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Abstract 

In physics, it is known that various collective motions exist. For instance, a large deformation of heavy 

nuclei at a highly excited state, which subsequently proceeds to fission, is a typical example. This 

phenomenon is a quantum mechanical collective motion due to strong nuclear force between nucleons in 

a microscopic system consisting of a few hundred nucleons. Most national economies are linked by 

international trade and consequently economic globalization forms a giant economic complex network 

with strong links, i.e., interactions due to increasing trade. In Japan, many small and medium enterprises 

could achieve higher economic growth by free trade based on the establishment of an economic 

partnership agreement (EPA), such as the Trans-Pacific Partnership (TPP). Thus, it is expected that 

various interesting collective motions will emerge in the global economy under trade liberalization. In 

this paper, we present collective motions in trade liberalization observed in the analysis of the industry 

sector-specific international trade data from 1995 to 2011 and production index time series from 1998 to 

2015 for G7 countries. We discuss the results and implications for three collective motions: (i) 

synchronization of international business cycle, (ii) immediate propagation of economic risk, and (iii) 

difficulty of structural controllability during economic crisis. 
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I. Introduction

It has been known that various collective motions exist in Physics. For in-
stance, large deformation of heavy nuclei at highly excited state, which is
subsequently proceeds to fission, is a typical example. This phenomenon is
quantum mechanical collective motion due to strong nuclear force between
nucleons in a microscopic system consists of a few hundred nucleons. Most
of national economies are linked by international trade and consequently eco-
nomic globalization forms a giant economic complex network with strong links,
i.e. interactions due to increasing trade. In Japan many small and medium
enterprises would achieve higher economic growth by free trade based on the es-
tablishment of Economic Partnership Agreement (EPA), such as Trans-Pacific
Partnership (TPP). Thus, it is expected that various interesting collective mo-
tions will emerge in global economy under trade liberalization.

The interdependent relationship of the global economy has become stronger
due to the increase of international trade and investment [1, 2, 3, 4]. As
a result, the international business cycle has synchronized and an economic
crisis starting in one country now spreads across the world instantaneously.
A theoretical study using a coupled limit-cycle oscillator model suggests that
the interaction terms due to international trade can be viewed as the origin of
this synchronization [5, 22]. We observed various kind of collective motions for
economic dynamics, such as synchronization of business cycle [22, 23], on the
giant economic complex network. The linkages between national economies
play important role in economic crisis as well as in normal economic state.
Once a economic crisis occurs in a certain country, the influence propagate
instantaneously toward the rest of the world. For instance the global economic
crisis initiated by the bankruptcy of Lehman Brothers in 2008 is still fresh in
our minds. The global economic complex network might show characteristic
collective motion even for economic crisis.

In this paper we analyzed the industry sector-specific international trade
data from 1995 to 2011 to clarify the structure and dynamics of communities
consist of industry sectors of various countries linked by international trade.
Then we study G7 Global Production Network constructed using production
index time series from January1998 to January 2015 for G7 countries. Col-
lective motion of G7 Global Production Network was analyzed using complex
Hilbert principal component analysis, community analysis for single layer net-
work and multiplex networks, and structural controllability.

Section II explains methodologies used in analysis, and section III describes
the international trade data and G7 production data. Section IV shows various
results. Finally section V concludes the paper.
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II. Methodology to detect Collective Motions

A. Community Analysis

a. Single Layer Network Community structure is detected using the maxi-
mizing modularity function [29, 30, 31] for a network constructed in the previ-
ous subsection,
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where δ(ci, cj) = 1 if the community assignments ci and cj are the same, and 0
otherwise. wij are matrix elements representing the weighted adjacency matrix
between node i and node j.

We identify community structure by maximizing modularity using the greedy
algorithm [29, 30, 31] to each time slice of the global production network, and
then identified the links between communities in adjoining years as described
in the following subsection.

b. Jaccard Index Once the community structure is obtained for each year,
the temporal evolution of the communities becomes an item of great interest.
Therefore, we need to measure the similarity between communities ci and cj
in adjoining years to obtain the linked structure of the communities. The
measured similarity is the Jaccard index [32] defined as follows,

J(ci, cj) =
|ci ∩ cj|
|ci ∪ cj|

. (5)

The range of the Jaccard index is defined as

0 ≤ J(ci, cj) ≤ 1. (6)
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c. Multiplex Network For a static network, a random network is often used
as the null model. However, there are no known null models for a time-
dependent network such as an global production network. Recently multi-
plex network analysis has been developed as a methodology for detecting the
community structure in a time-dependent network [33]. The most of current
algorithm is limited to application only to undirected network. Community
structure for an undirected multiplex network is identified by maximizing the
multiple modularity,

Qm =
1

2w

∑
ijsr

((
wijs −

wiswjs

2ws

)
δsr + δijCjsr

)
δ(cis, cjr), (7)

where the term δijCjsr is the inter-layer coupling term.

d. Robustness of Community Structure Robustness of identified community
structure is confirmed by calculating the variation of information between un-
perturbed and perturbed networks[13]. First we make a perturbed network by
changing links of an original unperturbed network with probability α without
changing weighted out-degree distribution. Then we compare the community
division c = {c1, c2, · · · , cK} of the unperturbed network with the community
division c′ = {c′1, c′2, · · · , c′K′} of the perturbed network. The comparison is
made using the variation of information defined by

V (c, c′) = H(c|c′) +H(c′|c) = −
K∑
i

K′∑
i′

nii′

N
log

nii′

ni′
= −

K∑
i

K′∑
i′

nii′

N
log

nii′

ni

,

(8)
where nii′ , ni, ni′ , and N are the number of nodes belonging to community ci
in the community division c and community c′i′ in the community division c′,
the number of nodes belonging to community ci in the community division c,
the number of nodes belonging to community c′i′ in the community division c′,
and the total number of nodes in network, respectively.

We have the larger the variation of information V (c, c′) for the larger dif-
ference of community structure. Therefore the variation of information V (c, c′)
is a good measure of the robustness of identified community structure.

B. Synchronization

a. Hilbert Transform The linear trend in value added time series V (t) is
removed by calculating the growth rate as follows,

v(t) = log V (t)− log V (t− 1), (9)
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x(t) =
v(t)− E [v(t)]√

Var [v(t)]
. (10)

Similarly, the linear trend in production index time series p(t) is removed by
calculating the growth rate as follows,

x(t) = log p(t)− log p(t− 1). (11)

This is a standard procedure of stationalization.
The Hilbert transform [24, 25, 26] of growth rate of value added time series

x(t) is then calculated as follows,

y(t) = H[x(t)] =
1

π
PV

∫ ∞

−∞

x(s)

t− s
ds, (12)

where PV represents the Cauchy principal value. A complex time series is
obtained by the use of the time series y(t) as an imaginary part. Consequently,
the phase time series θ(t) is obtained by the use of the following,

z(t) = x(t) + iy(t) = A(t)eiθ(t). (13)

Here, i is the unit imaginary number defined by i2 = −1. The following exam-
ple may help readers understand the idea of the Hilbert transform. Suppose
the time series x(t) is a cosine function x(t) = cos(ωt), then the Hilbert trans-
form of x(t) will be y(t) = H[cos(ωt)] = sin(ωt). Similarly, for a sine function
x(t) = sin(ωt), the Hilbert transform will be y(t) = H[sin(ωt)] = − cos(ωt).
Using Euler’s formula z(t) = cos(ωt) + i sin(ωt) = A(t) exp[iθ(t)], we can cal-
culate the phase time series θ(t). Actual calculation in our analysis uses the
discrete formulation [26].

b. Order Parameter as a Measure of Synchronization Here we will briefly
explain the concept of synchronization. Suppose we have two oscillators, one
with a phases of θ1(t) and one with a phase of θ2(t). While the amplitudes can
be different, synchronization is defined as the phases locking θ1(t) − θ2(t) =
const..

In a limited case of const. = 0, discussion using a correlation coefficient is
suitable. However, in the case of const. ̸= 0, where the phase difference signifies
a delay, a direct evaluation of the phase instead of the correlation coefficient is
more adequate. This is because the correlation coefficient ρ varies depending
on the delay δ. For example, in trigonometric function with the period of
oscillation equal to 2π, we have ρ = 1 for δ = 0, ρ = 0 for δ = π/2, and ρ = −1
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for δ = π. This simple example shows that the correlation coefficient is not
suitable for phases locking cases in which there is phase difference or delay.

The collective rhythm produced by the whole population of oscillators is
captured by a macroscopic quantity, such as the complex order parameter u(t),
defined as follows,

u(t) = r(t)eiϕ(t) =
1

N

N∑
j=1

eiθj(t). (14)

The radius r(t) measures the phase coherence, and ϕ(t) represents the average
phase [18].

c. Complex Hilbert Principal Component Analysis Then the complex time
series zα(t) for sector α (α = 1, · · · , N) is normalized by

wα(t) =
zα(t)− ⟨zα⟩t

σα

, (15)

where ⟨·⟩t is the average over time t = 1, · · · , T . The variance of zα(t) is defined
by

σ2
α =

1

T

T∑
t=1

|zα(t)− ⟨zα⟩t|2 = ⟨|zα|2⟩t − |⟨zα⟩t|2. (16)

The complex correlation matrix C is an N × N Hermitian matrix defined
as,

Cαβ = ⟨wαw
∗
β⟩t. (17)

The eigenvalue λ(n) and the corresponding eigenvector V (n) satisfy the fol-
lowing relations [27, 28],

CV (n) = λ(n)V (n), (18)

V (n)∗ · V (m) = δnm, (19)

N∑
n=1

λ(n) = N, (20)

C =
N∑

n=1

λ(n)V (n)V (n)†. (21)

The superscripts n (n = 1, · · · , N) denote denotes the eigenvalues, which is
ordered in descending order λ(n) ≥ λ(n−1).
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The filtered complex correlation matrix is given by

C
(Ns)
αβ =

Ns∑
n=1

λ(n)V (n)
α V

(n)†
β = rαβe

iθαβ , (22)

with the number of dominant eigen modes Ns, which is estimated using the
rotational random shuffling procedure. If we consider the correlation matrix
C

(Ns)
αβ as an adjacency matrix, we obtain a network of production nodes linked

each other with the corresponding correlation coefficients as weights. Note that
the weight of the link rαβ between node α and node β ranges from 0 to 1, and
the link has direction depending on the lead-lag relation between two nodes: β
(α) leads α (β) if θαβ takes a positive (negative) value. Although the network
constructed is in principle a complete graph, we select links with small lead-lag
by setting the threshold θth on phase θαβ in the following analysis.

C. Structural Controllability

The theory of structural controllability is applied to complex network [34].
Dynamics of the system is often approximately described by a linear equation,

dx

dt
= Ãx(t) + B̃v(t), (23)

Here x = (x1(t), . . . , xN(t))
T is the state vector of the system. The N × N

matrix Ã is identical to transversed adjacent matrix and the N × M matrix B̃
identifies the driver node which is controlled from outside of the system. If the
N × NM matrix K,

K = (B̃, ÃB̃, Ã2B̃, . . . , ÃN−1B̃) (24)

has full rank, that is
rank(K) = N, (25)

the system is controllable.
The driver nodes are identified by the maximum matching in the bipartite

representation of the network [35]. Maximum bipartite matching is written as
an integer linear programming as follows,

maximize
y

1Ty

subject to y ≥ 0, ATy ≤ 1,
(26)

where A is the incidence matrix whose component sij is

aij =

{
1 (if node j is an endpoint of link i)
0 (otherwise)

(27)
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and y is the variable

y =

{
1 (if e ∈ F)
0 (if e /∈ F)

(28)

and 1 is a vector where all elements are equal to unity. The set F is a matching
if each node is incident to at most one link in F .

We define the matchedness m to identify driver nodes as follows. In-degree
k
(in)
j and out-degree k

(out)
j is calculated for each node j in the bipartite net-

work after eliminating links with yi = 0. If in-degree of node j is equal to 0
matchedness of node j is equal to mj = 0, or else in-degree of node j is equal

to 1 matchedness of node j is equal to mj = 1/k
(out)
l . Here node l is the origin

node spanning a link toward node j in the bipartite network. If mj = 0, node j
is a pure driver node. On the other hand, if mj = 1, node j is a pure controlled
node. Thus a node with small matchedness m is interpreted as a partial driver
node. Note that the number of driver nodes is calculated by N −

∑
j mj.

III. Data

A. World Input-Output Database

The World Input-Output Database has been developed to analyze the effects
of globalization on trade patterns across a wide set of countries [19]. This
database includes annual industry sector-specific international trade data on
41 countries and 35 industry sectors for the years 1995 to 2011. Therefore the
number of nodes in the international trade network is equal to 1435.

Figure 1 depicts the growth of international trade. The average amount of
trade per node increased monotonically from 1995 to 2011, except for the year
2008 in which there was a financial crisis in 2008 caused by the crash of the
housing bubble in the US. As a result, the interdependent relationship of the
global economy has become strengthened.

The industry sector-specific international trade network is specified by nodes
of industry sector α of country A and links of trade amount wAα,Bβ between
industry sector α of country A and sector β of country B. The size of industry
sector α of country A is measured by its value added.

Based on this basic understanding, we conducted community analysis with
link identification and synchronization analysis using the World Input-Output
Database.

8



0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1994 1999 2004 2009

A
ve

ra
g

e
 T

ra
d

e
 A

m
o

u
n

t 
(1

0
6

U
S$

)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

1995 2000 2005 2010

G
r
o

w
t
h

 R
a

t
e

 o
f 

V
a

lu
e

 A
d

d
e

d

Year

Figure 1: Trade and Business Cycles: (a) Amount of Import in USA and (b)
Average growth rate of value added in USA
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B. Global Production Data

G7 Global Production Data is complied by the use of monthly time series of
production index, which is open from each government of G7 countries [36,
37, 38, 39]. Duration of the data is from January1998 to January 2015 and
therefore includes the global economic crisis initiated by the bankruptcy of
Lehman Brothers in 2008. The items of G7 Global Production Data are listed
in Table 1.

Correlation matrices were estimated for time windows of 5 year. Each
time window is slided by 1 years, thus we have 13 period where correlation
matrices were estimated. For instance, period 1 corresponds to the duration
from 1998 to 2003 and labeled by year 2001. Similarly period 2 corresponds to
the duration from 1999 to 2004 and labeled by year 2002, and so on.

IV. Results

A. Community Structure of Trade Network

We identified the community structure for each time slice of the international
trade network. Figure 8 (a) and (b) lists examples of community structures
obtained for 1997 and 2009. There were 7 communities for 1997, and 8 for 2009.
Because we have a few small community, the number of major community is
equal to six. Temporal change of modularity Q is shown in Fig. 8 (c). The
value of obtained modularity Q is about 2, which depends of threshold of the
weight of links wAα,Bβ. In this community analysis we applied threshold of
weight wij > 107 US$. This means that about half of links are included in
the analysis. If we increase the threshold of weight, we have larger value of
modularity Q.

Then the robustness of identified community structure was confirmed using
the variation of information V (c, c′). The obtained results are shown in Fig. 3
for 1995 and 2011. From the value of modularity Q and the dependence of the
variation of information on the probability of changing links α, we can say for
a fact that the community structure is barely identified with the threshold of
weight wij > 107 US$.

B. Linked Communities of Trade Network

The temporal evolution of communities is characterized by the link relations
for communities in adjoining years. The similarity of communities ci and cj
in adjoining years was measured by using the Jaccard index J(ci, cj). Figure
9 shows the Jaccard indices between 1995 and 1996, and the indices between



Table 1: G7 Global Production Data

Japan

1 JP01 Steel products
2 JP02 Nonferrous metal products
3 JP03 Fabricated metal products
4 JP04 Transportation equipments
5 JP05 Ceramic, stone and clay products
6 JP06 Chemical products
7 JP07 Petroleum and coal products
8 JP08 Plastic products
9 JP09 Pulp and paper products
10 JP10 Textile products
11 JP11 Food and tobacco
12 JP12 Miscellaneous
13 JP13 Mining
14 JP14 Electric appliances
15 JP15 General machinery
16 JP16 Precision machinery

USA

17 US01 Food
18 US02 Beverage and tobacco product
19 US03 Textile mills
20 US04 Textile product mills
21 US05 Apparel
22 US06 Leather and allied product
23 US07 Wood product
24 US08 Paper
25 US09 Printing and related support activities
26 US10 Petroleum and coal products
27 US11 Chemical
28 US12 Plastics and rubber products
29 US13 Nonmetallic mineral product
30 US14 Primary metal
31 US15 Fabricated metal product
32 US16 Machinery
33 US17 Computer and electronic product
34 US18 Electrical equipment, appliance, and component
35 US19 Transportation equipment
36 US21 Furniture and related product7
37 US22 Miscellaneous

Canada

38 CA01 Goods-producing industries
39 CA02 Service-producing industries
40 CA03 Industrial production
41 CA04 Non-durable manufacturing industries
42 CA05 Durable manufacturing industries
43 CA06 Energy sector

Germany

44 DE01 Capital goods
45 DE02 Durable consumer goods
46 DE03 Intermediate goods
47 DE04 Non-durable consumer goods

France

48 FR01 Capital goods
49 FR02 Durable consumer goods
50 FR03 Intermediate goods
51 FR04 Non-durable consumer goods

Italy

52 IT01 Capital goods
53 IT02 Durable consumer goods
54 IT03 Intermediate goods
55 IT04 Non-durable consumer goods

Great Britain

56 GB01 Capital goods
57 GB02 Durable consumer goods
58 GB03 Intermediate goods
59 GB04 Non-durable consumer goods
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Figure 2: Community Analysis: (a) community structure in 1997, (b) commu-
nity structure in 2009 and (b) temporal change of modularity
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(a)

(b)

Figure 3: Variation of Information: (a) 1995 and (b) 2011
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Table 2: Linked communities

Year 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

linked comm1 c1 c1 c1 c2 c1 c1 c2 c1 c1 c1 c1 c1 c1 c1 c1 c1 c1
linked comm2 c2 c3 c2 c3 c4 c2 c4 c3 c3 c3 c2 c3 c2 c2 c3 c4 c2
linked comm3 c3 c4 c3 c4 c2 c3 c3 c2 c2 c2 c3 c2 c3 c3 c2 c2 c3
linked comm4 c4 c6 c4 c5 c5 c4 c5 c4 c5 c4 c4 c4 c4 c4 c4 c3 c4
linked comm5 c5 c5 c5 c7 c7 c5 c6 c5 c6 c5 c5 c5 c5 c5 c6 c6 c5
linked comm6 c6 c7 c6 c6 c6 c6 c7 c6 c7 c6 c6 c6 c6 c6 c7 c8 c6

2010 and 2011. Communities were arranged in decreasing order of the number
of industry sectors in each community. For instance 95c1 (community c1 in
1995) is the largest, and 95c2 is the second largest. The indices for node 95c2
were displaced vertically relative to node 95c1 for better visibility. All other
indices were displaced vertically in the same manner.

We define link relation for the pair of communities with the largest Jaccard
index between adjoining year. We observed clearly linked relationships for most
of communities. For instance, nodes 95c1 (community c1 in 1995), 95c2, 95c3,
95c4, 95c5, and 95c6 are linked to nodes 96c1 (community c1 in 1996), 96c3,
96c4, 96c6, 96c5, and 96c7, respectively. Similarly, nodes 10c1 (community c1
in 2010), 10c4, 10c2, 10c3, 10c6, and 10c8 are linked to nodes 11c1 (community
c1 in 2011), 11c2, 11c3, 11c4, 11c5, and 11c6, respectively. We used this means
to identify five linked communities between 1995 and 2011 as shown in Table
2. The identified link structure shows that a six-backbones structure exists in
the international trade network.

The composition of the linked communities was analyzed in terms of the
marginal rank of the trade volume in countries and industry sectors. The
respective compositions of the first to the fifth linked communities are listed
in Table 3. Certain features of the compositions of these linked communities
are briefly described below. The first linked community consists the metal
and chemical materials and the electrical and transport equipment industries
in primarily European countries. The second linked community and the fifth
linked community contain similar industry sectors. Next, the second linked
community and the fourth linked community contain similar industry sectors
but different country group. The second linked community includes China
and South Korea. While the fourth linked community includes the US and
Canada. In addition, the third linked community consists of various countries
from all over the world. The business sectors in this linked community are
different from other linked communities, because the major sectors are trade
and finance.
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Figure 4: Jaccard index: (a) between 1995 and 1996, and (b) between 2010
and 2011
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Table 3: Composition of Linked Communities

(a) Linked comm 1 (Total=24 trillions US$)

Rank Share Country Industry sector

Largest 5.07% United States Financial Intermediation
2nd 4.92% United States Renting of M&Eq and Other Business Activities
3rd 4.91% Rest of World Renting of M&Eq and Other Business Activities
4th 3.41% United Kingdom Renting of M&Eq and Other Business Activities
5th 3.00% United Kingdom Financial Intermediation

(b) Linked comm 4 (Total=20 trillions US$)

Rank Share Country Industry sector

Largest 37.67% Rest of World Mining and Quarrying
2nd 6.06% Rest of World Coke, Refined Petroleum and Nuclear Fuel
3rd 5.11% Russia Mining and Quarrying
4th 4.38% Canada Mining and Quarrying
5th 3.04% Australia Mining and Quarrying

(c) Linked comm 3 (Total=17 trillions US$)

Rank Share Country Industry sector

Largest 9.03% Rest of World Basic Metals and Fabricated Metal
2nd 8.33% Germany Basic Metals and Fabricated Metal
3rd 4.74% Germany Machinery, Nec
4th 3.58% Japan Basic Metals and Fabricated Metal
5th 3.46% United States Basic Metals and Fabricated Metal

(d) Linked comm 2 (Total=16 trillions US$)

Rank Share Country Industry sector

Largest 9.27% Rest of World Chemicals and Chemical Products
2nd 7.04% Germany Chemicals and Chemical Products
3rd 5.88% United States Chemicals and Chemical Products
4th 3.49% France Chemicals and Chemical Products
5th 3.37% United States Wholesale Trade and Commission Trade,

　 　 Except of Motor Vehicles and Motorcycles

(e) Linked comm 5 (Total=15 trillions US$)

Rank Share Country Industry sector

Largest 13.95% China Electrical and Optical Equipment
2nd 13.22% Rest of World Electrical and Optical Equipment
3rd 11.80% United States Electrical and Optical Equipment
4th 9.15% Japan Electrical and Optical Equipment
5th 8.08% Germany Electrical and Optical Equipment

(f) Linked comm 6 (Total=7 trillions US$)

Rank Share Country Industry sector

Largest 16.76% Germany Transport Equipment
2nd 16.01% United States Transport Equipment
3rd 11.08% Japan Transport Equipment
4th 7.38% France Transport Equipment
5th 5.85% United Kingdom Transport Equipment
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C. Synchronization of International Business Cycles

The phase time series θj(t)(j = 1, · · · , 1435) for the growth rate of value added
were evaluated for the years 1995 to 2011 using the methodology described in
subsection a.

Figure 5 shows the polar plot of phase in 1997 for (a) all sectors, (b) com-
munity c1, (c) community c2, and (d) community c3. In these polar plots, the
complex order parameter u(t) is indicated by a black asterisk. The respective
amplitude for the order parameters are 0.483, 0.359, and 0.534 for community
c1, c2, c3, respectively. While the amplitude for all sectors is 0.253. The re-
spective amplitude for the order parameter of each community was observed
to be greater than the amplitude for all sectors. This means that active trade
produces higher phase coherence within each community.

Figure 5 shows the polar plot of phase in 2009 are shown in for (a) all
sectors, (b) community c1, (c) community c2, and (d) community c3. In these
polar plots, the complex order parameter u(t) is indicated by a black asterisk.
The respective amplitude of the order parameters are 0.758, 0.512, 0.801 for
community c1, c2, and c3, respectively. While the amplitude for all sectors is
0.662. Amplitude r(t) and average phase ϕ(t) for each community is equiva-
lent to those quantities for all sectors. The respective amplitude for the order
parameter of each community was observed again to be greater than the am-
plitude for all sectors. It was noted that the amplitudes and average phases in
2009 are larger than the quantities in 1997. This relation clearly indicates that
interdependent relationship of the global economy has become stronger.

Figure 6 shows the temporal change in amplitude for the order parameter
r(t) for the years 1996 to 2011. Phase coherence decreased gradually in the late
90’s but increased sharply in 2001 and 2002. This temporal change might be
related to the structural change in the international trade network discussed in
subsection A. From 2002, the amplitudes for the order parameter r(t) remain
high except for the years 2005 and 2009. The decrease in 2009 was caused by
financial crisis resulting from the housing bubble crash in the US but the cause
of the decrease in 2005 is unclear.

Order parameters are estimated for the growth rate of the value added time
series shuffled randomly with keeping auto-correlation [20, 21] and order pa-
rameter averaged over 1000 shuffled time series is plotted by black curve. This
means that average order parameter is evidently larger than the systematic
error of the analysis method. Therefore the synchronization observed for each
linked communities is statistically significant. Thus it should be noted that
existence of the synchronization in the international trade network is fully-
clarified.
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(c) (d)

Figure 5: Polar plot of phase for growth rate of value added: (a) all commu-
nities in 1997, (b) community c1 in 1997, (c) all communities in 2009, and (d)
community c1 in 2009
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Figure 7: Eigenvalues of Significant Modes

D. Significant Modes in Economic Crisis

In the analysis of G7 Global Production Data, we obtained eigenvalues for the
correlation matrix C from Eq.(18) and selected statistically significant modes
using the rotational random shuffling. In the rotational random shuffling, the
growth rate of production time series x(t) was shuffled randomly with keeping
autocorrelation [20, 21] and then eigenvalues for the correlation matrix were
calculated for the randomly shuffled time series. If an eigenvalue for the origi-
nal time series is larger than the largest eigenvalue calculated for the randomly
shuffled time series, the eigenvalue or eigen mode is regarded as statistically
significant. The largest four eigenvalues of each period are shown in the upper
panel of Fig. 7. The lower panel depicts temporal change of the number of sig-
nificant modes. Note that only a single eigen mode is significant for the periods
that contain the sub prime mortgage crisis of 2008. This means that produc-
tion for all industry sectors in G7 countries behaves similarly during economic
crisis. The economic risk propagate instantaneously to All industry sectors in
G7 countries and all industries decrease their production simultaneously.
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E. Community Structure of Production Network

We identified the community structure for each time slice of the global produc-
tion network constructed using the methodology described in section c. Figure
8 shows examples of community structures obtained for (a) 2004, (b) 2007, (c)
2010, and (d) 2013. Average value of modularity Qs is 0.302 during 2001 and
2013. Maximum and minimum of modularity are 0.410 and 0.153, respectively.
The means that the community structure is clearly identified for the global pro-
duction network. The number of major communities varies between two and
four. There were two major communities for the global economic crisis during
2007 and 2010. The observed community structure is consistent to the sta-
tistically significant modes obtained above. The number of major community
in the period of normal economy (2004 and 2013) is larger than the period of
economic crisis (2007 and 2010). The small number of statistically significant
mode in economic crisis is observed as the small number of major communities
in the global production network. This is interpreted again such that produc-
tion for all industry sectors in G7 countries behaves similarly during economic
crisis. The economic risk propagate instantaneously to All industry sectors in
G7 countries and all industries look for new demand. Consequently new links
(trade relations) are spanned beyond communities observed in the period of
normal economy.

F. Linked Communities of Production Network

The temporal evolution of communities is characterized by the link relations
for communities in adjoining years. The similarity of communities ci and cj in
adjoining years was measured by the use of the Jaccard index J(ci, cj). Figure
9 shows the Jaccard indices in adjoining years: (a) between 2003 and 2004,
(b) between 2006 and 2007, (c) between 2009 and 2010, and (d) between 2012
and 2013. Communities were arranged in decreasing order of the number of
industry sectors in each community. For instance community c1 is the largest,
and c2 is the second largest.

We define link relation for the pair of communities with the largest Jac-
card index between adjoining year. Most of communities show clearly linked
relationships with communities of the adjoining year. For instance, Fig. 9 (a)
shows that communities c1, c2, c3, and c4 in 2003 are linked to communities c2,
c1, c1, and c3 in 2004, respectively. Similarly, Fig. 9 (c) shows that communi-
ties c1 and c2 in 2009 are linked to communities c1 and c2 in 2010, respectively.
The obtained linked communities are summarized in Table 4, LinkedComm2,
and LinkedComm3 for three periods: before the crisis, during the crisis, after
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Figure 8: Community structure: (a) 2004, (b) 2007, (c) 2010, and (d) 2013
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Table 4: Linked communities before the crisis

Year 2001 2002 2003 2004 2005 2006

Linked comm 1 c1 c2 c2 + c3 c1 c2 c3
Linked comm 2 c2 c1 c1 c2 c1 c2
Linked comm 3 c3 + c4 c3 c4 c3 c3 c1

Table 5: Linked communities during the crisis

Year 2008 2009 2010

Linked comm 4 c2 c1 c1
Linked comm 5 c1 c2 c2

Table 6: Linked communities after the crisis

Year 2012 2013

Linked comm 6 c1 c3
Linked comm 7 c2 c1
Linked comm 8 c3 c2
Linked comm 9 c4 c4

the crisis, respectively. The temporal change of communities structurer, i.e.
community dynamics is regarded as an example of collective motion.

We obtained three linked communities before the crisis. Linked commu-
nities 1 to 3 are characterized by countries and corresponds to Europe, US,
Canada, respectively. Japan distributed to three communities.

Then two Linked communities (linked communities 4 and 5) were obtained
for the period of the crisis. Linked communities 4 and 5 are characterized by
sectors. For instance, linked community 4 is composed by sectors: Steel prod-
ucts, Transportation equipments, Chemical products, Pulp and paper products,
Computer and electronic product, and others. Linked community 5 is composed
by sectors: Fabricated metal products, Precision machinery, Textile products,
and others.

We obtained four linked communities after the crisis. Linked communities
6 to 9 are characterized by countries as before. For instance, linked commu-
nities 6 to 9 corresponds to Canada, US, Japan, and Europe. Some European
countries distributes to linked communities 6 and 7.

G. Communities in Multiplex Production Network

The dynamics of community structure is observed in the temporal change of
community structure for the 13 layer multiplex network. We used parameter
rs = 1, inter slice coupling Cisr = 0.8. Color of each node corresponds to
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Figure 9: Jaccard index: (a) between 2003 and 2004, (b) between 2006 and
2007, (c) between 2009 and 2010, and (d) between 2012 and 2013
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Figure 10: Comparison of communities between multiplex network and single
layer network: (a) 2004, (b) 2007, (c) 2010, and (d) 2013

identified community and each number indicates layer from 2007 to 2013.
We compare community structures between multiplex network and single

layer network for 2004, 2007, 2010, and 2013. Figure 10 depicts result of the
comparison. The left and right column of each panel correspond to commu-
nities identified for multiplex network and single layer network, respectively.
Although direction of links are ignored in community analysis for multiplex
network, agreement of the two analysis is reasonably good. Note that the
number of communities obtained for single layer network is larger than that
obtained for multiplex network.

H. Controllability of Production Network

The number of driver nodes were identified by the use of Eqs. (26) to (28).
Matchedness distribution P>(m) is shown in Fig. 11 for 2004, 2007, 2010, and
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2013. It is clearly observed in panels (b) and (c) in Fig. 11 that many nodes
have small value of matchedness m during economic crisis. Temporal change of
the number of driver nodes is shown in Fig. 12. Note that the number of driver
nodes increased during economic crisis from 2008 to 2010. During economic
crisis the share of driver nodes nD becomes about 80% of all the nodes, whereas
nD is about 60% during normal period. This means that we cannot expect to
control global real economy by stimulating a relatively small number of nodes.

Partial driver nodes with matchedness less than or equal to 0.2 (mj ≤ 0.2)
are collected for 2004, 2007, 2010, and 2013 and shown in Tables ?? to ??,
respectively. During normal period we have 16 nodes (27.1%) and 15 nodes
(25.4%) for 2004 and 2013, respectively. On the other hand, during economic
crisis we have 36 nodes (61.0%) and 47 nodes (79.7%) for 2007 and 2010,
respectively.

If we look at the distribution of country, we notice the following: In 2004
during normal period, we have 0 node (0.0%), 1 node (25.0%), 2 nodes (50.0%),
3 nodes (75.0%), 2 nodes (50.0%), 5 nodes (18.8%), and 3 nodes (14.3%) for
Canada, Germany, France, Great Britain, Italy, Japan, and USA, respectively.
In 2013 during normal period, we have 0 node (0.0%), 1 node (25.0%), 1
node (25.0%), 1 node (25.0%), 0 node (0.0%), 4 nodes (6.3%), and 8 nodes
(38.1%) for Canada, Germany, France, Great Britain, Italy, Japan, and USA,
respectively. In 2007 during economic crisis, we have 3 nodes (50.0%), 3 nodes
(75.0%), 2 nodes (50.0%), 2 nodes (50.0%), 1 node (25.0%), 12 nodes (12.5%),
and 13 nodes (61.9%) for Canada, Germany, France, Great Britain, Italy,
Japan, and USA, respectively. In 2010 during economic crisis, we have 5 nodes
(83.3%), 4 nodes (100.0%), 4 nodes (100.0%), 2 nodes (50.0%), 1 node (25.0%),
14 nodes (12.5%), and 17 nodes (81.0%) for Canada, Germany, France, Great
Britain, Italy, Japan, and USA, respectively. Therefore it is hard to find a
country dominates driver nodes for both of normal period and economic crisis.

If we look at the distribution of sector, we notice the following: In 2004
during normal period, we have 4 nodes (21.1%) and 12driver nodes (30.0%)for
durable/nondurable comsumer goods sectors and capital/intermediate goods,
respectively. In 2013 during normal period, we have 4 driver nodes (21.1%)
and 11 driver nodes (27.5%) for durable/nondurable comsumer goods and cap-
ital/intermediate goods, respectively. In 2007 during economic crisis, we have
6 driver nodes (31.6%) and 30 driver nodes (75.0%) for durable/nondurable
comsumer goods and capital/intermediate goods, respectively. In 2010 during
economic crisis, we have 12 driver nodes (63.2%) and 35 driver nodes (87.5%)
for durable/nondurable comsumer goods and capital/intermediate goods, re-
spectively. Here we have 19 sectors classified under the category as durable and
non-durable consumer goods: JP10, JP11, JP14, US01, US02, US05, US18,
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Figure 11: Matchedness Distribution: (a) 2004, (b) 2007, (c) 2010, and (d)
2013

Table 7: Driver Nodes with m ≤ 0.2 in 2004

node description matchedness comm

FR02 Durable consumer goods 0.166 c1
US06 Leather and allied product 0.166 c1
JP03 Fabricated metal products 0.166 c1
GB02 Durable consumer goods 0.2 c1
GB01 Capital goods 0.2 c1
IT01 Capital goods 0.2 c1
US10 Petroleum and coal products 0.2 c1
JP12 Miscellaneous 0.2 c1
JP10 Textile products 0.2 c1
JP08 Plastic products 0.2 c1
DE01 Capital goods 0.2 c2
US16 Machinery 0.2 c2
GB03 Intermediate goods 0.166 c3
FR03 Intermediate goods 0.166 c3
JP04 Transportation equipments 0.166 c3
IT02 Durable consumer goods 0.2 c3

US21, CA01, CA02, CA04, DE02, DE04, FR02, FR04, IT02, IT04, GB02, and
GB04. The rest 40 sectors are classified under the category as capital and
intermediate goods. Therefore we can say that capital/intermediate goods sec-
tors are dominant over durable/nondurable consumer goods sectors for both
of normal period and economic crisis.

Degree Distributions are shown in Fig. 13 for 2004, 2007, 2010, and 2013.
The distributions have longer tail for the period of economic crisis as shown in
Fig. 13 (b) and (c). Increase of the number of driver nodes during economic

26



2002 2004 2006 2008 2010 2012
0

20

40

59

year

0.

0.5

1.

sh
are

of
dr
ive

rn
od

e

nu
m
be
r o
f d
riv
er
 no

de
s

sh
are

 of
 dr
ive

r n
od
es

Figure 12: Temporal Change of the Number of Driver Nodes

Table 8: Driver Nodes with m ≤ 0.2 in 2007

node description matchedness comm

GB03 Intermediate goods 0.0625 c1
DE03 Intermediate goods 0.0625 c1
DE02 Durable consumer goods 0.0625 c1
US15 Fabricated metal product 0.0625 c1
JP16 Precision machinery 0.0625 c1
JP15 General machinery 0.0625 c1
GB01 Capital goods 0.0714 c1
IT01 Capital goods 0.0714 c1
FR01 Capital goods 0.0714 c1
DE01 Capital goods 0.0714 c1
CA03 Industrial production 0.0714 c1
CA01 Goods-producing industries 0.0714 c1
US19 Transportation equipment 0.0714 c1
JP14 Electric appliances 0.0714 c1
JP08 Plastic products 0.0714 c1
JP05 Ceramic,stone and clay products 0.0714 c1
JP04 Transportation equipments 0.0714 c1
JP03 Fabricated metal products 0.0714 c1
JP02 Nonferrous metal products 0.0714 c1
JP01 Steel products 0.0714 c1
FR03 Intermediate goods 0.0625 c2
CA04 Non-durable manufacturing industries 0.0625 c2
US22 Miscellaneous 0.0625 c2
US17 Computer and electronic product 0.0625 c2
US13 Nonmetallic mineral product 0.0625 c2
US11 Chemical 0.0625 c2
US04 Textile product mills 0.0625 c2
US01 Food 0.0625 c2
JP12 Miscellaneous 0.0625 c2
JP09 Pulp and paper products 0.0625 c2
US18 Electrical equipment,appliance,and component 0.166 c2
US16 Machinery 0.166 c2
US12 Plastics and rubber products 0.166 c2
US09 Printing and related support activities 0.166 c2
US07 Wood product 0.166 c2
JP06 Chemical products 0.166 c2
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Table 9: Driver Nodes with m ≤ 0.2 in 2010

node description matchedness comm

US10 Petroleum and coal products 0 c1
GB01 Capital goods 0.0588 c1
FR04 Non-durable consumer goods 0.0588 c1
FR03 Intermediate goods 0.0588 c1
FR01 Capital goods 0.0588 c1
DE04 Non-durable consumer goods 0.0588 c1
DE03 Intermediate goods 0.0588 c1
CA02 Service-producing industries 0.0588 c1
US19 Transportation equipment 0.0588 c1
US17 Computer and electronic product 0.0588 c1
US14 Primary metal 0.0588 c1
US12 Plastics and rubber products 0.0588 c1
US07 Wood product 0.0588 c1
JP12 Miscellaneous 0.0588 c1
JP05 Ceramic,stone and clay products 0.0588 c1
JP01 Steel products 0.0588 c1
GB03 Intermediate goods 0.111 c1
US11 Chemical 0.111 c1
US03 Textile mills 0.111 c1
JP14 Electric appliances 0.111 c1
JP09 Pulp and paper products 0.111 c1
JP08 Plastic products 0.111 c1
JP07 Petroleum and coal products 0.111 c1
JP04 Transportation equipments 0.111 c1
JP02 Nonferrous metal products 0.111 c1
US08 Paper 0.2 c1
US06 Leather and allied product 0.2 c1
US01 Food 0.2 c1
JP11 Food and tobacco 0.2 c1
JP06 Chemical products 0.2 c1
DE02 Durable consumer goods 0.0588 c2
JP16 Precision machinery 0.0588 c2
IT01 Capital goods 0.0666 c2
FR02 Durable consumer goods 0.0666 c2
DE01 Capital goods 0.0666 c2
CA05 Durable manufacturing industries 0.0666 c2
CA04 Non-durable manufacturing industries 0.0666 c2
CA03 Industrial production 0.0666 c2
CA01 Goods-producing industries 0.0666 c2
US22 Miscellaneous 0.0666 c2
US21 Furniture and related product 0.0666 c2
US18 Electrical equipment,appliance,and component 0.0666 c2
US15 Fabricated metal product 0.0666 c2
US09 Printing and related support activities 0.0666 c2
US04 Textile product mills 0.0666 c2
JP13 Mining 0.0666 c2
JP10 Textile products 0.0666 c2

crisis from 2008 to 2010 is discussed from the view point of heterogeneity in
terms of degree distribution. The average number of degree ⟨k⟩ are 13.7, 25.1,
25.0, and 9.42 for 2004, 2007, 2010, and 2013, respectively.

The maximum degree kmax are 26, 41, 37, and 19 for 2004, 2007, 2010, and
2013, respectively. If we assume the power-law degree distribution P>(k) =
k−γ′

for entire region from 1 to kmax, power exponent γ
′ are estimated to be 1.25,

1.09, 1.129, and 1.38, for 2004, 2007, 2010, and 2013, respectively. Here P>

is the cumulative probability. Thus we have power exponent γ for probability
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Table 10: Driver Nodes with m ≤ 0.2 in 2013

node description matchedness comm

US19 Transportation equipment 0.125 c1
US18 Electrical equipment,appliance,and component 0.125 c1
US15 Fabricated metal product 0.125 c1
US13 Nonmetallic mineral product 0.125 c1
US12 Plastics and rubber products 0.125 c1
US11 Chemical 0.125 c1
US02 Beverage and tobacco product 0.125 c1
GB04 Non-durable consumer goods 0.2 c1
DE01 Capital goods 0.2 c1
JP08 Plastic products 0.125 c2
JP07 Petroleum and coal products 0.2 c2
JP05 Ceramic,stone and clay products 0.2 c2
JP03 Fabricated metal products 0.2 c2
US10 Petroleum and coal products 0 c3
FR04 Non-durable consumer goods 0 c4

density p(k) = k−γ are 2.25, 2.09, 2.129, and 2.38, for 2004, 2007, 2010, and
2013, respectively. Therefore we have ⟨k⟩ ≈ 12 and γ ≈ 2.3 during normal
period. On the other hand, we have ⟨k⟩ ≈ 20 and γ ≈ 2.1 during economic
crisis. With these value of ⟨k⟩ and γ, an analytical formulae [34] gives nD ≈
0.25 and nD ≈ 0.40 for normal period and economic crisis, respectively. This
means that increase of the number of driver nodes during economic crisis is
explained qualitatively by the heterogeneity in terms of degree distribution.

V. Conclusion

The interdependent relationship of the global economy has become stronger
due to the increase of international trade and investment. Most of national
economies are linked by international trade and consequently economic glob-
alization forms a giant economic complex network with strong links, i.e. inter-
actions due to increasing trade. In Japan many small and medium enterprises
would achieve higher economic growth by free trade based on the establish-
ment of EPA. Thus, it is expected that various interesting collective motions
will emerge in global economy under trade liberalization.

We analyzed the industry sector specific international trade data to clarify
the structure and dynamics of communities that consist of industry sectors
in various countries linked by international trade. We applies conventional
community analysis to each time slice of the international trade network data,
the World Input-Output Database. This database contains the industry sec-
tor specific international trade data on 41 countries and 35 industry sectors
from 1995 to 2011. Once the community structure was obtained for each year,
the links between communities in adjoining years was identified by using the
Jaccard index as a similarity measure between communities in adjoining years.
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Figure 13: Degree Distribution: (a) 2004, (b) 2007, (c) 2010, and (d) 2013

The identified linked communities show that six backbone structures exist in
the international trade network. The largest linked community is Financial In-
termediation sector and Renting of Machines and Equipments sector in the US
and the UK. The second is Mining and Quarrying sector in Rest of World, Rus-
sia, Canada, and Australia. The third is Basic Metals and Fabricated Metal in
Rest of World, Germany, Japan, and the US. These community structure means
that international trade is actively transacted among same or similar industry
sectors. Furthermore, the robustness of the observed community structure was
confirmed by quantifying the variation of information for perturbed network
structure.

The theoretical study we conducted using a coupled limit-cycle oscillator
model suggests that the interaction terms due to international trade can be
viewed as the origin of the synchronization. We looked at international business
cycle as the most important aspect of the collective motion in Economy. We
used the Hilbert transform to evaluate the phase time series of the growth rate
of value added for 1435 nodes and then estimated the complex order parameters
for communities. The respective amplitude for the order parameter of each
community was observed to be greater than the amplitude for all sectors. This
means active trade produces higher phase coherence within each community.
The temporal change in amplitude for the order parameter was studied for the
years 1996 to 2011. Phase coherence decreases gradually in the late 90 ’s but
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increased sharply in 2001 and 2002. From 2002, the amplitudes for the order
parameter remained high except for the years 2005 and 2009. The decrease in
2009 was caused by financial crisis resulting from the housing bubble crash in
the US but the cause of the decrease in 2005 is unclear. Order parameters were
estimated for the growth rate of the value added time series shuffled randomly
with keeping rotationally and order parameter averaged over 1000 shuffled time
series was plotted by black curve. Therefore the synchronization observed for
each linked communities was statistically significant.

Then, we characterized features of collective motion during economic crisis
in 2008 by studying G7 Global Production Network constructed using produc-
tion index time series from January 1998 to January 2015 for G7 countries.
G7 Global Production Network was analyzed by the use of complex Hilbert
principal component analysis, community analysis for single layer network and
multiplex networks, and structural controllability. First, complex Hilbert prin-
cipal component analysis showed that only a single eigen mode was significant
for the global economic crisis during 2007 and 2010. The community structure
was clearly identified for the global production network with sufficiently large
values of modularity. There were 2 major communities for the global economic
crisis during 2007 and 2010, where as there were 4 major communities for nor-
mal economic state. Furthermore, community analysis for multiplex networks
showed that agreement of the two analysis was reasonably good, although di-
rection of links were ignored in community analysis for multiplex network. The
number of communities obtained for single layer network was larger than that
obtained for multiplex network.

Finally, study of structural controllability showed that the number of driver
nodes increased during economic crisis from 2008 to 2010. During economic
crisis the share of driver nodes nD became about 80% of all the nodes, whereas
nD was about 60% during normal period. The observed increase in the num-
ber of driver nodes during economic crisis was explained qualitatively by the
heterogeneity in terms of degree distribution. This means that we cannot ex-
pect to control global real economy by stimulating a relatively small number
of nodes and furthermore it becomes more difficult to introduce some measure
to control the state of global economy during the time of economic crisis than
during the period of normal economy.

In conclusion, we observed various kinds of collective motions in global
economy under trade liberalization, as we expected. Although many Japanese
small and medium enterprises would achieve higher economic growth by free
trade, we also need to pay attention to the fact that once negative economic
shock occurred in a regional economy, it will propagate to the rest of the world
instantaneously and we have no strong measure to control the economic crisis.
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