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1 Introduction

Recent empirical studies examining the existing policies in automobile markets have

employed discrete choice analyses to estimate the multi-product demand function. The

demand estimates allow researchers to assess the impact of policy interventions by conducting

counterfactual simulation under certain supply-side assumptions. The dataset used in this

type of discrete choice analysis comprises market-level information: data on the sales, prices,

and characteristics for each alternative in a choice set. In automobile markets, an alternative

in the choice set is usually a car model (nameplate) because the sales data are available at

the model level. The problem here is that the prices and charateristics data are available at

a finer level of aggregation, namely the variant level. Thus, a proper method to associate

the model level data with the variant level data is necessary to construct the database for

the discrete choice analyses.

Since the variant-level differences in prices and attributes are substantial, the method

used to construct the database is an important element when assessing attribute-based pol-

icy interventions, such as tax incentives and subsidies for the promotion of green cars. The

standard method used to construct the database is to identify a base variant for each model

and match its price and characteristics with its sales at the model level (e.g., Berry, Levin-

sohn, and Pakes (1995); Goldberg and Verboven (2001); Petrin (2002)). This is the case

of polar weighting, as the weight of the base variant is set to be one. The polar weighting

is problematic when assessing attribute-based policy interventions because the outcome of

counterfactual simulation depends solely on the characteritics of the base variants. In the

case of Japanese automobile market, the amount of tax reduction and subsidies can be dif-

ferent across the variants of a model. In fact, a substantial number of models exist whose

baseline variants are out of (within) the policy target and other variants are within (out of)

it. With respect to these models, the effects of policy determined by the characteristics of

the base variants, although the policy had different effects on the variants other than the

base. Apart from the polar weighting, a few studies employ another method: matching the

average prices and attributes of the variants with their model-level sales (e.g., Klier and

Linn (2012)). This is the case of equal weighting, as the share of each variant of a model is

assumed to be the same. The equal weighting is clearly a challenge because this rules out

the possibility that the policy shifts the demand between the variants in the policy target

and those out of it. Another problem is that most car models often have a luxury variant,

which is much more expensive than the other variants, and thus is rarely chosen.1

1The sole exception is Thomassen (2010), who estimates the variant-level demand using the variant-level
sales data. However, the relevant data are rarely available, as in the Japanese automobile market. As
subsequently explained, this study therefore proposes a method to analyze the variant-level demand without
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This study develops a method to estimate variant-level demand using the data at different

levels of aggregation, in order to overcome the problems regarding the construction of the

database. The model introduced in this study is based on a two-level nested logit model,

where consumers choose a car model in the first level and one of its variants in the second

level. I then derive the model-level, that is, nest-level demand function, in which the variant-

level prices and characteristics information are incorporated as a logit-inclusive value. The

key assumption in this econometric analysis is that an unobserved demand characteristic

or shock is common among the variants of a car model. Then, the parameters of a model-

level demand function can be estimated based on the moment condition on the unobserved

characteristics, as in Berry (1994) and Berry, Levinsohn, and Pakes (1995). Note that the

variant-level demand can be obtained with the parameter estimates. Therefore, the model-

level prices and characteristics can be derived as the weighted average over the variants of the

model: this contrasts with the polar and equal weighting employed in the previous studies.

In addition, the model allows me to address the substitution among variants of a model

induced by the measures to promote green cars. In this study, I conduct counterfactual

simulation to assess the effects of the measures.

This paper contributes to the literature that explores ways to estimate demand based

on the discrete choice models under various data availability conditions. Petrin (2002) in-

troduces a method to incorporate the information of the pattern of car purchases across

demographics in the estimation of demand using the discrete choice model, to obtain more

precise demand estimates. Similarly, Berry, Levinsohn, and Pakes (2004) proposes a method

to use both individual-level and market-level data to identify demand parameters in the

discrete choice model. While these studies indicate the ways to use richer information, Ba-

jari, Fox, and Ryan (2008) propose a method to estimate the demand system under data

limitation where market-level quantity data are unavailable but market share ranks data are

available. This study presents a method to estimate demand under a different type of data

limitation, wherein the price and sales data are available at different levels of aggregation.

The rest of this paper is organized as follows. Section 2 describes the fuel economy

standard and tax system in Japan, the key elements to understand the measures to promote

green cars in the country. Section 3 presents the data used in this analysis and explains

the variation in attributes that causes the effects of measures to differ across the variants

of a model. Section 4 introduces a discrete choice model of product differentiation at the

car variant level. Section 5 explains the estimation procedure and provides the estimation

results. Section 6 reports the simulation results for policy assessment. Section 7 concludes

the paper.

the variant-level sales data.
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2 Fuel economy standards and tax systems

Fuel economy standards are key to understanding the automobile tax system and tax

incentives introduced in Japan. I first introduce the fuel economy standards prevalent during

the study period, April 2012 to March 2014.

From Table 1, the Japanese fuel economy standards are based on car weights and fuel

economies. The standards during the study period are based on the 2015 target, which

specifies the average fuel economy level the newly sold cars of every car manufacturer should

exceed until March 2015. Thus, the standards act as the Corporate Average Fuel Economy

regulation of the United States, although there is no explicit penalty for the violation of

standards in the Japanese market. Instead, the government provides car manufacturers with

incentives to meet the standards through the automobile tax systems and tax incentives and

subsidy measures, as will be discussed in the following sections.

2.1 Automobile related taxes

A variety of automobile related taxes exists in Japan. At the time of purchase, car users

have to pay a 5% acquisition tax, in addition to the 5% consumption tax.2 During the

ownership of cars, users have to pay a tonnage tax and automobile/mini-vehicle taxes on

a yearly basis. The amount of tonnage tax for each car depends on the car weight and

changes over time, as shown in Table 2. Following the change in tonnage tax system from

May 1, 2012, fuel efficiency of cars has become the factor determining the amount of tax:

the amount of tax for vehicles complying with the 2015 fuel efficiency standards was 2500

JPY (≈ 25 USD)/year, while that for other vehicles was 4100 JPY/year.

The tonnage tax is assessed at the time of purchase of new cars and at every car inspec-

tion. For each occasion, the car owners have to pay tax for the period until the next car

inspection. For example, car owners have to pay tonnage tax for three years at the time of

purchase, because the first car inspection is three years after purchase; similarly, at the time

of first inspection, they have to pay tax for two years because the second car inspection is

two years after the first inspection.

The amount of automobile tax depends on the vehicles’ engine capacity; a mini-vehicle

tax is imposed if the car is categorized as a mini vehicle; that is, cars with (1) engine

displacement of ≤ 660cc and with (2) length ≤ 3.4m, width ≤ 1.48m, and height ≤ 2.0m.

2To be more precise, acquisition tax is imposed on the tax base for each car model; this is usually around
90% of the new car prices. Thus, the real tax rate is 4.5%. In addition, this tax is exempted if the tax base
is less than .5 million JPY; this exemption is virtually irrelevant to this study because none of the new car
prices is below this tax base. The exemption matters for cheaper used cars, which are out of the scope of
this study.
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As shown in Table 2, mini-vehicle owners receive favorable treatment in terms of tax payment

compared to owners of standard-sized cars (>660cc): the minimum automobile tax is 29500

JPY, whereas the tax for mini-vehicles is only 7200 JPY.

Note that the original tax system already shows a favorable treatment for green cars; how-

ever, the tax incentives explained in the following section further strengthen the motivation

to purchase green cars.

2.2 Tax incentives

In order to promote fuel-efficient vehicles, the Japanese government has employed tax

incentives, as summarized in Table 3. The first column of the table shows that green cars

(electric vehicles and gas and hybrid vehicles complying with the fuel-efficiency and emission

standards) are eligible for tax reduction. During the study period, most of the car models

meet the emission standards; hence, the fuel-economy standards are the key to qualifying

for tax exemption or reduction.

2.3 Subsidies for green cars

In addition to tax incentives, the Japanese government introduced a subsidy measure to

promote green cars in April 2012. The measure was initially scheduled to end by February

2013, but it ended in September 2012 because of exhaustion of the budget for subsidy: the

budget was set at 270 bil. JPY. The subsidy was provided to consumers who purchased a

car complying with the 2015 fuel economy standards, or the 2010 fuel economy standards

+20%. The amount of subsidy per unit is 100,000 JPY for standard-sized cars and 70,000

JPY for mini-vehicles.

3 Data and variant-level heterogeneity

3.1 Data

The data are on a monthly basis, covering the period from April 2012 to March 2014. I

collect the variant-level prices and characteristics from Goo-net, a used car website operated

by PROTO Corporation.3 The prices given are the listed prices, although it is known that car

dealers usually give a discount to their customers through price negotiations. Unfortunately,

the transaction prices data are not available and hence I use the listed prices in the following

analyses. The model-level data of sold vehicles are obtained from Jidousha Touroku Tokei

3“http://www.goo-net.com/catalog/” (in Japanese).
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Jouhou: Shinsha-hen (New Car Registration Statistics) published monthly by the Japan

Automobile Dealers Association. This paper focuses on the Japanese car models that account

for the majority of the market.

3.2 Variant-level heterogeneity

The data fromGoo-net show substantial heterogeneity across the variants of a model. The

number of variants in April 2013 is 1443, while the number of models is 147; thus, every model

has about 10 variants on average. Table 4 shows the variant-level heterogeneity in prices and

characteristics for the 147 models. The first row of the table indicates the substantial price

differences: the standard deviation in prices is 0.326 mil. JPY, and the difference between

the maximum and minimum prices is 0.906 mil. JPY, which indicates a 40% difference.

The variant-level heterogeneity in car characteristics is moderate compared to that in prices,

but the difference between the minimum and maximum is large for some characteristics.

In particular, a large difference exists in the fuel economy of a model, indicating that the

promotion measures can have different effects across the variants of a model.

To examine the variant-level heterogeneity in the effects of tax incentives and subsidies,

I first compute the share of the variants meeting the 2015 Fuel Economy Standards for each

car model. The share of a model j is calculated as follows.

SFS
j =

NFS
j

Nj

,

where NFS
j is the number of variants meeting the standards within the model j, and Nj is

the number of variants of the model j. In addition to this, I also compute the shares for the

cases of the fuel economy standards +10% and +15% because the tax incentive measures

are based on these values, as shown in Table 3. They are denoted as SFS+10
j and SFS+15

j ,

respectively.

To understand the variant-level heterogeneity, I construct the distributions of the shares,

SFS
j , SFS+10

j and SFS+15
j , over the models. The left bars in Figure 1 show the proportional

frequencies of the range of SFS
j specified in the values of horizontal axis, while the middle

and right bars shows those of SFS+10
j and SFS+15

j , respectively. The figure shows that a

substantial fraction of models take the values of SFS
j , SFS+10

j and SFS+15
j between 0 and

0.1 or between 0.9 and 1. This indicates that there are a number of models whose variants

are similar in the sense that most variants meet or do not meet the fuel economy standards

within the models. For these models, the effects of the attribute-based policy intervetions,

namely the tax incentives and subsidy for the green cars, are common across the variants.

Note that there are a non-negligible share of models whose variants are dissimilar in terms
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of the qualification of the fuel economy standards: with respect to SFS
j , 33% of the models

lie in the range from 0.1 to 0.9. The variant-level heterogeneity indicates that the effects of

the attribute-based policy interventions are different across variants of the models. Thus,

the method to associate the model-level sales with the variant-level prices and characteristics

must be chosen precisely when assessing such policy interventions.

Previous empirical studies used the prices and attributes of base variants or average prices

and attributes when conducting the discrete choice analyses. Both of them are problematic,

as the substituion among variants induced by the policy intervetions never be occurred. In

the following section, I introduce the model that determines the variant-level demand based

on the variant-level heterogeneity in prices and attributes.

4 Demand

The demand side of the market is modelled in a discrete choice framework. The set of

models supplied in a market at time t is Jt, where each car model j ∈ Jt has the set of

variants Bj. In addition to the option to purchase one from the set of inside option, i.e.

∪j∈JtBj, each consumer can choose an outside option, i.e. not to purchase a new car. Given

these possible choices, every consumer chooses an alternative that gives the highest utility.

Consumer i’s (indirect) utility obtained from model j with variant n ∈ Bj is specified as

(hereafter, the time subscript t is suppressed)

uijn = δjn + µijn + ϵijn , (1)

where δjn +µijn is the deterministic part of the utility, which is the function of car attributes

and individual characteristics. δjn captures the mean evaluation of variant n ∈ Bj common to

all consumers, and µijn is the individual-specific evaluation of the variant. As is common in

the literature, the deterministic part of utility obtained from the outside option is normalized

to zero; that is, δ0 + µi0 = 0.

δjn is further decomposed as:

δjn = δj +∆δjn , (2)

where

δj =
∑
k∈Kj

xjkβk + ξj, and ∆δjn =
∑

k∈K\Kj

xjnkβk. (3)

K is the set of car characteristics and Kj ⊆ K is the set of characteristics common to all the

variants of model j. xjk is the value of characteristics common across variants whereas xjnk

is the value of characteristics different across variants. Coefficients βk are parameters to be
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estimated. Note that Kj can differ from model to model; that is, Kj ̸= Kj′ for j′ ̸= j. In

addition, xjk includes a constant term and thus K never be a null set.

ξj is the unobserved characteristics of model j. The key assumption here is that unob-

served characteristics are not allowed to vary across variants but has to be common across

all variants of the model. This might be a reasonable assumption, in that the variants usu-

ally share the same design and demand shock. As explained in the following section, this

assumption is necessary for my estimation strategy.

µijn is also decomposed into the parts of utilities common and different across variants;

that is,

µijn = µij +∆µijn , (4)

where,

µij =
∑
k∈Kj

xjkνikσk, and ∆µijn = αipjn +
∑

k∈K\Kj

xjnkνikσk. (5)

Note that αi ≡ α/yi is the price sensitivity of consumer i inversely proportional to consumer

i’s income yi. α is a parameter to be estimated and pjn is the expenditure on the purchase

of variant n ∈ Bj; this consists of the price and automobile-related taxes, including the tax

incentives. νik is consumer i’s specific taste of characteristic k, which is assumed to follow a

standard normal distribution. σk is a parameter to be estimated; this captures the standard

deviation on the individual-specific taste of characteristic k.

ϵijn represents consumer i’s idiosyncratic taste of variant n of model j and is assumed to

follow a Generalized Extreme Value (GEV) leading to the following choice probability:

sijn = sij · sin|j. (6)

Here, sijn is the probability of consumer i choosing variant n of model j, which is a product

of the choice probability of model j,

sij =
eδj+µij+λIij

1 +
∑

l∈J eδl+µil+λIil
, (7)

and the choice probability of variant n conditional on choosing model j,

sin|j =
e(∆δjn+∆µijn )/λ∑

m∈Bj
e(∆δjm+∆µijm )/λ

. (8)
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Note that Iij is a logit-inclusive value specified as

Iij = ln

∑
n∈Bj

e(∆δjn+∆µijn )/λ

 . (9)

λ is a parameter to be estimated, and, as shown in McFadden (1978), has to lie between 0

and 1 to be consistent with the utility maximization problem. As λ goes to 0, the dependency

across variants becomes stronger, and, in the limit, that is, λ → 0, the model converges to

the elimination-by-aspect model of Tversky (1972). On the other hand, as λ goes to 1, the

dependency becomes weaker and the model reduces to the single-level logit model at λ = 1.

I will statistically test whether the estimate of λ is located within the interval.

The model-level share function can be derived by integrating the individual choice prob-

ability in Eq.(7) over the distribution on νi = (νik)k∈K and yi. νi is assumed to follow a

standard normal distribution, whereas yi follows the empirical income distribution obtained

from Kokumin Seikatsu Kiso Chosa (Comprehensive Survey of Living Conditions of the Peo-

ple on Health and Welfare) released annually by the Ministry of Health, Labor and Welfare.

Now, the share of the model, j, can be calculated as

sj =

∫
y

∫
ν

sijdFν(ν)dFy(y), (10)

where Fν(·) is the cumulative standard normal distribution and Fy(·) is the cumulative

empirical income distribution.

The variant-level share function can be derived in a similar manner: the share of variant

n ∈ Bj is

sjn =

∫
y

∫
ν

sijndFν(ν)dFy(y). (11)

In order to estimate the demand-side parameters, I focus on the model-level share function

because the variant-level sales data are unavailable. As explained in the following section, it

is possible to apply a BLP-type contraction mapping method based on the model-level share

function and estimate the parameters from the moment condition on ξj.

5 Estimation

5.1 Simple case: no random coefficient

For simplicity, I first explain the case of no random coefficient—common price sensitivity,

that is, µij = αpjn, and no individual heterogeneity on car characteristics, that is, σk = 0
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for all k. Now, the individual share function in Eq.(7) becomes the market share function,

namely, sij = sj, and the following equation can be derived:

ln(sj)− ln(s0) =
∑
k∈Kj

xjkβk + λ ln

∑
n∈Bj

e

(
αpjn+

∑
k∈K\Kj

βkxjnk

)
/λ

+ ξj. (12)

As the above expression clearly shows, the equation is linear in unobserved characteristics,

ξj, and thus the parameters in the utility function θ = (α, (βk)k∈K, λ) can be estimated using

the non-linear estimation method. If ξj is uncorrelated with the variables in the equation,

the set of parameters can be estimated using non-linear least squares. However, as commonly

discussed in the literature, the unobserved characteristics are likely to be correlated with the

prices, pjn , n ∈ Bj; therefore, certain moment conditions on ξj are needed to estimate the

parameters.

5.1.1 Moment condition

The model is estimated on the basis of a moment assumption on ξjt representing the

unobserved demand shock and characteristics. A problem here is that ξjt should be cor-

related with pjt because the positive unobservable characteristics or demand shocks induce

higher prices. In this paper, I use the set of instruments based on the moment condition

E[ξjt|x1t, . . . ,x#Jtt] = 0 for all j; this is often used in the literature.

Note that this study deals with rich information on the characteristics because each

model usually has multiple variants. Using this variation in characteristics in a model, I set

the mean and standard deviation across the variants in the model as the instruments for

estimation. These variables are valid instruments because the mean and standard deviation

of the characteristics are correlated with the prices, while these are uncorrelated with the

error term under the moment assumption.

Using this set of instruments, I implement the two-step efficient generalized method

of moments (GMM) estimation proposed by Hansen (1982). Now, the non-linear search

becomes

min
θ

g(θ)′Wg(θ), (13)

where g(θ) = ξ(θ)′Z/N and W is the weighting matrix. The choice of initial weighting

matrix is (Z′Z)−1/N , where Z is the IV matrix and N is the number of observations. The ef-

ficient weighting matrix is computed from the estimation results in the first stage: Z ′ξ̂ξ̂Z/N ,

where ξ̂ is the vector of residuals obtained in the first stage.
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5.1.2 Identification of λ

Note that if Bj is a unit set, parameter λ disappears from Eq.(12) and the equation

reduces to the estimation equation derived from the standard logit model. This indicates

that the presence of λ is the key difference between the model introduced in this paper

and the standard model. Thus, I need to examine what variation of the data allows me

to identify the parameter λ. To understand the identification issue, consider the simplified

case in which all variants have the same price and characteristics; that is, pjn = pj for all

n ∈ Bj and K = Kj for all j ∈ J . Now, the second term on the RHS of Eq.(12) becomes

αpj + λNj, where Nj is the number of variants of model j. This clearly indicates that λ can

be identified in the presence of difference in number of variants over models. Without this

simplification, the variant-level difference in prices and characteristics over models would

contribute to identifying λ, in addition to the number of variants.

5.2 Random coefficient

I now turn to the estimation of the model in the presence of random coefficients in the

utility function. The estimation incorporates a well-known contraction mapping procedure

proposed by Berry, Levinsohn, and Pakes (1995).

To apply BLP’s contraction mapping, I first define the following:

δ̄j ≡
∑
k∈K̄

xjkβk + ξj and Īij ≡
∑

k∈Kj\K̄ xjkβk + µij

λ
+ Iij, (14)

where K̄ =
∩

j∈J Kj, the set of characteristics common to all variants for every model. Then,

the individual choice probability on model j in eq.(7) can be rewritten as

sij =
eδ̄j+λĪij

1 +
∑

l∈J eδ̄l+λĪil
. (15)

Assume that θ1 = (βk)k∈K̄, the vector of parameters in δ̄j, and θ2 =

(α, (βk)k∈K\K̄, (σk)k∈K, λ), the vector of parameters in Īij. For an arbitrary θ2, the com-

mon utility part δ̄ = (δ̄j)j∈J that makes sj = sj(δ̄;θ2) for all j ∈ J can be obtained by

computing the following series:

δ̄h+1 = δ̄h + ln sj − ln sj(δ̄
h;θ2), (16)

where superscript h indicates the number of iterations. Convergence is achieved if ||δ̄h+1−δ̄h||
becomes smaller than a certain tolerance level.
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Likewise the case of no random coefficient, the parameters (θ1,θ2) can be estimated by

solving the problem specified in eq. (13), though the contraction mapping procedure is

incorporated here.

5.3 Estimation results

In this section, I report the estimation results. The results of no random coefficient

are shown in Table 6. Table 6 (i) and (ii) give the results for the cases of non-linear least

squares (NLS) and non-linear GMM estimation. As mentioned previously, the prices and

unobserved characteristics are likely to be positively correlated, thus inducing an upward

bias in the estimation of the price coefficient. Along with this argument, Table 6 (i) and

(ii) show that the price coefficient α becomes lower after instrumenting. The estimate of λ

lies between 0 and 1; this indicates that the estimates are consistent with the random utility

maximization problem. Because the estimate of λ is significantly different from 1, I reject

the logit model: the substitution between variants within a model is stronger than that

between the variants across models. Most of the other coefficients have a reasonable sign;

for example, the coefficient of Fuel Cost is negative and significant. The sole exception is

the coefficient of Cruise Control, which is expected to be negative; the results show negative

estimates, but it is not statistically significant in (ii).

Next I turn to the random coefficient model. The result of GMM estimation is shown in

Table 7. Here, Constant and Car Space are allowed to have random coefficients. First, the

price coefficient is statistically significant. Second, most of the mean parameters are reason-

ably estimated. The exception is Cruise Control whose coefficient takes a negative value;

however, this is not statistically significant. Third, the estimates of standard deviations are

small, but their standard errors are huge. This is clearly problematic because the preference

on car space and the tendency to purchase new cars should be different across consumers.

6 Simulation

Using the estimates in Section 5, I carry out counterfactual simulation to assess the

impacts of the tax incentives from April 2012 to March 2014. I do not incorporate the

supply side, but simply construct the counterfactual price, pcjn , by adding the amount of tax

reduction to the actual price, pjn . Given p∗jn , I compute the counterfactual sales based on

the demand estimates.

The simulation results are summarized in Table 8. I focus on the effects on green cars,

namely, plug-in hybrid and clean diesel cars and cars complying with the 2015 fuel economy
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standards. The second column of the table shows the actual sales; that is, the sales with

policy. Because the data of variant-level sales are unavailable, the values are computed from

the demand estimates. As shown in Table 8 (i), subsidies and tax incentives increased the

green car sales by 4–4.6% in fiscal years 2012 and 2013. The effects are moderate, but those

on clean diesel and plug-in hybrid cars are larger: the policies increased the sales by 7.7–9%,

as shown in Table 8 (ii).

7 Conclusion

The variant-level heterogeneity in car markets is substantial; thus, the assessment of

attribute-based policy interventions should account for the differences in effects of policy at

the variant level. This paper presents a discrete choice model of product differentiation at

the variant level and estimates the model’s structural parameters using the data at different

levels of aggregation: model-level sales and variant-level prices and attributes. From these

estimates, I assess the measures to promote green cars in Japan.

The simulation results show that policies increased the sales of green cars by 4–4.6% in

fiscal years 2012 and 2013. The increase in sales of plug-in hybrid and clean diesel cars are

larger, namely, 7.7–9%. The results indicate that policies have some impacts on the diffusion

of green cars.
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Weight 2015 Fuel Economy Standards
–600kg 22.5 km/l

601–740kg 21.8 km/l
741–855kg 21 km/l
856–970kg 20.8 km/l
971–1080kg 20.5 km/l
1081–1195kg 18.7 km/l
1196–1310kg 17.2 km/l
1311–1420kg 15.8 km/l
1421– 1530kg 14.4 km/l
1531–1650kg 13.2 km/l
1651–1760kg 12.2 km/l
1761–1870kg 11.1 km/l
1871–1990kg 10.2 km/l
1991–2100kg 9.4 km/l
2101–2270kg 8.7 km/l
2271kg– 7.4 km/l

Note: The calculation of fuel economies are based on the JCO8 mode.

Table 1: Fuel economy standards
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Variables Mean Std. Dev. Max-Min (Max - Min)/Min
Price (mil. JPY) 2.941 0.326 0.906 0.398
Car Size(m3) 11.900 0.128 0.262 0.021
Wheelbase (m) 2.643 0.007 0.013 0.005

Engine Displacement (1000 cc) 1.949 0.085 0.194 0.098
Capacity (l) 53.235 0.842 1.735 0.042

HP (ps)/Weight (kg) 0.104 0.008 0.021 0.244
Weight (1000kg) 1.381 0.045 0.115 0.091

Fuel Economy (km/l) 16.216 1.293 3.211 0.229

Table 4: Variant-level heterogeneity
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(i) NLS (ii) GMM
Variables Coef. S. E. Coef. S. E.

Price -0.225 0.037 -0.763 0.203
Fuel Cost -0.256 0.016 -0.280 0.019
Car Space 0.430 0.071 0.635 0.093
Car Size -0.048 0.040 -0.183 0.062

Engine Displacement 0.141 0.109 1.044 0.345
Horse Power/Weight 7.641 2.049 7.177 2.117

Diameter -0.035 0.162 -0.154 0.164
4WD 0.913 0.131 1.225 0.159
FR 0.375 0.117 0.725 0.192

Cruise Control -0.308 0.113 -0.170 0.131
Power Seat 0.023 0.142 0.720 0.257

Stability Control System 0.644 0.074 0.623 0.088
Const -8.600 0.666 -6.900 0.875
λ 0.554 0.128 0.308 0.187

Note: Monthly dummy variables and brand dummy variables are included in the estimation.

Table 5: Estimation results: no random coefficient

Mean(β) Std. Dev.(σ)
Variables Coef. S. E. Coef. S. E.

Price - - -1.782 0.766
Fuel Cost -0.249 0.030 - -
Car Space 0.406 0.200 0.012 2.074
Car Size -0.047 0.054 - -

Engine Displacement 0.186 0.216 - -
Horse Power/Weight 6.282 2.238 - -

Diameter 0.078 0.196 - -
4WD 0.853 0.105 - -
FR 0.429 0.121 - -

Cruise Control -0.283 0.244 - -
Power Seat 0.043 0.216 - -

Stability Control System 0.658 0.115 - -
Const -8.757 2.912 0.066 6.364
λ 0.597 0.213 - -

Note: Monthly dummy variables and brand dummy variables are included in the estimation.

Table 6: Estimation results: random coefficient
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(i) Green Cars (1000 unit)
Year With Policies Without Policies Difference Rate of Change (%)
2012 2415 2310 105 4.56
2013 2646 2545 102 4.00

(ii) Clean Diesel and Plug-in Hybrid (1000 unit)
Year With Policies Without Policies Difference Rate of Change (%)
2012 23 21 2 8.96
2013 45 42 3 7.65

Note: Green cars are cars complying with 2015 fuel economy standards or clean diesel or
plug-in hybrid cars.

Table 7: Effects on Green Cars
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Figure 1: Shares of variants meeting 2015 Fuel Economy Standards
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