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1 Introduction

The scoring auction is a form of multidimensional bidding in which each bidder is asked to

bid price and non-price attributes. A publicly announced scoring rule maps the multidimen-

sional bid into the score, and the bidder who obtains the highest or lowest score is awarded.

In procurement settings, for instance, the non-price attributes (quality bid) include service

life, delivery date, and the extent of production processes’s environmental burden. By en-

couraging a more complete comparison of the attributes of bidders and their proposals, the

scoring auction allows the auctioneer to obtain greater welfare without reducing the bid-

ders’ profits than with price-only auctions (e.g., Bichler, 2000; Milgrom, 2004; Asker and

Cantillon, 2008; and Lewis and Bajari, 2011).

In this paper, we offer a framework to analyze the scoring auction both theoretically

and econometrically. Specifically, we construct a scoring auction model in which there are

n = 2 risk-neutral suppliers, each of which submits an L-dimensional bid with L = 2 for

a procurement contract after drawing a K-dimensional signal. The publicly known scoring

rule maps each bidder’s bid into a score, and the lowest-score bidder wins the contract.

The bidder cost function is known up to the K-dimensional signal. We then examine

identification of the scoring aumodel.

The contribution of our paper is threefold. First, we characterize the equilibrium in

the scoring auction with minimal constraints on primitives. Since the seminal work by

Che (1993), scoring auction analyses rely either on a specific form of the scoring rule

– quasilinear (QL) – or on a strong restriction on the bidder’s cost function – additively

separable in quality and type, etc.1 Our approach is free from those restrictions.

We show that the sorting condition (i.e., a slightly stronger condition than the single-

crossing property) is sufficient to characterize a monotone equilibrium in setting with mul-

tidimensional types. The condition is commonly used in the auction literature to guarantee

the existence of a strictly monotone equilibrium.2 We then demonstrate that each bidder’s

1See, e.g., Albano, Dini and Zampino (2009) and Hanazono, Nakabayashi and Tsuruoka (2013) for ex-
amples of non-QL scoring rules.

2McAdams (2003) is the first study that shows the equilibrium existence in games with incomplete in-
formation where types and actions are multidimensional. More recently, Reny (2011) shows the equilibrium
existence in settings with multidimensional types and actions. Other studies on equilibrium existence fre-
quently referred to in the auction literature include Lebrun (1996) and Athey (2001).
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L-dimensional system of best-response functions characterizes a unique symmetric pure

monotone equilibrium. Moreover, we propose a set of sufficient primitive conditions under

which the sorting condition is satisfied in the scoring auction.

Second, we examine identification of the scoring auction model. To the best of our

knowledge, our analysis is the first to propose a sufficient condition for the identification of

the bidder’s multidimensional signal from the scoring auction data. Our approach exploits

the global invertibility of the bidder’s system of best-response functions with respect to the

multidimensional signal.

To make our argument precise, let θ, q∗, and b∗ denote the bidder’s K-dimensional

latent signal, the observed (L − 1)-dimensional quality bid, and an L-dimensional vector

that uniquely represents the remaining observables, such as the price bid and the distri-

bution of bidders’ scores. Let C(q,θ) and Cq`(q,θ) with ` = 1, . . . , L − 1 denote the

bidder’s cost function and its marginal cost with respect to the `th dimensional quality, q`,

and define A(θ; q) := (C(q,θ), Cq1(q,θ), . . . , CqL−1(q,θ))T. We show that the bidder’s

system of best-response functions can be rearranged to an L-dimensional nonlinear sys-

tem, A(θ; q∗) = b∗. We then propose a sufficient condition for the bidder’s cost function

under which A(θ; q) is locally invertible with respect to θ for any q. The condition is fairly

natural – i.e., the cost function exhibits a relatively strong additive separable form, which

makes each dimension of θ have a unique impact on A(θ; q). Finally, we apply the global

inverse function theorem to show that the nonlinear system has a unique solution for θ.

Given that the approach relies on the bidder’s best response, our procedure is a natural

extension of the structural estimation method of auctions by Guerre, Perrigne and Vuong

(2000). At the same time, given that the approach relies on the invertibility of the system

of (best-response) functions, our procedure is related in spirit to the literature on identi-

fication for simultaneous equation systems, which exploits the global invertibility of real

functions (e.g., Matzkin (2008)). Global invertibility – as in Beckert and Blundell (2008)

and Berry, Gandhi and Haile (2013) – plays the central role in demand estimation analy-

ses, as well. Both papers seek to provide economically interpretable sufficient conditions

(e.g., connected substitutes) for the global invertibility of a demand system. In our analy-

sis, the sufficient condition for the invertibility of the system of best-response functions is

interpreted as relatively strong separability in the cost function.
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Our final contribution is to provide an empirical analysis based on the structural method.

We estimate the bidder’s multidimensional signal using the scoring auction data. The data

are from bid results of public procurement auctions for construction projects in Japan,

where the scoring rule is not QL.3 We conduct a series of counterfactual analyses to mea-

sure the impact of the change in auction formats (i.e., first-score (FS) vs second-score (SS)

auctions) or scoring rules on utilities of both the procurement buyer and suppliers. More-

over, we estimate the buyer’s gain from using scoring auctions instead of conventional

price-only auctions.

We find that the government (auctioneer) would gain from using an alternative scoring-

auction format; the buyer would obtain approximately .7 percent greater utility, on average,

from using the SS rather than the observed FS auction. As for the impact of the change

in the scoring rule, we find that by redesigning the scoring rule on the basis of the QL

function, the buyer improves utility by approximately .7 percent. To measure the buyer’s

gain from the use of the scoring rather than the price-only auction, we simulate a series

of counterfactual price-only auctions with different quality standards, based on which each

bidder submits a price bid only. We find that the buyer obtains lower gains from the price-

only auctions, which, however, vary from approximately 1.0 to 8.7 percent depending on

the quality standard. The results suggest that a procurer can obtain an almost equivalent

(slightly lower) gain with the use of a price-only auction with a well-designed fixed quality

standard.

The reminder of this article is organized as follows. Section 2 describes the model

of scoring auctions. Section 3 gives the equilibrium analysis. Section 4 discusses the

identification of the distribution of bidders’ cost schedule parameters. Section 5 conducts

empirical examinations using our structural estimation method, and Section 6 concludes.

1.1 Related literature

Che (1993) gives the seminal analysis on scoring auctions, followed by Branco (1997),

who relaxes the assumption that the bidder’s private signal be independent, and by Asker

3The score is given by the weighted sum of non-price attributes divided by price. See Section 5 for more
details.
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and Cantillon (2008), who extend Che (1993) to settings in which bidders’ signals are mul-

tidimensional. More recently, Wang and Liu (2014), Hanazono et al. (2013), and Dastidar

(2014) provide theoretical analyses in the absence of the QL assumption. Among these,

Hanazono et al. (2013) establish the most general framework for analyzing the scoring

auction. They also show that their model applies to the previous analyses on multidi-

mensional bidding, such as Thiel (1988), who analyzes the multidimensional quality com-

petition with fixed payment, and Bajari, Houghton and Tadelis (2014), who analyze the

multidimensional unit-price auction by using the scoring auction model.4

A large body of literature examines auctions in which the price is not the sole deter-

minant of the winner. In this literature, a set of papers analyzes multidimensional bid-

ding where non-price attributes are bidder characteristics – what bidders cannot choose at

bidding (e.g., Marion, 2007; Krasnokutskaya and Seim, 2011; Krasnokutskaya, Song and

Tang, 2013; and Mares and Swinkels, 2014) – unlike in the scoring auction. Asker and Can-

tillon (2008) discuss multidimensional bidding where bidders choose non-price attributes,

but the auctioneer keeps the scoring rule secret at bidding (i.e., menu auctions and beauty

contests). Studies on optimal design in multidimensional bidding are seen in Che (1993),

Asker and Cantillon (2010), etc.

Our paper is also related to the literature on identification of the auction model, such

as Athey and Haile (2002) and Athey and Haile (2007), and the literature on the struc-

tural estimation method of auctions, including Paarsch (1992); Laffont, Ossard and Vuong

(1995); Guerre et al. (2000); and Krasnokutskaya (2011).5 Given the multidimensionality

in bidder private information, the structural estimation of the scoring auction model has a

challenge similar to that of the structural estimation of auctions with risk-averse bidders,

as in Guerre, Perrigne and Vuong (2009), Campo, Guerre, Perrigne and Vuong (2011),

etc.6 Similar to these analyses, our approach exploits a parametric assumption on the cost

function to address this challenge.

As for empirical analyses, Lewis and Bajari (2011) is the first structural analysis on

scoring auctions. Nakabayashi (2013) and Takahashi (2014) also perform structural analy-

4Athey and Levin (2001) also study the multidimensional unit-price auction.
5See Paarsch and Hong (2006) and Athey and Haile (2007) for book-length surveys. For a more recent

survey, see, e.g., Hickman, Hubbard and Sağlam (2012).
6More recent papers include Campo (2012) and Fang and Tang (2014).
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ses, and Iimi (2013) and Koning and van de Meerendonk (2014) offer analyses based on the

reduced-form approach. So far, structural analyses have relied on restriction either on the

scoring rule (i.e., the QL form, as in Lewis and Bajari, 2011) or on the cost function (i.e., an

inverse L-shape, as in Nakabayashi (2013), or an additively separable form, as in Takahashi

(2014)). Neither of these analyses discusses conditions under which the multidimensional

type is identifiable in the scoring auction.

2 The Model of Scoring Auctions

A buyer would like to procure an item through competitive bidding by n = 2 risk-neutral

ex ante symmetric suppliers. Based on the knowledge of n, each supplier submits a price

bid p = 0, as well as an (L − 1)-dimensional quality bid q = (q1, . . . , qL−1) ∈ [q1, q̄1] ×
· · · × [qL−1, q̄L−1] ≡ Q ⊂ RL−1, or stays out of the bidding. A monotone scoring function,

S(p,q) : RL → R, is common knowledge, mapping the L-dimensional bid into a score.

Let S := {S(p,q)|p = 0,q ∈ Q} denote the feasible set of score.

Let θ ∈ Θ := [θ0, θ̄0] × · · · × [θK−1, θ̄K−1] denote a K-dimensional private signal

that each supplier obtains prior to bidding. Let C(q,θ) denote the supplier’s cost function

defined on Q × Θ. Let Cq`(q,θ) and Cθk(q,θ) denote the partial derivative of C(q,θ)

with respect to q` and θk with ` = 1, . . . , L− 1 and k = 0, . . . , K − 1.

Two scoring-auction formats are considered in the analysis: the first-score (FS) auction

and the second-score (SS) auctions. Let (pi,qi) denote bidder i’s multidimensional bid

in the scoring auction with i = 1, . . . n, and let (ppost,qpost) be the contracted payment

and quality. The bidder with the lowest S(p,q) wins, and only the winner performs the

contract and receives a payment. Let s(j) denote the jth-lowest score in the auction with

j = 1, . . . , n.

In the FS auction, the contract payment and quality are equal to the winning bidder’s

bid – i.e., S(ppost,qpost) = s(1). In the SS auction, the successful bidder can choose

(ppost,qpost) ex post such that S(ppost,qpost) = s(2).
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Then, bidder i’s problems in the FS and SS auctions are given as follows:

max
pi,qi

[
ppost − C(qpost,θi)

]
Pr{win|S(pi,qi)}, (FS)

subject to (ppost,qpost) = (pi,qi) if i wins.

max
pi,qi

Es(2)

[
max

ppost,qpost

{
ppost−C(qpost,θi)

∣∣S(ppost,qpost)=s(2)

}∣∣∣∣win
]
Pr{win|S(pi,qi)}.

(SS)

Throughout the paper, we impose the following four assumptions:

Assumption 1 (Regularity).

(i) The scoring rule, S(p,q), is sufficiently smooth with Sp(p,q) > 0 and Sq`(p,q) < 0

for all ` = 1, . . . , L − 1. In addition, for any s ∈ S , Sq`(p,q)/Sp(p,q) subject to

S(p,q) = s is weakly increasing in q`.

(ii) The bidder’s cost function, C(q,θ), is strictly positive, weakly convex, and twice-

continuously differentiable for all θ ∈ Θ. In addition, Cq`(q,θ) = 0, Cθk(q,θ) > 0,

Cq`θk(q,θ) = 0, and all are bounded for all ` = 1, . . . , L− 1 and k = 0, . . . , K − 1.

(iii) The signal, θ, is distributed independently and identically according to a publicly

known joint density, f(θ), which is continuous, positive measure, and bounded for

all θ ∈ Θ.

Assumption 1 is a set of regularity conditions imposed on the score and the cost func-

tions. Several remarks are in order. First, condition (i) is a technical assumption and can

be relaxed.7 This condition implies that the iso-score curve depicted on the q` − p plain is

weakly concave for all ` = 1, . . . , L − 1. Second, condition (ii) implies that the bidder’s

total and marginal costs are smooth and are increasing in θ. Note that the scoring auction

model is invariant with any bijective mapping of θ. Hence, even if Cθk , Cq`θk , or both are

negative for some k = 0, . . . , K − 1, but for all ` = 1, . . . , L − 1 and for all θ and q,

condition (ii) can hold by redefining the signal and the cost function.8

7See the discussion following Assumption 3.
8See the first remark on Assumption 4 for more details.
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Third, by condition (iii), we assume independent private values. While assuming inde-

pendence of θ across suppliers, our model allows for correlation of θ across dimension, –

i.e., θk and θk′ with k 6= k′ can be correlated with each other.

Finally, the scoring function is strictly monotone in p for any q. This implies that the

following function is well defined for all s = S(p,q) ∈ S:

P (s,q) = p, (1)

for any q ∈ Q. Moreover, because S(p,q) is sufficiently smooth, P (s,q) is also sufficiently

smooth with respect to s and q.9 In fact, the partial derivatives of P (s,q) with respect to

s and q` are given by Ps(s,q) = 1/Sp(p,q) and Pq`(s,q) = −Sq`(p,q)/Sp(p,q), respec-

tively, for all ` = 1, . . . , L − 1. As discussed in the next section, the monotonicity of the

scoring function implies that the choice problem regarding p in a multidimensional bid is

replaceable with the choice problem regarding s.

Assumption 2 (Interior Solution). For all s ∈ S, θ ∈ Θ, and q ∈ Q, P (s,q) − C(q,θ)

is weakly concave. Moreover, for all s ∈ S and θ ∈ Θ, there exists a closed interval

[q#(s,θ),q#(s,θ)] ∈ Q such that P (s,q) − C(q,θ) is i) strictly concave, ii) strictly

increasing at q#(s,θ) , and iii) strictly decreasing at q#(s,θ) with respect to q.10

Assumption 2 specifies the scope of our analysis: an interior solution. That is, we do not

consider the case in which the auctioneer uses a quality bound in the scoring auction. Later,

we will discuss that the interior solution assumption is a necessary condition for identifying

bidders’ K-dimensional signals. Note that the scoring auction literature regularly adopts

this assumption (e.g., Asker and Cantillon, 2008).11

9Function P (s,q) is discussed in Asker and Cantillon (2008), as denoted by Ψ(Q, tw), where Q and tw

correspond to q and s in our model. Hanazono et al. (2013) show that P (s,q) is feasible even if there is a
binding reserve price.

10Note that we use “≤” (or “≥”) as a vector inequality such that θi ≤ θ̂i if and only if θki 5 θ̂ki for
k = 0, . . . ,K − 1 and θi 6= θ̂i.

11Hanazono et al. (2013) consider the case of corner solutions – i.e., binding price bounds or quality
bounds. They show that by allowing corner solutions, the model of scoring auctions can apply to a broader
settings in multidimensional bidding, such as the fixed price–best quality-proposal competition analyzed by
Thiel (1988) and the (multidimensional) unit-price auction for incomplete contracts analyzed by Bajari et al.
(2014). See Hanazono et al. (2013) for more details.
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Due to Assumption 2, the relevant choice set of q for bidder type θ is given in the

following compact set:

Q(θ) :=
⋃
s∈S

[
q#(s,θ),q#(s,θ)

]
⊂ Q.

This implies that, for any s, the bidder’s optimal q exists in the interior of the domain of

C(q, ·).

Assumption 3 (Sorting).

For all k = 0, . . . , K − 1 and `, m = 1, . . . , L− 1,

(i)
∂

∂qm
Cq`(q,θ)

Cθk(q,θ)
= 0,

(ii)
∂

∂q`
P (s,q)

Ps(s,q)
= 0.

for any q and θ in the interiors of Q(θ) and Θ.

Assumption 3 is an extension of Assumption 3 in Hanazono et al. (2013) to settings

with multidimensional types and quality. Assumption 3 is a sufficient primitive condition

for the sorting condition or, equivalently, the bidder’s objective function exhibiting strictly

increasing differences (Lemma 1). As known in the existing literature such as McAdams

(2003), this condition ensures the existence of a pure monotone equilibrium in the Bayesian

game. In Section 3.3, we show that the sorting condition guarantees not only the existence,

but also the uniqueness of a symmetric pure monotone equilibrium in the FS auction. Note

that this assumption is not required for an equilibrium in the SS auction and in the FS

auction with Psq` = 0 for all ` = 1, . . . , L− 1 (e.g., the quasilinear (QL) scoring rule). On

the other hand, we need to assume a litter more complex condition: (Cq`qm − Pq`qm)Cθk =

Cq`Cqmθk , in replace with (i) if we relax Assumption 1-(i), – i.e., the score function is

concave.12

12In fact, Hanazono et al. (2013) assume (Cqq − Pqq)Cθ = CqCqθ in C-3 of Proposition 1 with single
dimensional θ and q absent the concavity assumption of the score function. Condition Psq` 5 0 corresponds
to C-2 of Proposition 1 in Hanazono et al. (2013).
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Example: We briefly discuss a set of scoring rules that satisfy Assumptions 1 through 3.

Let V (q) be smooth, Vq be strictly positive, and Vqq be negative definite. Then, consider

the following two scoring functions:

1. Quasilinear (QL): S(p,q) = µ1(p− V (q)),

2. Price-per-Quality Ratio (PQR): S(p,q) = µ2(p/V (q)),

where µ1(·) and µ2(·) are some strictly increasing functions.

Note that, without any loss, we take µj as the identity function with j = 1, 2 because

the allocation, payment, and payoffs are all invariant to µj . On the other hand, there is

no monotone function that makes these two scoring rules isomorphic in the sense that two

scoring rules generate the same outcome. Hence, it is worth discussing these two scoring

rules, separately.

Now, let s = S(p,q). Then, P (s,q) is given by

P (s,q) = s+ V (q), (QL)

P (s,q) = sV (q), (PQR)

under these scoring functions. Note, also, that Ps is equal to 1 (QL) or V (q) (PQR). Hence,

Assumption 3 holds in both cases.13

Assumption 4 (Identification). For all θ in the interior of Θ and for all q inQ, there exists

a K-dimensional nonsingular matrix, Γ, with which C̃(q, θ̃) := C(q,Γ−1θ̃) = C(q,θ)

13With monotone function µj , both are µ−11 (s) and µ−12 (s)V (q), respectively. The assumption is satisfied
in both cases.
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satisfies

|C̃θ̃0(q, θ̃)| >
K−1∑
k=1

|C̃θ̃k(q, θ̃)|,

|C̃q1θ̃1(q, θ̃)| >
∑

k∈{0,...,K−1|k 6=1}

|C̃q1θ̃k(q, θ̃)|,

...

|C̃q`θ̃`(q, θ̃)| >
∑

k∈{0,...,K−1|k 6=`}

|C̃q`θ̃k(q, θ̃)|,

...

|C̃qL−1θ̃L−1(q, θ̃)| >
∑

k∈{0,...,K−1|k 6=K−1}

|C̃qK−1θ̃k(q, θ̃)|.

Two remarks are in order. First, Assumption 4 is satisfied if the cost function exhibits an

additively separable form for each dimension of q such that Cq`θk = 0 for ` = 1, . . . , L− 1

and k = 0, . . . , K − 1 with k 6= `. Moreover, it allows for many non-additively-separable

cost functions as long as θ` has a stronger impact on the `th dimensional marginal cost,

Cq`(·), than the aggregate sum of all other dimensions of θ and θ0 has a stronger impact

on the total cost, C(·), than the sum of all other dimensions of θ, under some bijective

transformation of θ.

Second, let A(θ; q) := (C(q,θ), Cq1(q,θ), . . . , CqL−1(q,θ))T ∈ RL. Then, this as-

sumption is equivalent to A(θ; q) having a full column rank Jacobian matrix (Lemma 4).14

We then show that the full column rank Jacobian is sufficient for the global invertibility

of A(θ; q) with respect to θ if the dimension of θ is no greater than the dimension of the

multidimensional bid (Proposition 3).

14If Γ is restricted to be a diagonal matrix, the Jacobian of A(θ; q) is the quasi-dominant diagonal (q.d.d.)
matrix discussed in McKenzie (1960). Because Assumption 4 is weaker than the condition for the Jacobian
matrix to be q.d.d, Assumption 4 is not only sufficient but also necessary for a full-rank Jacobian of A(θ; q)
in our setting (i.e., A(·) is differentiable).
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Example: Consider the following cost function:

C(q,θ) =

 (q + α0θ0 + θ1)
β

+ θ0 + α1θ1 if q + α0θ0 + θ1 = 0

θ0 + α1θ1 otherwise
(2)

with q > 0, θ0 > 0, and θ1 > 0, where parameters αj > 0 with j = 0, 1 and β > 1 are all

finite.15

With α0α1 6= 1, let us define

Γ =

 1 0

α0 Φ

 ,
where Φ = (1 − α0α1)/(α1 + βDβ−1 + ε), D = q + α0θ0 + θ1, and ε > 0. Then, the

Jacobian matrix of Ã(θ̃; q) = (C̃(q, θ̃), C̃q1(q, θ̃), . . . , C̃qL−1(q, θ̃)) is given by:

J̃θ̃(θ̃; q) ≡ Jθ(θ; q)Γ−1 =

α1 + βDβ−1 + ε α1 + βDβ−1

0 β(β − 1)Dβ−2

 .
Because the diagonal element is greater than the off-diagonal element for each row, C(q,θ)

satisfies Assumption 4.

If α0α1 = 1, on the other hand, we do not find Γ that makes J̃θ̃ strictly diagonally

dominant matrix. In fact, θ0 and θ1 are linearly related in the cost function as:

C(q,θ) = (q + α0θ#)β + θ#,

where θ# = θ0 + θ1/α0. As will be discussed in Section 4, this leads to nonidentification

of θ because A(θ; q) is not invertible.

15In Section 5, we conduct an empirical study. We use the same cost function with α0 = α1 = 0.
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3 Equilibrium Analysis

In this section, we consider an alternative game (called the score-bidding game) to repli-

cate the equilibrium of the scoring auction. Given that the outcome of the scoring auction

consists of each bidder’s score and the contract price and quality, the score-bidding game

is outcome-equivalent to the original scoring auction. The approach is similar to that in

the existing literature on scoring auctions such as Che (1993), Asker and Cantillon (2008),

and especially Hanazono et al. (2013). Many of the arguments in this section are similar to

Hanazono et al.’s (2013), except for multidimensional type and quality being taken into ac-

count. Our novel approach is seen in the analysis of the FS auction, illustrated in subsection

3.3.16

3.1 An Outcome-equivalent Score-bidding game (Hanazono et al. (2013))

Consider a score-bidding game in which each supplier submits a score, s ∈ S, or stays out.

The supplier receives zero payoff if staying out, and the score for the bidder who stays out

is equal to ∞. The lowest-score bidder wins. Only the winner chooses a quality vector,

qpost. Based on qpost, the winner performs the project work and receives a payment. Let

s(j) denote the jth lowest score in the auction. In the FS auction, the payment is equal

to P (s(1),qpost). In the SS auction, the payment is equal to P (s(2),qpost). Clearly, the

outcome of this score-bidding game – i.e., each bidder’s score and the contract price and

quality – is the same as in the original scoring auction.

Using P (s,q) in expression (1), bidder i’s problems (FS) and (SS) are replicated with

the score-bidding game as

max
si∈S

[
max

qpost∈Q(θi)

{
P (si,qpost)− C(qpost,θi)

∣∣ si}]Pr{win|si}, (FS’)

max
si∈S

Es(2)

[
max

qpost∈Q(θi)

{
P (s(2),qpost)− C(qpost,θi)

∣∣ s(2)

}∣∣∣∣win
]

Pr{win|si}. (SS’)

16Hanazono et al. (2013) analyze a multidimensional environment in which the bidder’s strategic behavior
can depend only on a single parameter. To do so, they impose a substantial restriction on the cost function
(such as homogeneous of degree one.). On the other hand, Hanazono et al. (2013) consider the case in which
a reserve price or quality bound binds in equilibrium, both of which are beyond the scope in this paper.
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To consider the maximization problem in the square brackets, define

q(s,θ) = arg max
qpost

{
P (s,qpost)− C(qpost,θ)

∣∣ s} ,
for some s ∈ S. Here, s is equal to si in the FS auction and equal to s(2) in the SS auction.

Assumption 2 ensures the existence and uniqueness of q(s,θ) as an interior solution. This

implies that the solution to the maximization problem in the square bracket of (FS’) and

(SS’) is given by the following (L− 1)-dimensional system of equations:


Pq1(s,q(s,θ))

...

PqL−1(s,q(s,θ))

 =


Cq1(q(s,θ),θ)

...

CqL−1(q(s,θ),θ)

 . (3)

Given the result, the bidder’s induced utility, discussed in Hanazono et al. (2013), is

well defined and given as

u(s,θ) = P (s,q(s,θ))− C(q(s,θ),θ).

The induced utility represents the conditional payoff upon winning given that s = si(=

s(1)) in the FS auction and s = s(2) in the SS auction. Then, replacing the square brackets in

(FS’) and (SS’) with u(·), we can replicate bidder i’s problems in the FS and SS auctions,

(FS) and (SS), with the following one-dimensional optimization problems in the score-

bidding games:

max
si∈S

u(si,θi) Pr{win|si}, (FS”)

max
si∈S

u(s(2),θi) Pr{win|si}. (SS”)

We finally discuss the smoothness of u(s,θ); let us(s,θ) and uθk(s,θ) denote the par-

tial derivatives of u(·) with respect to s and θk with k = 0, . . . , K−1, respectively. Because

both P (s,q) and C(q,θ) are smooth, we have Ps(·) = 1/Sp(·) > 0 and Cθk > 0. There-
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fore, the derivatives of u(s,θ) exist as:

us(s,θ) = Ps(s,q(s,θ)) > 0,

uθk(s,θ) = −Cθk(q(s,θ),θ) < 0.
(4)

Moreover, it is easy to see that us(·) and uθk(·) are differentiable with respect to s and

that us is differentiable with respect to θ; applying the implicit function theorem to (3),

we see that q(s,θ) is differentiable with respect to both s and θ. Let qs and qθk denote

the derivatives with respect to s and θk. Then, for all k = 0, . . . , K − 1, we have usθk =

−
∑L−1

`=1 Cq`θkq
`
s and uss = Pss +

∑L−1
`=1 Psq`q

`
s. Note that Pss(·) and Psq`(·) are bounded

because S(·) is assumed to be sufficiently smooth.

3.2 Equilibrium in the SS auction

Hanazono et al. (2013) characterize the equilibrium of the SS auction under the general

multidimensional type-space environment. In the rest of this subsection, we discuss several

features of Hanazono et al. (2013) that are relevant to our analysis.

In the SS bidding game, there exists a dominant strategy equilibrium, σII : Θ → S,

such that bidder i with i = 1, . . . , n chooses σII(θi) = z(θi) ∈ S, where

z(θ) = {s|u(s,θ) = 0}

is named as the break-even score in Hanazono et al. (2013), representing the minimum

score subject to non-negative payoffs. If the scoring rule is QL, z(θ) is the bidder’s pseudo-

type discussed in Asker and Cantillon (2008). Hanazono et al. (2013) show that z(θ) is

well-defined and strictly monotone in θ under the multidimensional type-space environ-

ment.

By (3), the optimal quality choice in the SS bidding game is given by

qFB(θ) := {q|P (z(θ),q)− C(q,θ) = 0}.

Assumption 2 ensures the well-definedness and uniqueness of qFB(θ). Therefore, the equi-
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librium in the SS auction is summarized as follows:

Proposition 1. In the SS auction, there exists a dominant strategy equilibrium in which

bidder i submits (p∗(θi),q∗(θi)) such that

(p∗(θi),q∗(θi)) = (P (z(θi),qFB(θi)),qFB(θi)), (5)

where z(θi) and qFB(θi) are given by

u(z(θi),θi) = 0,

Pq1(z(θi),qFB(θi)) = Cq1(qFB(θi),θi),

...

PqL−1(z(θi),qFB(θi)) = CqL−1(qFB(θi),θi).

The smoothness of z(θ) in θ is easily shown (while it is unnecessary for the equilibrium

analysis of the SS auction but will, in turn, be required for the analysis of the FS auction.).

Because z(·) satisfies u(z(θ),θ) = 0 for all θ ∈ Θ, the implicit function theorem ensures

that for all θ, the partial derivative of z(θ) with respect to θk exists locally for all k =

0, . . . , K − 1. It is also easily seen that z(θ) is strictly increasing in θk. Let zθk(θ) denote

the partial derivative of z(θ) with respect to θk. Then, taking the derivative on both sides

of u(z(θ),θ) = 0 with respect to θk gives

us(z(θ),θ)zθk(θ) + uθk(z(θ),θ) = 0.

Given that uθk < 0 and that us > 0, we have zθk(θ) > 0.

3.3 Equilibrium in the FS auction

We next consider the FS auction with a reserve score sr ∈ (minθ z(θ),maxθ z(θ)). We

introduce a reserve score to ensure the uniqueness of the pure monotone equilibrium, fol-

lowing Maskin and Riley (1984).17 Note that the argument below works even if the reserve
17The reserve score guarantees the smoothness of the bidder’s first-order condition at the boundary, as

shown in Maskin and Riley (1984). In the analysis on scoring auctions, Hanazono et al. (2013) employ a
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score is equal to the break-even score of the least efficient supplier.

Then, there are three sets of supplier types:

i) Θr+ := {θ|z(θ) > sr},

ii) Θr := {θ|z(θ) = sr},

iii) Θr− := {θ|z(θ) < sr}.

Each of these sets corresponds to i) a set of supplier types that earn negative profits from

bidding sr; ii) those that earn zero profits from bidding sr; and iii) those that earn positive

profits from bidding sr. Because z(θ) is strictly increasing and smooth, Θr−, Θr, and Θr+

are mutually exclusive with Θr− ∪Θr ∪Θr+ = Θ.18

Let x̄ denote the probability that the supplier type is either in Θr− or Θr, which is given

by

x̄ = Pr{sr = z(θ)} =

∫
{θ̃∈Θr−∪Θr}

f(θ̃)dθ̃.

Because nether Θr+ nor Θr ∪Θr− is empty, we have x̄ ∈ (0, 1).

Then, we demonstrate the existence and the uniqueness of the symmetric pure mono-

tone equilibrium strategy in the FS bidding game, σI : Θr− ∪Θr → S. Given σI, bidder

i’s equilibrium multidimensional bid in the original FS auction is given by

(p∗(θi),q∗(θi)) = (P (σI(θi),q(σI(θi),θi)),q(σI(θi),θi)) , (6)

for all θ ∈ Θr− ∪Θr and staying out for all θ ∈ Θr+.

Suppose that all bidders except for bidder i follow σI. Let G(s) and g(s) denote the

distribution and density of the score by bidder i’s rival. Then, problem (FS”) for bidder i is

binding reserve score to show the existence of a unique equilibrium.
18Suppose, by contradiction, that ∃θ such that θ ∈ {Θr+ ∩Θr}. Because θ ∈ Θr, we have z(θ) = sr.

On the other hand, we have z(θ) > sr because θ ∈ Θr+. We thus have a contradiction. A similar argument
holds for the remaining cases. It is obvious that the smoothness of z(θ) implies Θr− ∪Θr ∪Θr+ = Θ
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given by

max
si∈S

π(si,θi) = u(si,θi)[1−G(si)]
n−1, (7)

and the first-order condition is given by

1−G(si)

(n− 1)g(si)
=

u(si,θi)

us(si,θi)
(8)

if g(·) 6= 0.

McAdams (2003) has shown that a pure monotone equilibrium exists if π(s,θ) satisfies

the single-crossing property – i.e., ∂2π(s,θ)/∂s∂θk = 0 for all ` = 0, . . . , L − 1. Here,

we demonstrate that the sorting condition defined below, which is a bit stricter condition

than the single-crossing property, also guarantees the uniqueness of the symmetric pure

monotone equilibrium.

Definition 1 (Sorting condition). For any s ∈ S, u(s,θ) satisfies the sorting condition if

∂

∂θk
u(s,θ)

us(s,θ)
< 0,

for all k = 0, . . . , K − 1.

The following lemma illustrates that Assumption 3 is a set of sufficient primitive con-

ditions for the sorting condition. Note that the lemma is an extension of Proposition 1 in

Hanazono et al. (2013) to settings with multidimensional types.19

Lemma 1 (Sorting condition). If Assumption 3 holds, then u(s,θ) satisfies the sorting

condition.

Proof. See Appendix A.

Then, we have a proposition regarding the characteristics and the uniqueness of a symmet-

ric pure monotone equilibrium in the FS auction.

19In fact, the sorting condition in Hanazono et al. (2013) does not require the smoothness of
u(s, θ)/us(s, θ) in order to accommodate the case of a binding reserve price.
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Proposition 2. The symmetric pure monotone equilibrium strategy, σI(·), is unique. More-

over, σI(θi) and q(σI(θi),θi) satisfy the L-dimensional system of best-response functions:

1−G(σI(θi))

(n− 1)g(σI(θi))
=

u(σI(θi),θi)

us(σI(θi),θi)
, (9)

Pq1(σI(θi),q(σI(θi),θi)) = Cq1(q(σI(θi),θi),θi)

... (10)

PqL−1(σI(θi),q(σI(θi),θi)) = CqL−1(q(σI(θi),θi),θi).

It is easy to see that expression (10) is given by expression (3) with s = σI(θi). Hence,

in what follows, we show that there uniquely exists an equilibrium strategy, σI(θi), that

satisfies (9) and is distributed according to G(·).

We first show that the sorting condition guarantees a unique solution to (7). We guess

that both G(s) and g(s) satisfy the following properties:
G(s) ∈ [0, x̄) for all s < sr and G(sr) = x̄;

G(s) is strictly increasing and differentiable for all s < sr;

lims→sr g(s) =∞.

(Guess)

In our situation, the cross partial derivative of u(s,θ) with respect to s and θ exists.

Therefore, given (Guess), the sorting condition is equivalent to strict increasing differences

in the bidder’s interim expected profit, π(s,θ). It is well known that this property ensures

the pseudoconcavity of the bidder’s objective function with respect to si.20 It follows that

maximization problem (7) has a unique global maximizer if G(·) and g(·) satisfy (Guess).

Moreover, the sorting condition implies that the solution is strictly increasing in θ.21

We then conclude the proof by showing that there uniquely exists G(·) that satisfies (9).

Let t̄(s) := supθ∈Θ u(s,θ)/us(s,θ) and t(s) := infθ∈Θ u(s,θ)/us(s,θ) denote the upper

and lower bounds of u(s,θ)/us(s,θ) for some s ∈ S, and let T (s) := [t(s), t̄(s)]. Note

that u(s,θ)/us(s,θ) is a random variable given s. Thus, we define a survival function of

20See, e.g., Matthews (1995); Hanazono et al. (2013).
21In Online Appendix I, we verify these points.
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u(s,θ)/us(s,θ) as:

ξ(t; s) := Pr

{
u(s,θ)

us(s,θ)
= t

∣∣∣∣ s} =

∫ t̄(s)

t

∫
{θ̃|u(s,θ̃)/us(s,θ̃)=t̂}

f(θ̃)dθ̃dt̂,

for any s ∈ S and t ∈ T (s).

Note that ξ(t; s) is smooth and strictly decreasing in t.22 Moreover, ξ(t̄(s); s) = 0 and

ξ(t(s); s) = 1 for any s ∈ S. Therefore, ξ : T (s) → [0, 1] is bijective given s. It follows

that ξ(t; s) is invertible with respect to t for all s ∈ S.

Let ξ−1(x; s) denote the inverse of ξ(t; s) with respect to t. Because ξ−1(x; s) ∈ T (s)

by definition, ξ−1(·) is bounded. In addition, given x, ξ−1(x; s) is smooth in s, as shown in

the next lemma.

Lemma 2 (Differentiability of ξ−1(x; s)).

For any x ∈ [0, 1], ξ−1(x; s) is differentiable with respect to s in the interior of S.

Proof. See Appendix B.

Finally, we have a lemma, which addresses that ξ(·) is equivalent to G(·) if bidder i

with θi ∈ Θr− ∪Θr also plays σI(·).

Lemma 3 (Distribution of u(s,θ)/us(s,θ)).

For all θ ∈ Θr− ∪Θr,

G(s) ≡ ξ

(
u(s,θ)

us(s,θ)
; s

)
(11)

if s = σI(θ).

Proof. See Appendix C.

22Taking the derivative with respect to t, we have

∂

∂t
ξ(t; s) = −

∫
{θ̃|u(s,θ̃)/us(s,θ̃)=t}

f(θ̃)dθ̃ < 0.

This is bounded for any s ∈ S and t ∈ T (s), because f(θ) is bounded for all θ ∈ Θ.
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Using ξ(·) and its inverse, we investigate the symmetric equilibrium in the FS auction.

By transforming (8) with ξ(·; si), we obtain:

ξ

(
1−G(si)

(n− 1)g(si)
; si

)
= ξ

(
u(si,θi)

us(si,θi)
; si

)
,

for all θi ∈ Θr−. By Lemma 3, the right-hand side is equal to G(si) if si = σI(θi). This

implies that, if bidder i also plays σI(·), then G(s) and g(s) must satisfy:

ξ

(
1−G(s)

(n− 1)g(s)
; s

)
= G(s) (12)

subject to s = σI(θ).

In Appendix D, we show that this above differential equation has a unique solution with

the boundary condition, G(sr) = x̄, if sr < maxθ z(θ). In particular, the smoothness of

ξ−1(x; s), shown in Lemma 2, ensures the existence and the uniqueness of G(s) (and g(s))

that satisfy (12). In the appendix, we also demonstrate that G(s) (and g(s)) satisfy all the

items in (Guess). Recall that σI(θ) is the unique solution to (9) given G(·). Hence, we

conclude that σI(·) is the unique symmetric pure monotone equilibrium.

4 Structural estimation of the scoring auction model

4.1 Outline

In this section, we demonstrate that the K-dimensional i.i.d. signal is identified from L-

dimensional bids under Assumptions 1 through 4 if K 5 L. The key to our identification

strategy is the invertibility of A(θ; q) with respect to θ. We show this by applying the

global inverse function theorem. In the FS auction, we assume, for simplicity, that the

auctioneer sets the reserve score as sr = z(θ̄), i.e., the least efficient type is indifferent

between bidding and staying out in the FS auction.
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4.2 Identification of the multidimensional signal in FS and SS auctions

We first examine the FS auction. Let (p∗,q∗) denote an observed multidimensional bid,

and let s∗ denote the associated score, given by s∗ = S(p∗,q∗). Suppose that p∗ and q∗ are

generated by equilibrium strategy σI(·), as discussed in (6). Then, s∗ satisfies the first-order

condition, (9), as

1−G(s∗)

(n− 1)g(s∗)
=

u(s∗,θ)

us(s∗,θ)
.

Given that the observed quality bid satisfies q∗ = q(s∗,θ), we have u(s∗,θ) = P (s∗,q∗)−
C(q∗,θ) and us(s∗,θ) = Ps(s

∗,q∗). Then, we rearrange the first-order condition as:

C(q∗,θ) = p∗ − Ps(s∗,q∗)
1−G(s∗)

(n− 1)g(s∗)
. (13)

Moreover, q∗ = q(s∗,θ) satisfies (3) such that

Cq`(q∗,θ) = Pq`(s
∗,q∗) (14)

for all ` = 1, . . . , L− 1. Then, from equations (13) and (14), we have the following system

of nonlinear equations:

A(θ; q∗) = b∗, (15)

where

A(θ; q∗) =


C(q∗,θ)

Cq1(q∗,θ)
...

CqL−1(q∗,θ)

 ; b∗ =


p∗ − Ps(s∗,q∗)(1−G(s∗))/(n− 1)g(s∗)

Pq1(s
∗,q∗)
...

PqL−1(s∗,q∗)

 . (16)

Given that bidders follow a strictly increasing strategy σI(·), b0 ≡ p − Ps(s,q)(1 −
G(s))/(n− 1)g(s) is monotone in s given q. This implies that b and s are one-to-one with

each other. In other words, for any observables (p∗,q∗), b∗ is uniquely given. Therefore,

the monotonicity of b0 gives a refutable restriction on the distribution of s in the FS scoring
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auction model.

The case of the SS auction is analogous; suppose that each bidder’s multidimensional

bid, (p∗,q∗), is generated by the equilibrium strategy σII(·).23 Then, the associated score,

s∗ = S(p∗,q∗), is given by

s∗ = σII(θ) = z(θ),

where p∗ and q∗ are given by

p∗ = P (s∗,q∗), and (17)

Cq`(q∗,θ) = Pq`(s
∗,q∗) (18)

for all ` = 1, . . . , L− 1.

Then, the system of nonlinear equations is given as A(θ; q∗) = b∗ with

A(θ; q∗) =


C(q∗,θ)

Cq1(q∗,θ)
...

CqL−1(q∗,θ)

 ; b∗ =


p∗

Pq1(s
∗,q∗)
...

PqL−1(s∗,q∗)

 . (19)

Now, we discuss our approach to identification. First, P (·) is a known function. For the

FS auction, g(·) and G(·) can be obtained from observations on s∗ = S(p∗,q∗). Hence, all

elements of b∗ can be evaluated from the observed multidimensional bid, (p∗,q∗), in both

FS and SS cases. Furthermore, C(q,θ) is known except for θ. In other words, only θ is

the unknown element in the nonlinear system, A(θ; q∗) = b∗. Therefore, θ is identified

from observations if function A(θ; q) is invertible with respect to θ. More specifically,

let A−1(b; q) denote the inverse function of A(θ; q) with respect to θ. Then, if A(θ; q)

is invertible with respect to θ, we can recover θ as the unique solution to the nonlinear

system. In what follows, we give a formal argument for this by demonstrating that the

nonlinear system has a unique solution.

23In the SS auction, the winner also chooses (ppost,qpost), which is also observable. In this analysis, we
ignore the effect of this additional observation on identification.
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The unique solution to the nonlinear system is shown by the global inverse function

theorem.24 In our situation, we have to show the following conditions: (i)A(θ; q) is locally

invertible for all θ ∈ Θ and q ∈ Q(θ); (ii) A(θ; q) is a proper mapping for any θ and q;

and (iii) Θ is arcwise connected, and the image of A(θ; q) is simply connected for all

q ∈ Q(θ).

The following lemma demonstrates that Assumption 4 is equivalent to the local invert-

ibility of A(θ; q).

Lemma 4. Suppose that K 5 L. Then, the cost function, C(q,θ), satisfies Assumption 4 if

and only if the Jacobian matrix of A(θ; q) = (C(q,θ), Cq1(q,θ), . . . , CqL−1(q,θ))T with

respect to θ is full column rank for all θ ∈ Θ and q ∈ Q(θ).

Proof. See Appendix E.

By the local inverse function theorem, Lemma 4 guarantees the local invertibility of

A(θ; q) if K 5 L.

Then, we have a proposition regarding the global invertibility of A(θ; q). Given the

local invertibility of A(·), our proof focuses on demonstrating the remaining conditions,

(ii) and (iii), for the global inverse function theorem.

Proposition 3. Suppose that K 5 L. Then, under Assumptions 1 through 4, vector-valued

function A(θ; q) is globally invertible with respect to θ for all q ∈ Q(θ).

Proof. See Appendix G.

The following corollary is an immediate consequence of Proposition 3.

Corollary 1 (Identification). Under Assumptions 1 through 4, the bidder’s K-dimensional

signal is identified from L-dimensional bid samples if K 5 L.

Several remarks are in order. First, we briefly discuss the case in which Assumption 4

is not satisfied. As illustrated in the example in Section 2, if the cost function exhibits the

rank-deficient Jacobian matrix of A(θ; q) at q∗, then the impact of a dimension of θ on the

total and marginal costs is identical to that of another dimension or a linear combination

24See Ambrosetti and Prodi (1995) for more details.
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of a set of other dimensions of θ at q∗. If K-dimensional θ exhibits such dependence in

the cost function, then two different bidder types θ 6= θ′ have the same total and marginal

costs at q∗ – i.e., A(θ; q∗) = A(θ′; q∗). Given that the optimal choice in s depends solely

on θ in the scoring auction, these two bidders are observationally equivalent, as their score

and quality are identical to s∗ and q∗, respectively. Therefore, the multidimensional signal

is not identified.

Second, we make a note on identification when the solution to q is corner (i.e., cases

arising if Assumption 2 is not satisfied). For instance, expression (14) becomes inequality

if a quality upper bound binds:

Cq`(q∗,θ) = Pq`(s
∗,q∗), (14′)

for all ` = 1, . . . , L − 1. That is, one obtains A(θ; q∗) = b∗, suggesting that θ is not

identified. In this case, one may need to exploit additional observations or constraints on

primitives for identification or to use partial identification.

Finally, we explore the specification test for the cost function. Suppose that the re-

searcher uses a cost function, Ĉ(q,θ), that may not be the true cost function, C(q,θ).

Given that the observation of the scoring auction data is L-dimensional, one needs addi-

tional variations in data to identify signals of (L + 1) or higher dimensions. This, in turn,

implies that there is no way to test the cost function with L-dimensioning bid data only.

Several ways have been proposed to obtain additional dimensions of information, such

as exogenous variations in the scoring rules and in the number of bidders.25 However, in

Appendix H, we show that at least the exogenous variation in the number of bidders does

not help to test the cost function if the scoring rule is QL.

Note that, while the cost function may be testable with non-QL scoring rule, it generally

has some limitations, as discussed in Athey and Haile (2007). For instance, the alternative

hypothesis is that some component of the specification is incorrect. A failure of the test may

indicate the presence of unobserved heterogeneity, risk aversion, non-equilibrium bidding

behavior, etc.
25The idea to exploit a variation in the scoring rule is seen in Asker and Cantillon (2008). For more detailed

arguments on the use of a variation in the number of bidders, see Athey and Haile (2002, 2007).
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4.3 Estimation for the distribution of θ

Let T be the number of scoring auction samples, each indexed by t = 1, . . . , T . Let

θ̂i,t = (θ̂0
i,t, . . . , θ̂

K−1
i,t ) with K 5 L be the solution to A(θ; q∗) = b∗, where b∗ is given by

(16) and (19) for the FS and SS auctions, respectively.

In the FS auction, both G(s) and g(s) are estimated by the standard kernel estimator.

Auction-specific heterogeneities, such as the number of bidders, properties of the item to be

purchased, etc., are controlled; let nt and xt = (x1
t , . . . , x

d
t ) denote the number of bidders

and the covariates of auction t, respectively. Let g(s, n, x) denote the joint density function

of s, n, and x. Then, the kernel estimator for G(s, n, x) :=
∫ s
−∞ g(v, n, x)dv is provided by

Ĝ(s, n, x) =
1

ThGnh
d
Gx

T∑
t=1

1

nt

nt∑
i=1

1(si,t 5 s)KG

(
n− nt
hGn

,
x1 − x1,t

hGx
, · · · , xd − xd,t

hGx

)
,

(20)

where 1(·) is an indicator function, KG is a kernel with a bounded support, and hGn and

hGx are bandwidths. Similarly, the kernel density estimator for g(s, n, x) is given by

ĝ(s, n, x) =
1

Thshgnh
d
gx

T∑
t=1

1

nt

nt∑
i=1

Kg

(
s− si,t
hs

,
n− nt
hgn

,
x1 − x1,t

hgx
, · · · , xd − xd,t

hgx

)
,

(21)

where Kg is a kernel with a bounded support and hs, hgn , and hgx are bandwidths. In

practice, the discrete variables, such as the number of bidders and the maximum quality

level, are smoothed out in the way that Li and Racine (2006) discuss.

Corollary 1 suggests that θ̂i,t is recovered in both FS and SS auctions. The estimation

for F (θ, x) :=
∫ θ0
−∞ · · ·

∫ θK−1

−∞ f(τ , x)dτ 0 · · · dτK−1 is given by the standard kernel method:

F̂ (θ, x) =
1

ThdFx

T∑
t=1

nt∑
i=1

1(θ ≤ θi,t)KF

(
x1 − x1,t

hFx
, · · · , xd − xd,t

hFx

)
,

where KF is a kernel with a bounded support, and hFx is a bandwidth. Similarly, the kernel

density estimator for the joint density function of θ and the covariate vector x is given by

f̂(θ, x) =
1

Thf0 · · ·hfK−1
hdfx

T∑
t=1

Kf

(
θ0 − θ0

i,t

hf0
, . . . ,

θK−1 − θK−1
i,t

hfK−1

,
x1 − x1,t

hfx
, · · · , xd − xd,t

hfx

)
,
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where Kf is a kernel with bounded support, and hf0 ,. . . , hfK−1
, and hfx are bandwidths.

5 An Empirical experiment

5.1 Data and Institution

The data used in our analysis contain the bid results of the procurement auctions for civil

engineering projects conducted from January 2010 through August 2014 by the Ministry

of Land, Infrastructure, and Transportation (MLIT) in Japan. The data include project

names, dates of auctions, engineers’ estimates, scoring auctions or not, and submitted bids

with the bidder’s identity. The MLIT procures 21 types of construction work, including

civil engineering (or heavy and general construction work), buildings, bridges, paving,

dredging, and painting. The civil engineering projects cost approximately 750 billion yen a

year, which accounts for approximately 54 percent of the entire expenditure of the ministry,

as well as for approximately three to four percent of the public construction investment in

Japan. The number of civil engineering projects let by the ministry during the study period

was 18,183.

Among these, 6,610 projects were allocated through scoring auctions in which bidders

were asked to submit a technical proposal.26 After removing samples with only one bidder

and possibly misrecorded auctions, we are left 5,142 scoring auction samples.27

Table 1 reports the sample statistics. The mean of winners’ bids and engineers’ esti-

mated prices were approximately 423 or 477 million yen, respectively. The quality bids

ranged from approximately 130 through 200. The score is calculated as the quality bid

divided by the price bid. The bidder with the highest score wins the project. Note that, tak-

ing into account the project-size heterogeneity, we report as the score the observed score

26There are three types of scoring auctions: Technical Proposal Type (Kodo Gijutsu Teian Gata); Regular
Type (Hyojun Gata); and Simple Type (Kan-i Gata). We use Technical Proposal Type and Regular Type. In
the Simple Type, bidders are not asked to turn in any proposal; instead, the buyer evaluates the bidder’s past
experience and the technology levels as non-price attributes. Hence, we removed these auctions from our
samples. The Simple Type is used for relatively smaller projects.

27Misrecorded auctions include those in which quality or price bids are too low or too high (outside of the
feasible level for the quality bid or less than 10% or greater than 200% of the engineer’s estimate for the price
bid).
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multiplied by the engineer’s estimate for each auction.28 In each auction, approximately

ten firms participated, on average.

[Table 1 about here.]

In the scoring auctions of the MLIT, the quality-bid point is given by a weighted sum of

all non-price attributes, which include noise level, completion time, and bidder experience.

The method of converting a technical proposal into a quality bid differs for each project. For

instance, each one-decibel reduction in noise accounts for five additional quality-bid points.

Our data records the quality-bid point, but not each of itemized points. The lower bound of

the quality bid is 100 for all auctions, and the upper bound is 150 to 200, depending on the

auction. The bidder proposing nothing has a quality bid equal to 100. Table 2 reports the

sample statistics by upper bound in quality.

[Table 2 about here.]

5.2 Specifications

5.2.1 Percentage bids

Let Bi,t and qi,t denote the raw values of bidder i’s price and quality bids, respectively, in

scoring auction t ∈ T . Under the inverse PQR scoring rule that the MLIT uses, the actual

score is given by qi,t/Bi,t. In our analysis, we normalize the raw price bid by dividing

by the engineer’s estimate to control for the project-size heterogeneity. Let B̄t denote the

engineer’s estimated price in auction t. Then, the normalized price bid of bidder i in auction

t is defined as pi,t = Bi,t/B̄t. Let qpost and ppost denote the winning bidder’s contracted

quality and normalized price bid. Then, we assume that the procurement buyer’s utility

from auction t is defined as:

wt =
qpostt

ppostt

, (22)

28In other words, we compute the score by dividing the quality-bid points by the percentage price bid in
terms of the engineer’s estimate. We will use the score as the buyer’s utility in the counterfactual analysis.
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For estimation purposes, we use the inverse of the buyer’s utility as bidder i’s score

bid:29

si,t =
pi,t
qi,t

. (23)

The associated scoring rule is given by S(pi,t, qi,t) = pi,t/qi,t. Figure 1 shows the histogram

of si,t for the auction samples with the number of bidders being equal to ten.

[Figure 1 about here.]

Finally, while we control the heterogeneity in project size by normalizing the price bid with

the engineer’s estimates, our sample still involves heterogeneity in the number of bidders

and the quality upper bound. Thus, the covariate x that we use is the quality upper bound.

5.2.2 Cost function

Given the data, we assume that L = K = 2. We use (2) as the cost function with α0 =

α1 = 0:

C(q,θ) =

 (q + θ1)
β

+ θ0 if q > −θ1

θ0 otherwise,
(24)

where β is 2, 3, or 4. This cost function satisfies Assumptions 1 through 4.

5.3 Estimation of θ

Let si,t = S(pi,t, qi,t). Then, the signal is estimated from pi,t, qi,t, ĝ(·), and Ĝ(·) as follows:

Given that P = pi,t and Ps = qi,t under the PQR scoring rule, we have b0 = pi,t −
29Recall that the outcome of the scoring auction is invariant to any monotone transformation of the scoring

rule.
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qi,t(1− Ĝ(si,t))/[(n− 1)ĝ(si,t)] and b1 = si,t. Hence, we have

θ̂0 = pi,t − qi,t
1

n− 1

1− Ĝ(si,t)

ĝ(si,t)
−
(
si,t
β

) β
β−1

,

θ̂1 =

(
si,t
β

) 1
β−1

− qi,t.

For estimating Ĝ and ĝ, we use the triweight kernel:

K(u) =
35

32
(1− u2)31(|u| < 1).

As usual, the bandwidths hs and hx are given by the so-called rule of thumb; hs =

ηs(
∑T

k=1 nk)
−1/5 and hx = ηx(

∑T
k=1 nk)

−1/5, where ηs = 1.06ρ̂s and ηx = 1.06ρ̂x, re-

spectively. Both ρ̂s and ρ̂x are sample standard deviations of the normalized scoring bids

and the observed covariate, respectively. The following figures are the estimated joint den-

sity functions assuming that the cost function is the quadratic polynomial (β = 2). Axes x

(horizontal) and y (depth) represent θ0 and θ1, respectively.

[Figure 2 about here.]

5.4 Counterfactual analyses

5.4.1 Second-price vs. FS auctions

One of the appeals of multidimensional auctions is that both the auctioneer and the bidders

increase welfare from a more complete comparison of suppliers’ attributes.(See, e.g., Mil-

grom (2004).) Our first empirical examination, thus, measures the gains from the use of

scoring auctions for both buyer and suppliers.

We create a series of counterfactual second-price auctions, in each of which the quality

level is fixed at q̄ = 130, 140, 150, 160, and 170. Using the estimated cost functions,

we can point-estimate bidders’ costs at any level of q̄ = 130, . . . , 170. We then select the

second-lowest cost as p̂postt , the contract price of the counterfactual second-price auctions.

The buyer’s utility in the price-only auction is given according to (22) as wt = q̄t/p̂
post
t .
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Because the bidder’s cost functions are differentiated by β = 2, 3, and 4, fifteen types of

counterfactual second-price auctions are generated.

Table 3 compares the procurement buyer’s utilities in the observed FS auction versus

a series of counterfactual price-only auctions. The extent of the government’s expected

gain from the scoring auction depends crucially on the fixed quality standard in the price-

only auction. While the government utilities would drop by more than seven percent if the

quality standard in the price-only auction were q̄ = 130, the drop would be not very large

(merely .96 percent) if, for instance, q̄ = 160 with the Quadratic cost function. Considering

the fact that the buyer must incur substantial costs to evaluate the quality bids in the scoring

auction, our results suggest that a simple low-price auction still works well, as long as the

buyer can appropriately design the quality standard of the price-only auction.

Table 4 reports the winning bidders’ (normalized) expected payoffs, which is computed

by taking the average of the estimated (nominal) payoff divided by the engineer’s estimate

for each auction. The results show that the bidder’s payoff also varies, depending on the

quality standard in the price-only auction. Note that the positive relationship between pay-

offs and quality standards is due to greater information rents left over to bidders with a

higher quality standard, as suggested by Che (1993).

[Table 3 about here.]

[Table 4 about here.]

The results do not take into account the bidder’s participation decision and the bidder’s

cost for preparing multidimensional bidding. Given that bidders earn more in the scoring

auction, scoring auctions can encourage bidders’ participation. On the other hand, if the bid

preparation costs are significantly greater in a scoring auction than in a price-only auction,

then participation is discouraged. Given the buyer’s small gain from the scoring auction in

comparison to the price-only auction with q̄ = 160, our results suggest that a price-only

auction with an appropriate q̄ is still a good mechanism to allocate the government contract.
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5.4.2 SS vs. FS auctions

We next estimate the extent to which the buyer’s expected utility would be changed by

introducing SS auctions. In our setting, the second derivative of u(s,θ) is strictly positive.30

Therefore, theory predicts that the expected s (i.e., the inverse of the buyer’s utility) will

be lower in SS than in FS auctions (Theorem 3 in Hanazono et al. (2013)). We conduct a

counterfactual analysis to measure the difference between FS and SS auctions regarding the

buyer’s and bidders’ utilities and the contract quality level. In Online Appendix II, we show

the way to generate counterfactual SS auction samples from the estimated parameters, θ̂i,t.

Table 5 shows the buyer’s utilities (the inverse of s). The means are lower by .71 to

.72 percent in the SS than in the FS auction. While the result is in line with the theoretical

prediction, the advantage may be offset by the greater variance in the SS auction.

Table 6 reports the quality level finalized in the contract. The contract quality level

declines, on average, by approximately .05 to .06 percents if SS auctions are used. This

suggests that the higher expected s is due to excessive quality proposal in the FS auc-

tion. In fact, bidders earn larger payoffs in the FS auction, on average (about 2.3 percent),

which Table 7 shows. This suggests that, while the FS auction would result in a higher

expected score (or, equivalently, lower buyer utilities), the drawback can be remedied by

more intensified competition as the FS auction is more profitable for bidders under the

price-over-quality ratio (PQR) scoring rule.

[Table 5 about here.]

[Table 6 about here.]

[Table 7 about here.]

5.4.3 QL vs. PQR rules

Finally, we examine the impact of the change in the scoring rule; we generate a QL scoring

rule that dominates the current PQR scoring rule from the viewpoint of the buyer’s welfare.

30Under the PQR scoring rule, us(s,θ) = Ps(s, q(s,θ)) = q(s,θ). Then, uss(s,θ) = qs(s,θ) =
Psq(s, q)/(Cqq(q(s,θ),θ) − Pqq(s, q(s,θ)). Note that Pqq = 0 and Psq = 1 in our setting. Thus, uss =
1/Cqq > 0.
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The QL rules that we consider are given as

S(p, q) = p− φ(β)q, (25)

for some φ > 0. Given the theoretical prediction that the lower performance of the FS

auction under the PQR rule is due to over-provision in quality, we seek appropriate φs that

induce bidders to bid lower q. We choose φ(β) ≈ .0058 (the slope of the scoring function,

Pq(·)), for example, for the auctions with the quality upper bound is equal to 160. Using

φ(β), we predict the expected winning score in the QL scoring auction, which is given by

the mean of the second-lowest pseudotype due to the expected score equivalence. In Online

Appendix III, we show the way to generate the counterfactual SS auction samples with the

QL scoring rule.

Table 8 reports the buyer’s utility from the counterfactual QL scoring auctions. In all

cases, utilities rise by .7 percent, on average. Note that standard deviations are larger in

our counterfactual QL scoring auctions because we use the SS auction to generate the QL

scoring auction samples.

Table 9 shows the winning bidder’s profits. The profits drop by about 3.8 to 4.0 percent.

This suggests that, using an appropriate QL scoring rule, the buyer can extract more rents

from bidders.

[Table 8 about here.]

[Table 9 about here.]

Table 10 compares the contracted quality levels in the observed FS auction and in simulated

QL scoring auctions. The quality bids rise by approximately .04 to .06 percent under the

well-designed QL scoring rule. This suggests that the QL scoring rule can limit the winner’s

informational rent while promoting higher quality proposals.

[Table 10 about here.]
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6 Conclusion

In this research, we provide a method to analyze the scoring auction theoretically and

econometrically. Allowing a broad class of scoring rules, we demonstrate the existence and

the characterization of a symmetric monotone equilibrium of the scoring auction. Based

on our theoretical model, we then examine identification of the scoring auction model.

Furthermore, we take our framework to the scoring auction data to quantify the impact of

the change in design of scoring auctions and the adoption of the scoring auction instead of

price-only auctions.

We restrict attention to the independent scoring rule, in which the bidder’s score de-

pends only on his or her price and quality bids. Especially in the real-world procurement

auctions, scoring rules are used in which the bidder’s score depends also on the other bid-

ders’ price and quality bids (an interdependent scoring rule). Albano et al. (2009) suggest

that the interdependent scoring rule causes the efficiency loss, estimating the auctioneer’s

loss to be approximately 11 percent. Interesting future research may lie in doing an analy-

sis similar to that of this paper, but on the scoring auction with an interdependent scoring

rule. A counterfactual analysis would quantify the expected score difference between the

FS and SS auctions with an interdependent scoring rule.
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Appendix A Proof of Lemma 1

Proof. Let q`
θk

(s,θ) = ∂q`(s,θ)/∂θk. Then, it is sufficient to show that

[
L−1∑
`=1

u(s,θ)

us(s,θ)
Psq`(s,q(s,θ))q`θk(s,θ)

]
+ Cθk(q,θ) (A-1)
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is strictly positive and bounded.

We first demonstrate that Assumptions 1-(ii), 2, and 3-(i) imply that[
L−1∑
`=1

Cq`(q(s,θ),θ)q`θk(s,θ)

]
+ Cθk(q(s,θ),θ) = 0. (A-2)

By expression (3), q(s,θ) satisfies

Pq`(s,q(s,θ)) = Cq`(q(s,θ),θ).

for all s ∈ S and θ ∈ Θ and for all ` = 1, . . . , L − 1. Taking the derivative on both sides

of this expression with respect to θk with k = 0, . . . , K − 1, we obtain

L−1∑
m=1

[Pq`qm(s,q(s,θ))− Cq`qm(q(s,θ),θ)]q`θk(s,θ) = Cq`θk(q,θ) = 0, (A-3)

where the inequality is due to Assumption 1-(ii). Then, by Assumption 2, we have q`
θk

(s,θ) 5

0 for all s ∈ S and θ ∈ Θ. Recall that Pq`qm − Cq`qm is strictly negative at q = q(s,θ)

by Assumption 2. It follows that q`
θk

(s,θ) = 0 if Cq`θk = 0. Therefore, if Cq`θk = 0,

expression (A-2) holds (because Cθk > 0, and the first term in (A-2) vanishes).

To show that (A-2) holds under Cq`θk > 0, we impose Assumption 3-(i): ∂
∂qm

C
q`

(q,θ)

C
θk

(q,θ)
=

0 for all `,m = 1, . . . , L− 1 and k = 0, . . . , K − 1. Assumption 3-(i) implies that

Cq`qm(q,θ)Cθk(q,θ)− Cq`(q,θ)Cqmθk(q,θ) = 0.

for all q ∈ Q(θ) and θ ∈ Θ. Given the assumption that Pq`qm 5 0 for all s, q and for all

`,m = 1, . . . , L− 1, the inequality implies that

[Cq`qm(q,θ)− Pq`qm(s,q)]Cθk − Cq`(q,θ)Cqmθk(q,θ) = 0. (A-4)
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Evaluating this at q = q(s,θ) and multiplying by q`
θk
/Cqmθk < 0 gives

Cq`(q(s,θ),θ)q`θk(s,θ)

=
Cθk(q(s,θ),θ)

Cqmθk(q(s,θ),θ)
[Cq`qm(q(s,θ),θ)− Pq`qm(s,q(s,θ))]q`θk(s,θ).

Using this expression and expression (A-3), we rewrite (A-2) as[
L−1∑
`=1

Cq`(q(s,θ),θ)q`θk(s,θ)

]
+ Cθk(q(s,θ),θ),

=
Cθk(q(s,θ),θ)

Cqmθk(q(s,θ),θ)

[
L−1∑
`=1

[Cq`qm(q(s,θ),θ)− Pq`qm(s,q(s,θ))]q`θk(s,θ)

]
+ Cθk(q(s,θ),θ),

=
Cθk(q(s,θ),θ)

Cqmθk(q(s,θ),θ)

[
−Cq`θk(q(s,θ),θ)

]
+ Cθk(q(s,θ),θ) = 0, (A-5)

where the inequality is due to the above expression and the first-equality is given by (A-3).

Therefore, (A-2) holds if Cq`θk > 0.

Finally, we show that (A-2) implies (A-1). By Assumption 3-(ii), we have

d

dq`
P (s,q)

Ps(s,q)
=

1

(Ps(s,q))2

[
Pq`(s,q)Ps(s,q)− P (s,q)Psq`(s,q)

]
= 0.

Given that C(q,θ) > 0 and that Ps(s,q) > 0, this inequality implies that

P (s,q)− C(q,θ)

Ps(s,q)
Psq`(s,q) < Pq`(s,q)

for all s ∈ S and q ∈ Q(θ) with θ ∈ Θ. Let us evaluate this inequality at q = q(s,θ).

Then, we have Pq`(s,q(s,θ)) = Cq`(q(s,θ),θ). Thus, by multiplying q`
θk

(s,θ) < 0 on

both sides, we obtain

P (s,q(s,θ))− C(q(s,θ),θ)

Ps(s,q(s,θ))
Psq`(s,q(s,θ))q`θk(s,θ) > Cq`(q(s,θ),θ)q`θk(s,θ)
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for all s and θ. Using this inequality and (A-2), we bound expression (A-1) from below as[
L−1∑
`=1

u(s,θ)

us(s,θ)
Psq`(s,q(s,θ))q`θk(s,θ)

]
+ Cθk(q(s,θ),θ),

>

[
L−1∑
`=1

Cq`(q(s,θ),θ)q`θk(s,θ)

]
+ Cθk(q(s,θ),θ),

=0,

for all s ∈ S and θ ∈ Θ.

Appendix B Proof of Lemma 2

Proof. For notational convenience, we let

t(s,θ) :=
u(s,θ)

us(s,θ)
.

We then consider Θ(s, x) = {θ|ξ(t(s,θ); s) = x}, denoting the set of θ such that ξ(t(s,θ); s)

is constant given s. Recall that, given s, u(s,θ)/us(s,θ) is a surjective mapping such that

Θ → T (s), and ξ(t; s) is a bijective mapping such that T (s) → [0, 1]. Therefore, for any

x ∈ [0, 1] and s ∈ S, Θ(s, x) is nonempty.

Now, we first show that for all x ∈ [0, x̄] and for all s1, s2 ∈ S,

Θ(s1, x) ∩Θ(s2, x)

is nonempty.

If s1 = s2, the statement is true trivially. To see the case that s1 6= s2, suppose, by

contradiction, that Θ(s1, x) ∩Θ(s1, x) is empty if s1 6= s2. Then, for all θ ∈ Θ(s1, x), we

have either

Case 1: ξ(t(s2,θ); s2) < x, or

Case 2: ξ(t(s2,θ); s2) > x.
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Note that the sorting condition implies that t(s,θ) is strictly decreasing in θ. It follows

that, for any θ ∈ Θ(s, x), ξ(t(s,θ′); s) > x if θ′ ≥ θ (i.e., θ′ = θ and θ′ 6= θ), and

ξ(t(s,θ′); s) < x if θ′ ≤ θ.

Then, define ΘL(s, x) = {θ|ξ(t(s,θ); s) 5 x}. That is, ΘL(s, x) denotes the lower

contour set of θ such that, for all θ ∈ ΘL(s, x), ξ(t(s,θ); s) is less than or equal to x given

s. Note that the sorting condition implies that if θ is in ΘL(s, x), so is any θ′ ≤ θ. More

formally, (θ ∈ ΘL(s, x) and θ′ ≤ θ)⇒ (θ′ ∈ ΘL(s, x)) for all s and x.31

Using the feature of ΘL(s, x), we consider Case 1 first. In this case, Θ(s1, x)L is a

strict subset of ΘL(s2, x), because, for any θ ∈ ΘL(s1, x), there exists θ′ ∈ Θ(s2, x) with

θ′ ≥ θ. Then, set ΘL(s2, x)\ΘL(s1, x) is nonempty. Then, we have

x =

∫
{θ̃∈ΘL(s2,x)}

f(θ̃)dθ̃

=

∫
{θ̃∈ΘL(s1,x)}

f(θ̃)dθ̃ +

∫
{θ̃∈ΘL(s2,x)\ΘL(s1,x)}

f(θ̃)dθ̃

= x+

∫
{θ̃∈ΘL(s2,x)\ΘL(s1,x)}

f(θ̃)dθ̃

> x.

The last inequality holds because f(θ) is strictly positive for all θ. Therefore, we have a

contradiction.

Obtaining a contradiction in Case 2 is analogous. In Case 2, Θ(s2, x) is a strict subset

of ΘL(s1, x). Then, we have a contradiction:

x =

∫
{θ̃∈ΘL(s1,x)}

f(θ̃)dθ̃

=

∫
{θ̃∈ΘL(s2,x)}

f(θ̃)dθ̃ +

∫
{θ̃∈ΘL(s1,x)\ΘL(s2,x)}

f(θ̃)dθ̃

= x+

∫
{θ̃∈ΘL(s1,x)\ΘL(s2,x)}

f(θ̃)dθ̃

> x.

31This means that Θ(s, x) is the frontier of ΘL(s, x) as being similar in spirit to the production possibility
frontier of the production set in the firm theory. The sorting condition plays the same role as the free-disposal
assumption.
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Therefore, for all x ∈ [0, 1] and for all s1, s2 ∈ S, there exists θ ∈ Θ(s1, x) ∩Θ(s2, x).

Using the result, we next show the differentiability of ξ(·). By definition, we have

x ≡ ξ(t(s,θ); s).

for all θ ∈ Θ(s, x) with x ∈ [0, 1] and s ∈ S. Given that ξ−1(x; s) is a strictly decreasing

function of x, we transform both sides of this identity with ξ−1(·; s) to obtain

ξ−1(x; s) ≡ t(s,θ).

From the above result, there exists θ ∈ Θ(s1, x) ∩Θ(s2, x) such that

ξ−1(x; s1)− ξ−1(x; s2)

s1 − s2

=
t(s1,θ)− t(s2,θ)

s1 − s2

.

Without loss, we assume s1 < s2. Note that t(s,θ) is differentiable with respect to s.

Therefore, by the mean-value theorem, there exists s′ ∈ [s1, s2] such that

t(s1,θ)− t(s2,θ)

s1 − s2

=
∂

∂s
t(s′,θ).

This holds in the limit where s2 → s1. That is, there exists θ ∈ Θ(s1, x) such that

d

ds
ξ−1(x; s1) = lim

s2→s1

t(s1,θ)− t(s2,θ)

s1 − s2

=
∂

∂s
t(s1,θ).

It follows that, for all s in the interior of S, x ∈ [0, x̄], there exists θ ∈ Θ(s, x) such that

d

ds
ξ−1(x; s) :=

∂

∂s
t(s,θ).
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Appendix C Proof of Lemma 3

Proof. Suppose that bidder i with θi ∈ Θr− ∪Θr also plays σI(·) as an optimal bidding

strategy. Then, the first-order condition gives

1−G(σI(θ
′))

(n− 1)g(σI(θ
′))
− u(σI(θ

′),θi)

us(σI(θ
′),θi)

T 0,

for any θ′ ∈ Θr− ∪ Θr with u(σI(θ
′),θ′)/us(σI(θ

′),θ′) S u(σI(θ
′),θi)/us(σI(θ

′),θi).

This suggests that choosing σI(θ
′) is suboptimal for bidder i – i.e., too low (or too high) – if

θ′ is such that u(σI(θ
′),θ′)/us(σI(θ

′),θ′) < u(σI(θ
′),θi)/us(σI(θ

′),θi) (or u(σI(θ
′),θ′)/us(σI(θ

′),θ′) >

u(σI(θ
′),θi)/us(σI(θ

′),θi)). Hence, σI(θ
′) S σI(θi) if and only if u(σI(θ

′),θ′)/us(σI(θ
′),θ′) S

u(σI(θ
′),θi)/us(σI(θ

′),θi).

This implies that if i also plays σI(·) as an optimal strategy, then G(·) satisfies

G(σI(θi)) = Pr{σI(θ) < σI(θi)},

= Pr

{
u(σI(θi),θ)

us(σI(θi),θ)
>

u(σI(θi),θi)

us(σI(θi),θi)

∣∣∣∣σI(θi)

}
,

= ξ

(
u(σI(θi),θi)

us(σI(θi),θi)
;σI(θi)

)
.

Appendix D The existence and uniqueness of the solution

to (12)

Proof. Transforming back both sides of expression (12) with ξ−1(·; s), we obtain:

1−G(s)

(n− 1)g(s)
= ξ−1(G(s); s). (A-6)

Now, let x = G(s). Given that G(s) is strictly increasing, G(s) has its inverse. Then,

let y(·) denote the inverse of G(·). Then, from (Guess) and (A-6), we obtain an ordinary
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differential equation: 
y′(x) =

n− 1

1− x
ξ−1(x; y(x)),

y(x̄) = sr.

(A-7)

The reason that the ordinary differential equation has a unique solution is given as follows.

First, the right-hand side is differentiable with respect to s for all x ∈ [0, x̄]. This is

because, by Lemma 2, ξ−1(x; s) is differentiable with respect to s for all x ∈ [0, x̄]. Second,

ξ−1(x; s) ∈ T (s) is bounded for all x ∈ [0, x̄] and s ∈ S . These ensure that the right-hand

side of (A-7) is Lipschitz continuous with respect to s ∈ S for any x ∈ [0, x̄]. Then, the

standard argument of the ordinary differential equation applies to see that y(·) is a unique

solution to (A-7).

It is easy to see that y′(x̄) = 0 because ξ−1(x̄, sr) = t(sr) = 0. In addition, y′(·)
is strictly positive and bounded for all x ∈ [0, x̄]. It follows that G(·) = y−1(·) satisfies

(Guess). Thus, there uniquely exists G(·) that satisfies (Guess) and (A-6).

Note that this argument holds even if the reserve price is equal to z(θ̄), i.e., the least

efficient supplier, θ̄ is indifferent between bidding and staying out. In this case, the right-

hand side of (A-7) goes to infinity as x → 1 for some s and fails to meet the Lipschitz

condition.32 The differential equation has multiple solutions for three initial values of y(1):

−∞, sr, and ∞. If y(1) is negative infinite, then y(x) is decreasing at some x close to

1. Hence, it is not a monotone equilibrium. If y(1) is positive infinite, y(x) is not an

equilibrium given that sr is finite.

Appendix E Proof of Lemma 4

Proof. First, we show that Assumption 4 implies that A(θ; q) is locally invertible for any

θ ∈ Θ and q ∈ Q(θ).

Fix q in Q. Let Γ denote a nonsingular matrix, and let θ̃ := Γθ. Let intΘ denote the

interior of Θ. Then, there exists ε > 0 such that Bε(θ) := {θ′|d(θ′,θ) < ε} is in intΘ.

Then, ΓBε(θ) is also open in Θ. Then, for any θ ∈ intΘ, let Jθ(θ; q) denote the Jacobian
32The argument follows Matthews (1995).
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matrix of A(θ; q) with respect to θ; namely:

Jθ(θ; q) =


Cθ0(q,θ) Cθ1(q,θ) · · · CθK−1(q,θ)

Cq1θ0(q,θ) Cq1θ1(q,θ) · · · Cq1θK−1(q,θ)
...

... . . . ...

CqL−1θ0(q,θ) CqL−1θ1(q,θ) · · · CqL−1θK−1(q,θ)

 .

Then, C̃(q, θ̃) := C(q,Γ−1θ̃) is well defined in the neighborhood of θ̃.

Now, let Ã(θ̃; q) := (C̃(q, θ̃), Cq1(q,θ), . . . , CqL−1(q,θ))T. Then, the Jacobian matrix

of Ã(θ̃; q) at θ is given by

J̃θ̃(θ̃; q) = JθΓ
−1,

=


C̃θ̃0(q, θ̃) C̃θ̃1(q, θ̃) · · · C̃θ̃K−1(q, θ̃)

C̃q1θ̃0(q, θ̃) C̃q1θ̃1(q, θ̃) · · · C̃q1θ̃K−1(q, θ̃)
...

... . . . ...

C̃qL−1θ̃0(q, θ̃) C̃qL−1θ̃1(q, θ̃) · · · C̃qL−1θ̃K−1(q, θ̃)

 .

Then, J̃θ̃(θ̃; q) is a strictly diagonally dominant matrix by Assumption 4. Therefore,

J̃θ̃(θ̃; q) is nonsingular by the Levy-Desplanques theorem. Note that Γ−1 is nonsingular by

definition. Thus, Jθ(θ; q) is also nonsingular.

The above argument holds for all θ ∈ intΘ and for all q ∈ Q. Therefore, Jθ(θ; q) is

nonsingular for all θ ∈ intΘ and for all q ∈ Q.

Second, we show that the nonsingularity of Jθ implies Assumption 4. Suppose that

Jθ(θ; q) is nonsingular for all θ in the interior of Θ and q ∈ Q. Then, set Γ := Jθ(θ; q)

for all q and θ so that we have JθΓ
−1 = IL. Then, Assumption 4 is satisfied.

46



Appendix F Local invertibility of A(θ;q) under

K := dim(θ) < L

We first show that Assumption 4 implies the local invertibility of A(·). Let D denote an

L× (L−K) matrix such that its `th column with ` = {K, . . . , L− 1} is given by

D =



0 0 0 · · · 0
...

...
...

...

0 0 0 · · · 0
K−1∑
k=0

CqKθk + ε 0 0 · · · 0

0
K−1∑
k=0

CqK+1θk + ε 0 · · · 0

0 0
. . . 0

...
... . . .

0 0 0
∑K−1

k=0 CqL−1θk + ε



,

with some ε > 0. Then, for some z ∈ RL−K , define Â(θ, z; q) := A(θ; q) + Dz.

Now, let Ĵ(θ,z) denote the Jacobian matrix of Â. Then, for any (θ, 0) ∈ intΘ × RL−K ,

Ĵ(θ,z)(θ, z; q) is a full-rank matrix. Hence, applying the local inverse function theorem, we

have the inverse of Â(θ, z; q). Let Â−1(·) denote the inverse and T denote an operator that

trims L − K elements of an L-dimensional vector from the end. Then, because Â−1 :=(
Â−1

0 , · · · , Â−1
K−1, Â

−1
K , · · · , Â−1

L−1

)
, we have A−1 ≡ (Â−1

0 , · · · , Â−1
K−1) = TÂ−1(·). Note

that we have (θ, 0) = Â−1(A(θ; q); q). Therefore,

θ = T (θ, 0)

= T (Â−1(A(θ; q); q))

= A−1(A(θ; q); q).

Hence, A(·) is locally invertible for all θ ∈ Θ and for all q ∈ Q.

Next, we show the converse. Suppose that A(·) is locally invertible for any θ and q.
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Then, from the above argument, Â(θ, z; q) := A(θ; q) + Dz has the nonsingular Jacobian

matrix for any (θ, 0) and for any q. Let Ĵ(θ,0)(θ, 0; q) denote the Jacobian matrix. Then,

set Γ = Ĵ so that we have ĴΓ−1 = IL. Then, Assumption 4 is satisfied.

Appendix G Proof of Proposition 3

Proof. By the global inverse function, A(θ; q) is globally invertible if, for all q ∈ Q(θ),

1. A(θ; q) is locally invertible and its inverse function is continuous;

2. A(θ; q) is proper;

3. Θ is arcwise connected, and the image of A(θ,q) is simply connected.

First, we already have known that A(θ; q) is locally invertible for all θ ∈ intΘ (where

intΘ denotes the interior of Θ) and q ∈ Q(θ). We show that A(θ; q) is locally invertible

for any θ ∈ ∂Θ. (where ∂Θ := Θ\ intΘ, the boundary of Θ.) LetBε(θ̃) := {θ|d(θ̃,θ) <

ε} denote the ε-neighborhood of θ̃. Suppose that A(θ̃; q) is not locally injective at θ̃ ∈
∂Θ. Then, for a fixed ε > 0, there exists θ ∈ Bε(θ̃) ∩ Θ such that A(θ̃; q) = A(θ; q).

Let δ := d(θ̃,θ). Then, for a fixed ε′ ∈ (0, δ), there exists θ′ ∈ Bε′(θ̃) ∩ Θ such that

A(θ̃; q) = A(θ′; q). Since θ /∈ Bε′(θ̃), we have θ 6= θ′ and A(θ; q) = A(θ′; q). However,

by Assumption 4, A(θ; q) is injective for all θ ∈ intΘ. Thus, there exists ε > 0, such

that A(θ̃; q) 6= A(θ; q) for all θ ∈ Bε(θ̃) ∩ Θ. Then, A(·; ·) is locally invertible with

respect to θ at θ̃ ∈ ∂Θ with the inverse A−1(·; ·) : A(Bε(θ̃) ∩Θ; q)→ Bε(θ̃) ∩Θ, where

A(Bε(θ̃) ∩Θ; q) := {A(θ; q)|θ ∈ Bε(θ̃) ∩Θ}.
Next, we show that A−1(·) is continuous at any boundary points θ̃ ∈ ∂Θ. Take a

sufficiently small ε > 0. Let δ̄ := supd(θ̃,θ)<ε d(A(θ̃; q), A(θ; q)). Then, since A(·) is

continuous at θ̃ ∈ ∂Θ, for any δ ∈ (0, δ̄), there is an ε′ ∈ (0, ε) such that if d(θ̃,θ) < ε′, we

have d(A(θ̃; q), A(θ; q)) < δ. Furthermore, by the definition of δ, if d(A(θ̃; q), A(θ; q)) <

δ, then d(θ̃,θ) < ε holds. Therefore, if d(A(θ̃; q), A(θ; q)) < δ, we have

d(A−1(A(θ̃)), A−1(A(θ))) = d(θ̃,θ) (since A(·, ·) is locally invertible)

< ε.
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Note that A(·, ·) is bijective with respect to θ in a neighborhood of θ̃. Therefore, for any

point b in a neighborhood of A(θ̃; q), there exists θ such that b = A(θ; q). Thus, A−1(·, ·)
is continuous, as required.

Second, we show that A(θ; q) is a proper map for all q ∈ Q(θ). That is, we show that

for any compact subset Y ∈ {A(θ; q)|θ ∈ Θ)}, the inverse image of Y , A−1(Y ; q) :=

{θ ∈ Θ|A(θ; q) ∈ Y }, is also compact. Since A(θ; q) is continuous, A(Y ; q) is also

closed for any closed set Y . Furthermore, Θ is bounded. Therefore, by the definition

of inverse image, A−1(Y ; q) is a subset of θ. Therefore, A−1(Y ; q) is bounded for all

q ∈ Q(θ). Thus, A(θ; q) is a proper map.

Finally, we show that i) domain Θ is arcwise connected and that ii) image A(Θ; q) :=

{A(θ; q|θ ∈ Θ)} is simply connected. We show i) first. In our model, Θ is a Cartesian

product of simply connected interval [θk, θ̄k] for all k = 0, . . . , K−1. Thus, Θ is obviously

arcwise connected. Next, we show ii). Since C(q,θ) and Cq`(q,θ) are continuous, images

C(q,Θ) := {C(q,θ|θ ∈ Θ)} and Cq`(q,Θ) := {Cq`(q,θ|θ ∈ Θ)} are simply connected

for ` = 1, . . . , L− 1. Thus, image A(Θ; q) is also simply connected.

Appendix H A Test for the Cost Function

First, we define exogenous variation in the number of bidders:

Definition 2 (Athey and Haile (2007)). A bidding environment has exogenous variation

in the number of bidders if, for all n′, n′′ such that n′ < n′′ 5 n, F (·;n′) is identical to

F (;n′′).

Then, consider the case in which the econometrician seeks to estimate θ by using a

cost function, Ĉ(q,θ), that differs from the true cost function – i.e., Ĉ(q,θ) 6= C(q,θ)

for some θ ∈ Θ and q. Then, let b∗(θ, n) = {p∗(θ, n), Ĝ∗(θ, n), ĝ∗(θ, n)} and q∗(θ, n)

denote observations implied by the bidder with type θ, given that the number of bidders in

the auction is n. Let θ̂(θ, Ĉ, n) denote the estimate. Then, the following two estimates:

θ̂(θ, Ĉ, n′) ≡A−1(b∗(θ, n′); q∗(θ, n′), Ĉ) and

θ̂(θ, Ĉ, n′′) ≡A−1(b∗(θ, n′′); q∗(θ, n′′), Ĉ)
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generally differ for some or all θ. Then, values of F̂ (θ) – i.e., the distribution of θ̂ –

generally differ depending on n, which could give a testable implication because the true

distribution of θ is identical for all n.

In the following, we show that the test does not function if the scoring rule is QL. The

observation of bidder type θ in the scoring auction with n bidders implies that

C(q∗(θ),θ) = p∗(θ, n)− 1− Ĝ∗(θ, n)

(n− 1)ĝ∗(θ, n)
, (A-8)

Cq`(q∗(θ),θ) = Pq`(q∗(θ)) with ` = 1, . . . , L− 1. (A-9)

We write q∗(θ) instead of q∗(θ, n) because q∗(·) is identical for all n under the QL scoring

rule. Given that C(q∗(θ),θ) and Cq`(q∗(θ),θ) with ` = 1, . . . , L − 1 are all identical for

any n, the right-hand side in expression (A-8) is constant for any n. Then, θ is recovered

as:

θ̂(θ, Ĉ) = A−1(b∗(θ); q∗(θ), Ĉ), (A-10)

for all Ĉ(·) that satisfies Assumptions 1 through 4. It is easy to see that F̂ (·;n′) = F̂ (·;n′′).

This implies that the scoring auction model does not give a refutable restriction on obser-

vations under the exogenous variation in the number of bidders.
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Figure 1: Distribution of Normalized Score for the set of auctions with the number of
bidders ranging from 2 through 5 and from 6 through 10 (top row), from 11 through 15 and
from 16 through 20 (middle row), and from 21 through 25 and from 26 through 30 (bottom
row).
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Figure 2: Estimated cdf of θ. Each panel corresponds to the scoring auctions with the
quality upper bound equal to 150 (top left), 160 (top right), 170 (bottom left), and 180
(bottom right). The Gaussian kernel is used. The bandwidths for θ0 and θ1 for the quality
upper bound: 160 are, e.g., .0022 and 0.7176, respectively.
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Variable∗1 Obs Mean SD Min Max

Number of Bidders 5,142 9.88 6.39 2 34
Engineers’ Estimates∗2 5,142 477.0 1,100.0 200.0 37,600

Win Price Bids∗2 5,142 423.0 972.0 169.0 34,300
Win Quality-Bid Points 5,142 158.17 11.34 132.60 200.00

Win Scores 5,142 177.23 15.088 109.39 310.12

Price bids∗2 36,688 531.0 984.0 160.0 37,100
Quality-Bid Points 36,688 153.19 11.11 101.50 200.00

Scores 36,688 180.19 15.315 109.39 310.12
∗1The top five rows are the statistics for each auction; the bottom three rows are the
statistics for each bid. ∗2Units are Yen million.

Table 1: Sample statistics
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Quality-Bid
Upper bound

Obs Mean∗1 SD∗1 Min∗1 Max∗1

150 1,182 290.0 174.0 200.0 4,470.0
160 2,124 339.0 412.0 200.0 5,950.0
170 1,114 504.0 1,050.0 200.0 12,200
180 495 666.0 1,280.0 200.0 12,400
190 220 1,990.0 2,830.0 207.0 28,300
200 7 8,110.0 13,400 397.0 37,600

Total 5,142 477.0 1,100.0 200.0 37,600
∗1Numbers represent the statistics regarding the engineers’ estimates. Units
are Yen million.

Table 2: Project sizes (by Quality-Bid Upper bound)
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Form C(q,θ) q̄ Obs Mean SD Min Max Change∗3

FS∗1 - - 5,142 177.2 15.09 109.4 310.1 -
130 5,142 163.7 14.94 98.21 580.4 -7.66% (0.53%)
140 5,142 171.3 16.58 95.53 589.0 -3.34% (0.39%)

Quadratic 150 5,142 175.3 18.58 91.86 631.1 -1.10% (0.25%)
160 5,142 175.5 20.65 87.89 640 -0.96% (0.18%)
170 5,142 172.5 22.22 83.83 576.5 -2.69% (0.24%)

130 5,142 163.2 15.15 96.21 572.7 -7.94% (0.50%)
140 5,142 170.9 16.71 90.26 605.9 -3.55% (0.38%)

SP∗2 Cubic 150 5,142 175.0 18.79 83.19 637.9 -1.24% (0.24%)
160 5,142 174.7 21.38 75.73 638 -1.44% (0.37%)
170 5,142 169.8 23.97 68.36 575.7 -4.20% (0.53%)

130 5,142 161.9 14.87 93.79 561.9 -8.68% (0.51%)
140 5,142 170.1 16.44 84.88 593.7 -4.00% (0.40%)

Quartic 150 5,142 174.5 18.74 74.47 626.1 -1.51% (0.26%)
160 5,142 173.7 22.07 63.90 636 -2.00% (0.28%)
170 5,142 166.9 25.89 54.08 574.8 -5.82% (0.51%)

∗1Observed FS auctions. ∗2Counterfactual second-price auctions. ∗3Change in mean from
FS to SP auction; numbers in parentheses are standard deviations generated by bootstrap-
ping samples. ∗Sample auctions with the number of bidders equal to or greater than 2; in
FS auctions, profits are less than 1, and normalized bids are less than 150% of reserva-
tion prices; in simulated SP auctions, profits are less than 1, and price bids are less than
200% of reservation prices. Numbers in parentheses are standard deviations generated by
bootstrapping samples.

Table 3: Buyer’s Utilities (Price-only vs FS Auctions)
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Form C(q,θ) q̄ Obs Mean SD Min Max Change∗3

FS∗1 - - 5,142 0.059 0.075 0.000 0.762 -
130 5,142 0.040 0.067 0.000 0.674 -30.82% (1.50%)
140 5,142 0.046 0.071 0.000 0.716 -21.37% (1.46%)

Quadratic 150 5,142 0.053 0.076 0.000 0.745 -10.05% (1.39%)
160 5,142 0.060 0.083 0.000 0.774 2.58% (1.38%)
170 5,142 0.068 0.090 0.000 0.852 15.83% (1.48%)

130 5,142 0.041 0.067 0.000 0.685 -29.09% (1.37%)
140 5,142 0.046 0.072 0.000 0.722 -20.69% (1.45%)

SP∗2 Cubic 150 5,142 0.053 0.079 0.000 0.816 -8.82% (1.55%)
160 5,142 0.063 0.089 0.000 1.032 6.92% (1.71%)
170 5,142 0.074 0.103 0.000 1.275 26.57% (2.01%)

130 5,142 0.041 0.067 0.000 0.684 -29.25% (1.37%)
140 5,142 0.046 0.073 0.000 0.724 -21.15% (1.54%)

Quartic 150 5,142 0.054 0.082 0.000 1.027 -8.13% (1.81%)
160 5,142 0.065 0.098 0.000 1.413 11.52% (2.23%)
170 5,142 0.082 0.122 0.000 1.893 39.60% (2.89%)

∗1Observed FS auctions. ∗2Counterfactual second-price auctions. ∗3Change in mean from
FS to SP auction; numbers in parentheses are standard deviations generated by bootstrap-
ping samples. ∗Sample auctions with the number of bidders equal to or greater than 2; in
FS auctions, profits are less than 1, and normalized bids are less than 150% of reserva-
tion prices; in simulated SP auctions, profits are less than 1, and price bids are less than
200% of reservation prices. Numbers in parentheses are standard deviations generated by
bootstrapping samples.

Table 4: Bidders’ Payoffs (Price-only vs FS auctions)
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Form C(q,θ) Obs Mean SD Min Max Change

FS∗1 - 5,142 177.23 15.088 109.39 310.12 -
Quadratic 5,142 178.51 21.292 98.26 646.5 0.72% (0.12%)

SS∗2 Cubic 5,142 178.50 21.232 98.26 644.9 0.71% (0.12%)
Quartic 5,142 178.48 21.135 98.26 636.8 0.71% (0.12%)

∗1Observed FS auctions (PQR). ∗2Hypothetical SS auctions with the PQR rule.
∗Sample auctions with the number of bidders equal to or greater than 2; in FS auc-
tions, profits are less than 1, and normalized bids are less than 150% of reservation
prices; in simulated SP auctions, profits are less than 1, and price bids are less than
200% of reservation prices. Numbers in parentheses are standard deviations generated
by bootstrapping samples.

Table 5: Buyer’s utilities (FS vs SS auctions)
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Form C(q, θ) Obs Mean SD Min Max Change

FS∗1 - 5,142 158.17 11.338 132.60 200.00 -
Quadratic 5,142 158.09 11.510 130.18 201.81 -0.05% (0.02%)

SS∗2 Cubic 5,142 158.09 11.457 131.93 201.56 -0.06% (0.01%)
Quartic 5,142 158.10 11.424 132.09 201.29 -0.05% (0.01%)

∗1Observed FS auctions (PQR). ∗2Hypothetical SS auctions with the PQR rule.
∗Sample auctions with the number of bidders equal to or greater than 2; in FS auc-
tions, profits are less than 1, and normalized bids are less than 150% of reservation
prices; in simulated SP auctions, profits are less than 1, and price bids are less than
200% of reservation prices. Numbers in parentheses are standard deviations generated
by bootstrapping samples.

Table 6: Contracted Quality Levels (FS vs SS auctions)
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Form C(q, θ) Obs Mean SD Min Max Change

FS∗1 - 5,142 0.0585 0.0752 0.0000 0.7616 -
Quadratic 5,142 0.0572 0.0776 0.0000 0.8251 -2.32% (1.09%)

SS∗2 Cubic 5,142 0.0571 0.0775 0.0000 0.8248 -2.34% (1.09%)
Quartic 5,142 0.0571 0.0775 0.0000 0.8246 -2.34% (1.09%)

∗1Observed FS auctions (PQR). ∗2Hypothetical SS auctions with the PQR rule.
∗Sample auctions with the number of bidders equal to or greater than 2; in FS auc-
tions, profits are less than 1, and normalized bids are less than 150% of reservation
prices; in simulated SP auctions, profits are less than 1, and price bids are less than
200% of reservation prices. Numbers in parentheses are standard deviations generated
by bootstrapping samples.

Table 7: Bidder’s Payoffs (FS vs SS auctions)
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Form C(q, θ) Obs Mean SD Min Max Change

FS∗1 - 5,142 177.23 15.088 109.39 310.12 -
Quadratic 5,142 178.46 20.041 103.25 547.73 0.69% (0.11%)

SS∗2 Cubic 5,142 178.46 20.094 102.79 549.31 0.69% (0.11%)
Quartic 5,142 178.47 20.132 102.67 550.68 0.70% (0.11%)

∗1Observed FS auctions (PQR). ∗2Hypothetical SS auctions with the QL rule. ∗Sample
auctions with the number of bidders equal to or greater than 2; in FS auctions, profits are
less than 1, and normalized bids are less than 150% of reservation prices; in simulated
SP auctions, profits are less than 1, and price bids are less than 200% of reservation
prices. Numbers in parentheses are standard deviations generated by bootstrapping
samples.

Table 8: Buyer’s Utilities (QL vs PQR Scoring Rules)
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Form C(q, θ) Obs Mean SD Min Max Change

FS∗1 - 5,142 0.0585 0.0752 0.0000 0.7616 -
Quadratic 5,142 0.0562 0.0752 0.0000 0.8157 -4.03% (1.05%)

QL∗2 Cubic 5,142 0.0562 0.0753 0.0000 0.8160 -3.89% (1.05%)
Quartic 5,142 0.0563 0.0754 0.0000 0.8161 -3.81% (1.05%)

∗1Observed FS auctions (PQR). ∗2Hypothetical SS auctions with the QL rule. ∗Sample
auctions with the number of bidders equal to or greater than 2; in FS auctions, profits are
less than 1, and normalized bids are less than 150% of reservation prices; in simulated
SP auctions, profits are less than 1, and price bids are less than 200% of reservation
prices. Numbers in parentheses are standard deviations generated by bootstrapping
samples.

Table 9: Bidder Payoffs (QL vs PQR Scoring Rules)
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Form C(q, θ) Obs Mean SD Min Max Change

FS∗1 - 5,142 158.17 11.338 132.60 200.00 -
Quadratic 5,142 158.27 11.484 126.33 200.81 0.06% (0.04%)

SS∗2 Cubic 5,142 158.25 11.428 129.24 200.71 0.05% (0.03%)
Quartic 5,142 158.23 11.402 129.99 200.59 0.04% (0.02%)

∗1Observed FS auctions (PQR). ∗2Hypothetical SS auctions with the QL rule. ∗Sample
auctions with the number of bidders equal to or greater than 2; in FS auctions, profits are
less than 1, and normalized bids are less than 150% of reservation prices; in simulated
SP auctions, profits are less than 1, and price bids are less than 200% of reservation
prices. Numbers in parentheses are standard deviations generated by bootstrapping
samples.

Table 10: Contracted Quality Levels (QL vs PQR Scoring Rules)
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Online Appendix (Not For Publication)

Online Appendix I Proof of the Existence, Uniqueness, and Strict Mono-

tonicity of the Solution to (7)

Proof. We first show that a solution to the maximization problem (7) exists for all θ ∈
Θr− ∩Θr.

Suppose that θ ∈ Θr. Then, choosing s < sr results in a strictly negative payoff when

winning (Recall that u(s,θ) < 0 for all s < sr if θ ∈ Θr). Moreover, choosing s > sr

is weakly dominated, because it fails to meet the reserve score. Therefore, choosing sr is

optimal for bidder i if its type is θ ∈ Θr.

Suppose next that θ ∈ Θr−. Then, the derivative of the objective function is given by

us(s,θ)(1−G(s))− (n− 1)u(s,θ)g(s). (OA-1)

For all θ ∈ Θr−, z(θ) := {s|u(s,θ) = 0} < sr. It follows that u(sr,θ) > 0. Recall

(Guess), which addresses that lims→sr g(s) → ∞. The second term in (OA-1) is thus

negative infinite. Because the first term is finite, (OA-1) is negative infinite if s = sr. On

the other hand, (OA-1) is strictly positive when i chooses z(θ), because the second term

vanishes. Given that (7) is a smooth function of s, there exists s in the interior of [z(θ), sr]

at which (OA-1) is equal to zero. Therefore, the solution exists for all θ ∈ Θr− in the

interior of [z(θ), sr].

Next, we show that the solution is unique and strictly increasing in θ. Let s∗ denote a

solution to the maximization problem for some θ. Then, the sorting condition implies that

us(s
∗, θ̂)(1−G(s∗))− (n− 1)u(s∗, θ̂)g(s∗) T 0, (OA-2)

for all θ̂ T θ. This suggests that s∗ is suboptimal – i.e., too low (or too high) – for all

θ̂ ≥ θ (or for all θ̂ ≤ θ).33 This, in turn, implies that, for all θ̂ ≥ θ (or for all θ̂ ≤ θ),

the solution is strictly greater (or smaller) than s∗. It follows that the solution is unique and

strictly increasing in θ for all θ ∈ Θr−. Note that sr is the optimal for all θ ∈ Θr. Hence,

33Here, “≥” and “≤” denote vector inequalities.
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the optimal solution to (7) is unique and strictly increasing for all θ ∈ Θr− ∩ Θr under

(Guess).

Online Appendix II Generating counterfactual SS auction samples from

the estimated parameters

Define

qFB(θ) = q(z(θ),θ). (OA-3)

Under the PQR scoring rule, qFB(θ) = {q|Cq(q,θ)q = C(q,θ)}. Hence, solving the

following polynomial:

(
qFB + θ̂1

i,t

)β
− qFBβ

(
qFB + θ̂1

i,t

)β−1

+ θ̂0
i,t = 0,

gives us the estimate of qFB under the PQR scoring rule. Using q̂FBi,t , the break-even score,

z(θ) = C(q̂FB,θ)/q̂FB, is estimated as

ẑ(θ̂i,t) =
1

q̂FBi,t

[(
q̂FBi,t + θ̂1

i,t

)β
+ θ̂0

i,t

]
.

Given that the contract quality (as well as price) matches the second-lowest score s(2) =

z(θ(2)), it is obtained as

q̂postII,t =

(
z(θ̂(2),t)

β

) 1
β−1

− θ̂1
(1),t.

The winner’s payoff is, thus, given by

u(s(2),t, θ̂(1),t) = q̂postII,t · s(2),t −
(
q̂postII,t + θ̂1

i,t

)β
− θ̂0

i,t.
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Online Appendix III Generating the counterfactual SS auctions with

the QL scoring rule

Under the QL rule, the bidder’s pseudotype is given by k(θ) = minq C(q,θ) − φ(β)q ≡
z(θ). This implies that the minimizer is qFB(θ) ≡ q(z(θ),θ) as defined in (OA-3). Because

Pq(s, q) = φ(β) for all s and q, qFB in the QL scoring rule is given by

q̂FBQL,i,t =

(
φ(β)

β

) 1
β−1

− θ̂1
i,t. (OA-4)

Hence, the bidder’s pseudotype is estimated by

k̂i,t =
(
q̂FBQL,i,t + θ̂1

i,t

)β
+ θ̂0

i,t − qFBQL(θ̂i,t). (OA-5)

The lowest pseudotype bidder wins and receives the payment pQL = k(θ(2)) + qFB(θ(1)) in

the SS auction with the QL scoring rule. Thus, both are estimated from observations. The

buyer’s utility from the contract is then estimated by

sQL,t = p̂QL,t/q
FB

QL(θ̂(1),t).

OA-3
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