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Abstract 

Narrow industrial belts comprising a system of cities are prospering worldwide. The 
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1 Introduction

Narrow industrial belts serve as cradles of development and prosperity and engender
megalopolises worldwide. A chain of cities, for example, is distributed from Boston
to Washington, DC in a closed narrow zone between the Atlantic Ocean and the Ap-
palachian Mountains. A megalopolis, such as New York in this chain, is growing as a
core of the economic agglomeration.

A long narrow economy is a realistic spatial platform of a chain of cities. In the
early development of NEG (new economic geography),1 diverse agglomeration patterns
of this economy were observed. A megalopolis which consists of large core cities that are
connected by an industrial belt, i.e., a continuum of cities associated with lower transport
costs was found by Mori (1997) [24]. A discretized highly regular central place system
a la Christaller and Lösch2 was observed when population size increases (Fujita and
Mori, 1997 [15]). Yet not much development was made thereafter, while microeconomic
structures of NEG models have been well established.

The racetrack economy has come to be employed increasingly as a spatial platform.
This economy presents an idealized uniform trading space along the circumference of
a circle with equal competition between places. Emergence of discrete agglomerations
out of the uniformity was demonstrated. A spatial alternation of a core place with a
larger population and a periphery place with zero population a la Christaller and Lösch
(cf., Section 3) was found considering the hierarchy of different industries in Tabuchi and
Thisse (2011) [30]. The emergence of this pattern was explained by recurrent bifurcations
in Ikeda, Akamatsu, and Kono (2012) [17], and Akamatsu, Takayama, and Ikeda (2012)
[2]. Anas (2004) [3] demonstrated the presence of balanced agglomeration, concentrated
agglomeration, and de-agglomeration by removing agriculture and treating congestion
and prices of land and labor as the main dispersion forces.

A comparative study of the long narrow economy and the racetrack economy was
conducted by Mossay and Picard (2011) [25] for Beckman’s CBD formation model
(1976) [6] in a continuous space to display the difference in agglomeration patterns:
a single city in a long narrow economy and multiple equilibria with an odd number of
cities in the racetrack economy. This study, however, was conducted without the stability
analysis of equilibria and, therefore, its validity requires further verification. In contrast,
as clarified in this paper (Section 4.2), a similarity between the two economies can be
observed in agglomeration patterns with high spatial regularity, in agreement with the
underlying intuitive belief that both economies would tend to behave similarly as the

1The evolution of spatial agglomeration was studied by Krugman (1991) [21], leading to the subsequent
development of NEG models various kinds (see Baldwin et al., 2003 [5] for review).

2For central place theory, see Christaller (1933) [8] and Lösch (1940) [23].
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number of places increases.
That said, the objective of this paper is to answer the question if an NEG model

in a discretized long narrow economy is capable of systematically producing the two
characteristic agglomeration patterns that hitherto have been observed fragmentarily:

(1) A chain of spatially repeated core–periphery pattern a la Christaller and Lösch.

(2) A megalopolis which consists of large core cities that are connected by an industrial
belt.

It is desirable to set forth principles underpinning the self-organization of such patterns,
just as Christaller’s distributions (1933) [8] were founded on geometrical principles. A
study of these patterns would give a hint at the economic implication of agglomeration

shadow.3

In this paper, we investigate the agglomeration patterns of long narrow economy with
multiple equally spaced discrete places on a line segment. In this economy, the agglom-
eration progresses gradually without undergoing bifurcation and the onset of agglomera-
tion is not clear, unlike in the two-place and racetrack economies. The racetrack economy

analogy is introduced to describe the emergence of the chain of spatially repeated core–
periphery pattern. There is a trade-off in that the racetrack economy is not realistic but
analytically tractable, while the long narrow economy is realistic but is less analytically
tractable. It is the basic strategy of this paper to interpret and describe agglomeration
characteristics in the latter economy based on the theoretical information of the former
economy.

Real economic activities allow models of various kinds that entail diverse agglom-
erations (e.g., Pflüger and Südekum, 2008 [27]; Berliant and Yu, 2014 [7]). This paper
employs the model by Forslid and Ottaviano (2003) [12] in favor of its analytical solv-
ability, which plays a key role in deriving a formula for the occurrence of bifurcation in
the racetrack economy. There are two kinds of workers: unskilled workers are immo-
bile and equally distributed along places, whereas skilled ones (footloose entrepreneurs)
migrate between places to maximize utility. Nowadays, the immobile workers can be
interpreted as a population attached to certain amenities or to traditional housing. The
replicator dynamics is employed as the standard case, while the logit dynamics is used
for comparison.

That question on possible agglomeration patterns is answered by demonstrating their
dependence on agglomeration forces. When agglomeration forces are large, a spatially

3Arthur (1990) [4] stated: “Locations with large numbers of firms therefore cast an ‘agglomeration
shadow’ in which little or no settlement takes place. This causes separation of the industry.” See also
Fujita, Krugman, and Venables (1999) [14], Ioannides and Overman (2004) [20], and Fujita and Mori
(2005) [16].
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repeated core–periphery pattern is shown to emerge, a megalopolis takes place when
they are small. The value of the transport cost at the onset of bifurcation, which was
called break point in the two-place economy (Fujita, Krugman, and Venables, 1999 [14]),
is highlighted as a key concept. This point is analytically predicted in the racetrack
economy and is successfully employed to index the emergence of the core–periphery
pattern in the long narrow economy.

This paper is organized as follows. The analytically solvable model is presented in
Section 2. Bifurcation of the racetrack economy is described in Section 3. Spatial ag-
glomeration in the long narrow economy is investigated based on the racetrack economy
analogy in Section 4. Section 5 observes the agglomeration patterns in the logit dynam-
ics.
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2 Model of spatial economy

An analytically solvable, multi-regional, new economic geography model, which re-
places the production function of Krugman (1991) [21] with that of Flam and Helpman
(1987) [11], is presented on the basis of Forslid and Ottaviano (2003) [12], as well as
Akamatsu and Takayama (2009) [1] and Ikeda et al. (2014) [19]. Basic assumptions
are presented in Section 2.1. Market equilibrium is introduced in Section 2.2 and spatial
equilibrium in Section 2.3.

2.1 Basic assumptions

The economy of this model is composed of n places (labeled i = 1, . . . , n), two factors
of production (skilled and unskilled labor) and two sectors (manufacturing, M, and agri-
culture, A). Both N skilled and Nu unskilled workers consume two types of final goods:
manufacturing sector goods and agricultural sector goods. Workers supply one unit of
each type of labor inelastically. Skilled workers are mobile among places, and the num-
ber of skilled workers in place i is denoted by λi (

∑n
i=1 λi = N). The total number N of

skilled workers is normalized as N = 1. Unskilled workers are immobile and equally
distributed across all places with unit density (i.e., Nu = 1 × n).

Preferences U over the M- and A-sector goods are identical across individuals. The
utility of an individual in place i is

U(CM
i ,C

A
i ) = µ log CM

i + (1 − µ) log CA
i (0 < µ < 1), (2.1)

where µ is a constant parameter expressing the expenditure share of manufacturing sector
goods, CA

i is the consumption of the A-sector product in place i, and CM
i is the manufac-

turing aggregate in place i, which is defined as

CM
i ≡

 n∑
j=1

∫ n j

0
q ji(ℓ)(σ−1)/σdℓ


σ/(σ−1)

, (2.2)

where q ji(ℓ) is the consumption in place i of a variety ℓ ∈ [0, n j] produced in place j,
n j is the number of produced varieties at place j, and σ > 1 is the constant elasticity of
substitution between any two varieties. The budget constraint is given as

pA
i CA

i +

n∑
j=1

∫ n j

0
p ji(ℓ)q ji(ℓ)dℓ = Yi, (2.3)

where pA
i is the price of A-sector goods in place i, p ji(ℓ) is the price of a variety ℓ in
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place i produced in place j, and Yi is the income of an individual in place i. The incomes
(wages) of skilled workers and unskilled workers are represented, respectively, by wi and
wu

i .
An individual in place i maximizes the utility in (2.1) subject to the budget constraint

in (2.3). This yields the following demand functions:

CA
i = (1 − µ) Yi

pA
i

, CM
i = µ

Yi

ρi
, q ji(ℓ) = µ

ρσ−1
i Yi

p ji(ℓ)σ
, (2.4)

where ρi denotes the price index of the differentiated products in place i, which is

ρi =

 n∑
j=1

∫ n j

0
p ji(ℓ)1−σdℓ


1/(1−σ)

. (2.5)

Since the total income in place i is wiλi + wu
i , the total demand Q ji(ℓ) in place i for a

variety ℓ produced in place j is given by

Q ji(ℓ) = µ
ρσ−1

i

p ji(ℓ)σ
(wiλi + wu

i ). (2.6)

The A-sector is perfectly competitive and produces homogeneous goods under constant-
returns-to-scale technology, which requires one unit of unskilled labor per unit output. A-
sector goods are transported without transportation cost and are chosen as the numéraire.
In equilibrium, we have pA

i = wu
i = 1 for each i.

The M-sector output is produced under increasing-returns-to-scale technology and
Dixit-Stiglitz monopolistic competition. A firm incurs a fixed input requirement of α
units of skilled labor and a marginal input requirement of β units of unskilled labor. An
M-sector firm located in place i chooses (pi j(ℓ) | j = 1, . . . , n) that maximizes its profit

Πi(ℓ) =
n∑

j=1

pi j(ℓ)Qi j(ℓ) − (αwi + βxi(ℓ)) , (2.7)

where xi(ℓ) is the total supply of variety ℓ produced in place i and (αwi + βxi(ℓ)) is the
cost function by Flam and Helpman (1987) [11].

The transportation costs for M-sector goods are assumed to take the iceberg form.
That is, for each unit of M-sector goods transported from place i to place j (, i), only a
fraction 1/Ti j < 1 actually arrives (Tii = 1). Consequently, we have

xi(ℓ) =
n∑

j=1

Ti jQi j(ℓ). (2.8)
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It is assumed that Ti j = Ti j(τ) is a function in a transport cost parameter τ.
Then the profit function of an M-sector firm in place i, given in (2.7) above, can be

rewritten as

Πi(ℓ) =
n∑

j=1

pi j(ℓ)Qi j(ℓ) −
αwi + β

n∑
j=1

Ti jQi j(ℓ)

 , (2.9)

which is maximized by the firm. The first-order condition for this profit maximization
yields

pi j(ℓ) =
σβ

σ − 1
Ti j. (2.10)

This implies that pi j(ℓ), as well as Qi j(ℓ) and xi(ℓ), does not depend on ℓ. Therefore,
argument ℓ is suppressed in the sequel.

2.2 Market equilibrium

In the short run, skilled workers are immobile between places, i.e., their spatial distribu-
tion λ = (λ1, . . . , λn) is assumed to be given. The market equilibrium conditions consist
of three conditions: the M-sector goods market clearing condition, the zero-profit condi-
tion due to the free entry and exit of firms, and the skilled labor market clearing condition.
The first condition is written as (2.8) above. The second requires that the operating profit
of a firm, given in (2.7), be absorbed entirely by the wage bill of its skilled workers. This
gives

wi =
1
α

 n∑
j=1

pi jQi j − βxi

 . (2.11)

The third condition is expressed as

αni = λi. (2.12)

The price index ρi in (2.5) can be rewritten as

ρi =
σβ

σ − 1

1
α

n∑
j=1

λ jd ji


1/(1−σ)

(2.13)

by (2.10) and (2.12). Here d ji is a spatial discounting factor between places j and i, being
defined by

d ji = T 1−σ
ji . (2.14)
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The market equilibrium wage wi in (2.11) can be represented as

wi =
µ

σ

n∑
j=1

di j

∆ j
(w jλ j + 1) (2.15)

with the use of (2.6), (2.8), (2.10), (2.13), and (2.14). Here, ∆ j =
∑n

k=1 dk jλk denotes the
market size of the M-sector in place j. The indirect utility vi is obtained as

vi =
µ

σ − 1
log∆i + log wi. (2.16)

The equation (2.15) is solvable for wi as follows. With the notation w = (wi), D = (di j), ∆ = diag(∆1, . . . ,∆n),
Λ = diag(λ1, . . . , λn), 1 = (1, . . . , 1)⊤, I = diag(1, . . . , 1),

the equation (2.15) can be written as

w =
µ

σ
D∆−1(Λw + 1), (2.17)

which is solved for w as

w =
µ

σ

(
I − µ
σ

D∆−1Λ

)−1
D∆−11. (2.18)

The use of (2.18) in (2.16) gives the indirect utility function vector v = v(λ, τ) =
(v1(λ, τ), . . . , vn(λ, τ))⊤. Note that the values of some parameters, such as α and β, are
not influential on v.

2.3 Spatial equilibrium and stability

We introduce the spatial equilibrium, for which high skilled workers are allowed to mi-
grate among cities. A customary way to define such an equilibrium is to consider the
following problem: Find (λ∗, v̂) satisfying (vi − v̂)λ∗i = 0, λ∗i ≥ 0, vi − v̂ ≤ 0, (i = 1, . . . , n),∑n

i=1 λ
∗
i = 1.

(2.19)

For the solution of this problem, v̂ serves as the highest (indirect) utility. When the system
is in a spatial equilibrium, no individual can improve his/her utility by changing his/her
location unilaterally.

We march on to consider the stability of the spatial equilibrium satisfying (2.19) with
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the use of the replicator dynamics (Sandholm, 2010 [28]):

dλ
dt
= F (λ, τ), (2.20)

where F (λ, τ) = (Fi(λ, τ) | i = 1, . . . , n), and

Fi(λ, τ) = (vi(λ, τ) − v̄(λ, τ))λi, (i = 1, . . . , n). (2.21)

Here v̄ =
∑n

i=1 λivi is the average utility.
In this paper, we would like to replace the problem to obtain a set of stable spatial

equilibria by another problem to find a set of stable stationary points of the replicator
dynamics, as guaranteed in Sandholm (2010) [28]. Stationary points (rest points) λ∗(τ)
of the replicator dynamics (2.20) are defined as those points which satisfy the static equi-
librium equation

F (λ∗, τ) = 0. (2.22)

The conservation law of population
∑n

i=1 λ
∗
i = 1 is always satisfied.

To define stability of the stationary points, we consider the Jacobian matrix

J(λ∗, τ) =
∂F

∂λ
(λ∗, τ) (2.23)

of the equilibrium equation.4 We classify stability using the eigenvalues of this matrix: linearly stable: every eigenvalue has negative real part,
linearly unstable: at least one eigenvalue has positive real part.

If an equilibrium is linearly stable it is asymptotically stable, and if it is linearly unstable
it is asymptotically unstable. Bifurcation takes place when the Jacobian matrix has one
or more zero eigenvalues.

Remark 1. The logit dynamics (e.g., Fudenberg and Levine, 1998 [13]) is used for com-
parison later in Section 5. The skilled workers are assumed to be heterogeneous in their
preferences for their location choice (Tabuchi and Thisse, 2002 [29]; Murata, 2003 [26];
and Akamatsu, Takayama, and Ikeda, 2012 [2]). A specific functional form

F (λ, τ) = NP (v(λ, τ)) − λ (2.24)

is employed. Here P (v) = (P1, . . . , Pn)⊤ is the choice function vector and N = 1 by

4The spatial equilibrium λ∗ in (2.19) is defined on (n − 1)-dimensional simplex. The extendibility of
the Jacobian matrix to the full n-dimension is presented in Sandholm (2010, Chapter 3) [28].
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normalization. The conservation law
∑n

i=1 λi = 1 is satisfied. The logit choice function

Pi(v) =
exp(θvi)∑n

j=1 exp(θv j)
, (2.25)

is employed, where θ ∈ (0,∞) denotes a parameter related to the magnitude of the het-
erogeneity. When θ → ∞, the skilled workers decide their location only by vi, which
corresponds to the case without heterogeneity.
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3 Racetrack economy: idealistic spatial platform

n
n-11

2

n/2

Figure 1: Racetrack economy as a spatial platform of economic activities

The racetrack economy shown in Fig. 1 is introduced as an idealized uniform space
for economic activities, in which all places are given identical economic environments
(Section 3.1). This economy with such uniformity is suitable for theoretical treatment
by bifurcation theory, unlike the long narrow economy lacking in the uniformity. The
bifurcation rules5 for the racetrack economy are presented as a tool to describe spatial
agglomerations in Section 3.2. Moreover, formulas for the break point, which gives the
transport cost at the onset of bifurcation, are presented in Section 3.3 by the method
in Akamatsu, Takayama, and Ikeda (2012) [2] for the logit dynamics adapted to the
replicator dynamics. These rules and formulas play a pivotal role in the study of the long
narrow economy based on the racetrack economy analogy in Section 4.2.

3.1 Racetrack economy

A series of n places (labeled i = 1, . . . , n) is spread equally on the circumference of the
circle in Fig. 1. Neighboring places are connected by a road of a length d = 1/n and the
total lengthL of roads isL = 1. To be consistent with numerical examples in Section 4.2,
the number n of places is assumed as below:

Assumption 1. The number n of places is n = 2k (k = 3, 4, . . .).

The transport cost Ti j between places i and j is defined as

Ti j = exp
(
τm(i, j)

L
n

)
, (3.1)

where τ(> 0) is the transport cost parameter and m(i, j) = min{|i − j|, n − |i − j|}.

5These rules are given as a summary of Ikeda, Akamatsu, and Kono (2012) [17], Akamatsu, Takayama,
and Ikeda (2012) [2], and Ikeda and Murota (2014) [18].
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The flat earth equilibrium

λ∗ =
1
n

(1, . . . , 1)⊤ (3.2)

exists for any values of the transport cost parameter τ. The spatial period L between
neighboring places is equal to L = L/n = 1/n, which is normalized as L/d = 1. The
agglomeration from the flat earth equilibrium proceeds only via bifurcation.

3.2 Bifurcation rules

At a pitchfork bifurcation point,6 a bifurcating equilibrium path exists in the direction of
the eigenvector

η∗ = (1,−1, . . . , 1,−1)⊤ (3.3)

of the Jacobian matrix in (2.23). A bifurcating state has a population distribution of the
form:

λ = (1/n + a, 1/n − a, . . . , 1/n + a, 1/n − a)⊤, −1/n ≤ a ≤ 1/n. (3.4)

This represents a state in which concentrated places and extinguished places alternate
along the circle leading to a spatially repeated core–periphery pattern a la Christaller
and Lösch. This pattern is associated with the k = 4 system in one-dimension (cf.,
Section 4.1, Footnote 10 in particular). The spatial period between agglomerated place
becomes L/d = 2 and is double to L/d = 1 of the flat earth equilibrium, as depicted in
the left side of Fig. 2.

In the limit of agglomeration to core places, this state becomes

λ̂ =
1
n

(2, 0, 2, 0, . . . , 2, 0, 2, 0)⊤, (3.5)

from which a bifurcated equilibrium exists in the direction of the eigenvector

η̂ = (1, 0,−1, 0, . . . , 1, 0,−1, 0)⊤. (3.6)

Thereafter the racetrack economy with n = 2k (k = 3, 4, . . .) places can undergo a

6A pitchfork bifurcation point is either subcritical or supercritical. The bifurcation for the two-place
economy is subcritical and is called tomahawk (Fujita, Krugman, and Venables, 1999 [14]), whereas those
in the present study in Section 4.2 are supercritical.

11



Simple

bifurcation
L/d = 1 L/d = 2 L/d = 4

pitchfork
Simple

bifurcation
pitchfork

n
n-11

2

n
n-11

2

n

n-11
2

Figure 2: Spatial period doubling bifurcation cascade in the racetrack economy for 16
places (size of an area represents population size)

cascade of pitchfork bifurcations7 leading to successive doublings of the spatial period:

L
d
= 1 −→ 2 −→ 4 −→ · · · −→ n. (3.7)

This is called spatial period doubling bifurcation cascade. Figure 2 depicts this cascade
for 16 places.

3.3 Law for break points

A decrease of the transport cost to the break point, at which symmetric places change
catastrophically into a core–periphery pattern, is highlighted as a key concept in the two-
place economy (Fujita, Krugman, and Venables, 1999 [14]). In this paper, this concept
is extended to the period doubling cascade in (3.7) engendering core–periphery patterns,
and the value of τ for the mth period doubling for n places is denoted by τm,n. As for the
secondary bifurcation, we employ the following assumption that is in agreement with the
numerical results in Section 4.

Assumption 2. The secondary bifurcation takes place from the state of λ̂ = 1
n (2, 0, 2, 0, . . . , 2, 0, 2, 0)⊤

in (3.5).

The eigenanalysis of the Jacobian matrix J = ∂F /∂λ is conducted analytically in A
to derive Lemma 1 and Propositions 1 and 2 below.

Lemma 1. The break point τm,n for the direct (m = 1) or the secondary (m = 2) pitchfork

bifurcation exists when

µ

σ − 1
<

1
m
, m = 1, 2 (3.8)

is satisfied.
7See Tabuchi and Thisse (2011) [30], Ikeda, Akamatsu, and Kono (2012) [17], and Akamatsu,

Takayama, and Ikeda (2012) [2].
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Proof. See (A.21) and (A.42) in the Appendix. □

These values of break points are analytically predictable up to the second period
doubling by the formulas in the following proposition, while the associated formulas for
the logit dynamics are presented in Remark 2.

Proposition 1. When (3.8) with m = 2 is satisfied, the break points of the first and the

second period doublings are given by

τm,n = cmn, m = 1, 2 (3.9)

with constants

cm =
1

Lm(σ − 1)
log

(
1 +
√
ϵ∗m

1 − √ϵ∗m

)
, m = 1, 2. (3.10)

Here L = 1 and

ϵ1 =
κ + κ′

κκ′ + 1
, ϵ2 =

κ + κ′

κκ′ + (1 + κ)/2
, κ =

µ

σ
, κ′ =

µ

σ − 1
. (3.11)

Proof. See (A.23) and (A.44) in the Appendix. □

By Assumption 1, we exclude the case of two place (n = 2); therefore, the formulas
in Proposition 1 are not applicable to the two place. See (A.27) for the formula for the
two place.

Since the theoretical formula (3.9) with (3.10) are complicated, the following ap-
proximate formula would be more pertinent in the discussion of economic implications
of parameter dependence of break points.

Proposition 2. Under the condition

σ

µ
≫ 1, (3.12)

we have a simplified formula for an approximate value τ̂m,n of τm,n as

τ̂m,n =
22−m/2µ1/2

L(σ − 1)3/2 n, m = 1, 2. (3.13)

Proof. See (A.26) and (A.46) in the Appendix. □

Parameter dependence of break points τm,n can be seen from (3.13). A larger τm,n

causes an earlier break bifurcation triggering agglomeration. Such agglomeration is ac-
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celerated by a smaller σ leading to greater differentiation of the variety of products or a
larger µ enhancing the relative influence of the role of manufactured goods.

For higher bifurcations for m ≥ 3, for which no analytical formulas are applicable,
the following law for a semi-empirical value τ̃m,n of τm,n is suggested for use.

τ̃m,n =

√
8

m!
µ1/2

(σ − 1)3/2 n, m = 1, 2, 3, 4. (3.14)

This law encompasses theoretical law (3.13) for m = 1 and m = 2 and turns out to be in
good agreement with the numerical analysis in Section 4.2.

Remark 2. For the logit dynamics, two break points exist conditionally. Between these
two break points, a larger one is related to the breaking of uniformity. The theoretical
formula (3.9) and the approximate formula (3.13) for this larger break point are obtained
by replacing the parameters ϵ1 and ϵ2 in (3.11) by

ϵm =
b +

√
b2 − 4amθ−1

2am
, m = 1, 2 (3.15)

with

a1 = κκ
′ + 1, a2 = κκ

′ +
1 + κ

2
, b = κ + κ′ + θ−1κ. (3.16)

The break points τm,n (m = 1, 2) exist when the following conditions are satisfied:

µ

σ − 1
<

1
m
+

1
θ
, (3.17a)

b2 − 4am

θ
> 0. (3.17b)
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4 Long narrow economy: realistic spatial platform

A long narrow economy in Fig. 3 is employed as a realistic spatial platform, in which a
series of n + 1 places (labeled i = 0, 1, . . . , n) is evenly spread in a line segment with a
length of 1 and neighboring places are connected by an inter-road of a length d = 1/n.
This economy has the same length 1 and the same number n of inter-place roads as the
racetrack economy in Section 3. The economy, unlike the racetrack economy, has spatial
inhomogeneity due to the influence of borders because a border place (0 or n), which
is connected only to one place, has an inferior transportation environment than places
inside (1 through n − 1).

1 n-1 n0

Figure 3: Long narrow economy for a spatial platform of economic activities

The spatial agglomeration patterns of this economy are observed through extensive
numerical comparative static analyses with respect to the transport cost by solving non-
linear static equilibrium equation (2.22) in Section 2. In order to investigate the influence
of the borders, the number of places is chosen as 17 with a stronger influence and 65 with
a weaker one. Spatial period enlargement in agglomeration engendering several patterns
of interest is observed for the 17 places in Section 4.1. In Section 4.2, the emergence
of a spatially repeated core–periphery pattern a la Christaller and Lösch (Fig. 2) for the
65 places is explained by the racetrack economy analogy. The onset of enlargement of
spatial period between agglomerated places in the long narrow economy is investigated
by the formulas of break points in the racetrack economy (Section 3.3).

The standard values8 of the expenditure share µ of manufacturing sector goods and
the constant elasticity σ of substitution between any two varieties are chosen as (µ, σ) =
(0.4, 10.0), whereas the dependence of the agglomeration on these values is investigated
from time to time. These parameter values satisfy the conditions (3.8) for the existence
of the direct and the secondary bifurcations.

4.1 Spatial period enlargement: 17 places

Emergence of several agglomeration patterns of interest through spatial period enlarge-
ment is observed for 17 places.

8The values of (µ, σ) = (0.4, 10.0) were chosen with reference to (µ, σ) = (0.4, 5.0) used in Fujita et al.
(1999) [14]. A larger value of σ was employed to strengthen dispersion force.
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4.1.1 Spatially repeated core–periphery patterns

The evolution of population distributions observed with a decrease of τ is expressed in
the bar charts in Fig. 4. Almost uniformly distributed state prevails until τ ≈ 1.5, at which
border effects start to take effect and the populations at the border places 0 and 16 de-
crease and those in the neighboring places 1 and 15 increase. As τ decreases, the tradeoff
between transport cost and scale economies engenders increased competition between
places leading to the growth of several discretized places and the decay at neighboring
places developing into agglomeration shadows. The number of agglomerated places de-
creases recurrently as 17 → 7 → 5 → 3 → 1 en route to an atomic mono-center as
explained below.

Spatial period doubling state I (1.0 ≥ τ ≥ 0.8): The populations at odd numbered
places 1, 3, . . . , 15 almost disappear; a core place and a periphery place alternate spa-
tially to engender a spatially repeated core–periphery pattern. The spatial period between
the agglomerated places is doubled to L/d = 2. Since an agglomerated place is sur-
rounded by two periphery places, this pattern serves as a one-dimensional counterpart9

of Christaller’s k = 4 system (Christaller, 1933 [8]). Since the places are located on
a straight road, the emergence of this system based on traffic principle10 has a logical
sequel.

Spatial period doubling state II (0.6 ≥ τ ≥ 0.4): The population is agglomerated to
three places 4, 8, and 12, thereby displaying another spatially repeated core–periphery
pattern with enlarged peripheral zones. The spatial period between agglomerated places
is doubled again to L/d = 4.

Spatially repeated core–periphery patterns thus observed are in line with Fujita and
Mori (1997) [15], in which “a highly regular system a la Christaller” was found for a
different microeconomic model. This observation, however, is in sharp contrast with
the study of Mossay and Picard (2011) [25], in which the existence of multiple cities
was denied. Such contrast might be due to the difference in working forces: interplay
between spatial interaction externalities and competition in the land market.

Atomic mono-center (τ ≤ 0.353) is an extreme case of the formation of the single
core city surrounded by a series of periphery cities. The existence of this mono-center is
robust against the number of places as the mono-center exists in τ ≤ 0.356 for 33 places
and in τ ≤ 0.358 for 65 places.

A question on the spatial agglomeration, set forth above, is “How and when do spa-

9This system was seen clearly in a two-dimensional economic space (Ikeda and Murota, 2014 [18];
Ikeda et al., 2014 [19]).

10Christaller (1933) [8] wrote: “The traffic principle states that the distribution of central places is most
favorable when as many important places as possible lie on one traffic route between two important towns,
the route being as straightly and as cheaply as possible.”
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Figure 5: Influence of µ on the spatial agglomeration of the long narrow economy (σ =
10.0)

tially repeated core–periphery patterns emerge?” This question is answered in Section 4.2
in the light of the racetrack economy analogy.

4.1.2 Other patterns

The relative predominance of centripetal forces promoting agglomeration and centrifugal
forces engendering dispersion varies with parameter values in core–periphery models
(Section 2). To make clear parameter dependence of agglomeration patterns, the progress
of agglomerations is depicted in the bar charts of the population distributions in Fig. 5 for
several values µ = 0.1, 0.3, 0.5, and 0.7 of the expenditure share of manufactured goods
(σ = 10.0).
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For all values of µ, as τ decreases and spatial period between agglomerated places is
enlarged, highly regular systems a la Christaller and Lösch are observed. The onset of
the enlargement of the spatial period, which takes place for a larger τ as µ increases, is in
accordance with the break points τ1,16 = 1.44, 1.20, 0.91, 0.52 for µ = 0.7, 0.5, 0.3, and
0.1, respectively, evaluated analytically by (3.9). The atomic mono-center also emerges
earlier (larger τ) for a larger µ.

For µ = 0.1 with a small agglomeration force, a distribution with twin peak places
near the borders connected by a chain of industrial belt with smaller populations are
observed for 1.0 ≥ τ ≥ 0.6. This distribution is close to the one found by Mori (1997)
[24]: “formation of a megalopolis which consists of large core cities that are connected
by an industrial belt, i.e., a continuum of cities.”

For µ = 0.3, 0.5, and 0.7, agglomerated places are discrete, and the number of these
places decreases as 7 −→ 5 −→ 3 −→ 1 as τ decreases. Such decrease is a robust feature
for 0.3 ≤ µ ≤ 0.7.

4.2 Racetrack economy analogy: 65 places

The geometrical configurations of the long narrow economy and the racetrack econ-
omy are alike in that places are located equidistantly. In order to demonstrate that both
economies display similar agglomerations, a comparative study is conducted for these
economies.

Stable11 spatial agglomerations of the long narrow economy with 65 places and the
racetrack economy with 64 places are illustrated comparatively for several values of the
transport cost parameter τ in Fig. 6, which depicts the equilibrium curve between popu-
lation and transport cost and associated population distributions.

The thin curve displays a stable course OGHIJKL of agglomeration in the racetrack
economy via a spatial period doubling bifurcation cascade occurring at pitchfork bifur-
cation points G, H, I, J, and K (Section 3.2). This cascade is followed by a dynamical
shift to a stable state at point L to point M leading to complete agglomeration at N. In the
long narrow economy, border effects are weakened in comparison with the 17 places in
Section 4.1; accordingly, the cascade can be seen clearer as explained below.

There are three major stages. In the early stage of agglomeration with a large τ(>
0.94), the bold curve of the long narrow economy accurately traces the thin curve OGHIJ
of the racetrack economy. In the intermediate stage (0.94 > τ > 0.1), the curves of
these two economies behave differently. In the last stage of formation of a mono-center

11The stability of bifurcating equilibria of the racetrack economy is model dependent. In the present
study on the Forslid and Ottaviano model, the first bifurcation is stable but, for the Krugman model, the
first bifurcation was unstable (Ikeda, Akamatsu, and Kono, 2012 [17]).
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Figure 6: Comparison of the spatial agglomerations of the long narrow economy with 65
places and those of the racetrack economy with 64 places (λmax is the maximum popula-
tion in places in the middle defined by λmax = max28≤i≤38 λi)

(0.1 > τ > 0.0), the curves are identical (MN).
Hereafter, we specifically examine the early stage OGHIJ (τ > 0.94), which is the ma-

jor interest of this paper. Population distributions depicted in Fig. 6 in both economies,
especially near the middle (place n/2), display an amazing resemblance: recurrent emer-
gence of spatially repeated core–periphery patterns with increasing peripheral zones as
τ decreases. This shows the validity of the racetrack economy analogy presented in this
paper.

By virtue of this analogy, several indexes for agglomerations in the long narrow econ-
omy, which are of great assistance in a policy recommendation, are set forth as follows:

Distance between agglomerated places doubles recurrently as L/d = 1 → 2 →
4→ 8 (see (3.7)), thereby enlarging agglomeration shadows.

Populations at agglomerated places away from boundaries double recurrently and
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Table 1: The values of break points τm,n for racetrack economy obtained analytically
(a) τm,n by (3.9)

n 16 32 64
τ1,n 1.06 2.13 4.25
τ2,n 0.76 1.52 3.03
τ3,n — — —
τ4,n — — —

(b) τ̂m,n by (3.13) and τ̃m,n by (3.14)

n 16 32 64
τ̂1,n 1.06 2.12 4.24
τ̂2,n 0.75 1.50 3.00
τ̃3,n 0.43 0.87 1.73
τ̃4,n 0.22 0.43 0.87

can be predicted qualitatively as a function of the transport cost parameter τ as
1/64 (τ > τ∗1,65 = 4.33),
1/32 (3.07 = τ∗2,65 < τ < τ

∗
1,65 = 4.33),

1/16 (1.72 = τ∗3,65 < τ < τ
∗
2,65 = 3.07),

1/8 (0.94 = τ∗4,65 < τ < τ
∗
3,65 = 1.72).

Here τ∗m,65 (m = 1, . . . , 4) are break points of the long narrow economy with 65 places
that are read from Fig. 6.

Break points τ∗1,65 = 4.33, τ∗2,65 = 3.07, τ∗3,65 = 1.72, and τ∗4,65 = 0.94 serve as
excellent indexes for agglomeration pattern changes. The laws presented in Section 3.3
realize an accurate analytical prediction of these break points: The break points τ1,64 =

4.25 and τ2,64 = 3.03 in Table 1(a) computed by the formula (3.9) are in fair agreement
with τ∗1,65 = 4.33 and τ∗2,65 = 3.07, thereby ensuring the validity of this formula. The
break points τ̃3,64 = 1.73 and τ̃4,64 = 0.87 in Table 1(b) estimated by the semi-empirical
formula (3.14) are in fair agreement with τ∗3,65 = 1.72 and τ∗4,65 = 0.94, thereby showing
its usefulness.

We note that the formula (3.13) of τ̂m,n (≈ τm,n) gives an insight into parameter depen-
dence. There exists a series of (µ, σ) which has the same value of µ/(σ − 1)3 and, hence,
has the same value of τ̂m,n. Agglomeration patterns are observed for three different sets
of (µ, σ) = (0.1, 6.67), (0.4, 10.0) and (0.7, 11.85), which have approximately the same
values of µ/(σ − 1)3 ≈ 5.5 × 10−4, τ̂1,64 = 4.24, and τ̂2,64 = 3.00. As shown in Fig. 7,
these different sets of (µ, σ) display similar spatial period doubling behaviors, especially
for the direct bifurcation. This suffices to demonstrate the insight and usefulness of the
formula (3.13) for τ̂m,n.
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5 Comparison with the logit dynamics

Agglomeration patterns in the logit dynamics are investigated to study the similarity and
difference of agglomeration patterns in comparison with the replicator dynamics (Sec-
tion 4). The redistribution of population for a very small transport cost is characteristic
in the logit dynamics. Such redistribution is inherent in several economic activities, such
as trade costs in the agricultural sector, congestion costs caused by spatial concentration
of activities, and the heterogeneity in individual migration behaviors (Combes, Mayer,
Thisse, 2008 [9]). Agglomeration patterns observed herein, accordingly, are of great
economic interest. We consider 17 places and set σ = 10.0 throughout this section.

First, spatial agglomerations are investigated by changing the expenditure share as
µ = 0.1, 0.4, and 0.7 to arrive at the bar chart of the population distributions shown in
Fig. 8. Here the parameter θ in (2.25) is chosen as θ = 10000. Again the onset of the
enlargement of the spatial period takes place for a larger τ as µ increases in accordance
with the break points τ1,16 = 0.42, 1.05, 1.43 for µ = 0.1, 0.4, 0.7, respectively, evalu-
ated analytically by (3.9). Since θ is large, these points are almost the same as those for
the replicator dynamics. When the transport cost τ is very small (τ ≤ 0.001), the redistri-
bution from the atomic mono-center (τ = 0.02) takes place to engender a hump-shaped

population distribution for all values of µ. This distribution is interpreted as another kind
of megalopolis formation. When the transport cost τ is large (τ ≥ 0.6), the agglomeration
patterns are very close to those observed in the replicator dynamics (Fig. 5).

Next, spatial agglomerations are investigated by changing θ = 100, 600, and 1000 to
arrive at Fig. 9 (µ = 0.4). The break points are τ1,16 = 0.83 and 0.96 for θ = 600 and
1000, but do not exist for θ = 100 because the condition (3.17b) for the existence of break
point is violated. When the transport cost τ is very small (τ ≤ 0.02), similarly in Fig. 5,
a hump-shaped population distribution is observed for all values of θ. This distribution
emerges for a larger τ as θ decreases. For θ = 100, a megalopolis with twin peaks appears
in 0.6 ≥ τ ≥ 0.4. For θ = 600, more than two humps are observed at τ = 0.9 and 0.8, and
a megalopolis with three core-cities connected by two industrial belts emerges at τ = 0.6.
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6 Conclusion

Agglomeration patterns in the long narrow economy were found somewhat fragmentarily
in the literature (see Introduction). In this paper, it is demonstrated that a new economic
geography model in a discretized long narrow economy accommodates several charac-
teristic agglomeration patterns.

When the agglomeration force is large, the spatial agglomeration is close to the
highly regular central place system a la Christaller and Lösch (Fujita and Mori, 1997
[15]). When the transport cost was decreased, spatially repeated core–periphery patterns
emerged recurrently with increased peripheral zones, engendering agglomeration shad-
ows.

When this force is small, a distribution with twin peaks near the borders connected
by a chain of industrial belt with smaller populations is observed. This distribution is
close to the one found by Mori (1997) [24]: “formation of a megalopolis which consists
of large core cities that are connected by an industrial belt, i.e., a continuum of cities.”

Another kind of megalopolis formation with a hump-shaped population distribution
was observed for small transport cost in the logit dynamics. This paper, in comparison
with the literature, thus extends the horizon of the study of the evolution and of the
formation of central places, megalopolis, and industrial belt.

In search of the underlying mechanism which produces the highly regular central
place system, the concept of racetrack economy analogy was presented to import the the-
oretical results in the racetrack economy in the description of the agglomeration patterns
in the long narrow economy. An amazing resemblance was found in the agglomeration
characteristics of these two economies, thereby supporting the validity of the racetrack
economy analogy. By virtue of this resemblance, population distributions and the values
of the transport cost at the evolution of spatially repeated core–periphery patterns in the
long narrow economy can be predicted analytically. The long narrow economy, with the
aid of this analogy, has thus been reinforced with much desired analytical tractability.

The long narrow economy yields rich economic implications on spatial agglomer-
ations, which cannot be given by the conventional two-place economy with an overly
simple spatial structure. The diversity and complexity of the agglomeration behaviors
of this economy, which we encountered, are essential ones that are to be meshed into
the study of economic geography models. The robustness of the spatial agglomeration
properties observed herein should be studied in the future for spatial models of various
kinds.
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A Proof of the formula for break points in the racetrack
economy

The formula (3.9) for break points for the pitchfork bifurcation in the racetrack economy
with n even can be derived by the method in Akamatsu, Takayama, and Ikeda (2012) [2]
for the logit dynamics adapted to the replicator dynamics. Although the discussion on the
main text is restricted to the case of n = 2k (k = 3, 4, , . . .) by Assumption 1 in Section 3,
we consider herewith a more general case of n even.

From the governing equation F in (2.22) with (2.21), we have

∂Fi

∂λ j
=

vi −
n∑

k=1

λkvk

 δi j + λi

 ∂vi

∂λ j
− v j −

n∑
k=1

λk
∂vk

∂λ j

 , (A.1)

where δi j is the Kronecker delta. This shows that the Jacobian matrices

J(λ) =
∂F

∂λ
=

(
∂Fi

∂λ j

)
, V(λ) =

∂v

∂λ
=

(
∂vi

∂λ j

)
are related as

J(λ) = diag(v1 − v̄, . . . , vn − v̄) + (Λ − λλ⊤)V − λv⊤, (A.2)

where v̄ =
∑n

i=1 λivi and Λ = diag(λ1, . . . , λn).
In regard to V(λ) we recall (2.16):

vi =
µ

σ − 1
log∆i + log wi (A.3)

as well as (2.15):

wi =
µ

σ

n∑
k=1

dik

∆k
(wkλk + 1), (A.4)

where

∆k =

n∑
j=1

d jkλ j.

The differentiations of (A.3) and (A.4) with respect to λ j yield respectively

∂vi

∂λ j
= κ′

d ji

∆i
+

1
wi

∂wi

∂λ j
, (A.5)

∂wi

∂λ j
= κ

n∑
k=1

dik

∆k
2

[(
∂wk

∂λ j
λk + wkδk j

)
∆k − (wkλk + 1)d jk

]
, (A.6)
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where

κ =
µ

σ
, κ′ =

µ

σ − 1
. (A.7)

We have 0 < κ < 1 and 0 < κ′ < 1 because σ > 1, 0 < µ < 1, and µ/(σ − 1) < 1 by (3.8)
with m = 1 (no-black-hole condition).

With the use of
r = exp

[
− τ(σ − 1)

L
n

]
(A.8)

(0 < r < 1 for τ > 0) in the transport cost Ti j in (A.8), the spatial discounting factor
di j = T 1−σ

i j in (2.14) is rewritten as

di j = r m(i, j), (A.9)

representing distance decaying friction between pairs of places.

A.1 Direct bifurcation

The direct bifurcation from the flat earth equilibrium λ∗ = 1
n (1, . . . , 1)⊤ in the direction

of the critical vector
η = (1,−1, . . . , 1,−1)⊤ (A.10)

in (3.3) is investigated. We consider this vector η since it is the relevant critical eigen-
vector of J(λ∗) for the spatial period doubling bifurcation.

The vector η is also an eigenvector of the spatial discounting matrix D = (di j). Indeed,
the odd-numbered components of Dη are equal to

n∑
j=1

(−1) j−1r m(i, j) = 1 + 2
(
−r + r2 − · · · − (−1)n/2rn/2−1

)
+ (−1)n/2rn/2

=
1 − r
1 + r

(
1 − (−r)n/2

)
and the even-numbered components are the negative of this number. Hence

Dη = ϵ̃η (A.11)

with
ϵ̃ =

1 − r
1 + r

(
1 − (−r)n/2

)
. (A.12)
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At the flat earth equilibrium λ∗ = 1
n (1, . . . , 1)⊤, (A.2) gives

J(λ∗) =
(
1
n

I − 1
n211

⊤
)

V(λ∗) (A.13)

where v = v1 = · · · = vn. The matrix V(λ∗) in (A.13) can be evaluated as follows. At
λ = λ∗, we have

∆ j =

n∑
k=1

dk jλk =
d
n
,

where d denotes the sum of the entries of a column of D, which is given by

d =
n∑

i=1

r m(i, j) = 1 + 2(r + r2 + · · · + rn/2−1) + rn/2 =
1 + r
1 − r

(
1 − r n/2

)
. (A.14)

Since w j is independent of j, we may put w j = w, and then (A.4) becomes

w = κ
n∑

j=1

n
d

di j

(w
n
+ 1

)
= κ (w + n) ,

which gives
w =

κn
1 − κ . (A.15)

At λ = λ∗, (A.6) becomes

∂wi

∂λ j
= κ

n∑
k=1

n2

d2 dik

[(
1
n
∂wk

∂λ j
+ wδk j

)
d
n
−

(w
n
+ 1

)
d jk

]
,

which in a matrix form reads

W = κ
n2

d2 D
[
d
n

(
1
n

W + wI
)
− w + n

n
D
]

with W = (∂wi/∂λ j). With the use of (A.15), this equation can be rewritten as(
I − κD

d

)
W = nw

D
d

(
κI − D

d

)
,

which is further rewritten as

W = nw
(
I − κD

d

)−1

· D
d

(
κI − D

d

)
.
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Then the partial derivatives in (A.5) can be evaluated in a matrix form as

V(λ∗) = n
[
κ′

D
d
+

(
I − κD

d

)−1

· D
d

(
κI − D

d

)]
. (A.16)

For the vector η in (A.10), we have (D/d)η = ϵη with

ϵ =
ϵ̃

d
=

(
1 − r
1 + r

)2 1 − (−1)n/2r n/2

1 − r n/2

=


(
1 − r
1 + r

)2

(if n is a multiple of 4),(
1 − r
1 + r

)2 1 + r n/2

1 − r n/2 (if n is even, not a multiple of 4),
(A.17)

where (A.11), (A.12) and (A.14) are used. Since 0 < r < 1, we have

0 < ϵ < 1. (A.18)

Then (A.16) shows that
V(λ∗) · η = γη

with
γ = n[κ′ϵ + (1 − κϵ)−1 · ϵ(κ − ϵ)].

Multiplying (A.13) by the vector η in (A.10) from the right and using

1⊤V(λ∗) · η = γ1⊤η = 0,

we obtain
J(λ∗) · η = γ

n
η.

Then the eigenvalue β of the Jacobian matrix J(λ∗) for the eigenvector η is expressed in
terms of ϵ as

β = Ψ(ϵ)

with a function Ψ defined as

Ψ(x) = κ′x +
x(κ − x)
1 − κx =

(κ + κ′)x − (κκ′ + 1)x2

1 − κx . (A.19)

The break point τ1,n is determined from the condition that the eigenvalue β for τ = τ1,n
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vanishes. The value ϵ∗ satisfying Ψ(ϵ∗) = 0 is given by

ϵ∗ = ϵ∗1 =
κ + κ′

κκ′ + 1
, (A.20)

which is independent of n. Since 0 < ϵ < 1 by (A.18), this gives the no-black-hole
condition:

µ

σ − 1
< 1. (A.21)

The value of r∗ = r(τ1,n) corresponding to ϵ = ϵ∗ can be determined from (A.17), and
τ1,n is given as

τ1,n =
n

L(σ − 1)
(− log r∗) (A.22)

from (A.8). In accordance with (A.17), which relate r to ϵ, we divide into three cases of
n to derive a concrete form of (A.22).

When n = 4ℓ for an integer ℓ ≥ 1, (A.17) yields

r∗ =
1 −
√
ϵ∗

1 +
√
ϵ∗
.

The substitution of this into (A.22) yields

τ1,n = c1n (A.23)

with

c1 =
1

L(σ − 1)
log

(
1 +
√
ϵ∗

1 −
√
ϵ∗

)
. (A.24)

Note that c1 is a constant independent of n. Under the condition

σ

µ
≫ 1, (A.25)

we have
ϵ∗ ≈ 2µ

σ − 1
≪ 1,

and hence c1 in (A.24) and, in turn, τ1,n in (A.23) can be approximated as

τ1,n ≈
2
√
ϵ∗

L(σ − 1)
≈ 23/2µ1/2

L(σ − 1)3/2 . (A.26)

Thus we have proved (3.9) for m = 1 with (3.10) and (3.13) in Section 3.3.
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When n = 2, which is nothing but a two place, (A.17) yields

r∗ =
1 − ϵ∗
1 + ϵ∗

and the substitution of this into (A.22) yields

τ1,2 =
2

L(σ − 1)
log

(
1 + ϵ∗

1 − ϵ∗

)
, (A.27)

which is approximated under (A.25) as

τ1,2 ≈
8µ

L(σ − 1)2 . (A.28)

The formula (A.27) is in line with that was obtained for the same model (Forslid and
Ottaviano, 2003 [12]).

When n = 4ℓ + 2 for an integer ℓ ≥ 1, an approximate formula is not available.

A.2 Secondary bifurcation

The bifurcation from the spatial doubling state

λ̂ =
1
n

(2, 0, 2, 0, . . . , 2, 0, 2, 0)⊤ (A.29)

in the direction of the critical vector

η̂ = (1, 0,−1, 0, . . . , 1, 0,−1, 0)⊤ (A.30)

is investigated when n is a multiple of 4. We consider this vector η̂ since it is the relevant
critical eigenvector of J(λ̂) for the secondary spatial period doubling bifurcation.

The vector η̂ is also an eigenvector of the spatial discounting matrix D. That is,

Dη̂ = ϵ̃η̂ (A.31)

with
ϵ̃ =

1 − r 2

1 + r 2

(
1 − (−r 2)n/4

)
, (A.32)

where ϵ̃ is equal to the first component of Dη̂. Let D11 be the (n/2) × (n/2) submatrix of
D with odd indices of rows and columns, i.e.,

D11 = (d2i−1,2 j−1 | i, j = 1, 2, . . . , n/2),
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and similarly let

D21 = (d2i,2 j−1 | i, j = 1, 2, . . . , n/2), D12 = (d2i−1,2 j | i, j = 1, 2, . . . , n/2).

Also define an n/2-dimensional vector

η = (1,−1, . . . , 1,−1)⊤, (A.33)

which is the subvector of η̂ consisting of the odd indexed components. Then Dη̂ = ϵ̃η̂ in
(A.31) can be rewritten as

D11η = ϵ̃η, D21η = 0. (A.34)

For the Jacobian matrices J(λ) and V(λ) we similarly denote the (n/2) × (n/2) sub-
matrices with odd row and column indices by J11(λ) and V11(λ), respectively. At the
equilibrium λ̂ = 1

n (2, 0, 2, 0, . . . , 2, 0, 2, 0)⊤, for which we have v1 = v3 = · · · = vn−1 and
v2 = v4 = · · · = vn, the corresponding submatrix of (A.2) gives

J11(λ̂) =
(
2
n

I − 4
n211

⊤
)

V11(λ̂) − 2v1

n
11⊤, (A.35)

where 1 = (1, . . . , 1)⊤ is an n/2-dimensional vector and I denotes the identity matrix of
order n/2. The matrix V11(λ̂) in (A.35) can be evaluated as follows.

At λ = λ̂, we have

∆1 = ∆3 = · · · = ∆n−1 =
2d1

n
, ∆2 = ∆4 = · · · = ∆n =

2d2

n

with

d1 =

n/2∑
k=1

d2k−1,1 =
1 + r2

1 − r2

(
1 − r n/2

)
,

d2 =

n/2∑
k=1

d2k,1 =
2r

1 − r2

(
1 − r n/2

)
.

The wage w j is determined by the parity of j, and therefore, we have w2k−1 = w1 and
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w2k = w2. Then (A.4) becomes

w1 = κ

n∑
j=1

(
d1 j

∆ j
w jλ j +

d1 j

∆ j

)

= κ

 n/2∑
k=1

d1,2k−1

∆1
w1

2
n
+

n/2∑
k=1

(
d1,2k−1

∆1
+

d1,2k

∆2

)
= κ

(
n

2d1
d1w1

2
n
+

n
2d1

d1 +
n

2d2
d2

)
= κ(w1 + n),

which gives
w1 =

κn
1 − κ . (A.36)

At λ = λ̂, (A.6) becomes

∂wi

∂λ j
= κ

n∑
k=1

dik

∆k
2

[(
∂wk

∂λ j
λk + wkδk j

)
∆k − (wkλk + 1)d jk

]

= κ

n/2∑
k=1

di,2k−1

∆1
2

[(
∂w2k−1

∂λ j

2
n
+ w1δ2k−1, j

)
∆1 −

(
w1

2
n
+ 1

)
d j,2k−1

]

+ κ

n/2∑
k=1

di,2k

∆2
2 (w2δ2k, j∆2 − d j,2k)

= κ

n/2∑
k=1

di,2k−1

d1

[
∂w2k−1

∂λ j
+

n
2

w1δ2k−1, j −
n
4

(2w1 + n)
d j,2k−1

d1

]

+ κ

n/2∑
k=1

di,2k

d2

(
n
2

w2δ2k, j −
n2

4
d j,2k

d2

)
. (A.37)

By setting

W11 =

(
∂w2i−1

∂λ2 j−1
| i, j = 1, . . . , n/2

)
and using

κ(2w1 + n) = w1(1 + κ),

which follows from (A.36), we can rewrite (A.37) in a matrix form as

W11 = κ
D11

d1
W11 +

nw1

2
D11

d1

(
κI − 1 + κ

2
D11

d1

)
− κn

2

4
D12

d2

D12
⊤

d2
,
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where D12
⊤ = D21 by D⊤ = D. The above equation can be solved for W11 as

W11 =
nw1

2

(
I − κD11

d1

)−1 D11

d1

(
κI − 1 + κ

2
D11

d1

)
− κn

2

4

(
I − κD11

d1

)−1 D12

d2

D21

d2
.

Then using this equation and (A.5), we can obtain

V11(λ̂) =
n
2

κ′D11

d1
+

(
I − κD11

d1

)−1 D11

d1

(
κI − 1 + κ

2
D11

d1

)
− κn

2

4w1

(
I − κD11

d1

)−1 D12

d2

D21

d2
. (A.38)

For the eigenvector η in (A.33), we have D11η = ϵ̃η and D21η = 0 in (A.34), the
former of which is rewritten as (D11/d1)η = ϵη with

ϵ =
ϵ̃

d1
=

(
1 − r 2

1 + r 2

)2 1 − (−1)n/4r n/2

1 − r n/2

=


(
1 − r 2

1 + r 2

)2

(if n is a multiple of 8),(
1 − r 2

1 + r 2

)2 1 + r n/2

1 − r n/2 (if n is a multiple of 4, not a multiple of 8).
(A.39)

Therefore, (A.38) gives
V11(λ̂) · η = γη

with
γ =

n
2

[
κ′ϵ + (1 − κϵ)−1 · ϵ

{
κ − 1 + κ

2
ϵ

}]
.

Multiplying (A.35) by the vector η from the right and using

1⊤η = 0, 1⊤V11(λ̂) · η = γ1⊤η = 0,

we obtain
J11(λ̂) · η = 2γ

n
η.

Then the eigenvalue β of the Jacobian matrix J11(λ̂) for the eigenvector η is expressed in
terms of ϵ as

β = Ψ(ϵ)
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with a function Ψ defined as

Ψ(x) = κ′x +
x{κ − [(1 + κ)/2]x}

1 − κx =

(κ + κ′)x +
(
κκ′ +

1 + κ
2

)
x2

1 − κx . (A.40)

It should be clear that J11(λ̂)η = βη implies J(λ̂)η̂ = βη̂, and hence β is the eigenvalue
of J(λ̂) for η̂ in (A.30).

The break point τ2,n is determined from the condition that the eigenvalue β for τ = τ2,n

vanishes. The value ϵ∗ satisfying Ψ(ϵ∗) = 0 is given by

ϵ∗ = ϵ∗2 =
κ + κ′

κκ′ +
1 + κ

2

, (A.41)

which is independent of n. Since 0 < ϵ < 1, the use of (A.7) in (A.41) gives a condition:

κκ′ +
1 + κ

2
− (κ + κ′) =

(µ − σ)(2µ − σ + 1)
2σ(σ − 1)

> 0,

which, together with σ > 1 > µ > 0, yields

µ

σ − 1
<

1
2
. (A.42)

The value of r∗ = r(τ2,n) corresponding to ϵ = ϵ∗ can be determined from (A.39), and
τ2,n is given as

τ2,n =
n

L(σ − 1)
(− log r∗) (A.43)

from (A.8).
When n = 8ℓ for an integer ℓ ≥ 1, (A.39) yields

r∗ =

√
1 −
√
ϵ∗

1 +
√
ϵ∗
.

The substitution of this into (A.43) yields

τ2,n = c2n (A.44)

with

c2 =
1

2L(σ − 1)
log

(
1 +
√
ϵ∗

1 −
√
ϵ∗

)
. (A.45)
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Note that c2 is a constant independent of n. Under the condition (A.25), we have

ϵ∗ ≈ 4µ
σ − 1

≪ 1,

and hence c2 in (A.45) and, in turn, τ2,n in (A.44) can be approximated as

τ2,n ≈
√
ϵ∗

L(σ − 1)
n ≈ 2µ1/2

L(σ − 1)3/2 n. (A.46)

Thus we have proved (3.9) for m = 2 with (3.10) and (3.13) in Section 3.3.
When n = 8ℓ − 4 for an integer ℓ ≥ 1, an approximate formula is not available.
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