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Abstract 

Supplier-customer relationship among firms in a production network is the arena where financial distress propagates 

from distressed debtors of customers to their creditors of suppliers. While the events of bankruptcies can be observed 

easily, the underlying contagion effect of financial distress can have considerable consequences such as a chain of 

bankruptcies. DebtRank is a model to quantify the propagation of financial distress, which has been applied recently 

for analyzing and evaluating systemic risk for interbank contagion. Because the production network in Japan, which 

comprises more than one million firms as nodes and millions of supplier-customer relationship as links, is much 

larger than the interbank credit network, it has been a formidable task to study the model of DebtRank on such a 

large-scale production network. 

This work studies the financial distress propagation on the real data of a production network by employing an 

implementation of DebtRank on a supercomputer. We found that the DebtRank of individual firms has a significant 

correlation with firm-size with non-linearity, indicating that the DebtRank for big firms becomes much larger than 

what is expected naively. The analysis for individual sectors shows that, depending on the sector's position in the 

upstream and downstream, its DebtRank deviates from a linear relationship between DebtRank and sector size. In 

addition, one can measure vulnerability by using the DebtRank analysis, which is potentially useful to identify the 

likelihood of failures of firms in more vulnerable sectors. 
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I. Introduction

Supplier-customer relationship among firms in production network is the arena where
financial distress propagates from distressed debtors of customers to its creditors of
suppliers. While the events of bankruptcies can be observed easily, the underlying
contagion effect of financial distress can have considerable consequences such as chain
of bankruptcies.

DebtRank (Battiston et al., 2012) is a model to quantify the propagation of
financial distress, which has been recently applied for the analysis and evaluation
of systemic risk mainly for interbank contagion (di Iasio et al., 2013; Tabak et al.,
2013; Poledna and Thurner, 2014; Fink et al., 2014; Puliga et al., 2014). and also for
a credit network between banks and firms by Aoyama et al. (2013). Typical size of
those systems studied so far is hundreds, while the production network in a nation
comprises more than a million of firms as nodes and millions of supplier-customer
relationship as links, much larger than interbank credit network. Due to the problem
in availability of real data and also in computation, little has been studied on the
DebtRank analysis for such a large-scale production network.

This paper studies the financial distress propagation on real data of production
network by employing the DebtRank methodology in order to model how financial
distress propagates along supplier-customer relationships. Specifically, trade-credit
has a crucial role in the model. Suppliers usually provide credit to their customers
in trade anticipating payment in due time. If a customer delays or fails in the pay-
ment, then its suppliers may lose expected sales and profits, depending on relative
exposure, potentially causing chain of failures and bankruptcies. We model this
propagation of distress from downstream to upstream in the production network by
the DebtRank. By assuming different initial configurations of idiosyncratic shocks
on industrial sectors, and the model of distress propagation, we perform the quan-
tification of financial distress, visualize the propagation, and evaluate the resulting
ripple effect. The results have an implication of the fact that the present observation
of the events of failures or bankruptcies underestimates the amount of financial stress
in different parts of the network.

We briefly summarize the model in Section II, and describe the network structure
of supplier-customer relationships in Japan comprising a million of firms and millions
of supplier-customer relationships in Section III. Then we apply the model to the
real data by using a supercomputer, which allows us to compute in a practical time.
In Section IV, we show the results on statistical properties of DebtRank in relation
to firm-size at the levels of individual firms and sectors, and also on vulnerability
measures based on the DebtRank. Section V discusses several points, and Section VI
summarizes the paper and implications.

II. DebtRank Method

The methodology of DebtRank was invented in Battiston et al. (2012) to quantify
systemic risk in credit network among financial institutions. The network comprises
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of banks as nodes and financial dependencies among them as links. The quantity is
a measure of how financial distress at a single institution or in a set of institutions
can potentially make influence on others along the links of financial dependencies,
namely exposure. The DebtRank and related methods have been recently studied for
application to better evaluation of systemic risk in such financial networks and also
in credit networks between banks and firms (see, for example, di Iasio et al. (2013);
Tabak et al. (2013); Aoyama et al. (2013); Poledna and Thurner (2014); Fink et al.
(2014); Puliga et al. (2014)).

Let us recapitulate the method of DebtRank in what follows. Consider a network
with nodes i = 1, 2, · · · , N and with directed and weighted links. A link j ⇒ i has a
weight 0 < wji ≤ 1 that represents a relative exposure of i to j. At each time-step t
in the computation, two variables of each node are updated:

• hi(t) ∈ [0, 1], the amount of financial distress of node i at time t.

• si(t) ∈ {U,D, I}, respectively, the state of “Undistressed”, “Distressed”, and
“Inactive” at time t.

As an initial configuration of distress at time t = 0, we suppose that

hi(t = 0) =

{
hi0 if i ∈ A ,

0 otherwise ,
(1)

starting from a set of distressed nodes, denoted by A (this can be a single node),
and that

si(t = 0) =

{
D if i ∈ A ,

U otherwise .
(2)

Then we update the distress according to

hi(t) = min

1, hi(t− 1) +
∑

j:sj(t−1)=D

wji hj(t− 1)

 , (3)

where the summation is taken over for all the i’s neighboring nodes j that are in the
state of D at time t−1. The weight wji determines the strength of propagation. We
denote the direction of propagation by j ⇒ i. Simultaneously we update the state
by

si(t) =


D if hi(1) > 0 and si(t− 1) 6= I ,

I if si(t− 1) = D ,

si(t− 1) otherwise .

(4)

One can see that a node with state D becomes I at the next time, and then does
not affect any others afterward. This avoids infinite number of repercussions in the
propagation of distress. A node with state U becomes D, when distress reaches to
it, and then affect neighboring nodes at the next time and becomes I. Note that a
node with state I can continue to receive distress, while it does not affect any others.
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After a finite number of time-steps, denoted by T , the propagation terminates
resulting in a final configuration hi(t = T ) for all the nodes. Finally, to define the
total amount of distress in the entire network due to the initial set A of distressed
nodes, it is customary to take the average for all the hi(T ) except for i ∈ A as

DA =
∑
i 6∈A

âi hi(T ) (5)

where
âi =

ai∑
j 6∈A aj

(6)

and ai is the size of the node i such as assets, sales and so forth. DA is called
the DebtRank for the system due to the propagation of distress starting from the
nodes in A. If A is a single node {i}, then it represents how much an individual
node can affect the entire network. Note that one is discarding the effect of initially
given distress by excluding them in the summation above, because we do not want
to include the trivial effect due to the given initial amount of distress.

Once the sets of nodes and links with weights wji are given as well as the at-
tributes of nodes including the size ai, it is straightforward to compute the Deb-
tRank. In fact, the algorithm is quite similar to breadth-first search, an elementary
graph algorithm (see Cormen et al. (2001)). It is, however, the fact that it takes
impractical time, say more than a day, to compute each node’s DebtRank values
for our data comprising of a million nodes. To overcome the difficulty, we employ
one of the world-fastest supercomputers, called K-supercomputer, and parallelize the
computation on the CPU cores in its facility of the RIKEN AICS so that the speed
of computation becomes much faster, within an hour or much less (see Terai et al.
(2016) for the details). We believe that this point is important in the simulation
under a number of scenarios and initial conditions.

III. Data

Our data for production network is based on a survey done by Tokyo Shoko Research
(TSR), one of the leading credit research agencies in Tokyo, in the contract with the
Research Institute of Economy, Trade and Industry (RIETI). We utilize the three
datasets of TSR Kigyo Jouhou, Kigyo Soukan Jouhou and Kigyo Tousan Jouhou for
basic information for more than a million firms, millions of supplier-customer and
ownership links among firms, and a list of bankruptcies, respectively. The data were
compiled at the timing of July 2011.

Let us denote a supplier-customer link as i → j, where firm i is a supplier to
another firm j, or equivalently, j is a customer of i. We extracted only the supplier-
customer links for pairs of “active” firms to exclude inactive and failed firms by using
a flag in the basic information. Eliminating self-loops and parallel edges (duplicate
links recorded in the data), we have a network of firms as nodes and supplier-customer
links as edges. When viewed as an undirected network, it has a largest connected
component (99% in terms of the number of firms), which we shall study in the
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Table 1. Classification of industrial sectors (Japan Standard Industrial Classification, Rev. 12,
November 2007). Numbers of firms (third column) and fractional numbers (fourth column) are
based on the divisions according to primary industry of each firm.

id divisions #firms #firms(%)

A agriculture, forestry 6,821 0.69
B fishing 1,001 0.10
C mining and quarrying 1,332 0.14
D construction 337,206 34.19
E manufacturing 156,847 15.90
F electricity, gas, heat, water supply 648 0.07
G information and communications 23,441 2.38
H transportation and storage 33,246 3.37
I wholesale and retail trade 249,610 25.31
J finance and insurance activities 6,054 0.61
K real estate activities 34,325 3.48
L professional, scientific, technical 33,757 3.42
M accommodation and food service 14,617 1.48
N arts, entertainment and recreation 16,015 1.62
O education/learning support 3,651 0.37
P human health and social work 21,004 2.13
Q compound services 5,586 0.57
R other service activities 41,021 4.16

Total 986,185 100.00

following. Denoting the number of nodes and links by N and M respectively, we
have

N = 986, 185 , (7)

M = 4, 402, 270 . (8)

as a result of our pre-processing. The largest connected component is often called a
giant weakly connected component (GWCC).

Let us examine how firms are located in the upstream and downstream of the
entire network. To do so, we regard the network as a directed graph and find the
so-called “bowtie” structure. A GWCC can be decomposed into the parts defined
as follows (see Fig. 1):

NW The whole network.

GWCC Giant weakly connected component: the largest connected component
when viewed as an undirected graph. An undirected path exists for an arbitrary
pair of firms in the component.

DC Disconnected components: other connected components than GWCC.

GSCC Giant strongly connected component: the largest connected component
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Figure 1. Bowtie structure for the production network including GSCC (giant strongly connected
component) in which any pair of firms is mutually connected by a directed path; IN and OUT
components comprised of firms in the GSCC’s upstream and downstream sides respectively. See the
main text for full explanation.

Component #firms Note

GWCC 986,185 100%

GSCC 488,347 50% × GWCC
IN 179,127 18% × GWCC

OUT 282,331 29% × GWCC
TE 36,380 4% × GWCC

Total N =986,185 equal to GWCC

Table 2. Bowtie structure: sizes of different parts

when viewed as a directed graph. A directed path exists for an arbitrary pair
of firms in the component.

IN The firms from which the GSCC is reached via a directed path.

OUT The firms that are reachable from the GSCC via a directed path.

TE “Tendrils”; the rest of GWCC (note that TEs may not look like tendrils).

It follows from the definitions that

NW = GWCC + DC (9)

GWCC = GSCC + IN + OUT + TE (10)

The shortest-path lengths (distances) from the GSCC and firms in the IN and
OUT are given by:

Distance from GSCC to

IN

Distance #firms

1 172,526
2 6,368
3 221
4 12

Total 179,127

Distance from GSCC to

OUT

Distance #firms

1 269,555
2 12,414
3 350
4 12

Total 282,331
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By comparing the over and under-presence of industrial divisions in each of these
components, we can observe that in the portion of IN the numbers of firms in the
sectors of real estate (K), agriculture and forestry (A), information and communi-
cations (G) are larger when compared with the corresponding sectors in the SCC.
In the portion of OUT more abundant are human health and social work (P), ac-
commodation and food service (M), education and learning support (O). This fact
is reasonable, because these industries are mainly located either in the upstream or
in the downstream. Nevertheless, all industries are basically embedded in the SCC
with entanglement. We also analyze the community structure of network to obtain
the result similar to the previous work (Fujiwara and Aoyama, 2010).

The diameter of a graph is the maximum length for all ordered pairs (i, j) of the
shortest path from i to j. The average distance is the average length for all those
pairs (i, j). We found that the average distance is 4.59 while the diameter is 22.
This implies that the computation for the DebtRank will terminate at most within
the time-steps corresponding to the diameter.

IV. Results for DebtRank

A. Assumption

Supplier-customer links are regarded as creditor-debtor relationships. A supplier
depends on its customers for sales and profits. If one of the customers of them has
financial distress, it may delay or even does not fulfill the payment, which results
in the financial distress of the supplier. We assume that this is the most important
channel for the propagation of distress. In fact, there are empirical and theoretical
evidence for this assumption (see Battiston et al. (2007); Fujiwara and Aoyama
(2010) and references therein). Thus if there is a supplier-customer relationship,
i→ j, from firm i as a supplier and to firm j as a customer, it is assumed that the
direction of the distress propagation in (3), j ⇒ i, is the opposite to the direction of
supplier-customer link i→ j.

It would be ideal to have information about the strength wji in (3) from the
amount of trade, for example, which is not available in our data. We assume that
the strength wji in (3), or relative exposure of the customer i to its suppliers j’s is
given by

wji =
1

number of customers i’s of supplier j
. (11)

Because the data were collected from nomination of suppliers and customers that
are most important to a particular firm under investigation. One could take into
account the order of importance, but we simply assume that this is a reasonable
approximation.

As for the attributes of firms, namely firm-size ai in (5) and (6), we employed the
amount of sales and the number of employees, which gave us qualitatively similar
results, as far as statistical properties are concerned.
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Figure 2. Cumulative distribution P>(x) for the DebtRank value x of individual firms (weighted
by firm-size of sales). The distribution obeys a power-law, P>(x) ∝ x−α, in the region for large x,
with exponent α = 1.28± 0.01.

B. DebtRank for Individual Firms

We computed the DebtRank values x = D{i} starting from each node i under distress.
We assume that the initial value of the distress, hi0 = 1 in (1), the maximum value
of distress in the model. The cumulative distribution P>(x) is shown in Fig. 2. One
can observe that the distribution obeys a power law

P>(x) ∝ x−α (12)

in the region for large x, where the value of α is given by

α = 1.28± 0.01 (13)

estimated by maximum likelihood or Hill method (error at 99% significance level).
We remark that the distributions for the in-degree (number of suppliers) and

out-degree (number of customers) of a firm also have power-laws with quantitatively
similar exponents (see Fujiwara and Aoyama (2010)). In fact, there is a significant
correlation between the value of DebtRank and degrees for each firm. This fact is not
so trivial, because a big firm usually has a number of suppliers and customers, and
the total amount of financial distress coming from those firms tend to be large, even
if the weight tends to be small. On the other hand, a small firm typically depends
on a limited number of customers, say one or two firm, being easily influenced by
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Figure 3. Scatter plot for the pair of the values of DebtRank and the amount of sales for indi-
vidual firms. Also shown is the conditional average of DebtRank for firms present in each slice,
corresponding to a particular size of firm (represented by each point in the red line).

others. Note that the resulting value of DebtRank tends to be small, because it is a
weighted average by firm-size.

To examine the relation between the DebtRank and firm-size, we show the scatter
plots in Fig. 3 for the amount of sales as firm-size, and also in Fig. 4 for the number
of employees as an alternative measure of size.

We also show the conditional averages of DebtRank for firms with given ranges of
firm-size, because the scatter plot is densely populated by points and can mislead the
interpretation of the density. As obvious from the line for the conditional averages,
it has an interesting non-linearity in the sense that the value of DebtRank becomes
much larger than what is expected by a linear relation between the DebtRank and
firm-size. This implies that big firms can have larger impact to the entire system
than what one can naively expect from the numbers of suppliers and customers.
Namely, “higher-order” structure of the network rather than degrees, certainly plays
an important role.

C. DebtRank for Sectors

Let us turn our attention to the industrial sectors by computing the DebtRank DA

starting from the firms in the sector of A. We assume that the initial distress is given
by hi0 = 0.1 in (1) for i ∈ A, and 0 otherwise. By this configuration we suppose that
a relatively weak but simultaneous shock takes place overall in a particular sector.
Let us assume that the level of sectoral classification is given as shown in Table 1,
i.e. divisions from A to R which contains relatively a large number of firms.
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According to the definition in (5) and (6), we calculate DA. Also we compute
the total sum of firm-sizes of firms in the sector A so that one can estimate the size
of the initial configuration of financial distress:

SA =
∑
i∈A

ai (14)

We show the scatter plot for the 18 sectors (A to R) in Fig. 5. Obviously one can
see the power-law relation between SA and DA:

DA ∝ S−βA (15)

where the exponent is estimated by β = 0.92 by minimum square estimate for the
logarithmic values of the variables. Remember that we exclude the trivial effect due
to the initial stress in the quantification of DebtRank.

The linear relationship between the logarithms of sector’s size and DebtRank
guides us to pay attention to deviation from it depending on individual sectors.

The sector of construction (D) has a smaller size than that for the sector of finance
and insurance activities (J), but the former’s impact is larger than the latter’s. This
implies that the one or more hops from the sector of construction in the upstream
occupies more extended part of the network yielding larger impact. Similarly, the
sector of accommodation and food service (M) has a size comparable to the sector
of education/learning support (O), it has nearly a double of the impact to the whole
system. By taking a close look at each sectors, one can see that the deviation
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Figure 5. The size of each sector SA (horizontal) and each sector’s value of DebtRank DA (vertical).
The straight line is a power-law fit, DA ∝ S−β

A , where β = 0.92 (MSE).

from (14) corresponds to the location of the sector in the upstream and downstream
portions of the network, larger for upstream and smaller for downstream than what
is expected by (14).

One is able to further divide the sectors into smaller ones, and to examine the
relation between SA and DA in order to understand the relationship between the
size of the stress and the location of the firms in the sector.

D. Vulnerability of Sectors

The financial distress brought to each sector can be used as a measure of vulnerability
of firms in the sector under the condition that the initial distress starts from a single
sector A.

To do so, one simply decomposes the DebtRank into different components, that
is

DA =
∑
g

DAg , (16)

where Ag is the sector from g = 1, . . . , G. The quantity DAg is simply the decompo-
sition of the sum given by (5) into other sectors except the initially distressed sector,
and represents how much distress is propagated into the sector Sg. The larger the
quantity is, the more vulnerable the corresponding sector is. It is a measure of
vulnerability of each sector due to the initial configuration of distress.
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Figure 6. Vulnerability of each sector due to another sector’s financial distress. Each row represents
the initially distressed sector, from which financial distress propagates to other sectors in columns.

Fig. 6 shows the matrix of such vulnerabilities. Each row represents the initially
distressed sector. Each column is the measure of vulnerability.

The result shows that depending on which sector is initially distressed, there is
a heterogeneous propagation of distress into different sectors resulting into different
levels of vulnerability. We see that this method of examining vulnerability can be
employed to identify likelihood of failures of the firms in those more vulnerable
sectors.

V. Discussion

We discuss about several points and policy implications.
Firstly, as one can see the methodology of DebtRank, the model is based on

abstract quantification of financial stress. It is an important question how the model
is related to financial states of individual firms in terms of stock and flow variables
in balance sheets and profit-and-losses. In the application of DebtRank to financial
institutions, there are recent works on this point in Battiston et al. (2015); Bardoscia
et al. (2015). They attempt to clarify the link between financial distress defined
and modeled by balance-sheet dynamics and the DebtRank, and found that the
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dynamics of DebtRank is naturally interpreted by the dynamics of balance-sheet
and correspondingly defined variable of distress, such as debt and capital ratios.

In the application of production network, while there are related works such as
Hazama and Uesugi (2012); Mizuno et al. (2014); Goto et al. (2015), which found
various aspects of systemic risks on the production network, there is little work
that simulates the entire system by using the dynamics based on the actual balance-
sheets of individual firms and the model of DebtRank and its extension on the actual
network. It would be valuable to relate those related works to the simulation.

Secondly, in the present model, we focus on the propagation of distress from
downstream (customers) to upstream (suppliers), but not on the opposite direction
from upstream to downstream. The latter is relevant in a typical case of the influence
of price changes. When the price of raw materials goes up, the prices of commodities
in the downstream eventually increase potentially affecting financial states in those
firms. Another case is the external shock from supply-side propagating in a similar
direction, due to a natural disaster, for example. Although these problems are not in
the present scope focusing on demand-driven propagation of financial distress, they
could be considered in the above mentioned dynamics of balance-sheet.

Thirdly, a distressed firm does not affect its neighboring firms once it becomes
into the inactive state in the present model, as the dynamics is given by (3) and (4).
Because it is usually the case that such a distressed firm may continue its business
still affecting the neighbors, we may consider a variation of the original model so as to
include amplification by such firms. Our estimation of DebtRank may be regarded,
therefore, as a lower bound of the financial distress in the system. It would be an
interesting problem to extend the model so that one can include the process of such
amplification.

As a fourth point, we mention that one can employ the dataset in other snapshots
available in the RIETI project corresponding to a recent year, so that one is able to
compare the results for more than one network and to see how robust our results are,
what are possible changes in the network structure, which are the results specific to
the year 2011, right after the East Japan Disaster, and so forth, while we believe that
the results stated in this paper do not depend on the particular year. In addition, one
needs to examine random networks, preserving macroscopic variables such as degree
(number of suppliers and customers) but otherwise random, as a null hypothesis
for statistical validation. Comparison of results for other snapshots of production
network and also randomized networks as a null hypothesis is an important future
problem.

Concerning possible implications related to the Small and Medium Enterprise
(SME) Agency’s policies, we state the following point. The present major SME
policies include safety-net guarantee program. This program supports SMEs whose
business stability is threatened by external factors, such as a major customer’s re-
stricted operations or application for rehabilitation procedures, by making additional
credit guarantees available. One of the strategies of this program is aimed at mit-
igating the possibility of chained bankruptcies of SMEs, each of which provides a
credit of accounts receivable to its bankrupted customer of a large firm-size. The
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policy of making additional credit guarantees available should be based on a certain
evaluation for the propagation of financial stress in the system, because of the budget
constraint for the credit guarantees. The present model can serve as a benchmark
for such evaluation.

VI. Summary

We apply the methodology of DebtRank (Battiston et al., 2012) to the propagation of
financial distress along the supplier-customer links from the downstream of customers
and to the upstream of suppliers. If a customer does not fulfill the payment to its
suppliers due to a financial distress, then its suppliers are possibly under financial
distress potentially causing propagation of distress.

Assuming that the propagation takes place in the opposite direction to the
supplier-customer relation i → j, namely from customers to suppliers, j ⇒ i, and
that the strength of propagation Wji is given by the inverse of the number of cus-
tomers j’s for firm i, we perform the simulation and computation of the DebtRank on
a million of firms and millions of links by supercomputers including the world-fastest
K-computer. Such computation under many different scenarios has been difficult in
practical computation time.

We show that the distribution of DebtRank for individual firms obeys a power-
law in a significant correlation between the DebtRank and size for each firm. This
fact is not trivial in the sense that big firms are affected by many connected but
less-depending firms, while smaller firms are strongly influenced by distress. There
is an interesting non-linearity, namely that the DebtRank becomes much larger than
what is expected by a linear relation between the DebtRank and firm-size. This
implies that the role of big firms are usually underestimated.

By calculating the DebtRank of individual sector, we show that there is a linear
relationship between the logarithms of sector’s size and DebtRank, but also there is a
deviation due to the location of the sector in the upstream and downstream portions
of the network. This implies that the linear relationship between the logarithms of
sector’s size and DebtRank guides us to pay attention to deviation from it depending
on individual sectors.

Finally, we show that one can measure vulnerability in the methodology of Deb-
tRank which can be potentially useful to identify likelihood of failures of the firms
in those more vulnerable sectors. One will be able to use simulations on supercom-
puters under many scenarios, models of financial distress propagation, and various
initial configurations.

Acknowledgments

This study is conducted as a part of the project “Price Network and Dynamics of
Small and Medium Enterprises” undertaken at Research Institute of Economy, Trade
and Industry (RIETI). We thank all the members of the project for useful discussions
and comments. Part of the results is obtained by using the K computer at the RIKEN

14



Advanced Institute for Computational Science (AICS). We are grateful to Fumiyoshi
Shoji and Kazuo Minami at the RIKEN AICS for discussion and comments. This
work is partially supported by Grant-in-Aid for Scientific Research (KAKENHI)
Grant Numbers 25282094 by JSPS.

References

Aoyama, H., S. Battiston, and Y. Fujiwara, “DebtRank Analysis of the
Japanese Credit Network,” Discussion Paper 13-E-087, Research Institute of Econ-
omy, Trade & Industry 2013.

Bardoscia, M., S. Battiston, F. Caccioli, and G. Caldarelli, “DebtRank: A
microscopic foundation for shock propagation,” 2015. mimeo.

Battiston, S., D. Delli Gatti, M. Gallegati, B. Greenwald, and J. E.
Stiglitz, “Credit chains and bankruptcy propagation in production networks,”
Journal of Economic Dynamics & Control, 2007, 31, 261–2084.

, G. Caldarelli, M. D’Errico, and S. Gurciullo, “Leveraging the Network:
A Stress-Test Framework based on DebtRank,” 2015. mimeo.

Battiston, Stefano, Michelangelo Puliga, Rahul Kaushik, Paolo Tasca,
and Guido Caldarelli, “DebtRank: too central to fail? Financial networks, the
FED and systemic risk,” Scientific reports, 2012, 2. Article number, 541.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, Cambridge, MA: MIT Press, 2001.

di Iasio, G., S. Battiston, L. Infante, and F. Pierobon, “Capital and Conta-
gion in Finanial Networks,” MPRA Paper 52141, Munich Personal RePEc Archive
2013.

Fink, K., U. Kruger, B. Meller, and L. H. Wong, “BSLoss – A Comprehensive
Measure for Interconnectedness,” Discussion Paper, Deutsche Bundesbank 2014.

Fujiwara, Y. and H. Aoyama, “Large-scale structure of a nation-wide production
network,” European Physical Journal B, 2010, 77 (4), 565–580.

Goto, H., H. Takayasu, and M. Takayasu, “Empirical Analysis of Firm-
Dynamics on Japanese Interfirm Trade Network,” in H. Takayasu, N. Ito, I. Noda,
and M. Takayasu, eds., Proceedings of the International Conference on Social Mod-
eling and Simulation, plus Econophysics Colloquium 2014, Springer Proceedings
in Complexity Springer 2015, pp. 195–204.

Hazama, M. and I. Uesugi, “Measuring the Systemic Risk in Interfirm Transac-
tion Networks,” Working Papers Series 20, Center for Interfirm Network, Institute
of Economic Research, Hitotsubashi University 2012.

15



Mizuno, T., W. Souma, and T. Watanabe, “The structure and evolution of
buyer-supplier networks,” PloS one, 2014, 9 (7), e100712.

Poledna, S. and S. Thurner, “Elimination of Systemic Risk in Financial Networks
by Means of a Systemic Risk Transaction Tax,” 2014. http://arxiv.org/abs/

1401.8026.

Puliga, M., G. Caldarelli, and S. Battiston, “Credit Default Swaps Networks
and Systemic Risk,” Scientific reports, 2014, 4. Article number, 6822.

Tabak, B. M., S. R. S. Souza, and S. M. Guerra, “Assessing the Systemic
Risk in the Brazilian Interbank Market,” Working Paper Series 318, Central Bank
of Brazil 2013.

Terai, M., Y. Fujiwara, K. Minami, and F. Shoji, “Performance Analysis of
the Graph Traversal Code Using DebtRank Algorithm for Economic Simulation,”
IPSJ SIG HPC Technical Report, Information Processing Society of Japan, Special
Interest Groups, High Performance Computing 2016.

16

http://arxiv.org/abs/1401.8026
http://arxiv.org/abs/1401.8026

	Introduction
	DebtRank Method
	Data
	Results for DebtRank
	Assumption
	DebtRank for Individual Firms
	DebtRank for Sectors
	Vulnerability of Sectors

	Discussion
	Summary



