring the scientific aspects 
of industrial innovation and performance to understand the economic impact of public 
R&D, despite severe constraints on public spending in general.  

Traditionally, the degree of scientific basis, or science intensity of industry has been 
measured using non-patent literature (research papers) citations made by patents (Narin 
and Noma, 1985; Schmoch, 1997). This indicator captures the extent to which patents 
(technology for industrial use) are based on the scientific content of research papers. It is 
observed that science linkage varies in the technology area; science intensity is 
particularly high in the biotechnology field (Looy et al., 2003). Alternatively, the science-
technology linkage can be captured using patent-publication pairs, i.e., overlapping 
content regarding the research output/invention between patents and research papers. This 
requires the simultaneous disclosure of research results in both patents and research 
papers (Lissoni et al., 2013), or text-mining techniques to identify the degree of content 
overlap between these two kinds of literature (Magerman et al., 2015). This information 
can provide an exact match between science and technology; however, limited availability 
of samples makes it unsuitable for aggregated indicators of science-technology linkage at 
the macro level.  

Both these indicators reflect only one aspect of science linkages, that is, non-patent 
literature (NPL) citations shows the degree of disembodied scientific knowledge that 
flows into patents, while the patent-publication pair indicates co-occurrence of scientific 
and invention activities within the same research. In this paper, we proposed new 
indicators, based on a novel dataset combining science, technology, and industry. More 
specifically, we linked the data of research papers (Scopus by Elsevier) and patent data 
(Institute of Intellectual Property (IIP) patent database) at the author/inventor level to see 
how academic discipline and technology are interlinked at the individual (academic) 
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researcher level. This dataset provides the linkage between science and technology 
embodied in human capital (academic inventors). Both industry citations to the patents 
invented by academic inventors and the joint patent inventions between firms and such 
academic inventors reflect new channels of scientific knowledge flow from academia to 
industry, compared to those measured by conventional indicators such as NPL citations 
in patents. Unlike past studies regarding paper-patent linkage at the researcher level for 
particular technologies, such as biotechnology (Murray, 2002) and nanotechnology 
(Meyer, 2006), this study covers all technological fields by constructing a large-scale 
database.  

Furthermore, the concordance between technology (patents) and industry 
classification has been created by linking patent database (IIP patent data) and Japanese 
economic census data at the firm level. Consequently, we developed concordance tables 
comprising academic field (science), patent (technology), and industrial performance 
(industry) to investigate how the scientification of industry and economy has progressed 
over time, while existing indicators, such as NPL citations in patents and the publication-
patent pair, only show linkages between science and technology. 

The remainder of this paper is structured as follows. Section 2 explains the 
methodology of linking three datasets - Scopus data for scientific publications, the IIP 
patent database for patents, and the economic census for industrial activities at the firm 
level. Section 3 presents the conceptual framework for analyzing the scientification of 
industry, and explains the methodology of our new indicators. Section 4 presents the trend 
of the scientification of industry over the last 10 years based on the new indicators. Finally, 
Section 5 presents a summary of new findings and some policy implications. 

2. Dataset Construction Methodology 

2-1. Author/Inventor level linkage of Scopus and the IIP Patent database 

In this subsection, the major task is disambiguation of academic inventors from the patent 
database. We use the IIP Patent database, which contains all patent application 
information from the Japan Patent Office (JPO) (Goto and Motohashi, 1997). In the patent 
database, the name and address of inventors are available. However, there is no 
information to identify whether the same inventor has multiple patents. The name of 
inventor is strong information, but we need to disambiguate the different persons with the 
same name.  
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We apply Li et al.’s (2014) methodology for disambiguation of inventors in USPTO 
(United States Patent and Trademark Office) patents. Their methodology is originally 
based on the Authority disambiguation approach developed by Torvik et al. (2005), and 
Torvik and Smalheiser (2009). We disambiguate all Japanese inventors of patents applied 
for between 1995 and 2013, derived from the IIP patent database. We exclude non-
Japanese inventors, whose names do not contain Chinese characters (Kanji), and/or 
whose address is outside Japan. A total of 12.4 million inventor-patent records are 
obtained for analysis, which contain 1.2 million unique combinations of the inventor’s 
name and address, and applicant’s name.  

The methodology consists of four steps. (1) Blocking: Inventor-patent records are 
divided into several subsets according to inventors’ names, and similarity is computed 
between pairs of records within each block. (2) Training sets: We construct matched and 
unmatched training sets for pairs of matched and unmatched inventors’ full names defined 
as “rare.” Using a telephone directory, for the period 2000-2012, we define a list of “rare” 
names that appear only once or do not appear at all in the telephone directory. (3) Ratio: 
We define a “similarity profile (vector),” 𝐱𝐱 = (𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛), which represents the degree 
of similarity in inventor and patent attributes between two inventor-patent records, for all 
inventor-patent record pairs within blocks. For inventor attributes, inventor’s name and 
address are used. For patent attributes, applicant’s name and ID, the main technology 
class at the four-digit level of the International Patent Classification (IPC), and the list of 
co-inventors’ names are used. Applicant names and IDs are both normalized using the 
National Institute of Science and Technology Policy (NISTEP) Dictionary of Corporate 
Names, and the NISTEP Dictionary of Names of Universities and Public Organizations, 
both developed by the National Institute of Science and Technology Policy and publicly 
available from its website2. The inventor address attribute is also normalized and divided 
into prefecture (to-do-hu-ken), city (shi-ku-cho-son), district (chi-mei), and street (ban-
chi and go) using a commercial geocoding software provided by Kokusai Kogyo Co., 
Ltd., Address-normalizing converter and geocoding tool. We then calculate the likelihood 
“ratio” for each similarity profile from the training set as the ratio of times that a similarity 
profile appeared in the match set compared to the non-match set. (4) Pairwise matches: 
the (posterior) probability of a match between inventor-patent records based on Bayes 
theorem using the similarity profile and corresponding likelihood ratios. Following Li et 
al. (2014), we set the prior probability as the inverse of the number of pairs in the block. 

                                                        

2 http://www.nistep.go.jp 
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The minimum threshold for the probability matching pair is set to 0.5. Further detailed 
explanation regarding the data and method used for patent-inventor disambiguation are 
described in Appendix 1. 

Table 1 presents the results of inventor disambiguation and its estimation accuracy. 
We identified 1.71 million inventors from 12.4 million inventor-patent records, which 
means that the average number of patents per inventor is 7.1. Next, we check the precision 
of our inventor disambiguation results with the KAKEN Database of Grants-in-Aid for 
Scientific Research developed by the National Institute of Informatics. In the KAKEN 
database, all receivers of public research funds from the Japan Society for the Promotion 
of Science (JSPS) are registered and a reliable identifier for each researcher is available. 
For the twelve thousand inventor-patent instances of six thousand inventors extracted 
from the KAKEN database, we calculate the splitting and lumping error of our 
disambiguation results following Li et al. (2014). The results show that a splitting error 
of 2.41% and lumping error of 0.29%. These values indicate that our results are better 
than Li et al.’s (2014) which has a splitting error of 3.26% and lumping error of 2.34%. 

 

(Table 1) 

 

From the inventor disambiguation results, we extract 62,983 inventors as academia.3 
Next, we match these academic inventors with the authors of scientific papers. From the 
list of scientific papers, derived from the Elsevier Scopus database, we use the papers 
written by authors whose country of affiliation is Japan. Although the inventor/author’s 
name and the affiliation are matched, both inventor and applicant names are recorded in 
Japanese in the IIP patent database but are recorded in English in the Scopus database. 
The IIP patent database, however, can be easily mapped with the PATSTAT Database 
(Worldwide Patent Statistical Database) of the European Patent Office (EPO). Hence, we 
replace the original inventor name recorded in Japanese with the information of its 
corresponding record in the PATSTAT. For affiliation information, we use the NISTEP 
Dictionary of Names of Universities and Public Organizations, and its converter for the 

                                                        

3 The affiliates of inventors are identified by their address information. For example, if an inventor has the 
same address as the applicant address for the same patent, the inventor is supposedly working for the 
applicant’s organization. If this is not the case, inventors in a single applicant patent are assigned to the 
applicant organization. Finally, we conduct text mining for the inventor’s address to identify his/her 
affiliation (or individual) with other inventors. Here, academic inventors include those working for 
universities and public research organizations.  
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Scopus database. Among the more than 9.7 million author-affiliation-paper instances in 
the Scopus database, we could successfully map the affiliation identifier, developed by 
NISTEP, for 5.3 million Japanese instances. As a result, 30,432 inventors (48.3%) among 
the 62,983 academic inventors are successfully matched with the authors in the Scopus 
database based on inventor/author name and applicant/affiliation identifier. However, 
since the Scopus author ID and the disambiguated inventors do not completely match 
each other, we combine the inventor/author IDs iteratively until they are uniquely 
matched. Finally, almost 2,000 inventor IDs are integrated with each other and we obtain 
28,433 matched inventors/authors. 

Figure 1 illustrates the number of inventors and academic authors in Japan during 
the period from 2008 to 2011 based on the matching results. 563 thousand inventors and 
382 thousand authors who published a paper in an academic journal were included in the 
Scopus database. Among the patent inventors, 30.5 thousand inventors are affiliated to 
academic institutions and 15.6 thousand inventors published at least one paper in Scopus 
journals.4 In other words, there are 14.9 thousand inventors without any publications in 
the Scopus database. It is unusual that academic researchers have patents, but no 
published papers, so we suspect that a substantial number of them have scientific 
publications, not listed in Scopus, such as research papers in the Japanese language.  

 

(Figure 1) 

 

Table 2 shows the time trend of the information presented in Figure 1. The proportion 
of academia among inventors increased from 3.2% in the period 2000-2003 to 5.4% in 
the period 2008-2011. The proportion of academic authors with patent inventions also 

                                                        

4 We could match 37,718 authors in the Scopus database with 30,732 patent inventors. We found a splitting 
error in the matching results. Several authors are matched to a same inventor or one author is matched 
with several inventors. Therefore, we merge the authors’ identification numbers and the disambiguated 
inventors until such splitting errors disappeared. As the result, we finally identify 28,443 unique 
authors/inventors. Assuming the splitting error, we correct the number of authors identified by Author IDs 
in Scopus and the number of inventors identified by our disambiguation procedure. The correction rate 
for the number of authors is 0.754 (= 28,443/37,718), and for the number of inventors is 0.926 (= 
28,443/30,732). According to the author identification numbers from Scopus, the number of authors 
active in the periods 2000 to 2003, 2004 to 2007 and 2008 to 2011 with Japanese affiliations in the Scopus 
database are 419,086, 472,004, and 506,116, respectively. Multiplying the correction rate 0.754 with those 
numbers, the corrected numbers of unique authors is 316,031, 355,936, and 381,660, respectively. 
Similarly, the number of active inventors in the periods 2000 to 2003, 2004 to 2007, and 2008 to 2011 is 
721,054, 667,474, and 602,180, respectively. Multiplying the correction rate 0.926 with those numbers, 
the corrected numbers are 667,348, 617,759, and 557,328, respectively.  
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increased from 3.0% in 2000-2003 to 4.1% in 2008-2011. Furthermore, the proportion of 
academic authors to total inventors doubled from 1.4% to 2.8% during the 12-year period. 

 

(Table 2) 

 

2-2. Firm level linkage of the IIP patent database and Economic Census 

We aim to link patent information from the IIP Patent Database with establishment census 
data at the firm level. To this end, we develop a methodology that makes a one-to-one 
link between patent applicants and organizations in the census data based on 
establishments’ names and addresses. Firm level linkage is then identified as the linkage 
to any type of organization defined in the census except for incorporated administrative 
agencies, unincorporated associations, and other miscellaneous incorporated entities. As 
in Section 2-1, we focus on non-individual patent applications in which both applicant 
and inventor addresses are in Japan. The number of the applications from 1964 to 2013 is 
10,253,009, and the total number of applicants during this period is 11,038,633. As for 
the establishment census, the following five datasets are used: the Establishment and 
Enterprise Census published in 2001, 2004, and 2006, and the Economic Census of Japan 
published in 2009 and 2012. We link the application data with each of these census 
datasets. This approach allows us to find the linkage with an applicant organization that 
existed when either one of the census surveys was conducted. Table 3 shows the total 
number of establishments in each census dataset and the breakdown by establishment 
type defined as follows: (1) the head office of a firm with multiple establishments 
(Headquarter) (2) a branch of a firm with multiple establishments (Branch), and (3) a 
single unit establishment (Single Est.).  

 

(Table 3) 

 

Since we focus on patent applications by non-individual Japanese applicants, patents 
are applied from any one of these establishments in Japan. Considering that patent 
applications are usually managed by an entire organization rather than an individual 
establishment, we link applicants to the establishments that are the headquarters. To do 
this, we use a unique organization identifier assigned to all establishments the 
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organization owns. Thus, our methodology links applicant information with the 
headquarter of a multi-establishment firm, or a single-establishment firm.  

In implementing the linking methodology outlined above, we employ name and 
address information that are available in both the applicant records of IIP patent database 
and the establishment records of a census. Several issues arise when using these pieces of 
information. First, the names and addresses of applicants may contain spelling errors, and 
their format may differ between the applicant and establishment records. To solve for the 
issue of the same entities being deemed as different due to these notational variations 
(false negative problem), we develop a series of text processing programs to convert the 
raw name/address data to its standardized representation. Second, both applicant and 
establishment addresses undergo changes due to the consolidation of local administrative 
units such as municipalities. To cope with address changes of this kind, we use the 
commercial software from Kokusai Kogyo to convert the original addresses to the latest 
address format (as of 2014). Lastly, while an applicant address is written in a single line, 
an establishment address in a census is recorded as a collection of five geographical 
components (prefecture, city or wards, district, street, and any others that follow such as 
a building name or a room number). To make these different address formats comparable, 
we develop a text-scanning program to break the single line of an applicant address into 
these five parts. We then define a list of prefectural names, city (ward) names, district 
names, and street names to be the standardized representation of address against which 
the applicant and establishment addresses are compared. The methodology uses these 
standardized names and addresses to establish a one-to-one link from an applicant to an 
establishment in operation as of the application date. The implementation consists of the 
following three steps. 

For each patent application, the first step begins by identifying from each census 
dataset a sample of organizations and their establishments that are in operation as of the 
patent application date. This requires detailed information about the opening and closing 
dates of an establishment under the ownership of the organization, which is not available 
to us. Instead, we observe the first and last census survey years during which the 
establishment is recorded. Given that that these dates are censored, we define an active 
period of an establishment as a period spanning from the census year preceding the one 
in which it is first recorded, to the census year succeeding the one in which it is last 
recorded5. In each survey, we sample organizations that have at least one establishment 

                                                        

5 Establishments in the 2001 census are assumed as active from the beginning of the application period 
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whose active period includes the patent application date. In the second step, 
establishments whose names exactly match with, or include, the applicant name are 
collected to form a set of “candidate” establishments. In the third step, the address of each 
candidate establishment is matched with the applicant’s address by their components 
(prefecture, city or ward, district, and street). The extent of overlaps between the four 
components yields the (geographical) “match level” for each establishment, which 
indicates geographical accuracy between the addresses of the establishment and the 
applicant. The procedure links the applicant to the establishment having the finest match 
level. Next, we look at the organizational identifier of the establishment, and relink it to 
the headquarter establishment having the same organizational identifier, if it is a branch. 
The procedure is completed by linking the applicant with an organization that owns the 
establishment.  

For each patent applicant, we apply this procedure to five census datasets, and obtain 
five match levels. The applicant is successfully matched with an organization if a single 
headquarter establishment of the organization is linked in the second step. Otherwise, the 
procedure fails to create a match. These failures can occur in the following three cases. 
(1) In the first step, the candidate establishment set is empty. (2) In the second step, the 
largest geographical part of the establishment addresses (prefecture) does not match that 
of the applicant address. (3) In the third step, multiple organizations have been found at 
the finest match level and thus a single result cannot be identified. 

The results from the linking procedure for patent applications between 1964 and 
2013 are shown in Table 4. The detailed results for all organizations, including the 
breakdown by the match levels, are given in Table A2 in Appendix 2. In any census 
dataset, the linking procedure finds that about 1.4 % of all organizations and 1.5 % of all 
firms applied for patents. The rate of applicants uniquely linked to organizations in the 
census data (“Matching Rate”) is highest for the 2001 census data, and decreases for 
subsequent census datasets. Since we use only establishments that are in operation around 
a patent application date, the decreasing pattern may reflect that the procedure tends to 
fail for applications distant from the census survey year.  

 

(Table 4) 

                                                        

(1964), and those in the 2012 census are assumed as active until the end of the application period (2013). 
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To observe this in detail, we analyze the matching rates by application year. Figure 
2 shows the results for all organizations. As seen in Figure 2 (a), yearly matching rates 
exhibit decreasing patterns with their peaks situated around the survey years. Therefore, 
our linking procedure works well for patent applications around the census year. 

 

(Figure 2a and 2b) 

 

Viewing the results of the whole application period, shown in Figure 2 (b), the 
matching rates are observed to be low overall for old patent applications, except for the 
2001 census data. We also confirm that the procedure using the later years’ census yields 
lower matching rates for older patent applications. Regarding the 2001 census, it is noted 
that all establishments in the census are assumed to be active from 1964 in the first step 
of the procedure (see footnote 2). Therefore, the result may contain over-matched 
applicant-establishment links6. 

Lastly, we assess the quality of the linking procedure. As shown in Figure 2, the 
matching rates are high for patents applied around the census years, and low for patent 
applications away from the census years. Therefore, matching rates may not be a 
consistent indicator of the quality of the linking procedure. Instead, we look at patent 
applications and applicants that failed to establish a link among all census datasets. These 
applicants include organizations that applied for patents and did not exist before 2001, 
those that existed only between the census years, or those mistakenly judged as failures 
by implementation errors. Table 5 shows these failure cases for the whole application 
period. While a considerable number of patent applicants (86,119) have not been found 
in the census data, their applications account for about 12% of the total patent applications. 
Therefore, it can be concluded that a majority of patent applications are successfully 
linked to organizations included in either one of the census datasets. 

 

(Table 5) 

 

                                                        
6 Yearly matching rates for firms exhibit similar decreasing patterns (See Figure A2 in Appendix 2). 
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3. New Indicators of Science and Industry Linkage 

3-1. Framework of indicators 

Figure 3 illustrates the relationship between the dataset and the indicators. In the previous 
section, the methodology of two kinds of data linkages are presented, i.e., academic 
researcher level linkage between Scopus research papers and the IIP patent database 
patent applications (subsection 2.1), and firm level linkage between patent applicants (IIP 
patent database) and economic census data (subsection 2.2). NPL citations of patents, a 
typical method used to measure science linkage in the existing literature, is based on a 
firm’s patent citations of scientific publications in the academic sector.7 In this paper, we 
propose new indicators for science-industry linkage, using the interactions between the 
industry and the academia in patenting activities, i.e., joint inventive activities (captured 
by joint patent inventions) and firms’ patent citations to academic patents. Such 
interaction information regarding the patenting activities of both sectors, together with 
the datasets created in the previous section, allow us to link the scientific activities of the 
academic sector (number of papers by academic field) to industrial activities of the firm 
sector (number of employment).  

 

(Figure 3) 

 

Our new indicators can capture the mechanism of involving scientific knowledge in 
industrial innovation via patenting. Universities and PRIs, heavily funded by public R&D, 
are principally research organizations providing scientific publications as an output of 
their research. However, there is a growing global trend of patent applications from these 
institutes (OECD, 2013). In Japan, national universities, which used to be government 
organizations, became independent agencies in 2014. This institutional reform allows 
them to claim patent rights, and university patent applications have increased significantly 
(Motohashi and Muramatsu, 2012). Therefore, a patent-based science linkage indicator 
has become increasingly important. Additionally, due to the nature of the patent system, 

                                                        
7  Additionally, there are some scientific papers, published by industry researchers (outside the higher 

education institutes (HEIs) and PRIs sectors), but its contribution to total publications is relatively small. 
In 2010, the number of papers involving industry researchers in Scopus is only about 12,000 (4,500 papers 
by solely industry researchers and 7,400 papers of joint publication of academia and industry), out of 
95,000 total papers.  
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patent citation information is more reliable than NPL citations. NPL includes not only 
scientific papers, but also non-scientific materials such as technical documents, while 
patent information reflects a uniform set of technological contents, based on formal 
institutions under the patent law. Therefore, our new indicator will provide reliable 
information on science linkage indicators compared to NPL, although it cannot 
completely substitute NPL due to the differences in their concepts. 

3-2. Implementation 

As mentioned above, we propose new indicators for science-industry linkage, based on 
the information on firms’ joint patent inventions with academia, and on firms’ patent 
citations to academic patents. These two channels of linkage between science and industry 
are not measured by the existing indicator, NPL citations of industry patents. Similar to 
the indicators based on NPL citations, our indicators are also measured by the number of 
scientific publications utilized by firms, i.e., the number of publications by academic 
inventors with whom the firm jointly developed a patent and/or whose patent the firm 
cites in its patent.  

We divided the whole observation period (2000-2011) into three sub-periods, 2000-
2003, 2004-2007, and 2008-2011. Next, we assume that all patents invented by an 
academic researcher within a particular sub-period are related to scientific papers 
published within the same period. This approach is different from previous studies that 
find equivalent patents and papers by analyzing their contents in detail (Lissoni et. al, 
2012; Magerman et al., 2015). Our goal is to develop indicators of science intensity for 
all industries, based on large-scale datasets, so that the effort of analyzing the contents of 
patents and papers individually is not feasible. Additionally, since the scientific 
exploration of academics has broad scope, it would be reasonable to assume that the 
contents of patents and papers by the same researcher are related to some degree.  

Next, the linkage between academic researchers and firms is measured based on 
academic patents, either jointly applied with a firm or cited by a firm’s patent within the 
same sub-period. We do not consider citations beyond the sub-period to ensure the same 
citation window across sub-periods.8  Therefore, it should be noted that our indicator 
reflects only the recent interactions between science and industry, while NPL indicators 
consider all citations of scientific papers.  

                                                        

8 We could use a longer citation window, but the data is limited, since SCOPUS information is available 
only from 1995, and is not reliable before 2000. 
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Suppose that 𝑖𝑖 is an industry; 𝑠𝑠 is a science field; 𝑡𝑡 is a technology class; 𝑓𝑓 ∈
𝐹𝐹𝑖𝑖(𝑑𝑑) is a firm active in an industry 𝑖𝑖 in period 𝑑𝑑; 𝑗𝑗 ∈ 𝑉𝑉𝑓𝑓(𝑑𝑑) is an industrial inventor 
affiliated to firm 𝑓𝑓  in period 𝑑𝑑 ; 𝑟𝑟  is an academic researcher active in period 𝑑𝑑 ; 

𝑝𝑝𝑗𝑗,𝑟𝑟
Joint(𝑑𝑑) is the number of patents jointly invented by inventor 𝑗𝑗 and researcher 𝑟𝑟 in 

period 𝑑𝑑; 𝑝𝑝𝑗𝑗,𝑟𝑟
Cite(𝑑𝑑) is the number of patents invented by the academic researcher 𝑟𝑟 in 

period 𝑑𝑑  cited in patents invented by inventor  𝑗𝑗  in period 𝑑𝑑 ; and 𝑛𝑛𝑟𝑟,𝑠𝑠(𝑑𝑑)  is the 
number of academic publications of researcher 𝑟𝑟 in a science field 𝑠𝑠 in period 𝑑𝑑.  

First, we define the amount of new scientific knowledge (SK) utilized by inventors 
in firms through joint inventions with academia (Joint) and/or academic patent citations 
(Cite). Using our dataset, linking patent inventors and authors of scientific publications 
makes it possible to identify scientific publications of academic patent inventors. We 
measure SK utilized by inventors in firms based on the number of academic publications 
(𝑛𝑛) made by their joint inventors or inventors of patents they cite. Specifically, we define 
the amount of new SK in the science field 𝑠𝑠 created by academic researchers utilized by 

industrial inventor 𝑗𝑗 via (1) only joint inventions with academic inventors (SK𝑗𝑗,𝑠𝑠
JointOnly); 

(2) only patent citation to patents developed by academic inventors (SK𝑗𝑗,𝑠𝑠
CiteOnly); and (3) 

both joint invention and patent citation (SK𝑗𝑗,𝑠𝑠
JointCite) as: 

SK𝑗𝑗,𝑠𝑠
JointOnly(𝑑𝑑) = � I�𝑝𝑝𝑗𝑗,𝑟𝑟

Joint(𝑑𝑑) > 0� × I�𝑝𝑝𝑗𝑗,𝑟𝑟
Cite(𝑑𝑑) = 0� × 𝑛𝑛𝑟𝑟,𝑠𝑠(𝑑𝑑)

𝑟𝑟∈𝑅𝑅

 

SK𝑗𝑗,𝑠𝑠
CiteOnly(𝑑𝑑) = � I�𝑝𝑝𝑗𝑗,𝑟𝑟

Joint(𝑑𝑑) = 0� × I�𝑝𝑝𝑗𝑗,𝑟𝑟
Cite(𝑑𝑑) > 0� × 𝑛𝑛𝑟𝑟,𝑠𝑠(𝑑𝑑)

𝑟𝑟∈𝑅𝑅

 

SK𝑗𝑗,𝑠𝑠
JointCite(𝑑𝑑) = � I�𝑝𝑝𝑗𝑗,𝑟𝑟

Joint(𝑑𝑑) > 0� × I�𝑝𝑝𝑗𝑗,𝑟𝑟
Cite(𝑑𝑑) > 0� × 𝑛𝑛𝑟𝑟,𝑠𝑠(𝑑𝑑)

𝑟𝑟∈𝑅𝑅

 

where: 

 𝑅𝑅 : Set of all academic inventors (including academic inventors unmatched with 
authors in Scopus). 

 𝑛𝑛𝑟𝑟,𝑠𝑠 (d): Number of academic publications of researchers 𝑟𝑟  in science field s  in 
period 𝑑𝑑. 

 𝑝𝑝𝑗𝑗,𝑟𝑟
Joint(𝑑𝑑) : Number of patents jointly invented by inventor 𝑗𝑗  and researcher 𝑟𝑟  in 
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period 𝑑𝑑. 
 𝑝𝑝𝑗𝑗,𝑟𝑟

Cite(𝑑𝑑) : Number of patents invented by academic inventor 𝑟𝑟  in period 𝑑𝑑  and 
cited by patents invented by industrial inventor 𝑗𝑗 in period 𝑑𝑑. 

 

Since we could not match all academic inventors to authors in the Scopus database, 
the number of academic publications by unmatched academic inventors is unknown. 
Therefore, we impute 𝑛𝑛𝑟𝑟,𝑠𝑠(𝑑𝑑) for academic inventors unmatched with Scopus based on 
the relationship between patents and publications of academic inventors matched with 
Scopus database. Denoting 𝑅𝑅𝑀𝑀  and 𝑅𝑅𝑈𝑈  as the set of researchers matched and 
unmatched with the Scopus database respectively, we estimate the number of academic 
publications by unmatched researcher 𝑟𝑟′ ∈ 𝑅𝑅𝑈𝑈 in science field 𝑠𝑠 published in period 𝑑𝑑, 
by, 

𝑛𝑛�𝑟𝑟′,𝑠𝑠(𝑑𝑑) = �𝑝𝑝𝑟𝑟′,𝑡𝑡
All (𝑑𝑑) × 𝑛𝑛�𝑡𝑡,𝑠𝑠(𝑑𝑑)

𝑡𝑡∈𝑇𝑇

, 𝑟𝑟′ ∈ 𝑅𝑅𝑈𝑈 

where 𝑝𝑝𝑟𝑟′,𝑡𝑡
All (𝑑𝑑) is the number of patents invented by academic researcher 𝑟𝑟′ in period 

𝑡𝑡 and 𝑛𝑛�𝑡𝑡,𝑠𝑠(𝑑𝑑) represents the average number of academic publications in science field 
𝑠𝑠 published in period 𝑑𝑑 per patent of technology class 𝑡𝑡 invented in period 𝑑𝑑 which 
is defined by: 

𝑛𝑛�𝑡𝑡,𝑠𝑠(𝑑𝑑) =
∑ 𝑛𝑛𝑟𝑟,𝑠𝑠(𝑑𝑑) ×

𝑝𝑝𝑟𝑟,𝑡𝑡
All(𝑑𝑑)
𝑝𝑝𝑟𝑟All(𝑑𝑑)𝑟𝑟∈𝑅𝑅𝑀𝑀

∑ 𝑝𝑝𝑟𝑟,𝑡𝑡
All(𝑑𝑑)𝑟𝑟∈𝑅𝑅𝑀𝑀

 

Tables 6a to 6c show the estimated value of 𝑛𝑛�𝑡𝑡,𝑠𝑠(𝑑𝑑). 

 

(Table 6a, 6b and 6c) 

 

Next, we define the industry-level scientific intensity as the total SK in science field 
𝑠𝑠 utilized by industrial inventors affiliated to firms in industry 𝑖𝑖 divided by the number 
of inventors (𝐼𝐼𝐼𝐼𝑉𝑉𝑖𝑖(𝑑𝑑)) or the number of employees (𝐸𝐸𝐸𝐸𝑃𝑃𝑖𝑖(𝑑𝑑)) in the industry: 

SIINV𝑖𝑖𝑋𝑋(𝑑𝑑) =
∑ ∑ �SK𝑗𝑗,𝑠𝑠

𝑋𝑋 (𝑑𝑑)�𝑗𝑗∈𝑉𝑉𝑓𝑓(𝑑𝑑)𝑓𝑓∈𝐹𝐹𝑖𝑖(𝑑𝑑)

𝐼𝐼𝐼𝐼𝑉𝑉𝑖𝑖(𝑑𝑑)  for 𝑋𝑋 = JointOnly, JointCite, CiteOnly. 
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SIEMP𝑖𝑖𝑋𝑋(𝑑𝑑) =
∑ ∑ �SK𝑗𝑗,𝑠𝑠

𝑋𝑋 (𝑑𝑑)�𝑗𝑗∈𝑉𝑉𝑓𝑓(𝑑𝑑)𝑓𝑓∈𝐹𝐹𝑖𝑖(𝑑𝑑)

𝐸𝐸𝐸𝐸𝑃𝑃𝑖𝑖(𝑑𝑑) = SIINV𝑖𝑖𝑋𝑋(𝑑𝑑) ×
𝐼𝐼𝐼𝐼𝑉𝑉𝑖𝑖(𝑑𝑑)
𝐸𝐸𝐸𝐸𝑃𝑃𝑖𝑖(𝑑𝑑) 

for 𝑋𝑋 = JointOnly, JointCite, CiteOnly. 

where 𝐼𝐼𝐼𝐼𝑉𝑉𝑖𝑖(𝑑𝑑)  is the number of inventors affiliated to firms in industry  𝑖𝑖  and 
𝐸𝐸𝐸𝐸𝑃𝑃𝑖𝑖(𝑑𝑑) is the total number of employees affiliated to firms in industry 𝑖𝑖.  

Finally, we define an indicator from the viewpoint of science as the amount of 
utilized scientific knowledge (USK) in science field 𝑠𝑠  of academic researcher 𝑟𝑟  by 
industrial inventors via only joint invention with industrial inventors, via only citations 
by industrial patents, and via both joint inventions and citations as: 

USK𝑟𝑟,𝑠𝑠
JointOnly(𝑑𝑑) = I�𝑝𝑝𝑟𝑟

Joint(𝑑𝑑) > 0� × I�𝑝𝑝𝑟𝑟Cite(𝑑𝑑) = 0� × 𝑛𝑛𝑟𝑟,𝑠𝑠(𝑑𝑑), 

USK𝑟𝑟,𝑠𝑠
CiteOnly(𝑑𝑑) = I�𝑝𝑝𝑟𝑟

Joint(𝑑𝑑) = 0� × I�𝑝𝑝𝑟𝑟Cite(𝑑𝑑) > 0� × 𝑛𝑛𝑟𝑟,𝑠𝑠(𝑑𝑑), and 

USK𝑟𝑟,𝑠𝑠
JointCite(𝑑𝑑) = I�𝑝𝑝𝑟𝑟

Joint(𝑑𝑑) > 0� × I�𝑝𝑝𝑟𝑟Cite(𝑑𝑑) > 0� × 𝑛𝑛𝑟𝑟,𝑠𝑠(𝑑𝑑). 

where 𝑝𝑝𝑟𝑟
Joint(𝑑𝑑) is the number of patents jointly invented by academic researcher 𝑟𝑟 and 

industrial inventors, and 𝑝𝑝𝑟𝑟Cite(𝑑𝑑)  is the number of patents invented by academic 
researcher 𝑟𝑟 cited by industrial inventors. Using the USK, we define the utilization rate 
of science knowledge (URSK) in field 𝑠𝑠 as: 

URSK𝑠𝑠
𝑋𝑋(𝑑𝑑) =

∑ USK𝑟𝑟,𝑠𝑠
𝑋𝑋 (𝑑𝑑)𝑟𝑟∈𝑅𝑅

𝐼𝐼𝑠𝑠(𝑑𝑑)  for 𝑋𝑋 = JointOnly, JointCite, CiteOnly. 

where 𝐼𝐼𝑠𝑠(𝑑𝑑) is the number of total scientific publications (including the publications of 
non-inventor pure scientists). Thus, this indicator measures the share of the number of 
academic inventors’ science publications linked to industrial inventors through patenting 
activities in all academic publications. 

4. Results 

4-1. Empirical findings 

Figure 4 shows the aggregated trend of academic involvement in industry innovation. It 
shows that both the shares of academia-industry joint applications and patents citing 
academic patents increased from 2000-2003 (Time I) to 2004-2007 (Time II). In 
subsequent periods (from Time II to Time III, 2008-2011), the share of joint applications 
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increased further, while the share of patents citing academic patents decreased. 
Additionally, the number of inventors per employee (reflecting R&D intensity) decreased 
over time in the industry sector.  

 

(Figure 4) 

 

Figures 5-7 present the aggregated indicators described in the previous section. 
Specifically, Figure 5 and 6 shows the investor-based science intensity (SIINV) and 
employee-based science intensity (SIEMP) respectively, and Figure 7 shows the industry 
breakdown of SIEMP as indicators of science intensity in industry.  

The SIINV increased from Time I to Time II, by increasing both joint inventions and 
academic patent citations. After the incorporation of Japan’s national universities in 2004, 
academic patent applications increased substantially. Moreover, industry-university 
collaboration activities have been promoted for over 10 years, which has contributed to 
the increase in science intensity indicators after 2004. However, the total intensity did not 
change at 249 from Time II to Time III. Looking at the indicators, science intensity due 
to academic patent citations decreases, while that due to joint inventions increased. It 
should be noted that the citation indicator is calculated by taking into account only cited 
(academic) patents applied within the same period. Therefore, a decrease in this indicator 
means that the academic patents in Time III are less likely to be cited by industry, as 
compared to those in Time II.9 

 

(Figure 5) 

 

The SIEMP (science intensity by total employment) decreased from Time II to Time 
III. The difference in the rate of decline between SIEMP (20%, from 3.6 to 3.0) and SIINV 
(0% unchanged from 249) is due to the decreasing ratio of number of inventors to total 
employment. During Time III, firms cut their R&D spending, responding to the economic 
downturn after the financial crisis in 2008, which is the reason decreased inventive 

                                                        
9 It is possible to consider the information for cited academic patents in previous periods as well, instead 

of just using the ones cited in the same period as the academic patents. However, our datasets start from 
1995, so data truncation prevents us from make a fair inter-temporal comparison if we used all cited 
academic patents. 
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activities.  

 

(Figure 6) 

 

Figure 7 shows the industry breakdown of SIEMP. It is found that the chemical 
(excluding pharmaceuticals) and pharmaceutical industries substantially lead other 
industries. However, the science intensity indicator has generally increased in other 
industries, which means that scientification of industrial innovation can be observed 
across industries. A sharp drop of SIEMP in the ICT machinery industry from Time II to 
Time III is consistent with the macro economic shock in 2008, since R&D cost cuts are 
particularly observed for firms in this industry. In contrast, some industries, such as 
chemicals (excluding pharmaceutical), telecom services, and broadcasting, show a 
consistent increase in SIEMP for all periods. In general, the cross industry distribution of 
science intensity becomes equal, since the Gini coefficients decrease from 0.612 in Time 
I to 0.586 in Time III. 

 

(Figure 7) 

 

Regarding the sources of SK, Figure 8 shows the aggregated trend of URSK, the 
utilization rate of academic papers to total publications. A similar trend is observed in the 
SIINV and SIEMP, which increased from Time I to Time II and decreased from Time II 
to Time III. The changes in URSK are caused not only by the demand side factor of SK 
in industry (expressed by SIINV and SIEMP), but also by the supply side factor of 
scientific activities. The up and down trend of URSK is similar to that of SIINV and 
SIEMP, but it should be noted that any changes in supply side factor such as new scientific 
advancements may affect the trend. 

 

(Figure 8) 

 

Viewing this trend from an academic perspective, the situation is more complicated. 
In general, the industry utilization rate increased over time, while a sharp decline from 
Time II to Time III is found in some fields, such as chemistry, physics, and astronomy. In 
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contrast, some academic fields, such as mathematics and social science, show a strong 
increasing trend. Thus, the overall inequality in URSK in the academic field decreases 
from Time I to Time III, as is indicated by the Gini coefficient decreasing from 0.35 to 
0.30. 

 

(Figure 9) 

 

4-2. Comparison with the NPL indicator 

To evaluate our new indicators, we compared them to the NPL citation indicator. Since 
Japanese patent databases do not provide applicant citation information (only examiner 
citation data), the JPO patents within the DOCDB (master documentation database of the 
EPO) patent family with USPTO patents are extracted first. Next, based on the NPL 
citation information of these USPTO patents, a dummy variable is created to indicate 
whether an equivalent US patent has NPL citations 10 . Finally, we compare this 
information with that of our indicators of science linkage, i.e., either the joint patents 
applications with academia, or patents citing academic patents. Figure 10 shows the 
comparison of these two indicators by technology class for a whole period, indicating the 
share of both joint patent applications with academia or patents citing academic patents 
(referred to as academic-related patents hereafter) and patents citing NPL (Both), only 
NPL citations (only NPL), and only academic-related patents (only A-Pat). 

 

(Figure 10) 

 

First, it is found that the number of academic-related patents correlated positively 
with that of patents with NPL citations. However, the share of NPL citation patents is 
larger than that of academic-related patents in general, as seen by the larger values for 
only NPL, when compared to only A-Pat. It is found that about half of the NPL documents 
cited by patents are not related to academic research, such as books, industry related 
documents and patent related documents (like patent abstracts) (Callaert et. al, 2006). In 

                                                        

10  The NPL citations of US patents include not only scientific papers but also many patent abstract 
documents. We roughly identified the patent abstracts and excluded it in advance. 
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contrast, our indicators are constructed by using scientific papers in Scopus only, which 
partly explains this difference.11  

Additionally, there is a conceptual difference between the NPL citations and 
academic-related patents. Our new indicator reflects the interaction between industry and 
academia using academic patents, while NPL citation reflect industry’s direct access to 
academic research. It is interesting that the share of only A-Pat is relatively small for very 
high science intensity industries, such as biotechnology (4.4% out of 94.3% in total) and 
pharmaceuticals (2.5% out of 83.6%). In contrast, there are some industries, where the 
shares of only A-Pat are relatively large, such as materials and metallurgy (8.6% out of 
44.8%), chemical engineering (9.9% out of 40.4%), and macromolecular chemistry and 
polymers (8.2% out of 39.3%). In these industries that heavily rely on them, the use of 
SK by industry is mediated more by academic patenting, rather than directly citing 
scientific papers, which explains the differences in the way science interacts with industry 
in different fields. 

5. Discussion and Conclusion 

This paper presents new indicators to measure scientification of industry in Japan, by 
linking a scientific paper database (science), patent information (technology), and 
economic census data (industry). The new indicators reflect a new mechanism of science 
linkage between science and industrial activities, which cannot be measured by NPL 
citations of patents, capturing the pure disembodied knowledge flow. In other words, the 
linkage of scientific publications and patents at the researcher level allows us view 
science-industry linkages via academic involvement in patenting activities, instead of just 
publishing scientific findings in papers. 

These new indicators of science linkage in Japan show an increasing trend over the 
past 10 years. However, the science intensity of industry decreased from 2004-2007 to 
2008-2011 due to a decrease in the R&D intensity of industry, caused by the economic 
slowdown after the financial crisis in 2008. However, co-invention activities increased 

                                                        

11  Additionally, Figure A4 in Appendix 4 shows difference between the NPL citations matched and 
unmatched to Scopus. In the technology fields with high science intensity, such as biotechnology and 
pharmaceuticals, most scientific papers cited as NPL by the patents are matched to Scopus, indicating 
that firms in these industries tend to directly access to scientific knowledge published as academic papers 
with relatively high quality for their R&D. On the other hand, while patents in the fields, such as digital 
communication and IT methods for management, cite number of NPL documents, only a small share of 
the NPL is matched to Scopus, implying that documents other than academic papers are utilized for the 
R&D of the firms in those fields. 
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during this period, so that the importance of science in industrial innovation kept 
increasing over time. One reason behind these trends is the institutional reform of the 
academic sector in Japan, i.e., incorporation of national universities in 2004. Additionally, 
the Japanese Government introduced various polices stimulating university-industry 
collaborations from the late 1990s onwards, such as the TLO (Technology Licensing 
Organization) Promotion Law and the Japanese Baye Dole Act (Motohashi and 
Muramatsu, 2012). These policy actions induced academic sectors (both HEIs and PRIs) 
to work with industry, which involved patenting activities. 

Government policies are not the only factors behind the trend of science linkage with 
industry; the growing importance of scientific inputs in industrial innovation has an 
impact as well. The 21st century began with the completion of the analysis of the human 
genome sequence. Big-data analysis allows scientific understanding of business and 
economics activities, such as purchasing behavior and production process in factories. In 
our analysis, science linkage with industry is found not only in science-based industries, 
such as pharmaceuticals and electronics, but also in many other industries. The variation 
of the total science intensity index of industry decreased in the past decade. Studies on 
the taxonomy of innovation suggest sectoral differences in its characteristics, and science-
based industry is one of these categories (Pavitt, 1984; Breschi and Malerba, 1997). 
However, our study has shown that scientific knowledge become general inputs in almost 
all industries, and this trend can be referred to as the “science-based economy,” for non-
science based industries as well.  

Hence, public expenditure on science sectors should be supported, since scientific 
findings contribute to industrial innovation, and benefit the entire economy, instead of 
only a limited number of science-based industries. Moreover, further interactions between 
academia and industry should be promoted, since direct interactions between them is a 
more important source of science linkage than the disembodied knowledge flow from 
science to industry, captured by NPL citations. Academic-industry interactions can be 
encouraged by developing corporate research centers inside universities and university-
based startups.   
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Appendix 1. Disambiguation of Japanese Patent Inventors 

In this appendix, we describe the method and data to be used to identify (disambiguate) 
the inventors of patents filed in the JPO.  

We utilize the data for patents applied in 1995 or later from the IIP patent database 
2015 version (IIP-PD hereafter)12. The IIP-PD consists of a number of normalized tables 
and we use tables for inventors, applications, and applicants, named as “inventor”, “ap” 
and “applicant” respectively. Since the names of the non-Japanese inventors are written 
in Katakana characters (a Japanese syllabary), they contain many spelling 
inconsistencies; hence, we use only the Japanese inventors for this analysis. To extract 
only the Japanese inventors’ data, we exclude inventors whose name does not contain a 
Chinese character. The unit of the inventor table records is patent-inventor; and the table 
contains 25,499,350 total records but we extract only 12,397,820 records. 

To apply the disambiguation algorithm, we normalize the names and addresses of 
inventors and applicants. For inventor names, all spaces, including spaces between 
surnames and given names of inventors, are removed and similar characters are 
consolidated. Addresses of inventors are divided into five regional levels: prefecture (to, 
do, fu, or ken), municipality (shi, ku, cho, or son), city block (chome or aza), land number 
(banchi or ban), and land number extension (go). For the applicant information, we use 
the applicant name and identification number given by the JPO. The identification number 
is replaced by a firm ID (NID) used in the “NISTEP Dictionary of Corporate Names 
Version 2015.1” developed by NISTEP if the information can be successfully matched to 
the IIP-PD using a converter also provided by NISTEP.13 

Next, we apply a patent-inventor disambiguation algorithm developed by Li et al. 
(2014) to the normalized data. The algorithm involves the following steps. First, the 
patent-inventor level dataset is prepared for analysis. Each record of “inventor” table in 
the IIP-PD is a unit of analysis, identified by a combination of the patent application 
number (ida) and a sequential number of inventor for each patent application (seq). 
Second, the records are blocked based on predetermined criteria that are likely to be 
satisfied by most matching records. We divided the records in which the inventor names 
are identical into a block. Third, for all pairs of the records within blocks, a vector of 
similarity (known as the similarity profile) for a record pair is computed. The similarity 

                                                        
12 http://www.iip.or.jp/patentdb/ 
13 http://www.nistep.go.jp/research/scisip/data-and-information-infrastructure 
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profile for any two inventor-patent records 𝑖𝑖 and 𝑗𝑗 in a block is defined as the following 
multi-dimensional vector:  

𝐱𝐱𝑖𝑖𝑗𝑗 = (𝑥𝑥1,𝑖𝑖𝑗𝑗 𝑥𝑥2,𝑖𝑖𝑗𝑗 ⋯ 𝑥𝑥𝑘𝑘,𝑖𝑖𝑗𝑗 ⋯ 𝑥𝑥𝐾𝐾−1,𝑖𝑖𝑗𝑗 𝑥𝑥𝐾𝐾,𝑖𝑖𝑗𝑗) 

where 𝑥𝑥𝑘𝑘,𝑖𝑖𝑗𝑗 is the degree of similarity of records 𝑖𝑖 and 𝑗𝑗 based on the 𝑘𝑘th attribute. 
Table A1-1 represents the definition of the similarity profile in this study. 

 

(Table A1-1) 

 

Fourth, using predetermined training sets, we compute the likelihood that matching 
pairs and non-matching pairs could give rise to each similarity profile. Likelihood ratio 
(r-value) for a similarity profile 𝐱𝐱 is defined as: 

𝑟𝑟(𝐱𝐱) =
𝑃𝑃(𝐱𝐱|𝐸𝐸)
𝑃𝑃(𝐱𝐱|𝐼𝐼) 

where 𝑃𝑃(𝐱𝐱|𝐸𝐸)  and 𝑃𝑃(𝐱𝐱|𝐼𝐼)  is the proportion of times that similarity profile 𝐱𝐱 
appeared in the match set and non-match set respectively. In this study, we define a match 
set as a group of record pairs of matched inventor full names defined as rare with respect 
to all inventor names, and non-match set as a group of record pairs of non-matching 
inventor full names chosen from the rare name list. We define rare names as names that 
do not appear more than two times a year in the telephone directory published by Nippon 
Telegraph and Telephone Corporation during 2000-2012. 

Fifth, we estimate the posterior probability of a match for all record pairs using the 
likelihood ratio calculated from the training sets. Posterior probability is defined by Bayes’ 
theorem as follows,  

𝑃𝑃�𝐸𝐸𝑖𝑖𝑗𝑗�𝐱𝐱𝑖𝑖𝑗𝑗� =
1

1 +
1 − 𝑃𝑃�𝐸𝐸𝑖𝑖𝑗𝑗�
𝑃𝑃�𝐸𝐸𝑖𝑖𝑗𝑗�

1
𝑟𝑟�𝐱𝐱𝑖𝑖𝑗𝑗�

 

where 𝑃𝑃�𝐸𝐸𝑖𝑖𝑗𝑗�  is the prior probability of a match. The prior probability is calculated 
using the original algorithm. 

Finally, using the posterior match probability for all record pairs within the blocks 
and a set of thresholds, record pairs with relatively high probabilities are merged into a 
cluster iteratively. We used a set of seven thresholds (0.99, 0.95, 0.90, 0.8, 0.7, 0.6, and 
0.5). Iterative clustering starts from the highest threshold (0.99) to the lowest threshold 
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(0.5)14.  

The disambiguation algorithm used in Li et al. (2014) is publicly available on the 
GitHub website15. However, since it was developed for the patent data in the U.S., it is 
necessary to modify it to apply to patent data in Japan. Table A1-2 summarizes the 
modified points. First, the original algorithm uses the first, middle, and last names as 
inventor name attributes, and allow for misspelling or abbreviation in names by 
implementing several blocking rules. Compared to the original program, we do not divide 
the name attribute and do not allow for any variation in inventor names because Japanese 
names usually do not contain middle names, and the abbreviation of inventor names rarely 
occurs in Japan.  

For the technology class, we use the IPC while Li et al. (2014) used the US 
technology class. Furthermore, although the original program allows multiple technology 
classes, since the IIP-PD contains one main IPC code for each patent, we modify the 
definition of the similarity score for the technology class attribute. 

Although Japanese patents have multiple applicants (assignees), the algorithm 
assumes a single assignee. For that reason, we use only the information of the applicant 
that appears first.  

We significantly changed the training sets’ creation rules. Li et al. (2014) uses two 
types of training sets. One training set is based on patent features and is used to learn 
ambiguity in name features. Another training set is based on name features and is used to 
learn ambiguity in patent features. In this study, because we do not allow for variations in 
the name attribute within a block, training sets for name features are not necessary. 
Similar to the original algorithm, rare names are used to generate training sets for patent 
features. While the original algorithm determines rare names within patent inventors, we 
obtain the list of rare names from the telephone directory in order to improve the 
reliability of training sets. 

 

(Table A1-2) 

                                                        

14 Iterative clustering is a complex process and requires some parameters to be set. Following the original 
program, the “minimum threshold” is set to 0.3 and the “effective comparison count” is set to one-fourth 
the number of combinations of the members between two clusters. For details regarding iterative 
clustering, see Li et al. (2014). 

15 https://github.com/funginstitute/disambiguator 
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We run the modified program on the following system: 

 CPU: 20Core Xeon E5‒2660 v3 2.6GHz (10core x 2CPU) 
 Memory: 64GB (8GBx8) ECC Registered DDR4‒2133 Quad‒Channel 
 OS： Linux (Ubuntu) on Windows 10 using VMWare Workstation 12 Player 
 CPLEX：IBM ILOG CPLEX Optimization Studio Version 12.6.2 

Appendix 2. Detailed Matching Results of Patent Applicants and Census Data 

Table A2 gives the detailed results for all organizations, including the breakdown by the 
match levels. Figure A2 shows the yearly matching rates for firms. 

 

(Table A2) (Figure A2 (a) and (b)) 

 

Appendix 3. NPL Citations of JP Patent Applications 

Most studies regarding science-industry linkage focus on the NPL citations of US patents 
because the US Patent Act requires applicants to disclose their knowledge of prior art 
documents and the US patent database is well organized. 

The Japanese Patent Act did not require information disclosure until 2002. Thus, 
prior art documents regarding front-page references of the Japanese patent gazette are 
listed by patent examiners. Citations by inventors/applicants are often embedded in the 
text of detailed technical descriptions. In this paper, we used information of NPL cited by 
inventors/applicants in Japanese patent applications, from a database we purchased from 
the Artificial Life Laboratory, Inc. They identified and extracted patent and NPL 
documents cited in technical descriptions, using their text-mining algorithm based on 
Tamada et al. (2006) and further developed it. The database comprises Japanese patent 
application publications (including applications based on the Patent Cooperation Treaty 
(PCT); 8.2 million records total), and Japanese granted patents (3.6 million records), for 
which gazettes were published between 1993 and 2015.  

To calculate the average number of NPL citations in Table 3, we used the NPL 
citations of 3.4 million patent application publications, whose applicants are Japanese 
firms with an earliest priority year between 2000 and 2011 (see Table A3).  
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(Table A3) 

 

To compare the NPL citation information in the Tamada DB with that of the US 
patents, we used the EPO PATSTAT database and extracted US patents in the DOCDB 
family of Japanese patent applications corresponding to the US patents. Figure A3 shows 
the average number of NPL citations of JP applications ((2) in Table A3) and the 
corresponding US patents ((3) in Table A3) by technology areas of the World Intellectual 
Property Organization (WIPO). We observed very similar tendencies. 

 

(Figure A3) 

 

Appendix 4. NPL citations matched and unmatched to Scopus 

We used matched data of NPL citations and Scopus and made a graph comparable to 
Figure 10, indicating the share of patents both academic-related patents and patents citing 
NPL matched to Scopus (Both), that with only NPL citations matched to Scopus (only 
NPL), that with only academic related patents (only A-Pat) and that with “NPL citations 
not matched to Scopus” by technology areas. 

 

(Figure A4) 
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Tables and Figures 

Table 1: Results of disambiguation of patent inventors 

 

Source: Authors’ calculations based on Scopus, the IIP patent database, and the KAKEN 
database. 

 

  

(1) (2) (3)

Disambiguation methods :     Modified Li et. al.
(2014) Algorithm

Name Match Name-Address-
Applicant Match

  Inventor-patent records 12,397,820 - -

  Disambiguated inventors 1,709,880 - -

  KAKEN records (inventor-patent records) 11,958 11,974 11,974

  KAKEN inventors 5,984 5,992 5,992

6,221 5,973 7,835
96.2% 100.3% 76.4%

233 2 1,227
3.89% 0.03% 20.50%

14 42 6
0.23% 0.70% 0.10%

288 2 2,233
2.41% 0.02% 18.67%

34 65 8
0.28% 0.54% 0.08%

  Disambiguated KAKEN inventors

  KAKEN inventors with splitting error

  KAKEN inventors with lumping error

  KAKEN records with splitting error

  KAKEN records with lumping  error
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Figure 1: Patent inventors and academic authors active in 2008-2011 in Japan 

 

Source: Authors. 

 

Table 2: Patent inventors and academic authors active in 2000-2011 in Japan 

 

Source: Authors’ calculations based on Scopus and the IIP patent database. 

 

  

2000-03 2004-07 2008-11 Total
 [A] Number of authors 316,031 355,936 381,660 739,372
 [B] Number of all inventors 673,927 623,849 562,822 1,229,027
 [C] Number of academic inventors 21,437 31,421 30,505 53,446

 [C/B] Proportion of academia in inventors 3.2% 5.0% 5.4% 4.3%
 [D] Number of patenting authors 9,532 15,726 15,598 26,333

 [D/A] Proportion of inventors in authors 3.0% 4.4% 4.1% 3.6%
 [D/B] Proportion of authors in inventors 1.4% 2.5% 2.8% 2.1%

Academic inventors 
(30,505) 

Patent inventors in 
IIP-PD 
(562,822) 

Academic authors 
in Scopus 
(381,660) 

Patenting academic authors 
(15,598) 
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Table 3: Number of Establishments by Type 

 

Source: Authors’ calculations based on the Establishment and Enterprise Census of Japan, 
and the Economic Census of Japan. 

 

Table 4: The Result of Patent-Organization Linkage (for patent applications in 1964-
2013) 

 

Source: Authors calculations based on the IIP patent database, the Establishment and 
Enterprise Census of Japan, and the Economic Census of Japan. 

  

Census Year Headquarter Branch Single Est. Total     
2001 229,436 1,185,929 4,722,947 6,138,312
2004 262,994 1,141,894 4,323,604 5,728,492
2006 228,664 1,255,827 4,238,068 5,722,559
2009 287,715 1,375,189 4,193,038 5,855,942
2012 270,634 1,296,421 3,855,672 5,422,727
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Figure 2: Temporal performance of the Linking Procedure: All Organizations 

(a) For Applications between 1995 and 2013 

 

Source: Authors’ calculations based on the IIP patent database, the Establishment and 
Enterprise Census of Japan, and the Economic Census of Japan. 

 

(b) For Applications in the Full Period (1964-2013) 

 

Source: Authors’ calculations based on the IIP patent database, the Establishment and 
Enterprise Census of Japan, and the Economic Census of Japan.  
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Table 5: Patent Applications and Applicants Failed in the Linking Procedure for All 
Census Datasets 

 

Note: The failed applicants are identified by their names and address. 

Source: Authors’ calculations based on the IIP patent database, the Establishment and 
Enterprise Census of Japan, and the Economic Census of Japan. 

 

Figure 3: Framework of indicators 

 

Source: Authors. 
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Table 6a: Avg. Number of Publications per Patent of Academic Inventors by Science Field and Technology Class (2000-2003) 

 

Source: Authors’ calculations based on Scopus and the IIP Patent Database 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
10 Multidisciplinary 0.005 0.003 0.002 0.003 0.007 0.006 0.000 0.010 0.013 0.013 0.018 0.004 0.009 0.017 0.059 0.028 0.005 0.016 0.016 0.008 0.008 0.004 0.004 0.005 0.012 0.001 0.013 0.004 0.030 0.001 0.002 0.002 0.005 0.008 0.001

11 Agricultural and Biological Sciences 0.013 0.003 0.003 0.003 0.002 0.014 0.000 0.007 0.006 0.047 0.069 0.010 0.041 0.127 0.376 0.232 0.035 1.041 0.217 0.009 0.008 0.007 0.041 0.097 0.019 0.030 0.026 0.025 0.218 0.035 0.008 0.007 0.068 0.020 0.025

12 Arts and Humanities 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.002 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.001 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000

13 Biochemistry, Genetics and Molecular Biology 0.050 0.017 0.019 0.029 0.025 0.124 0.000 0.052 0.049 0.277 0.462 0.090 0.559 0.834 1.734 1.595 0.197 0.672 0.248 0.051 0.066 0.127 0.123 0.169 0.130 0.033 0.066 0.073 0.519 0.041 0.069 0.030 0.061 0.114 0.048

14 Business, Management and Accounting 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.002 0.003 0.001 0.003 0.002 0.013 0.007 0.000 0.003 0.004 0.000 0.000 0.000 0.001 0.001 0.000 0.001 0.001 0.000 0.003 0.001 0.001 0.002 0.000 0.000 0.001

15 Chemical Engineering 0.085 0.009 0.002 0.001 0.014 0.019 0.000 0.037 0.025 0.072 0.098 0.029 0.143 0.133 0.120 0.073 0.132 0.090 0.168 0.151 0.092 0.089 0.383 0.205 0.025 0.079 0.078 0.084 0.092 0.154 0.054 0.032 0.016 0.057 0.023

16 Chemistry 0.324 0.040 0.006 0.012 0.009 0.033 0.000 0.127 0.151 0.332 0.594 0.013 0.113 1.218 0.215 0.333 0.590 0.168 0.530 0.344 0.297 0.399 0.609 0.279 0.041 0.089 0.136 0.197 0.188 0.082 0.069 0.031 0.121 0.093 0.038

17 Computer Science 0.027 0.081 0.198 0.241 0.284 0.407 0.000 0.028 0.048 0.095 0.036 0.239 0.110 0.007 0.016 0.005 0.012 0.002 0.011 0.008 0.009 0.053 0.012 0.038 0.398 0.014 0.020 0.008 0.009 0.028 0.047 0.073 0.338 0.149 0.031

18 Decision Sciences 0.000 0.001 0.002 0.011 0.002 0.006 0.000 0.000 0.000 0.002 0.001 0.011 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.006 0.008 0.000

19 Earth and Planetary Sciences 0.018 0.005 0.019 0.010 0.048 0.019 0.000 0.013 0.009 0.074 0.044 0.024 0.014 0.009 0.009 0.012 0.008 0.005 0.022 0.019 0.023 0.019 0.020 0.071 0.009 0.013 0.048 0.003 0.019 0.032 0.031 0.065 0.019 0.029 0.071

20 Economics, Econometrics and Finance 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

21 Energy 0.084 0.004 0.002 0.001 0.007 0.013 0.000 0.031 0.010 0.035 0.041 0.019 0.025 0.023 0.005 0.004 0.014 0.004 0.093 0.070 0.040 0.034 0.107 0.120 0.023 0.020 0.276 0.020 0.028 0.210 0.066 0.016 0.003 0.033 0.017

22 Engineering 0.418 0.310 0.528 0.341 0.744 0.395 0.000 0.361 0.487 0.548 0.355 0.545 0.472 0.046 0.057 0.043 0.067 0.015 0.183 0.212 0.300 0.351 0.246 0.265 0.987 0.478 0.621 0.092 0.131 0.452 0.785 0.553 0.838 0.689 0.287

23 Environmental Science 0.007 0.002 0.004 0.010 0.005 0.008 0.000 0.004 0.003 0.024 0.032 0.005 0.007 0.021 0.042 0.020 0.022 0.038 0.036 0.014 0.009 0.004 0.039 0.125 0.007 0.011 0.022 0.012 0.034 0.023 0.039 0.007 0.011 0.014 0.012

24 Immunology and Microbiology 0.007 0.002 0.002 0.010 0.004 0.021 0.000 0.015 0.007 0.054 0.087 0.013 0.055 0.124 0.442 0.341 0.023 0.152 0.042 0.006 0.006 0.006 0.020 0.088 0.006 0.009 0.005 0.016 0.218 0.012 0.008 0.005 0.002 0.003 0.025

25 Materials Science 0.474 0.163 0.035 0.028 0.132 0.070 0.000 0.684 0.355 0.337 0.446 0.068 0.389 0.239 0.095 0.115 0.834 0.038 0.574 1.279 0.992 0.875 0.476 0.286 0.087 0.623 0.243 0.411 0.416 0.176 0.310 0.054 0.149 0.155 0.096

26 Mathematics 0.003 0.004 0.005 0.032 0.026 0.046 0.000 0.005 0.008 0.017 0.009 0.042 0.020 0.004 0.007 0.003 0.004 0.008 0.008 0.004 0.005 0.009 0.004 0.003 0.018 0.005 0.013 0.005 0.003 0.007 0.005 0.004 0.041 0.052 0.009

27 Medicine 0.064 0.040 0.035 0.049 0.021 0.131 0.000 0.061 0.044 0.185 0.251 0.111 1.124 0.504 0.907 1.550 0.092 0.155 0.115 0.048 0.040 0.054 0.036 0.116 0.103 0.020 0.040 0.027 0.351 0.066 0.057 0.104 0.085 0.061 0.053

28 Neuroscience 0.006 0.015 0.004 0.008 0.004 0.027 0.000 0.007 0.009 0.034 0.049 0.019 0.132 0.101 0.178 0.276 0.019 0.038 0.005 0.007 0.003 0.012 0.011 0.024 0.020 0.007 0.006 0.002 0.113 0.005 0.005 0.008 0.060 0.036 0.003

29 Nursing 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.011 0.004 0.004 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000

30 Pharmacology, Toxicology and Pharmaceutics 0.008 0.003 0.005 0.010 0.007 0.015 0.000 0.008 0.006 0.043 0.069 0.004 0.079 0.329 0.171 0.506 0.044 0.097 0.034 0.006 0.007 0.056 0.027 0.016 0.033 0.005 0.008 0.010 0.081 0.012 0.008 0.007 0.007 0.014 0.006

31 Physics and Astronomy 0.915 0.484 0.156 0.100 0.446 0.169 0.000 1.537 1.317 0.704 0.742 0.180 0.337 0.173 0.116 0.107 0.187 0.082 0.582 0.759 1.446 0.938 0.525 0.512 0.139 0.475 0.753 0.243 0.279 0.381 0.318 0.146 0.172 0.462 0.099

32 Psychology 0.000 0.001 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.002 0.003 0.001 0.008 0.003 0.007 0.011 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.003 0.000 0.009 0.000 0.003 0.000 0.001 0.004 0.037 0.001 0.000

33 Social Sciences 0.002 0.002 0.001 0.002 0.001 0.008 0.000 0.000 0.000 0.003 0.002 0.008 0.002 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.002 0.002 0.001 0.000 0.001 0.000 0.000 0.006 0.003 0.003 0.001 0.027 0.003

34 Veterinary 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.004 0.007 0.000 0.008 0.007 0.029 0.026 0.002 0.026 0.007 0.000 0.000 0.000 0.002 0.001 0.000 0.000 0.000 0.001 0.012 0.001 0.000 0.000 0.004 0.000 0.000

35 Dentistry 0.001 0.001 0.003 0.004 0.000 0.001 0.000 0.001 0.001 0.009 0.014 0.001 0.089 0.014 0.020 0.041 0.001 0.005 0.000 0.004 0.001 0.001 0.000 0.001 0.001 0.002 0.000 0.002 0.002 0.000 0.001 0.006 0.005 0.001 0.000

36 Health Professions 0.001 0.001 0.001 0.002 0.000 0.005 0.000 0.002 0.002 0.004 0.005 0.001 0.028 0.006 0.007 0.014 0.003 0.001 0.002 0.005 0.002 0.000 0.001 0.013 0.002 0.000 0.006 0.000 0.003 0.012 0.001 0.001 0.018 0.007 0.001

Science Field (ASJC)
Technology Class (WIPO)
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Table 6b: Avg. Number of Publications per Patent of Academic Inventors by Science Field and Technology Class (2004-2007) 

 

Source: Authors’ calculations based on Scopus and the IIP Patent Database 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
10 Multidisciplinary 0.008 0.001 0.002 0.001 0.006 0.009 0.001 0.010 0.008 0.011 0.018 0.003 0.007 0.025 0.058 0.033 0.006 0.030 0.013 0.008 0.010 0.020 0.006 0.007 0.007 0.003 0.007 0.003 0.032 0.001 0.002 0.011 0.001 0.001 0.007

11 Agricultural and Biological Sciences 0.013 0.009 0.011 0.006 0.010 0.027 0.014 0.008 0.004 0.064 0.095 0.007 0.029 0.125 0.357 0.226 0.047 1.200 0.246 0.012 0.007 0.006 0.034 0.157 0.038 0.051 0.031 0.036 0.372 0.050 0.010 0.010 0.039 0.047 0.088

12 Arts and Humanities 0.003 0.004 0.001 0.001 0.001 0.010 0.002 0.002 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.000 0.001 0.002 0.008 0.002 0.012 0.002 0.001 0.002 0.002 0.002 0.004 0.001 0.004 0.003 0.000 0.000 0.020 0.004

13 Biochemistry, Genetics and Molecular Biology 0.078 0.040 0.042 0.077 0.042 0.258 0.267 0.060 0.054 0.348 0.597 0.156 0.483 1.031 1.744 1.662 0.269 0.959 0.279 0.086 0.083 0.133 0.110 0.195 0.159 0.047 0.049 0.108 0.633 0.045 0.071 0.036 0.149 0.093 0.047

14 Business, Management and Accounting 0.001 0.002 0.002 0.004 0.000 0.005 0.012 0.002 0.001 0.003 0.005 0.012 0.004 0.005 0.016 0.011 0.001 0.017 0.004 0.001 0.000 0.006 0.001 0.002 0.003 0.006 0.000 0.001 0.003 0.000 0.002 0.000 0.000 0.004 0.004

15 Chemical Engineering 0.117 0.024 0.012 0.009 0.012 0.037 0.027 0.052 0.030 0.110 0.150 0.064 0.161 0.120 0.110 0.077 0.178 0.117 0.167 0.201 0.123 0.137 0.396 0.231 0.051 0.094 0.106 0.132 0.121 0.205 0.097 0.024 0.056 0.039 0.027

16 Chemistry 0.432 0.060 0.015 0.025 0.050 0.058 0.019 0.216 0.186 0.343 0.575 0.047 0.075 1.098 0.270 0.281 0.737 0.166 0.492 0.460 0.349 0.646 0.557 0.245 0.067 0.102 0.199 0.198 0.194 0.115 0.088 0.016 0.140 0.088 0.063

17 Computer Science 0.045 0.197 0.348 0.595 0.313 0.815 0.347 0.054 0.086 0.142 0.050 0.497 0.143 0.015 0.027 0.014 0.018 0.008 0.021 0.019 0.017 0.055 0.020 0.099 0.504 0.042 0.052 0.043 0.025 0.018 0.125 0.117 0.272 0.262 0.039

18 Decision Sciences 0.001 0.001 0.003 0.015 0.000 0.010 0.033 0.001 0.002 0.001 0.000 0.031 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.002 0.000 0.001 0.001 0.000 0.003 0.001 0.002 0.001 0.000

19 Earth and Planetary Sciences 0.024 0.011 0.025 0.011 0.027 0.029 0.033 0.010 0.021 0.096 0.062 0.024 0.016 0.010 0.021 0.010 0.008 0.016 0.029 0.029 0.016 0.038 0.029 0.097 0.009 0.040 0.084 0.004 0.032 0.030 0.046 0.079 0.009 0.007 0.166

20 Economics, Econometrics and Finance 0.000 0.001 0.000 0.000 0.000 0.001 0.006 0.001 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.002

21 Energy 0.138 0.012 0.010 0.003 0.008 0.012 0.017 0.029 0.013 0.041 0.042 0.022 0.021 0.022 0.008 0.006 0.020 0.013 0.113 0.082 0.074 0.021 0.123 0.172 0.012 0.043 0.413 0.023 0.025 0.260 0.046 0.041 0.026 0.015 0.027

22 Engineering 0.886 0.677 1.077 0.919 1.438 0.977 0.441 0.758 0.884 0.949 0.721 1.494 0.783 0.326 0.221 0.218 1.365 0.088 0.423 0.431 0.499 1.118 0.411 0.500 1.629 0.860 0.897 0.663 0.617 0.663 1.189 1.008 0.731 0.688 0.652

23 Environmental Science 0.012 0.003 0.004 0.001 0.002 0.012 0.012 0.005 0.004 0.035 0.049 0.013 0.009 0.025 0.047 0.025 0.024 0.050 0.058 0.022 0.006 0.009 0.048 0.206 0.007 0.024 0.044 0.014 0.049 0.039 0.017 0.005 0.034 0.001 0.050

24 Immunology and Microbiology 0.007 0.005 0.009 0.003 0.008 0.029 0.032 0.009 0.005 0.054 0.098 0.027 0.058 0.175 0.472 0.346 0.022 0.203 0.067 0.010 0.017 0.014 0.011 0.094 0.013 0.024 0.011 0.018 0.196 0.013 0.003 0.010 0.022 0.031 0.010

25 Materials Science 0.689 0.204 0.078 0.050 0.246 0.118 0.083 0.637 0.369 0.358 0.455 0.109 0.358 0.251 0.105 0.123 0.877 0.057 0.519 1.546 0.923 0.776 0.519 0.374 0.160 0.859 0.457 0.581 0.485 0.224 0.393 0.085 0.135 0.148 0.157

26 Mathematics 0.016 0.028 0.033 0.107 0.043 0.128 0.124 0.014 0.013 0.021 0.013 0.091 0.025 0.007 0.008 0.006 0.003 0.002 0.005 0.005 0.004 0.015 0.006 0.009 0.046 0.016 0.011 0.007 0.007 0.013 0.019 0.011 0.065 0.028 0.010

27 Medicine 0.083 0.093 0.053 0.042 0.038 0.199 1.019 0.081 0.057 0.311 0.527 0.225 1.327 0.802 1.129 1.816 0.091 0.345 0.132 0.053 0.043 0.070 0.040 0.170 0.288 0.041 0.056 0.015 0.433 0.071 0.075 0.065 0.439 0.190 0.064

28 Neuroscience 0.011 0.017 0.004 0.002 0.008 0.030 0.019 0.008 0.013 0.041 0.071 0.026 0.146 0.159 0.140 0.333 0.007 0.036 0.024 0.008 0.003 0.017 0.008 0.018 0.038 0.004 0.005 0.005 0.169 0.011 0.028 0.007 0.104 0.019 0.007

29 Nursing 0.000 0.001 0.000 0.000 0.000 0.002 0.040 0.001 0.000 0.002 0.003 0.001 0.009 0.005 0.003 0.012 0.000 0.003 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.008 0.001 0.001

30 Pharmacology, Toxicology and Pharmaceutics 0.008 0.007 0.008 0.005 0.014 0.024 0.041 0.007 0.007 0.053 0.089 0.007 0.071 0.339 0.181 0.462 0.068 0.128 0.046 0.013 0.007 0.034 0.021 0.017 0.031 0.008 0.006 0.008 0.050 0.011 0.009 0.003 0.048 0.015 0.005

31 Physics and Astronomy 1.393 0.627 0.344 0.334 0.708 0.308 0.094 1.836 1.753 0.886 0.933 0.364 0.474 0.213 0.128 0.130 0.225 0.087 0.565 0.846 1.324 1.419 0.621 0.653 0.179 0.575 0.826 0.355 0.316 0.437 0.367 0.125 0.198 0.394 0.174

32 Psychology 0.001 0.001 0.000 0.000 0.000 0.006 0.019 0.000 0.001 0.003 0.004 0.008 0.012 0.005 0.005 0.010 0.000 0.001 0.001 0.000 0.001 0.000 0.001 0.001 0.006 0.001 0.003 0.000 0.002 0.006 0.001 0.006 0.004 0.003 0.000

33 Social Sciences 0.002 0.007 0.020 0.022 0.009 0.026 0.052 0.002 0.009 0.008 0.004 0.040 0.007 0.002 0.004 0.003 0.001 0.002 0.001 0.001 0.001 0.003 0.003 0.006 0.018 0.001 0.002 0.002 0.002 0.007 0.006 0.014 0.015 0.017 0.018

34 Veterinary 0.001 0.001 0.001 0.000 0.000 0.001 0.000 0.001 0.000 0.006 0.010 0.001 0.008 0.015 0.040 0.036 0.001 0.042 0.007 0.001 0.000 0.003 0.000 0.009 0.000 0.002 0.000 0.001 0.014 0.000 0.000 0.000 0.019 0.001 0.000

35 Dentistry 0.002 0.001 0.001 0.001 0.000 0.001 0.001 0.003 0.001 0.004 0.005 0.006 0.127 0.023 0.024 0.047 0.009 0.000 0.000 0.007 0.002 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.007 0.010 0.001 0.002 0.018 0.008 0.000

36 Health Professions 0.002 0.002 0.001 0.001 0.000 0.006 0.025 0.002 0.002 0.005 0.006 0.006 0.050 0.021 0.010 0.025 0.002 0.002 0.009 0.001 0.001 0.002 0.002 0.011 0.007 0.001 0.013 0.000 0.005 0.004 0.003 0.002 0.026 0.003 0.001

Technology Class (WIPO)
Science Field (ASJC)
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Table 6c: Avg. Number of Publications per Patent of Academic Inventors by Science Field and Technology Class (2008-2011) 

 

Source: Authors’ calculations based on Scopus and the IIP Patent Database 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
10 Multidisciplinary 0.004 0.008 0.003 0.001 0.010 0.013 0.016 0.020 0.011 0.025 0.043 0.005 0.018 0.040 0.089 0.061 0.013 0.034 0.022 0.014 0.014 0.022 0.009 0.027 0.007 0.011 0.018 0.006 0.043 0.008 0.011 0.008 0.003 0.002 0.003

11 Agricultural and Biological Sciences 0.017 0.007 0.006 0.006 0.010 0.028 0.042 0.007 0.013 0.066 0.119 0.011 0.036 0.124 0.423 0.204 0.039 1.290 0.255 0.021 0.021 0.017 0.043 0.137 0.022 0.043 0.031 0.039 0.520 0.044 0.020 0.026 0.022 0.013 0.113

12 Arts and Humanities 0.000 0.009 0.005 0.003 0.003 0.040 0.008 0.000 0.001 0.001 0.001 0.004 0.002 0.001 0.001 0.002 0.001 0.000 0.000 0.001 0.001 0.003 0.001 0.001 0.005 0.002 0.000 0.002 0.000 0.000 0.000 0.003 0.000 0.015 0.000

13 Biochemistry, Genetics and Molecular Biology 0.077 0.040 0.031 0.028 0.066 0.161 0.319 0.063 0.072 0.432 0.843 0.117 0.549 1.079 1.951 1.804 0.191 0.851 0.273 0.093 0.110 0.148 0.165 0.195 0.102 0.073 0.091 0.142 0.567 0.074 0.059 0.048 0.144 0.183 0.030

14 Business, Management and Accounting 0.001 0.002 0.002 0.008 0.000 0.013 0.026 0.001 0.002 0.002 0.003 0.022 0.003 0.002 0.004 0.004 0.001 0.009 0.002 0.001 0.001 0.001 0.002 0.001 0.002 0.004 0.001 0.002 0.003 0.001 0.000 0.001 0.003 0.001 0.002

15 Chemical Engineering 0.123 0.021 0.007 0.005 0.020 0.026 0.012 0.067 0.042 0.115 0.170 0.085 0.118 0.268 0.164 0.105 0.225 0.104 0.223 0.205 0.131 0.224 0.449 0.234 0.031 0.049 0.100 0.152 0.128 0.245 0.108 0.028 0.052 0.038 0.029

16 Chemistry 0.382 0.059 0.016 0.021 0.048 0.036 0.049 0.233 0.173 0.305 0.554 0.059 0.110 1.034 0.310 0.355 0.778 0.231 0.564 0.511 0.435 0.728 0.734 0.297 0.038 0.118 0.170 0.250 0.270 0.169 0.073 0.016 0.131 0.075 0.033

17 Computer Science 0.140 0.425 0.708 0.954 0.840 1.546 1.151 0.133 0.251 0.360 0.119 1.321 0.459 0.031 0.065 0.040 0.043 0.046 0.093 0.043 0.056 0.206 0.078 0.050 1.675 0.100 0.133 0.049 0.060 0.159 0.493 0.295 0.919 0.473 0.168

18 Decision Sciences 0.001 0.002 0.002 0.008 0.007 0.017 0.025 0.001 0.000 0.003 0.000 0.029 0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.000 0.002 0.003 0.000 0.000 0.000 0.001 0.001 0.002 0.000 0.001 0.002

19 Earth and Planetary Sciences 0.012 0.006 0.009 0.007 0.010 0.025 0.038 0.016 0.033 0.109 0.081 0.016 0.021 0.008 0.020 0.008 0.006 0.008 0.042 0.044 0.013 0.008 0.038 0.158 0.016 0.056 0.083 0.002 0.026 0.066 0.067 0.126 0.026 0.000 0.222

20 Economics, Econometrics and Finance 0.000 0.000 0.000 0.001 0.000 0.002 0.017 0.001 0.001 0.000 0.000 0.003 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000

21 Energy 0.241 0.010 0.005 0.005 0.050 0.015 0.052 0.053 0.013 0.067 0.066 0.057 0.017 0.026 0.024 0.009 0.027 0.012 0.128 0.139 0.072 0.046 0.149 0.156 0.024 0.040 0.440 0.030 0.030 0.269 0.108 0.101 0.025 0.006 0.058

22 Engineering 0.915 0.575 0.801 0.608 1.588 0.692 0.498 1.122 0.775 1.043 0.725 1.310 0.792 0.145 0.234 0.195 0.218 0.138 0.425 0.793 0.716 1.287 0.539 0.414 1.401 1.349 0.819 0.305 0.393 0.781 1.652 1.179 1.030 0.688 0.981

23 Environmental Science 0.023 0.004 0.004 0.003 0.006 0.009 0.065 0.007 0.009 0.042 0.060 0.014 0.023 0.042 0.067 0.033 0.039 0.066 0.064 0.044 0.018 0.023 0.098 0.286 0.009 0.026 0.097 0.022 0.101 0.291 0.046 0.019 0.008 0.025 0.107

24 Immunology and Microbiology 0.010 0.008 0.009 0.004 0.005 0.013 0.034 0.009 0.004 0.057 0.110 0.012 0.052 0.179 0.450 0.392 0.024 0.172 0.044 0.010 0.009 0.002 0.016 0.084 0.003 0.006 0.004 0.009 0.125 0.012 0.016 0.004 0.006 0.020 0.002

25 Materials Science 0.577 0.236 0.163 0.069 0.339 0.081 0.036 0.798 0.510 0.412 0.487 0.103 0.412 0.269 0.178 0.191 0.829 0.122 0.625 1.198 0.848 0.861 0.540 0.304 0.102 0.905 0.346 0.491 0.452 0.281 0.403 0.164 0.126 0.188 0.115

26 Mathematics 0.026 0.056 0.073 0.125 0.131 0.213 0.341 0.023 0.041 0.070 0.042 0.281 0.070 0.010 0.024 0.010 0.017 0.009 0.013 0.018 0.012 0.039 0.022 0.029 0.112 0.032 0.037 0.006 0.018 0.039 0.089 0.056 0.127 0.037 0.022

27 Medicine 0.083 0.072 0.066 0.044 0.068 0.203 1.425 0.099 0.084 0.664 1.247 0.277 1.990 1.147 1.791 2.590 0.106 0.349 0.140 0.075 0.109 0.073 0.100 0.272 0.094 0.066 0.141 0.137 0.512 0.053 0.117 0.075 0.379 0.392 0.054

28 Neuroscience 0.010 0.013 0.005 0.004 0.017 0.053 0.071 0.008 0.015 0.052 0.099 0.046 0.170 0.154 0.150 0.285 0.009 0.017 0.009 0.004 0.003 0.003 0.012 0.022 0.016 0.002 0.020 0.007 0.075 0.004 0.005 0.018 0.038 0.062 0.002

29 Nursing 0.000 0.001 0.000 0.000 0.001 0.001 0.024 0.001 0.000 0.005 0.008 0.012 0.021 0.016 0.013 0.037 0.001 0.010 0.002 0.001 0.001 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.005 0.002 0.000 0.001 0.021 0.006 0.000

30 Pharmacology, Toxicology and Pharmaceutics 0.012 0.006 0.008 0.002 0.013 0.022 0.077 0.010 0.010 0.063 0.123 0.019 0.087 0.441 0.227 0.646 0.049 0.102 0.045 0.015 0.014 0.041 0.041 0.027 0.012 0.006 0.015 0.013 0.057 0.016 0.005 0.008 0.011 0.010 0.004

31 Physics and Astronomy 0.784 0.624 0.384 0.193 0.753 0.241 0.104 1.826 1.469 0.841 0.895 0.274 0.516 0.167 0.220 0.159 0.277 0.104 0.625 1.045 1.162 1.213 0.786 1.191 0.141 0.702 1.245 0.245 0.389 0.512 1.080 0.220 0.123 0.640 0.152

32 Psychology 0.001 0.003 0.002 0.002 0.000 0.004 0.034 0.001 0.001 0.003 0.005 0.022 0.012 0.005 0.005 0.008 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.001 0.002 0.000 0.002 0.000 0.001 0.000 0.001 0.010 0.026 0.012 0.000

33 Social Sciences 0.005 0.019 0.069 0.050 0.025 0.058 0.060 0.006 0.028 0.020 0.009 0.064 0.017 0.005 0.005 0.007 0.002 0.003 0.001 0.002 0.003 0.006 0.002 0.006 0.028 0.003 0.006 0.005 0.004 0.022 0.015 0.013 0.006 0.030 0.016

34 Veterinary 0.001 0.001 0.001 0.000 0.000 0.003 0.002 0.002 0.000 0.009 0.019 0.001 0.013 0.030 0.045 0.072 0.004 0.035 0.007 0.002 0.001 0.000 0.003 0.002 0.000 0.004 0.000 0.012 0.018 0.000 0.003 0.000 0.000 0.012 0.000

35 Dentistry 0.001 0.002 0.001 0.001 0.000 0.001 0.013 0.002 0.002 0.004 0.009 0.009 0.111 0.028 0.034 0.074 0.005 0.001 0.001 0.010 0.002 0.004 0.001 0.003 0.000 0.000 0.001 0.002 0.003 0.001 0.009 0.000 0.015 0.008 0.006

36 Health Professions 0.002 0.005 0.002 0.002 0.002 0.015 0.022 0.001 0.001 0.006 0.007 0.011 0.058 0.006 0.008 0.013 0.001 0.004 0.001 0.001 0.001 0.003 0.002 0.023 0.005 0.002 0.007 0.005 0.009 0.000 0.005 0.006 0.068 0.021 0.001

Technology Class (WIPO)
Science Field (ASJC)



 

Figure 4: Science-Industry Relations in Patents 
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Figure 5: Inventor-based Science Intensity (SIINV) in Total Economy 
(Avg. number of linked academic publications per 100 inventors) 

 
 

Figure 6: Employee-based Science Intensity (SIEMP) in Total Economy 
(Avg. number of linked academic publications per 100 employees) 
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Figure 7: Employee-based Science Intensity (SIEMP) by Industry 
(Avg. number of linked academic publications per 100 employees) 
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Figure 8: Utilization Rate of Science Knowledge (URSK) 
(Share of academic publications linked to industry) 

 
 

 
Figure 9: Utilization Rate of Science Knowledge (URSK) by the Science Field 

(Share of academic publications linked to industry) 
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Figure 10: Comparison with NPL based indicators 

 

  



 

Table A1-1: Definition of Similarity Profile 

 

Source: Authors. 

 

Table A1-2. Modifications of Disambiguation Algorithm of Li et al. (2014) 

Li et al. (2014) Our method

Inventor name: First name, middle name,
and last name are distinguished

Do not distinguish first and last name

Technology class: US class IPC
Blocking rule 7 steps 1 step: Exact match of inventor name

2 types: 1 type:

1. Pairs of matched inventor full names,
   defined as rare with respect to all
   inventor names. (Rare names are
   extracted from patent inventors)

Pairs of matched inventor full names,
defined as rare with respect to all
inventor names. (Rare names are extracted
from the telephone directory)

2. Pairs sharing 2 or more common
   coauthors and technology classes

Attributes

Training sets

 

Source: Authors.  

Attributes                   Values
1  if names are completely same.
0  otherwise.

Co-inventors’ names (      ) Number of common co-inventors, where more than 6 common co-inventors is
set to a maximum value of 6.

4  if main IPCs are same at 4 digit level.
3  if main IPCs are same at 3 digit level.
2  if main IPCs are same at 1 digit level.
1 if main IPCs are not available.
0  if main IPCs are completely different.
3  if applicant identification numbers are equal.
2  if applicant names are same.
1  if either applicant identification number or applicant name are not available.
0  if both applicant identification numbers and names are different.
5  if matched at land number extension (go-level).
4  if matched at land number (banchi-level).
3  if matched at city block (chimei-level).
2  if matched at municipality-level.
1  if matched at prefecture-level.
0  otherwise.

Inventor name (      )

Technology class (      )

Applicant (      )

Address (      )

𝑥𝑥1

𝑥𝑥2

𝑥𝑥3

𝑥𝑥4

𝑥𝑥5



 

Table A2: Complete Results of the Linking Procedure (Patent Application Period: 
1964-2013) 

Source: Authors’ calculations based on the IIP patent database, the Establishment and 
Enterprise Census of Japan, and the Economic Census of Japan. 

  



 

Figure A2: Temporal Performance of the Linking Procedure: Firms 

(a) For Applications between 1995 and 2013 

 

(b) For the Full Application Period (1964-2013) 

 

Source: Authors’ calculations based on the IIP patent database, the Establishment and 
Enterprise Census of Japan, and the Economic Census of Japan. 
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Table A3. Sample Size Comparison 

PATSTAT

All publications
(1) Applicants

identified as firms

(2) JP Pub. with
Corresponding

US patents

(3) Corresponding
US patents

2000 415,323 336,976 28,239 32,355
2001 415,043 335,936 27,159 31,068
2002 400,676 320,521 27,557 31,569
2003 395,780 311,454 28,672 32,325
2004 402,884 313,361 31,100 34,143
2005 401,433 302,688 30,839 33,534
2006 372,849 281,975 32,055 34,223
2007 354,268 269,182 31,949 33,469
2008 346,554 264,113 30,529 32,263
2009 312,686 232,138 27,285 28,499
2010 300,912 222,778 24,891 25,536
2011 298,557 210,848 16,825 17,159
Total 4,416,965 3,401,970 337,100 366,143

Earliest priority
year

Tamada DB

 
Source: Authors’ calculations based on the Tamada Database and the EPO PATSTAT. 

 

Figure A3. Comparison of NPL Citations of JP and US Patents 

 

Source: Authors’ calculations based on the Tamada Database and the EPO PATSTAT 
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Figure A4. Comparison with NPL citations matched and unmatched to Scopus 

 

Source: Authors’ calculations based on the IIP patent database, the EPO PATSTAT, and 
Scopus. 
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