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Abstract 
We study the optimal and equilibrium size of cities in a city system model with environmental 
pollution. Pollution is related to city size through the effect of population on production, 
commuting, and housing consumption. With symmetric cities, if pollution is local or per capita 
pollution increases with population, we find that equilibrium cities are too large. When pollution 
is global and per capita pollution declines with city size, however, equilibrium cities may be too 
small. With asymmetric cities, the largest cities are too large and the smallest too small when 
pollution is local or per capita pollution increases with population; when pollution is global and 
per capita pollution decreases with population, the largest cities are too small and the smallest too 
large. We also calibrate the model to US cities and find that the largest cities may be undersized 
by 3-4%. 
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1 Introduction

Urbanization is rapidly increasing, especially in developing countries. According to the UN

Population Division, urbanization worldwide will increase from 51.6% in 2010 to 66.4% in

2050, and from 46.1% to 63.4% in the developing world. Some commentators are afraid

that this urbanization may have adverse environmental consequences. For instance, Seto

et al. (2012) argue that the projected urbanization until 2030 leads to significant loss of

biodiversity and increased CO2 emissions due to deforestation and land use changes. Urban

economic activities such as manufacturing production, commuting, and residential energy

use also contribute to pollution. Fig. 1 shows that over the last half century, urbanisation

and CO2 emissions have moved together. Of course, this may not be a causal relation.

In fact, some writers who claim that large, densely populated cities produce lower per

capita emissions. Glaeser and Kahn (2010) show that in the US, inhabitants of large,

densely populated cities such as New York City and San Francisco tend to produce lower

CO2 emissions from transport and residential energy use than those living in smaller and

less densely populated cities, controlling for factors such as local weather. Glaeser (2011)

writes about this Triumph of the City and in the subtitle succinctly states: “How our

greatest invention makes us richer, smarter, greener, healthier, and happier” (our empha-

sis). This line of reasoning has prompted organizations such as the OECD and the World

Bank to advocate high density urban development to mitigate environmental pollution.

Therefore, an important policy question is whether big cities are good or bad for the

environment, especially in developing countries such as China, where new cities are spring-

ing up by the minute. While on the one hand, migrants flock to cities to take advantage of

their economic opportunities, on the other hand, concern about congestion, environmental

pollution and other side effects is mounting. So what is the optimal size of cities that are

affected by environmental pollution? And what would be the unregulated equilibrium city

size?

In this paper, we build a simple model of a city system to study how the equilibrium

and optimal city size distribution is affected by environmental pollution. We use a standard

monocentric city model, where people work, consume goods and housing in cities. Agglom-

eration externalities make workers more productive in big cities. Pollution is related to city

size since it is a by-product of urban production, commuting and housing. We distinguish

between pollution which is purely local, such as certain kinds of emissions from traffic, and

pollution which spills over between cities, such as greenhouse gas (GHG) emissions. When
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cities are symmetric, we find that with local pollution, equilibrium cities are too large and

there are too few of them, mirroring the classic result of Henderson (1974). By contrast,

when pollution is global, we find that equilibrium cities may be either too small or too big.

The former case can occur when per capita pollution falls with city size. We also study

the model with a given number of asymmetric cities. With local pollution, we find that

the largest cities are too large and the smallest cities too small. With global pollution, if

per capita pollution decreases with city size and the marginal damage of pollution is large

enough, the largest cities are too small and the smallest too large.

We also present a numerical simulation to gauge the possible divergence between op-

timal and equilibrium city size. Using data from Fragkias et al. (2013), we estimate the

effect of the size of US metropolitan areas on CO2 emissions. We find that doubling city

size reduces per capita CO2 emissions by 20 percent. In the symmetric city case, we find

that cities might be undersized by up to 9 percent if pollution is global. With asymmetric

cities, in the case of global pollution, the largest cities may be undersized by 3-4 percent

while the smallest cities are oversized by 5-10 percent. If pollution is local, the largest

cities are oversized, but by only about 0.3%. Finally, we use an estimate of the degree

of pollution spillovers (so pollution is neither completely global nor completely local) and

find that the largest city is undersized by 2.4% and the smallest is oversized by 6.6%.

Our paper is related to two strands of literature. First, the literature on city systems

has studied equilibrium and optimal city sizes. Henderson (1974) first showed that in equi-

librium, cities are too big. This finding also comes out of the models by Tolley (1974),

Arnott (1979), and Abdel-Rahman (1988). On the other hand, some recent papers show

that cities may be too small in equilibrium. Albouy and Seegert (2012) show that the

introduction of taxes may lead to inefficiently small cities, and that if cities are heteroge-

neous, large cities may be too small. Eeckhout and Guner (2015) also show that spatially

uniform taxation may lead to large cities being undersized, and that the optimum spatial

tax system taxes individuals in large cities less than the current US tax system.1 Behrens

and Robert-Nicoud (2015), on the other hand, show that allowing for heterogeneous sites

may lead to the biggest cities being oversized. Like Albouy and Seegert (2012) and Eeck-

hout and Guner (2015), we show that cities may be too small. However, the mechanism

in our paper, namely negative externalities from intercity pollution, is different.

Second, there is a small but growing literature on cities and the environment more

1Au and Henderson (2006) show that many Chinese are too small due to the migration restrictions of
the hukou system.
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general. Related to this paper, Gaigné et al. (2012) and Borck and Pflüger (2015) study

the interaction of agglomeration, pollution and welfare in models with a given number

(two) of cities. There are also some theoretical papers on urban structure and pollution,

see Borck (2016), Borck and Brueckner (2016), Dascher (2014), Larson et al. (2012) and

Tscharaktschiew and Hirte (2010). Finally, Glaeser and Kahn (2010) and Larson and

Yezer (2015) study empirically the relation between GHG emissions or energy use and city

structure. Glaeser and Kahn (2010) find that large, dense cities in the US produce fewer

GHG emissions. Morikawa (2013) finds that dense cities in Japan produce lower per capita

energy consumption in the service sector, and Blaudin de Thé and Lafourcade (2016) show

that residents of low density suburban households use more gasoline for driving. Larson

and Yezer (2015) study the effect of city size on energy use in a simulation model, finding

that per capita energy use does not change with city size. A number of papers from

other disciplines than economics also study the relation between city size and pollution

empirically, with different results, e.g. Fragkias et al. (2013) and Sarzynski (2012). Our

paper is also concerned with the relation between pollution and city size, which is essential

for the comparison of equilibrium and optimal city systems.

We proceed as follows. The next section introduces the model of a symmetric city

system. Section 3 presents the modeling of pollution. In section 4, we study the equilibrium

and optimum size of cities with local and global pollution. Section 5 contains a numerical

simulation, to get a sense of the possible divergence of optimum and equilibrium city size.

In Section 6, we extend both the analytical and simulation results to the realistic case of

asymmetric cities. The last section concludes.

2 The model with symmetric cities

There are m cities in the economy, whose total population is exogenous and denoted by N .

For now, we assume cities to be identical. The population size in each city is endogenous

and given by n = N/m. For simplicity, the city space is linear with unit width and the

central business district (CBD) is a spaceless point located at x = 0, while the endogenous

city border is denoted x̄ (we focus on the right side of the city for simplicity). All individuals

commute to the CBD and have identical preference given by

u(s, z, E) = sαz1−αE−β, (1)
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and the budget constraint is

w = z + rs+ tx, (2)

where s is housing floor space (equivalently land consumption), z is consumption of a

composite non-housing good, E is pollution, w is wage income, r is the housing rent per

square meter, t is the commuting cost per mile, x is distance from the CBD, and 0 < α < 1,

and β > 0.

Consumers choose s and z to maximize (1) subject to (2). From this we get optimal

housing consumption

s(w − tx, r) =
α(w − tx)

r
. (3)

Consumers are mobile within and between cities, and land is rented to the highest

bidder. We can now solve for households’ bid rent, i.e., the maximum amount the household

would be willing to pay per unit of land. Using (3) and (2) in (1) and solving u(z, s, E) = u

gives

r(w − tx, E, v) = (w − tx)1/αE−β/αv−1/α, (4)

where v ≡ α−α (1− α)−(1−α) u.

The two equilibrium conditions in the representative city are:

r(w − tx̄, E, v) = rA (5)∫ x̄

0

1

s(w − tx, E, v)
dx = n, (6)

where rA is the agricultural land rent. Eq. (5) states that at the city border, land rent

just equals the agricultural land rent. Eq. (6) says that the population n fits into the city

between 0 and x̄.

Suppose that there are external economies of scale at the city level, for instance because

of gains from individual specialization. Total city production is assumed to be Y = n1+γ,

with 0 < γ < α and the individual wage is w = nγ.2 Substituting (3) and (4) into (5) and

(6) and solving gives the city border and indirect utility

x̄ =
nγ [1− rαA(rA + tn)−α]

t
(7)

v = nγ(rA + tn)−αE−β. (8)

2Duranton and Puga (2004) show that several different mechanisms lead to the same functional form,
such as gains from specialization, matching, sharing intermediate inputs, or learning.
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Eq. (7) shows that the city expands as population grows. Note that because of the

separability of utility, x̄ is not affected by pollution. Eq. (8) shows the standard tradeoff

induced by an increasing city population: on the one hand, utility increases with n due

to agglomeration forces, on the other hand, it decreases because of longer commutes and

competition for land, which results in higher land rents. In the next section, we model

pollution in order to study how it affects this fundamental tradeoff. In particular, the

pertinent question is how reallocating population among cities affects the disutility from

pollution.

Note that we have assumed that land is owned by absentee landowners. As is well

known, efficiency analysis requires returning differential land rents to city residents. We

show in Appendix C, however, that our results hold qualitatively if land is owned by city

residents.

3 Pollution

Pollution in city i is given by

Ei = e(ni) + δ
m−1∑
j=1

e(nj),

where e is local pollution and 0 ≤ δ ≤ 1 measures the degree of pollution spillovers. When

δ = 0, pollution is purely local (for instance, some forms of particulate pollution which do

not diffuse over long distances). Conversely, when δ = 1, pollution is purely global from

the view of our city system, as is the case, for instance, for GHG emissions. Importantly,

in the latter case, the environmental externality is independent of the individual’s location.

An important issue in the coming analysis will be the relationship between pollution

and city population. What do we know about this relation? In Section 5, we will try

to estimate the population elasticity of pollution empirically, but here we briefly discuss

theoretical an empirical studies that address this issue.

Borck and Pflüger (2015) present a theoretical model in which urban pollution is driven

by commuting, residential energy use, industrial and agricultural production, and goods

transport. They show that per capita pollution from industrial production and residential

energy use decreases with city size, while pollution from commuting and goods transport

increases. The total effect of city population on urban pollution depends on parameters.

Some authors have estimated the relation between pollution and city population (or
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population density) empirically. Most of these papers estimate an equation of the form

e = Anθ, which we will also do in Section 5.3 Lamsal et al. (2013) use cross-sectional

cross-country data on NO2 and NOX pollution and find that the elasticity of pollution

with respect to population density lies between 0.4 and 0.67. Gudipudi et al. (2016) study

the effect of population density on CO2 emissions and find an elasticity around 0.6, so

doubling population density would reduce per-capita emissions by 40%. Fragkias et al.

(2013) also estimate the effect of population on CO2 emissions, using panel data from US

cities. They find an elasticity of emissions with respect to population of 0.93. Rybski

et al. (2016) conduct a meta-analysis of published articles that study CO2 emissions and

city size, and find that in developed countries per capita emissions decrease with city size

while in developing countries per capita emissions increase with city population. However,

most of these estimates seem problematic. For instance, Lamsal et al. (2013) use cross-

sectional OLS regressions to estimate the population elasticity of pollution. But this ignores

potential confounders that are correlated with population density and pollution. Fragkias

et al. (2013) use panel data, but they estimate the model with random effects, which

assumes that any unobserved time-invariant heterogeneity between cities is not correlated

with pollution. In Section 5, we present an alternative estimate of the population elasticity

of CO2 pollution, using the same dataset as Fragkias et al. (2013).

4 Equilibrium and optimum number and size of cities

The equilibrium city size in the city system is defined by the solution of vi = v∗ for all

i. We focus on symmetric cities. Further, we require the equilibrium to be stable, which

implies ∂v(n)/∂n < 0. The optimal city size is found by maximizing mnv(n) with respect

to n and m. Using mn = N , this is equivalent to maximizing v(n) with respect to n. Note

that, from (8) follows v(0) = 0 so no one would ever want not to live in a city.

3Some papers not reviewed here estimate other functional forms, where, for instance, pollution is
assumed to be a quadratic function of population.
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4.1 Local pollution

Suppose first that pollution is entirely local, i.e. δ = 0. Then migration is governed by the

following utility differential

v(ni)− v(nj) = v̂(ni)e(ni)
−β − v̂(nj)e(nj)

−β, (9)

where v̂(n) ≡ nγ(rA + tn)−α,

and optimum city size maximizes v(ni) = v̂(ni)e(ni)
−β. We will assume that both v(n)

and v̂(n) are quasi-concave, which holds (in the neighborhood of the equilibrium and social

optimum) for the parameter values used in our numerical simulations. Moreover, we assume

that locally produced pollution e(ni) satisfies e(0) = 0 and de/dni > 0.

Since v(ni) can be shown to be inverted U-shaped, we get the standard result that

equilibrium cities are too large, as in Henderson (1974). This can be seen by looking

at Fig. 2. The figure shows the optimal city size n̂ and two potential equilibrium city

sizes ñ and ne.4 Any equilibrium with city size ñ < n̂ is unstable: if the city population

were to deviate slightly from ñ, migration in or out of the city would occur, as indicated

by the arrows. Conversely, any equilibrium with ne > n̂ is stable: as indicated by the

arrows, a deviation from ne would induce migration flows which restore the equilibrium.

Therefore, there is a continuum of equilibria with ne > n̂ where n̂ = n∗ maximizes v(ni).

We summarize this as:

Proposition 1 If pollution is purely local, δ = 0, cities are too large in equilibrium.

4.2 Global pollution

Now, let δ = 1 so that pollution is global from the viewpoint of the economy. Since pollution

is global, we can drop the index i from pollution Ei and write the utility difference of living

in city i versus j as

v(ni)− v(nj) = E−β (v̂(ni)− v̂(nj)) . (10)

For E > 0, the individual migration decision is determined by the difference v̂(ni) −
v̂(nj), so global pollution does not affect migration decisions. Let n̂ denote the city size

4Note that there is a continuum of equilibria, so all that can be said in general is that ne > n̂, but the
exact location of the equilibrium is indeterminate.
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which solves maxn v̂(n). Setting v̂′(n) = 0 and solving gives

n̂ =
γrA

(α− γ)t
. (11)

Then, by the same argument as in Henderson (1974), there is a continuum of stable equi-

libria with city sizes ne > n̂. Fig. 3 shows possible equilibrium city sizes. As before, any

equilibrium with ne > n̂ is stable.

The optimum city size n∗ is found by maximizing v(n) = v̂(n)E(n)−β. The first order

condition can be written

v̂′(n)− βv̂(n)
E ′(n)

E(n)
= 0. (12)

We know that ne ≥ n̂ and that n̂ maximizes v̂(n). Since β > 0, E(n) > 0 and v̂(n) is quasi-

concave, evaluating (12) at n̂ implies that n∗ < n̂ if E ′(n̂) > 0. Since E(n) = m · e(n) =
N
n
e(n), we find cities are definitely too large if per capita pollution is increasing in city

size. Intuitively, in this case making cities larger increases pollution, which increases the

disutility from pollution. This reinforces the argument in Henderson-style models which

make cities too large.

However, if per capita emissions are decreasing in city size, we find n∗ > n̂. This opens

up the possibility that in equilibrium, cities may be too small. However, since there is

a continuum of equilibria with ne > n̂, cities may also be too large. Summarizing this

discussion, we have:

Proposition 2 Suppose that pollution is global, i.e. δ = 1. If per capita emissions increase

with n, cities are too large in equilibrium. However, if per capita emissions decrease with

n, cities may be either too small or too large in equilibrium.

Fig. 3 illustrates the case where pollution is global and per capita emissions are de-

creasing with city size. The blue curve depicts the function v̂(n) and the equilibrium city

size is some ne > n̂. The orange curve shows the curve v(n) and the optimum city size is

n∗.5 The thick red part of the v(n) curve shows the part where the possible equilibrium

city size (with ne > n̂) is smaller than the optimum size. However, the equilibrium city

size may also be larger than n∗.

As Prop. 2 makes clear, in the case of global emissions whether cities are over- or

undersized depends on how per-capita emissions change with city population. However,

5The functions have been rescaled so that v(n∗) = v̂(n∗) for better visibility.
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as already stated in Section 3, not much is known about this relationship. Therefore, we

estimate this relationship in the next section, where we use numerical simulation to gauge

whether cities will be over- or undersized in equilibrium.

5 Numerical simulation

We now try to assess to what extent optimum and equilibrium city size may diverge, using

numerical simulation. Suppose that total emissions in city i in year t are eit = Bnθit. Then,

per capita emissions decrease with population size if and only if θ < 1.

We can then estimate a linear regression of the form

log eit = c+ θ log nit + εit (13)

where c ≡ logB is a constant, and ε is the error term.

We use data from Fragkias et al. (2013) to estimate CO2-emissions in US core based

statistical areas (metropolitan statistical areas and micropolitan areas) from 1999-2008.

The dataset contains CO2 emissions and population for 933 core based statistical areas

(CBSAs). Emissions are based on data from the Vulcan Project, which quantifies U.S.

fossil fuel carbon dioxide emissions at 10 km × 10 km grid cells and at the scale of indi-

vidual factories, power plants, roadways and neighborhoods on an hourly basis. These are

aggregated by Fragkias et al. (2013) to annual observations by CBSA.

If pollution were local, then our model would predict that individual migration decisions

are based on city emissions, so population would be endogenous and OLS estimation would

consequently be biased. Given that CO2 is a global pollutant, however, this is not a concern

in the present setup, since migration should be independent of local emissions. We will try

to mitigate estimation bias by adding various fixed effects to our baseline regression.

We start by estimating (13) by pooled OLS. Results are shown in column (1) of Tab.

1. Standard errors are clustered at the CBSA level. The coefficient on population is 0.938,

and it is significantly smaller than one. This is a first indication that per capita pollution

might be lower in larger cities.

Next, in column (2), we include time fixed effects to allow for any time varying factors

that are common across CBSAs and affect emissions, such as national business cycles. If

these cycles were correlated with population size (say because some cities grow more than

others when the economy grows) and also affect CO2 emissions, the OLS coefficient would
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be biased. The coefficient in column (2), however, is the same as in the model without

time effects.

In column (3) we include CBSA fixed effects. Some cities may have disproportionately

many power plants that service larger geographic areas. Also, cities may differ in some

unobserved dimension such as industry structure, climate, or other factors that may affect

population size and emissions at the same time. As long as this heterogeneity is time

invariant, we can control for it by estimating a model with CBSA fixed effects. As shown

in column (3), the coefficient on population drops to 0.83 once we control for CBSA and

time fixed effects. Thus, the result that θ < 1 does not seem to be driven by unobserved

heterogeneity among CBSAs.

Finally, to control for potential macroeconomic effects that affect regions differentially

and may be correlated with city size and emissions, in column (4), we include interaction

effects between year and US census divisions (there are 4 census regions and 9 divisions).

As can be seen from the Table, the coefficient on population slightly drops to 0.8, and

it remains significantly smaller than one.6 Fig. 4 displays a binned scatter plot of log

emissions against log population, controlling for CBSA as well as division by year fixed

effects. Since this estimate controls extensively for time-varying regional heterogeneity, we

will use this value of θ for the numerical simulation. However, we will also use the higher

value of 0.94 as a robustness check.

We now want to compare (the smallest possible) equilibrium city size, n̂ (see (11)),

and optimal city size, n∗, which we now derive. Consider global emissions, δ = 1. Since

e = Bnθ, we have E = m · e = BNnθ−1. Substituting in (8) gives

v(n) = (BN)−βnγ+(1−θ)β(rA + tn)−α. (14)

Maximizing with respect to n gives

n∗ =
[γ + (1− θ)β] rA

[α− γ − (1− θ)β] t
. (15)

We use the following parameter values. The expenditure share of housing is set to

α = 0.24 (following Davis and Ortalo-Magné, 2011), the agglomeration elasticity is γ = 0.05

(see Combes and Gobillon, 2015, for an overview), and the elasticity of pollution is set to

6The p-values for the test for θ < 1 are: 0.0001 in column (1), 0.0001 in column (2), 0.045 in column (3)
and .0499 in column (4). In all cases, the hypothesis that θ < 1 cannot be rejected at the 5% significance
level.
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θ = 0.8, following our regression results.

The maximum divergence between optimal and equilibrium city size, n∗−n̂, is increasing

in β, the index of the marginal damage of pollution. In the Appendix, we calibrate β, using

central estimates of the social cost of carbon from the literature. Using the central estimate

of USD 40.54 per metric ton CO2 for 2015 (assuming 3% discounting, value updated to

2015 USD) from the recent study by Interagency Working Group on Social Cost of Carbon

(2015), we find a value of β = 0.022.7 We then get a maximum divergence of n∗/n̂ = 1.1137.

Again, while cities could be oversized in equilibrium, this suggests they could be undersized

by up to 11.4 percent. If θ = 0.94, the optimal city size could exceed the equilibrium size

by up to 3.5%.

At the high end of estimates of the social cost of carbon, we use the 95th percentile

estimate of USD 118 for 2015 from Interagency Working Group on Social Cost of Carbon

(2015) (again at 3% discounting, in 2015 USD), which gives a value of β = 0.064. In

this case (using the original θ = 0.8), we find n∗/n̂ = 1.347, so the optimum city size

could exceed the equilibrium size by as much as 35 percent. Finally, estimates for the

social cost of carbon increase over time. For 2050, the central and 95th percentile values

from Interagency Working Group on Social Cost of Carbon (2015) are USD 77.70 and

238.74. The implied values for β are 0.042 and 0.13. Then, optimal city size could exceed

equilibrium city size by up to 22% in the first and 76% in the second case. Furthermore,

since climate change damages are estimated to increase over time, our model predicts that

if global pollution leads to cities that are too large, the severity of the problem should

increase over time.

6 Asymmetric cities

6.1 Equilibrium and social optimum with asymmetric city sizes

We now introduce asymmetric cities into the model. To do so, we assume that an individual

living in city i obtains utility

vi(ni) = Ain
γ
i (rA + tni)

−αE−βi . (16)

7 The study reports averages over three different integrated assessment models. We use their average
value across the three models for 2015 at 3% discounting, USD 36 or EUR 40.54, as our central value.
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The variable Ai is a city level amenity, which could be a consumption amenity such as good

weather or a production amenity such as good infrastructure or a favourable geographic

location. Without loss of generality, we assume A1 = 1 andAi > Ai+1 for i = 1, 2, . . . ,m−1.

As before, pollution is given by

Ei(n) = e(ni) + δ
∑
j 6=i

e(nj),

with e = nθ, θ > 0.

We will assume the number of cities m is fixed and then ask how the optimum allocation

of population among these cities differs from the equilibrium one. Let v̂ be the equilibrium

utility level that is attained under free migration and let the equilibrium population vector

be n̂ = {n̂1, . . . , n̂m}. The equilibrium city size distribution satisfies vi(n̂) = v1(n̂) = v for

all i = 1, . . . ,m. Using (16) and setting A1 = 1, we can then solve for the amenity levels

that are compatible with a free migration equilibrium:

Ai =

(
n̂1

n̂i

)γ (
rA + tn̂i
rA + tn̂1

)α(
Ei(n̂)

E1(n̂)

)β
. (17)

Note that our formulation implies that the amenity levels are uniquely identified by the

equilibrium distribution of population up to the normalization that A1 = 1.

We want to compare the equilibrium city size distribution to the optimal distribution.

To characterize the latter, we assume the social planner maximizes the sum of utilities

max
n

m∑
i=1

nivi(n)

subject to the population constraint
∑m

i=1 ni = N . Letting λ be the Lagrangean multiplier

on the population constraint, the first order conditions are given by8

vi + ni
∂vi
∂ni

+
∑
j 6=i

nj
∂vj
∂ni

= λ, i = 1, . . . ,m. (18)

The last term on the LHS of (18) shows the pollution spillovers between cities.

The sign of vi − vi+1 is important in the following analysis. While vi = vi+1 holds at

the equilibrium, suppose vi > vi+1 holds for all i at the social optimum. Because ∂vi/∂ni

8We assume an interior solution where 0 < n∗i < N for all i and that the second order conditions hold.
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is negative in the neighborhood of a stable equilibrium for almost all i,9 it must be that

the optimum ni is smaller than the equilibrium ni in large cities, whereas the optimum

ni is larger than the equilibrium ni in small cities. The opposite is true when vi < vi+1.

Therefore, we can now show the following:

Proposition 3 Assume that θ < 1. Then (i) if pollution is close to local, the optimal

utility is higher in larger cities. Large cities are too large and small cities are too small at

the equilibrium; (ii) if pollution is close to global and the marginal damage of pollution is

sufficiently large, the optimal utility is lower in larger cities. Large cities are too small and

small cities are too large at the equilibrium.

Proof. See Appendix B. �

The intuition is as follows. Suppose that pollution is local, as might be the case, say,

for NOX. Then, the indirect utility vi is a function of its city size ni only. As shown by

Henderson (1974), the indirect utility is decreasing in ni at a stable equilibrium.

Start from the equilibrium vi = vi+1 with ni > ni+1 and consider the effect of moving

one person from the larger city i to the smaller city i + 1. The utility vi rises to vi + ∆i

whereas the utility vi+1 falls to vi+1 −∆i+1 because vi decreases with ni. The rise ∆i and

fall ∆i+1 are similar in magnitude when the one person is sufficiently small relative to total

city size. Since there are more people in city i, however, the sum of ni∆i exceeds the sum

of ni+1∆i+1. Therefore, it is optimal to reduce the size of larger cities and raise that of

smaller cities. As a result, the utility levels in larger cities are higher than those in smaller

cities at the optimum.

By contrast, if pollution is global, such as in the case of CO2, concentrating population

in bigger cities decreases total emissions if θ < 1, which benefits residents in all cities.

When moving one person from a smaller city i + 1 to a larger city i, utility of city i

residents falls while that of i + 1 residents rises. However, due to the global externality,

utility of the residents of all other cities also rises. Therefore, as long as the marginal

damage of pollution is large enough, social welfare rises.

Examining (18) in Appendix B, we can further say the following. Given sufficiently

large δ (i.e., close to global pollution), large cities are more likely to be too small if the

housing expenditure share α, the agricultural land rent rA, and the commuting cost t are

small. In this case, the crowding effects induced by commuting and tight housing markets

9Tabuchi and Zeng (2004) show that a stable equilibrium requires ∂vi/∂ni < 0 for at least M −1 cities.
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in larger cities are outweighed by the beneficial effect of reduced pollution for all other

cities.

In order to correct the discrepancy between the equilibrium and optimal distributions

of city sizes, the national government may impose location taxes and subsidies according

to city size. In the case of global pollution with θ < 1, in our setup, living in large cities

should be subsidized to make them more attractive.10

6.2 Simulation

We now simulate numerically the equilibrium and optimal city size distribution with asym-

metric cities. We will pursue two different simulation exercises. In both of these, we assume

a given number of cities, m, and given total population N . So we exclude the formation

of new cities.

We then compare the equilibrium number of cities to the social optimum. The first

exercise will assume that the population distribution among the cities follows Zipf’s law,

while the second uses a sample of the actual city size distribution among US CBSAs.

In both exercises, we use the same parameter values, partly already described in Section

5. In particular, we set α = 0.24, γ = 0.05, θ = 0.8, and β = 0.022. The rest of the

parameters are as follows. From Borck and Brueckner (2016), we set rA = $58, 800, the

annual land rent of agricultural land in the US, and t = $503, the annual (monetary plus

time) commuting cost per mile in the US. Further, we set the number of cities to 180. For

the actual US city size distribution, we use the 180 largest CBSAs. The total population

is the sum of the population sizes of these 180 cities, n = 225, 678, 243.

City size distribution under Zipf’s law. In the first exercise, we assume that the city

size distribution follows Zipf’s law. As is well known, this is a good approximation for city

systems in most countries, except at the very top and bottom of the distribution (Gabaix,

2016). With n = 225, 678, 243, the largest city has 39 mill. inhabitants, the second largest

19.5 mill. and the smallest city has 217,180 inhabitants. We compute the amenity levels

from (17) for these given population sizes.

We first assume δ = 1 so pollution is global. Fig. 5 shows the city size distribution

using Zipf’s law in blue and the optimal distribution in orange. For better visibility, the

figure plots the equilibrium and optimal distributions assuming β = 0.1. While the two

10See also Eeckhout and Guner (2015) for an analysis of taxes related to city size.
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distributions with β = 0.022 are close, the biggest city is undersized by 3.5% while the

smallest one is oversized by 7.7%. The welfare gain from moving to the optimal city size

distribution is small, less than 0.1% of income.11

When pollution is purely local, δ = 0, we find that the divergence between optimal and

equilibrium city sizes is small, for given β.12 The largest city is oversized by about 0.2%

and the smallest city is undersized by 1.6%.

The degree of spillovers, δ, is obviously an important factor in determining whether

cities are under- or oversized. Therefore, a natural question to ask is, what is the actual

degree of spillovers from local emissions? To approach this question, we borrow from

Borck and Brueckner (2016) who consider optimal energy taxation with local and global

emissions. Assuming local and global emissions are equally valued, their parameters imply

that local emissions make up 60.7% of emissions from commuting and 53% of emissions

from residential energy use. Let us take the average of these values, 57%, so we set

δ = 1 − 0.57 = 0.43. We then find that the largest city is undersized by 2.5% and

the smallest is oversized by 6.9%. In the past two decades local pollution has decreased

relative to global pollution and this trend is likely to continue (see, e.g., Amann et al.,

2013). Moreover, the damage from global warming is projected to increase over time, since

GHGs accumulate in the atmosphere and warming is caused by the stock of pollution.

Therefore, we tentatively conclude that using realistic parameters, the case for large cities

being undersized and small ones oversized persists and will get stronger over time.

Actual US city size distribution. We now redo the exercise using cities from the

actual US city size distribution. Out of all MSAs (micropolitan areas are dropped) in

the year 2008, we keep the largest 180 cities (see Tab. A.1 in the Appendix). These cities

comprise 90% of the total population living in MSAs (252 mill.) and 80% of the population

in CBSAs (283 mill.).

We assume that the current distribution is an equilibrium and, again, compute the

amenities according to (17) (see Tab. A.1 in the Appendix). Fig. 5 again shows the

equilibrium and optimal distribution. Zipf’s law holds fairly well for the upper tail of the

distribution. Note that the largest city in the sample, New York, has 18.7 mill. whereas

11When population is efficiently allocated, total emissions fall by 0.9%, relative to the equilibrium. Note,
however, that the welfare gain from efficiently allocating population in the absence of pollution would also
be small with our parameters.

12We note that this is partly due to the assumption that the value of β is the same for local and global
pollution, but local pollution is much smaller than global pollution. Therefore, for a more realistic simu-
lation, the marginal damage of local emissions relative to global emissions should probably be increased.

15



according to Zipf’s law the largest city has more than twice that many inhabitants. As

shown in Fig. 5 and Tab. A.1, the three largest cities are undersized by 3.5-3.8%.13 At

the social optimum, the largest city in the sample, New York, is undersized by 696,211 of

its 18.7 mill. inhabitants, while the second largest, Los Angeles, is undersized by 483,187.

The smallest city in the sample is oversized by about 6.2%. Note that out of the 180 cities,

28 are undersized and the other 152 are oversized at the equilibrium. In total, moving from

the equilibrium to the optimal allocation would require moving 5.3 mill. people or 2.4% of

the total population.

Sensitivity. We now briefly describe how the results change when we vary some of the

model parameters. We concentrate on the case of global pollution and the distribution

obtained by Zipf’s law. First, we increase θ to 0.94 to reflect a potentially higher pollution

elasticity. We find that the largest city is undersized by 1.6% and the smallest oversized

by 3.8%. Conversely, when θ decreases to 0.75, the biggest city is undersized by 4.4% and

the smallest city is oversized by 12.5%. Since the benefit of concentration is increased the

more per capita pollution decreases with city size, this finding is intuitive.

Next, suppose that in line with a high estimate of the social cost of carbon, the emis-

sions damage, β, increases from 0.022 to 0.064 (see Section 5). Now, the largest city is

undersized by 14.5% and the smallest oversized by 23%. When the agglomeration elasticity,

γ, increases from 0.05 to 0.08, agglomeration becomes more efficient, and again, concen-

tration increases at the optimum: the largest city is undersized by 4.5% at the equilibrium

and the smallest oversized by 10%.14

On the other hand, increasing agricultural land rent rA to $100,000 per year increases

the costs of agglomeration. The effect on the optimum size of cities is rather small, however.

A very similar result obtains when the per mile commuting cost increases to $750 per year.

7 Conclusion

The paper has analyzed the optimum size of cities in an urban model with environmental

pollution. When pollution is purely local and cities are symmetric, we find that equilibrium

13Again, the figure plots the two distributions using the largest 180 cities and β = 0.1 to better show
the difference between the two distributions.

14In fact, Tabuchi and Yoshida (2000) show that agglomeration externalities from consumption in
Japanese cities are about the same size as productive externalities.
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cities are too large, mirroring the finding of Henderson (1974) and others. With asymmetric

cities, this translates into the result that big cities are oversized and small cities undersized.

However, when pollution is global and per capita pollution decreases in population size,

we find that in a symmetric city model, cities might be inefficiently small, contrary to the

standard model. When cities are asymmetric, big cities are undersized and small cities

oversized. Over the last decades, global pollution has increased relative to local pollution,

and the damage from global warming increases over time. Hence, we conclude that for the

future, a policy which favors big cities might actually be warranted.

Some possibilities for future research suggest themselves. First, our analysis was based

on one estimate of the population elasticity of pollution, which is a central parameter in

the analysis. More robust evidence on this parameter clearly seems important. Second,

we think it would be interesting to redo the quantitative analysis with data from different

countries. For instance, there is a growing number of papers on Chinese cities (e.g. Au

and Henderson, 2006). Since the properties of the equilibrium city system and pollution

patterns in China and other developing economies is undoubtedly different from developed

countries, studying equilibrium and optimum city systems in this context would seem to

be relevant.
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Appendix

A Calibration of β

We now calibrate β using central estimates of the social cost of carbon from Interagency

Working Group on Social Cost of Carbon (2015). The MRS between pollution and (non-

housing) consumption is

MRS = −∂u/∂E
∂u/∂z

=
βz

(1− α)E
. (A.1)

Substituting optimal consumption, z(y) = (1−α)(w− tx) gives MRS = β(w− tx)/E, and

integrating over the city gives citywide MRS

MRS =

∫ x̄

0

β(w − tx)

E

1

s(x)
dx (A.2)

=
βw
[
tn+ rA − r1+α

A (tn+ rA)−α
]

(1 + α)tE
. (A.3)

where we have substituted the optimal s(x) and used (7) and (8). Finally, letting M be

world population and n be city population, we get the social cost of carbon

SCC =
βMw

[
tn+ rA − r1+α

A (tn+ rA)−α
]

(1 + α)tnE
. (A.4)

We use the following parameters: world population in 2015 was M = 7.35 billion (source:

UN World Population Prospects, http://esa.un.org/unpd/wpp/Download/Standard/Population/),

world per capita income in 2015 was w = $10, 743 (source: UN National Accounts Main Ag-

gregates Database, http://unstats.un.org/unsd/snaama/dnllist.asp), and total CO2

emissions were E = 34, 649 million metric tons CO2 in 2011 (source: World Bank, World

Development Indicators, http://data.worldbank.org/indicator/EN.ATM.CO2E.KT/countries).

We set n = 750, 000 and from Borck and Brueckner (2016), we use t = $503.53, α = 0.24,

and rA = $58, 800.

The target value for the social cost of carbon is USD 40.54 per ton CO2, using the

central value from Interagency Working Group on Social Cost of Carbon (2015) (converted

from 2007 to 2015 USD). Using the stated parameters, setting (A.4) equal to 40.54 and

solving gives β = 0.022. The other values in the text are solved likewise using different

values for the social cost of carbon.
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B Proofs

Proof of Proposition 3. Since

ni
∂vi
∂ni

= γvi −
αtni

rA + tni
vi − βθnθi viE−1

i∑
j 6=i

nj
∂vj
∂ni

= −βθδnθ−1
i

∑
j 6=i

njvjE
−1
j ,

we have

vi + ni
∂vi
∂ni

+
∑
j 6=i

nj
∂vj
∂ni
− λ

=

(
1 + γ − αtni

rA + tni

)
vi − β (1− δ) θvinθiE−1

i − βδθZnθ−1
i − λ

= Xivi − βδθZnθ−1
i − λ (A.5)

= 0,

where

Xi ≡ 1 + γ − αtni
rA + tni

− β (1− δ) θnθiE−1
i

and Z ≡
∑

j njvjE
−1
j is constant across cities.

Since the expression (A.5) is the same for i and for i+ 1, we can eliminate λ as follows:

Xivi − βδθZnθ−1
i = Xi+1vi+1 − βδθZnθ−1

i+1 ,

which can be rewritten as

vi =
1

Xi

(
Xi+1vi+1 + βδθZnθ−1

i − βδθZnθ−1
i+1

)
.

Thus, the utility differential is

∆v ≡ vi − vi+1

=
1

Xi

[
(Xi+1 −Xi) vi+1 + βδθZ

(
nθ−1
i − nθ−1

i+1

)]
= ∆Va + ∆Vb,
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where

∆Va ≡
αtrAvi+1 (ni − ni+1)

(rA + tni) (rA + tni+1)

∆Vb ≡ βθ
[
(1− δ) vi+1

(
nθiE

−1
i − nθi+1E

−1
i+1

)
+ δZ

(
nθ−1
i − nθ−1

i+1

)]
.

While ∆Va > 0, the sign of ∆Vb is indeterminate. However, the first term of ∆Vb is positive

whereas the second term of ∆Vb is negative because

nθiE
−1
i − nθi+1E

−1
i+1 =

1

EiEi+1

(
nθiEi+1 − nθi+1Ei

)
=

δ

EiEi+1

(
nθi − nθi+1

)∑
j

nθj > 0

and

nθ−1
i − nθ−1

i+1 < 0, ∀θ ∈ (0, 1).

(i) Let δ = 0. Then, ∆Vb > 0, and thus ∆v > 0. By continuity, this also holds for δ

positive but close to zero.

(ii) Let δ = 1. Solving ∆v < 0 for β, we have

∆v < 0⇔ β > β̃ ≡ αtrAvi+1(ni+1 − ni)
θZ(rA + tni)(rA + tni+1)(nθ−1

i − nθ−1
i+1 )

> 0.

By continuity, ∆v < 0 holds for sufficiently large β when δ is close to but smaller than

one. �

C Local landownership

Suppose that all land in a city is owned by residents, so the total differential land rent is

distributed equally to all residents. Let income be given by y = w +R/n, where

R =

∫ x̄

0

(r(x, v)− rA)dx (A.6)
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is the total differential land rent. Rewriting (8) and (7) gives

x̄ =
(w +R/n) [1− rαA(rA + tn)−α]

t
(A.7)

v = (w +R/n)(rA + tn)−αE−β. (A.8)

Substituting from (A.8) into r(x, v) = (w+R/n− tx)1/αE−β/αv−1/α with w = nγ gives

r(x, v) = (rA + tn) (nγ +R/n)−1/α (nγ +R/n− tx)
1
a . Using this in (A.6) and solving gives

R =
n1+γ

[
r1+α
A − (rA + tn)α(rA − αtn)

]
(rA + tn)1+α − r1+α

A

. (A.9)

Finally, substituting in (A.8) gives

v =
(1 + α)tE−βn1+γ

(rA + tn)1+α − r1+α
A

. (A.10)

which is also inverted U-shaped in n.

We then redo the simulation exercise from Section 6.2. For the city size distribution

described by Zipf’s law with δ = 1, we find the largest city is undersized by 3.6% and the

smallest is oversized by 7.3%, so results are very close to the baseline simulation. Varying

δ shows that this also holds for local pollution and for the intermediate case δ = 0.43.
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Tables

Table 1: CO2-emissions and city size

(1) (2) (3) (4)

Log population 0.938*** 0.938*** 0.834*** 0.802***
(0.0168) (0.0168) (0.0978) (0.120)

Constant 2.335*** 2.343*** 3.533*** 3.896***
(0.202) (0.201) (1.117) (1.369)

Observations 9,330 9,330 9,330 9,330
R-squared [within] 0.681 0.682 0.128 0.147
# of CBSAs 933 933 933 933
Year fixed effects No Yes Yes Yes
CBSA fixed effects No No Yes Yes
Division×Year fixed effects No No No Yes

Standard errors are clustered at the CBSA level.

*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.1: Amenity levels and population for MSAs

Rank MSA Amenity Population Optimal population Emissions

1 New York-Northern New Jersey-Long Island, NY-NJ-PA 1 18672355 19368566 40.6523

2 Los Angeles-Long Beach-Santa Ana, CA 0.929283 12692740 13175927 24.523

3 Chicago-Joliet-Naperville, IL-IN-WI 0.877468 9384555 9712021 42.6155

4 Dallas-Fort Worth-Arlington, TX 0.809967 6158022 6309423 17.4737

5 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 0.803586 5906917 6044590 15.9336

6 Houston-Sugar Land-Baytown, TX 0.79822 5702270 5828906 24.0447

7 Miami-Fort Lauderdale-Pompano Beach, FL 0.791515 5454633 5568153 12.6531

8 Washington-Arlington-Alexandria, DC-VA-MD-WV 0.789769 5391607 5501839 19.3482

9 Atlanta-Sandy Springs-Marietta, GA 0.782982 5152141 5250104 25.4191

10 Boston-Cambridge-Quincy, MA-NH 0.762562 4483141 4549310 13.6544

11 Detroit-Warren-Livonia, MI 0.757858 4339504 4399464 18.7855

12 San Francisco-Oakland-Fremont, CA 0.754658 4243932 4299907 17.8689

13 Riverside-San Bernardino-Ontario, CA 0.750194 4113447 4164183 11.8552

14 Phoenix-Mesa-Glendale, AZ 0.749949 4106372 4156830 14.1292

15 Seattle-Tacoma-Bellevue, WA 0.721702 3355042 3380652 7.92053

16 Minneapolis-St. Paul-Bloomington, MN-WI 0.716596 3231982 3254448 20.0776

17 San Diego-Carlsbad-San Marcos, CA 0.707513 3022116 3039814 8.18351

18 St. Louis, MO-IL 0.696989 2792889 2806143 20.9905

19 Tampa-St. Petersburg-Clearwater, FL 0.694798 2746981 2759424 10.9384

20 Baltimore-Towson, MD 0.691538 2679819 2691115 10.236

21 Denver-Aurora-Broomfield, CO 0.680593 2463971 2471789 8.03722

22 Pittsburgh, PA 0.674867 2356802 2362930 16.1156

23 Portland-Vancouver-Hillsboro, OR-WA 0.664527 2172853 2175941 5.03929

24 Cincinnati-Middletown, OH-KY-IN 0.660888 2110942 2112924 13.3771

25 Sacramento-Arden-Arcade-Roseville, CA 0.660731 2108310 2110244 5.86701

26 Orlando-Kissimmee-Sanford, FL 0.659487 2087489 2089037 6.3697

27 Cleveland-Elyria-Mentor, OH 0.659344 2085110 2086614 12.8774

28 San Antonio-New Braunfels, TX 0.657905 2061275 2062328 9.96783

29 Kansas City, MO-KS 0.654128 1999739 1999578 12.7061

30 Las Vegas-Paradise, NV 0.648598 1912349 1910333 6.01372

31 Columbus, OH 0.641184 1800052 1795400 4.55883

32 San Jose-Sunnyvale-Santa Clara, CA 0.640857 1795231 1790460 4.66359

33 Indianapolis-Carmel, IN 0.635581 1718784 1712050 6.0172

34 Charlotte-Gastonia-Rock Hill, NC-SC 0.634421 1702338 1695167 6.24345

35 Virginia Beach-Norfolk-Newport News, VA-NC 0.631211 1657491 1649102 6.02219

36 Austin-Round Rock-San Marcos, TX 0.629492 1633870 1624828 5.41536

37 Providence-New Bedford-Fall River, RI-MA 0.6271 1601459 1591510 6.24221

38 Nashville-Davidson-Murfreesboro-Franklin, TN 0.623012 1547259 1535778 6.90834

39 Milwaukee-Waukesha-West Allis, WI 0.62232 1538232 1526495 6.60184

40 Jacksonville, FL 0.604728 1322728 1305326 7.28384

41 Memphis, TN-MS-AR 0.602921 1302060 1284213 5.0071

42 Louisville-Jefferson County, KY-IN 0.599561 1264314 1245729 9.11605

43 Richmond, VA 0.597203 1238353 1219325 6.56015

44 Oklahoma City, OK 0.5952 1216645 1197290 4.88706

45 Hartford-West Hartford-East Hartford, CT 0.59406 1204436 1184917 3.19058

46 Buffalo-Niagara Falls, NY 0.587531 1136364 1116194 5.46278

47 Birmingham-Hoover, AL 0.585626 1117101 1096833 13.5128

continued on next page
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Tab. A.1 continued

Rank MSA Amenity Population Optimal population Emissions

48 New Orleans-Metairie-Kenner, LA 0.58529 1113736 1093455 7.66965

49 Salt Lake City, UT 0.58297 1090691 1070352 2.91391

50 Raleigh-Cary, NC 0.581589 1077163 1056816 2.53995

51 Rochester, NY 0.578769 1049950 1029640 2.7185

52 Tucson, AZ 0.569877 967778 947942 2.41114

53 Tulsa, OK 0.564017 916525 897130 7.0816

54 Fresno, CA 0.563209 909630 890294 2.05444

55 Bridgeport-Stamford-Norwalk, CT 0.562524 903824 884536 3.17886

56 Albany-Schenectady-Troy, NY 0.558009 866282 847263 2.93617

57 Albuquerque, NM 0.557653 863383 844380 2.50765

58 New Haven-Milford, CT 0.556821 856622 837655 2.3126

59 Omaha-Council Bluffs, NE-IA 0.555393 845119 826202 6.44558

60 Dayton, OH 0.555115 842897 823988 2.5307

61 Bakersfield-Delano, CA 0.552004 818327 799464 4.98675

62 Allentown-Bethlehem-Easton, PA-NJ 0.551455 814050 795187 5.04325

63 Oxnard-Thousand Oaks-Ventura, CA 0.550461 806353 787482 2.29419

64 Worcester, MA 0.548434 790847 771934 2.7666

65 Baton Rouge, LA 0.548028 787767 768841 10.3903

66 Grand Rapids-Wyoming, MI 0.546107 773342 754334 2.1559

67 El Paso, TX 0.545649 769930 750898 2.64812

68 Columbia, SC 0.54235 745740 726483 3.47064

69 McAllen-Edinburg-Mission, TX 0.541094 736694 717330 3.53499

70 Greensboro-High Point, NC 0.537515 711405 691688 1.98387

71 Akron, OH 0.536347 703300 683456 1.9205

72 North Port-Bradenton-Sarasota, FL 0.535276 695944 675982 2.82686

73 Springfield, MA 0.534587 691239 671200 2.20756

74 Knoxville, TN 0.534101 687939 667846 3.10894

75 Little Rock-North Little Rock-Conway, AR 0.533206 681888 661696 2.15732

76 Stockton, CA 0.531682 671692 651334 1.37026

77 Poughkeepsie-Newburgh-Middletown, NY 0.530894 666468 646027 2.85408

78 Syracuse, NY 0.529746 658913 638356 1.90001

79 Toledo, OH 0.528919 653518 632882 3.62579

80 Charleston-North Charleston-Summerville, SC 0.527387 643613 622844 6.73385

81 Greenville-Mauldin-Easley, SC 0.524335 624245 603276 1.33841

82 Colorado Springs, CO 0.523759 620644 599649 2.63146

83 Cape Coral-Fort Myers, FL 0.5222 610984 589940 2.26724

84 Wichita, KS 0.521918 609250 588200 2.19355

85 Boise City-Nampa, ID 0.520933 603218 582158 1.66843

86 Lakeland-Winter Haven, FL 0.519544 594801 573751 4.2558

87 Youngstown-Warren-Boardman, OH-PA 0.515521 570952 550096 1.85198

88 Scranton-Wilkes-Barre, PA 0.513898 561548 540839 1.64199

89 Madison, WI 0.513254 557854 537214 3.79531

90 Des Moines-West Des Moines, IA 0.512516 553644 533089 1.66703

91 Augusta-Richmond County, GA-SC 0.510892 544471 524128 1.76162

92 Palm Bay-Melbourne-Titusville, FL 0.510518 542378 522088 1.73565

93 Harrisburg-Carlisle, PA 0.510505 542301 522013 1.60903

94 Jackson, MS 0.508897 533371 513325 1.76857

95 Ogden-Clearfield, UT 0.50803 528603 508696 1.43869

continued on next page
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Tab. A.1 continued

Rank MSA Amenity Population Optimal population Emissions

96 Chattanooga, TN-GA 0.506223 518778 499172 1.75345

97 Portland-South Portland-Biddeford, ME 0.505369 514191 494730 2.03088

98 Lancaster, PA 0.504952 511957 492567 1.29977

99 Modesto, CA 0.504402 509032 489735 1.16168

100 Provo-Orem, UT 0.502238 497639 478699 1.77947

101 Deltona-Daytona Beach-Ormond Beach, FL 0.502186 497366 478435 2.63952

102 Durham-Chapel Hill, NC 0.500749 489919 471207 6.31914

103 Santa Rosa-Petaluma, CA 0.497435 473091 454792 1.00393

104 Winston-Salem, NC 0.49695 470666 452414 11.8863

105 Lansing-East Lansing, MI 0.495532 463638 445499 2.25539

106 Spokane, WA 0.495253 462263 444141 1.01927

107 Lexington-Fayette, KY 0.494814 460112 442016 1.74198

108 Fayetteville-Springdale-Rogers, AR-MO 0.492019 446592 428569 2.30046

109 Pensacola-Ferry Pass-Brent, FL 0.491768 445392 427368 3.2278

110 Flint, MI 0.489157 433082 414988 1.24379

111 York-Hanover, PA 0.488364 429399 411263 3.27711

112 Springfield, MO 0.48834 429289 411151 1.91169

113 Visalia-Porterville, CA 0.488339 429283 411145 0.993425

114 Corpus Christi, TX 0.48701 423168 404944 2.30819

115 Reno-Sparks, NV 0.486071 418892 400598 1.44999

116 Port St. Lucie, FL 0.485769 417520 399203 3.52693

117 Asheville, NC 0.485755 417457 399139 1.62034

118 Santa Barbara-Santa Maria-Goleta, CA 0.485401 415859 397513 1.10609

119 Fort Wayne, IN 0.484556 412062 393650 1.24676

120 Mobile, AL 0.483914 409196 390734 4.38011

121 Vallejo-Fairfield, CA 0.483864 408972 390506 0.919361

122 Reading, PA 0.483586 407737 389250 1.64164

123 Canton-Massillon, OH 0.483226 406140 387627 0.815015

124 Salinas, CA 0.483199 406022 387507 6.0969

125 Huntsville, AL 0.482368 402361 383789 0.921342

126 Manchester-Nashua, NH 0.481728 399556 380946 1.02811

127 Brownsville-Harlingen, TX 0.480217 393000 374325 0.597551

128 Shreveport-Bossier City, LA 0.48007 392367 373688 4.37908

129 Killeen-Temple-Fort Hood, TX 0.480039 392237 373558 0.760663

130 Beaumont-Port Arthur, TX 0.478403 385248 366560 2.958

131 Salem, OR 0.478126 384075 365392 0.797142

132 Davenport-Moline-Rock Island, IA-IL 0.476313 376467 357875 1.57889

133 Peoria, IL 0.476196 375982 357400 5.41263

134 Montgomery, AL 0.474808 370249 351811 1.38011

135 Trenton-Ewing, NJ 0.473305 364119 345908 1.47235

136 Hickory-Lenoir-Morganton, NC 0.473276 364003 345797 3.91189

137 Tallahassee, FL 0.472592 361238 343158 1.25284

138 Fayetteville, NC 0.47121 355712 337923 0.625336

139 Evansville, IN-KY 0.47118 355591 337809 11.4147

140 Wilmington, NC 0.47015 351517 333978 2.30292

141 Rockford, IL 0.469747 349937 332497 1.19932

142 Eugene-Springfield, OR 0.469298 348176 330849 0.676484

143 Ann Arbor, MI 0.4676 341595 324696 1.09276

continued on next page
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Tab. A.1 continued

Rank MSA Amenity Population Optimal population Emissions

144 Savannah, GA 0.465921 335185 318682 2.38122

145 Ocala, FL 0.464557 330052 313817 0.756947

146 Kalamazoo-Portage, MI 0.462754 323363 307368 0.97173

147 South Bend-Mishawaka, IN-MI 0.461827 319966 304033 0.824083

148 Naples-Marco Island, FL 0.460912 316641 300723 0.876601

149 Kingsport-Bristol-Bristol, TN-VA 0.458516 308069 291989 2.22917

150 Roanoke, VA 0.457814 305596 289423 1.89997

151 Charleston, WV 0.457286 303743 287491 5.37228

152 Green Bay, WI 0.456921 302468 286158 1.79404

153 Utica-Rome, NY 0.455888 298886 282408 0.782581

154 Lincoln, NE 0.455124 296258 279661 1.54115

155 Fort Smith, AR-OK 0.454625 294551 277884 2.86569

156 Fort Collins-Loveland, CO 0.453771 291650 274888 1.28267

157 Boulder, CO 0.453537 290859 274078 1.11593

158 Columbus, GA-AL 0.452384 286985 270166 0.692666

159 Huntington-Ashland, WV-KY-OH 0.452378 286966 270147 1.67665

160 Spartanburg, SC 0.450172 279673 263115 0.778184

161 Erie, PA 0.44987 278686 262200 0.781988

162 Duluth, MN-WI 0.449832 278561 262085 2.29038

163 Lubbock, TX 0.448545 274389 258312 0.940169

164 Atlantic City-Hammonton, NJ 0.448117 273014 257093 0.864827

165 Norwich-New London, CT 0.447998 272634 256757 0.803819

166 Lafayette, LA 0.446242 267053 251818 0.942161

167 San Luis Obispo-Paso Robles, CA 0.446021 266358 251191 0.799599

168 Hagerstown-Martinsburg, MD-WV 0.445851 265823 250705 1.13058

169 Holland-Grand Haven, MI 0.444596 261906 247000 3.57025

170 Gainesville, FL 0.444525 261685 246781 1.13324

171 Clarksville, TN-KY 0.444475 261530 246628 4.90448

172 Myrtle Beach-North Myrtle Beach-Conway, SC 0.444177 260609 245701 1.01244

173 Santa Cruz-Watsonville, CA 0.442845 256520 241318 0.62579

174 Cedar Rapids, IA 0.442511 255503 240164 0.920119

175 Binghamton, NY 0.441528 252527 236721 0.868548

176 Merced, CA 0.440866 250538 234484 0.747178

177 Lynchburg, VA 0.440451 249299 233199 0.971995

178 Bremerton-Silverdale, WA 0.439647 246912 231226 0.399646

179 Amarillo, TX 0.438812 244454 230499 3.3003

180 Olympia, WA 0.438771 244332 229276 0.467105

Note: The table displays population and emissions levels by MSA for 2008 from Fragkias et al. (2013).

Amenity levels are computed from (17); optimal population levels are simulated as described in the text.
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Figure 1: World urbanization and CO2 emissions
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Figure 3: Equilibrium and optimum city size with global pollution
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Figure 5: Optimal and equilibrium city size distributions

33


	1 Introduction
	2 The model with symmetric cities
	3 Pollution
	4 Equilibrium and optimum number and size of cities
	4.1 Local pollution
	4.2 Global pollution
	5 Numerical simulation
	6 Asymmetric cities
	6.1 Equilibrium and social optimum with asymmetric city sizes
	6.2 Simulation
	7 Conclusion
	Appendix
	References
	Tables and figures



